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APPROXIMATE SOLUTIONS OF RANDOMIZED

NON-AUTONOMOUS COMPLETE LINEAR DIFFERENTIAL

EQUATIONS VIA PROBABILITY DENSITY FUNCTIONS

JULIA CALATAYUD, JUAN CARLOS CORTÉS, MARC JORNET

Abstract. Solving a random differential equation means to obtain an exact or

approximate expression for the solution stochastic process, and to compute its

statistical properties, mainly the mean and the variance functions. However, a
major challenge is the computation of the probability density function of the

solution. In this article we construct reliable approximations of the probability

density function to the randomized non-autonomous complete linear differen-
tial equation by assuming that the diffusion coefficient and the source term are

stochastic processes and the initial condition is a random variable. The key

tools to construct these approximations are the random variable transforma-
tion technique and Karhunen-Loève expansions. The study is divided into a

large number of cases with a double aim: firstly, to extend the available results
in the extant literature and, secondly, to embrace as many practical situations

as possible. Finally, a wide variety of numerical experiments illustrate the

potentiality of our findings.

1. Introduction and motivation

The behavior of physical phenomena is often governed by chance and it does
not follow strict deterministic laws. Specific examples can be found in many ar-
eas. For example, in Thermodynamics, the analysis of crystal lattice dynamics
in which there is a small percentage of small atoms, randomness arises since the
atom masses may take two or more values according to probabilistic laws [10];
in the analysis of free vibrations in Mechanics, the heterogeneity in the material
may be very complicated, so it may be more suitable to model it via appropriate
random fields [31]; in epidemiology, the rate of transmission of a disease depends
upon very complex factors, such as genetics, weather, geography, etc., that can be
better described using adequate probabilistic distributions rather than determin-
istic tools, etc. [1]. As a consequence, it is reasonable to deal with mathematical
models considering randomness in their formulation. Motivated by this fact, i.e.
the random nature involved in numerous physical phenomena together with the
ubiquity of deterministic differential equations to formulate classical laws in ther-
modynamics, mechanics, epidemiology, etc., it is natural to randomize classical
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probability density function.
c©2019 Texas State University.

Submitted July 2, 2018. Published July 16, 2019.

1



2 J. CALATAYUD, J. C. CORTÉS, M. JORNET EJDE-2019/85

differential equations to describe mathematical models. This approach leads to the
areas of stochastic differential equations (SDEs) and random differential equations
(RDEs). In the former case (SDEs), differential equations are forced by stochastic
processes having an irregular sample behavior (e.g., nowhere differentiable) such as
the Wiener process or Brownian motion. SDEs are written as Itô or Stratonovich
integrals rather than in their differential form. This approach permits dealing with
uncertainty via very irregular stochastic processes like white noise, but assuming
specific probabilistic properties (Gaussianity, independent increments, stationarity,
etc.). The rigorous treatment of SDEs requires a special stochastic calculus, usually
referred to as Itô calculus, whose cornerstone result is Itô’s Lemma [21, 18]. While
RDEs are those in which random effects are directly manifested in their input data
(initial/boundary conditions, source term and coefficients) [26, 25]. An important
advantage of RDEs is that a wider range of probabilistic patterns are allowed for
input data like beta, gamma, Gaussian distributions (including Brownian motion),
but not white noise. Furthermore, the analysis of RDEs takes advantage of classical
calculus where powerful tools are available [26]. When dealing with both SDEs and
RDEs, the main goals are to compute, exact or numerically, the solution stochastic
process, say x(t), and its main statistical functions (mostly mean, E[x(t)], and vari-
ance, V[x(t)]). A more ambitious target is to compute its n-dimensional probability
density distribution, fn(x1, t1; . . . ;xn, tn), whenever it exists, which gives the prob-
ability density distribution of the random vector (x(t1), . . . , x(tn)), i.e., the joint
distribution of the solution at n arbitrary time instants ti, 1 ≤ i ≤ n [26, pp. 34-36].
This is generally a very difficult goal, and in practice significant efforts have been
made to compute just the first probability density function, f1(x, t), since from it all
one-dimensional statistical moments of the stochastic process x(t) can be derived
using the fact that

E[(x(t))k] =

∫ ∞
−∞

xkf1(x, t) dx, k = 1, 2, . . . .

This permits computing the variance, skewness, kurtosis, etc., as well as determin-
ing the probability that the solution lies in a specific interval of interest

P[a ≤ x(t) ≤ b] =

∫ b

a

f1(x, t) dx,

for every time instant t.
In the context of SDEs, it is known that fn(x1, t1; . . . ;xn, tn) satisfies a Fokker-

Planck partial differential equation that needs to be solved, exact or numerically
[21, 18], while the random variable transformation technique [26, ch. 6], [22, ch. 5
and ch. 6] stands out as a powerful strategy to address this problem in the frame-
work of RDEs. Here, we restrict our analysis to an important class of RDEs taking
advantage of the random variable transformation technique. This method has been
successfully applied to study significant random ordinary differential equations [8, 4]
and random partial differential equations [9, 14, 16, 15, 33], that appear in different
areas such as epidemiology, physics, engineering, etc. In all these interesting con-
tributions, uncertainty is considered via random variables rather than stochastic
processes. From a mathematical standpoint, this fact restricts the generality of
previous contributions.

This article is devoted to computing approximations of the first probability den-
sity function to the random non-autonomous complete linear differential equation
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under very general hypotheses. As we shall see later, our approach takes advan-
tage of the aforementioned random variable transformation technique together with
Karhunen-Loève expansion [19, ch. 5]. It is important to point out that this funda-
mental problem has not been fully tackled in its general formulation yet. Indeed,
to the best of our knowledge, in a first step, the autonomous case, corresponding
to random first and second-order linear differential equations has been addressed
in [3] and [5], respectively. In a second step, these results have been extended to
random autonomous first-order linear systems in [6]. Third, new results in the
spirit of this paper have been recently published for the random non-autonomous
homogeneous linear differential equation in [7]. However, it must be said that be-
sides restricting the analysis to the homogeneous case, which obviously limits the
potentiality of the obtained results in real applications, in that contribution the
theoretical analysis relies upon a number of hypotheses that will be generalized in
the present paper. This is a very important novelty comparing this paper with [7].
Indeed, apart from dealing with the non-homogeneous case, in this paper we will
construct reliable approximations of the first probability density function to the
random non-autonomous complete linear differential equation within a fairly wide
variety of scenarios covering most of the practical cases.

For the sake of clarity, first we introduce some notation and results that will be
required throughout this article. We will also establish some results based upon
the sample path approach to the random non-autonomous non-homogeneous linear
differential equation that are aimed to complete our analysis.

Consider the non-autonomous complete linear differential equation

x′(t) = a(t)x(t) + b(t), t ∈ [t0, T ],

x(t0) = x0,
(1.1)

where a(t) is the diffusion coefficient, b(t) is the source term and x0 is the initial
condition. The formal solution to this Cauchy problem is

x(t) = x0e
∫ t
t0
a(s) ds

+

∫ t

t0

b(s)e
∫ t
s
a(r) dr ds, (1.2)

where the integrals are understood in the Lebesgue sense.
Now we consider (1.1) in a random setting, meaning that we are going to work

on an underlying complete probability space (Ω,F ,P), where Ω is the set of out-
comes, that will be generically denoted by ω, F is a σ-algebra of events and P is a
probability measure. We shall assume that the initial condition x0(ω) is a random
variable and

a =
{
a(t, ω) : t0 ≤ t ≤ T, ω ∈ Ω

}
, b =

{
b(t, ω) : t0 ≤ t ≤ T, ω ∈ Ω

}
are stochastic processes defined in (Ω,F ,P). In this way, the formal solution to the
randomized initial value problem (1.1) is given by the following stochastic process:

x(t, ω) = x0(ω)e
∫ t
t0
a(s,ω) ds

+

∫ t

t0

b(s, ω)e
∫ t
s
a(r,ω) dr ds, (1.3)

where the integrals are understood in the Lebesgue sense.

Notation. Throughout this paper we will work with Lebesgue spaces. Remember
that, if (S,A, µ) is a measure space, we denote by Lp(S) or Lp(S, dµ) (1 ≤ p <∞)
the set of measurable functions f : S → R such that ‖f‖Lp(S) = (

∫
S
|f |p dµ)1/p <

∞. We denote by L∞(S) or L∞(S, dµ) the set of measurable functions such that
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‖f‖L∞(S) = inf{sup{|f(x)| : x ∈ S\N} : µ(N) = 0} <∞. We write a.e. as a short
notation for “almost everywhere”, which means that some property holds except
for a set of measure zero.

Here, we will deal with several cases: S = T ⊆ R and dµ = dx the Lebesgue
measure, S = Ω and µ = P the probability measure, and S = T ×Ω and dµ = dx×
dP. Notice that f ∈ Lp(T ×Ω) if and only if ‖f‖Lp(T ×Ω) = (E[

∫
T |f(x)|p dx])1/p <

∞. In the particular case of S = Ω and µ = P, the short notation a.s. stands for
“almost surely”.

In this article, an inequality related to Lebesgue spaces will be frequently used.
This inequality is well-known as the generalized Hölder’s inequality, which says
that, for any measurable functions f1, . . . , fm,

‖f1 · · · fm‖L1(S) ≤ ‖f1‖Lr1 (S) · · · ‖fm‖Lrm (S), (1.4)

where
1

r1
+ · · ·+ 1

rm
= 1, 1 ≤ r1, . . . , rm ≤ ∞. (1.5)

When m = 2, inequality (1.4)-(1.5) is simply known as Hölder’s inequality. When
m = 2, r1 = 2 and r2 = 2, inequality (1.4)-(1.5) is termed Cauchy-Schwarz inequal-
ity.

For the sake of completeness, we establish under which hypotheses on the data
stochastic processes a and b and in what sense the stochastic process given in (1.3)
is a rigorous solution to the randomized problem (1.1).

To better understand the computations in the proof of Theorem 1.1, let us
recall some results that relate differentiation and Lebesgue integration. Recall that
a function f : [T1, T2] → R belongs to A.C([T1, T2]) (A.C stands for absolutely
continuous) if there exists its derivative f ′ at a.e. x ∈ [T1, T2], f ′ ∈ L1([T1, T2])
and f(x) = f(T1) +

∫ x
T1
f ′(t) dt for all x ∈ [T1, T2] (i.e., f satisfies the fundamental

theorem of calculus for Lebesgue integration). Equivalently, f ∈ A.C([T1, T2]) if
for all ε > 0 there exists a δ > 0 such that, if {(xk, yk)}mk=1 is any finite collection
of disjoint open intervals in [T1, T2] with

∑m
k=1(yk − xk) < δ, then

∑m
k=1 |f(yk) −

f(xk)| < ε. Equivalently, f ∈ A.C([T1, T2]) if there exists g ∈ L1([T1, T2]) such
that f(x) = f(T1) +

∫ x
T1
g(t) dt for all x ∈ [T1, T2]. In such a case, g = f ′ almost

everywhere on [T1, T2]. For more details on these statements, see [2, p.129] [29,
Th.2, p.67].

Two results concerning absolute continuity will be used:

(i) If f ∈ A.C([T1, T2]), then ef ∈ A.C([T1, T2]) (use the Mean Value Theorem
to ef and the ε-δ definition for absolute continuity).

(ii) The product of absolutely continuous functions is absolutely continuous.

Theorem 1.1. If the data processes a and b of the randomized initial value problem
(1.1) satisfy a(·, ω), b(·, ω) ∈ L1([t0, T ]) for a.e. ω ∈ Ω, then the solution process
x(t, ω) given in (1.3) has absolutely continuous sample paths on [t0, T ], x(t0, ω) =
x0(ω) a.s. and, for a.e. ω ∈ Ω, x′(t, ω) = a(t, ω)x(t, ω) + b(t, ω) for a.e. t ∈ [t0, T ].
Moreover, this is the unique absolutely continuous process being a solution.

On the other hand, if a and b have continuous sample paths on [t0, T ], then
x(t, ω) has C1([t0, T ]) sample paths and x′(t, ω) = a(t, ω)x(t, ω) + b(t, ω) for all
t ∈ [t0, T ] and a.e. ω ∈ Ω. Moreover, this is the unique differentiable process being
a solution.
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Proof. We rewrite (1.3) as

x(t, ω) = e
∫ t
t0
a(s,ω) ds

{
x0(ω) +

∫ t

t0

b(s, ω)e
−
∫ s
t0
a(r,ω) dr

ds
}
.

Since a(·, ω) ∈ L1([t0, T ]), the function
∫ t
t0
a(s, ω) ds belongs to A.C([t0, T ]), for a.e.

ω ∈ Ω. Therefore, by (i), e
∫ t
t0
a(s,ω) ds

belongs to A.C([t0, T ]), for a.e. ω ∈ Ω, with

derivative a(t, ω)e
∫ t
t0
a(s,ω) ds

.
On the other hand,

|b(s, ω)|e−
∫ s
t0
a(r,ω) dr ≤ |b(s, ω)|e|

∫ s
t0
a(r,ω) dr| ≤ |b(s, ω)|e

∫ s
t0
|a(r,ω)| dr

≤ |b(s, ω)|e
∫ T
t0
|a(r,ω)| dr

= |b(s, ω)|e‖a(·,ω)‖L1([t0,T ]) ∈ L1([t0, T ],ds),

for a.e. ω ∈ Ω. Then the function
∫ t
t0
b(s, ω)e

−
∫ s
t0
a(r,ω) dr

ds belongs to A.C([t0, T ]),

for a.e. ω ∈ Ω, with derivative b(t, ω)e
−
∫ t
t0
a(r,ω) dr

.
As the product of absolutely continuous functions is absolutely continuous (see

(ii)), we derive that, for a.e. ω ∈ Ω, x(·, ω) ∈ A.C([t0, T ]). Moreover, the product
rule for the derivative yields, for a.e. ω ∈ Ω, x′(t, ω) = a(t, ω)x(t, ω) + b(t, ω) for
a.e. t ∈ [t0, T ].

For the uniqueness, we apply Carathéodory’s existence theorem [11, p.30]. If
a and b have continuous sample paths on [t0, T ], one has to use the fundamental
theorem of calculus for the Riemann integral, instead. The uniqueness comes from
the global version of the Picard-Lindelöf theorem, or, if you prefer, by standard
results on the deterministic linear differential equation. �

2. Obtaining the probability density function of the solution

The main goal of this article is, under suitable hypotheses, to compute approx-
imations of the probability density function, f1(x, t), of the solution stochastic
process given in (1.3), x(t, ω), for t ∈ [t0, T ]. To achieve this goal, we will use the
Karhunen-Loève expansions for both data stochastic processes a and b.

Hereinafter, the operators E[·], V[·] and Cov[·, ·] will denote the expectation, the
variance and the covariance, respectively. We state two crucial results that will be
applied throughout our subsequent analysis.

Lemma 2.1 (Random variable transformation technique). Let X be an absolutely
continuous random vector with density fX and with support DX contained in an
open set D ⊆ Rn. Let g : D → Rn be a C1(D) function, injective on D such that
Jg(x) 6= 0 for all x ∈ D (J stands for Jacobian). Let h = g−1 : g(D) → Rn. Let
Y = g(X) be a random vector. Then Y is absolutely continuous with density

fY (y) =

{
fX(h(y))|Jh(y)|, y ∈ g(D),

0, y /∈ g(D).
(2.1)

The proof of the above lemma appears in [19, Lemma 4.12].
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Lemma 2.2 (Karhunen-Loève theorem). Consider a stochastic process {X(t) : t ∈
T } in L2(T × Ω). Then

X(t, ω) = µ(t) +

∞∑
j=1

√
νjφj(t)ξj(ω), (2.2)

where the sum converges in L2(T ×Ω), µ(t) = E[X(t)], {φj}∞j=1 is an orthonormal

basis of L2(T ), {(νj , φj)}∞j=1 is the set of pairs of (nonnegative) eigenvalues and
eigenvectors of the operator

C : L2(T )→ L2(T ), Cf(t) =

∫
T

Cov[X(t), X(s)]f(s) ds, (2.3)

and {ξj}∞j=1 is a sequence of random variables with zero expectation, unit variance
and pairwise uncorrelated. Moreover, if {X(t) : t ∈ T } is a Gaussian process, then
{ξj}∞j=1 are independent and Gaussian.

The proof of the above lemma appears in [19, Theorem 5.28].

Remark 2.3. When the operator C defined in (2.3) has only a finite number of
nonzero eigenvalues, then the process X of Lemma 2.2 can be expressed as a finite
sum:

X(t, ω) = µ(t) +

J∑
j=1

√
νjφj(t)ξj(ω).

In the subsequent development, we will write the data stochastic processes a and b
via their Karhunen-Loève expansions. The summation symbol in the expansion will
be always written up to ∞ (the most difficult case), although it could be possible
that their corresponding covariance integral operators C have only a finite number of
nonzero eigenvalues. In such a case, when we write vectors of the form (ξ1, . . . , ξN )
for N ≥ 1 later on (for instance, see the hypotheses of the forthcoming theorems
or the approximating densities (2.5), (2.16), etc.), we will interpret that we stop at
N = J if J <∞.

Suppose that a, b ∈ L2([t0, T ]×Ω). Then, according to Lemma 2.2, we can write
their Karhunen-Loève expansion as

a(t, ω) = µa(t) +

∞∑
j=1

√
νjφj(t)ξj(ω), b(t, ω) = µb(t) +

∞∑
i=1

√
γiψi(t)ηi(ω),

where {(νj , φj)}∞j=1 and {(γi, ψi)}∞i=1 are the corresponding pairs of (nonnegative)
eigenvalues and eigenfunctions, {ξj}∞j=1 are random variables with zero expectation,
unit variance and pairwise uncorrelated, and {ηi}∞i=1 are also random variables with
zero expectation, unit variance and pairwise uncorrelated. We will assume that
both sequences of pairs {(νj , φj)}∞j=1 and {(γi, ψi)}∞i=1 do not have a particular
ordering. In practice, the ordering will be chosen so that the hypotheses of the
theorems stated later on are satisfied (for example, if we say in a theorem that ξ1
has to satisfy a certain condition, then we can reorder the pairs of eigenvalues and
eigenvectors and the random variables ξ1, ξ2, . . . so that ξ1 satisfies the condition).

We truncate the Karhunen-Loève expansions up to an index N and M , respec-
tively:

aN (t, ω) = µa(t) +

N∑
j=1

√
νjφj(t)ξj(ω), bM (t, ω) = µb(t) +

M∑
i=1

√
γiψi(t)ηi(ω).
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This allows us to have a truncation for the solution given in (1.3):

xN,M (t, ω) = x0(ω)e
∫ t
t0
aN (s,ω) ds

+

∫ t

t0

bM (s, ω)e
∫ t
s
aN (r,ω) dr ds

= x0(ω)e

∫ t
t0

(
µa(s)+

∑N
j=1

√
νjφj(s)ξj(ω)

)
ds

+

∫ t

t0

(
µb(s) +

M∑
i=1

√
γiψi(s)ηi(ω)

)
e
∫ t
s

(
µa(r)+

∑N
j=1

√
νjφj(r)ξj(ω)

)
dr ds.

For convenience of notation, we will denote (in bold letters) ξN = (ξ1, . . . , ξN )
and ηM = (η1, . . . , ηM ), understanding this as a random vector or as a deterministic
real vector, depending on the context. We also denote

Ka(t, ξN ) =

∫ t

t0

(
µa(s) +

N∑
j=1

√
νjφj(s)ξj

)
ds,

Sb(s,ηM ) = µb(s) +

M∑
i=1

√
γiψi(s)ηi.

In this way,

xN,M (t, ω)

= x0(ω)eKa(t,ξN (ω)) +

∫ t

t0

Sb(s,ηM (ω))eKa(t,ξN (ω))−Ka(s,ξN (ω)) ds

= eKa(t,ξN (ω))
{
x0(ω) +

∫ t

t0

Sb(s,ηM (ω))e−Ka(s,ξN (ω)) ds
}
.

(2.4)

We assume that x0 and (ξ1, . . . , ξN , η1, . . . , ηM ) are absolutely continuous and in-
dependent, for all N,M ≥ 1. The densities of x0 and (ξ1, . . . , ξN , η1, . . . , ηM ) will
be denoted by f0 and f(ξ1,...,ξN ,η1,...,ηM ), respectively.

Under the scenario described, in the following subsections we will analyze how
to approximate the probability density function of the solution stochastic process
x(t, ω) given in (1.3). The key idea is to compute the density function of the
truncation xN,M (t, ω) given in (2.4) taking advantage of Lemma 2.1, and then
proving that it converges to a density of x(t, ω). The following subsections are
divided taking into account the way Lemma 2.1 is applied. As it shall be seen later,
our approach is based upon which variable is essentially isolated when computing
the inverse of the specific transformation mapping that will be chosen to apply
Lemma 2.1. For instance, in Subsection 2.1 we will isolate the random variable x0

and in Subsection 2.3 we will isolate the random variable η1. This permits having
different hypotheses under which a density function of x(t, ω) can be approximated.
This approach allows us to achieve a lot of generality in our findings (see Theorem
2.4, Theorem 2.7, Theorem 2.9 and Theorem 2.12). We will study the homogeneous
and non-homogeneous cases, corresponding to b = 0 and b 6= 0, respectively. The
particular case b = 0 permits having interesting and particular results for the
random non-autonomous homogeneous linear differential equation (see Subsection
2.2, Subsection 2.4 and Subsection 2.5, Theorem 2.5, Theorem 2.8, Theorem 2.10,
Theorem 2.11 and Theorem 2.13).
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2.1. Obtaining the density function when f0 is Lipschitz on R. Using
Lemma 2.1, we are able to compute the density of xN,M (t, ω). Indeed, with the
notation of Lemma 2.1,

g(x0, ξ1, . . . , ξN , η1, . . . , ηM ) =
(

eKa(t,ξN )
{
x0 +

∫ t

t0

Sb(s,ηM )e−Ka(s,ξN ) ds
}
, ξN ,ηM

)
,

D = RN+M+1, g(D) = RN+M+1,

h(x0, ξ1, . . . , ξN , η1, . . . , ηM ) =
(
x0e−Ka(t,ξN ) −

∫ t

t0

Sb(s,ηM )e−Ka(s,ξN ) ds, ξN ,ηM

)
,

Jh(x0, ξ1, . . . , ξN , η1, . . . , ηM ) = e−Ka(t,ξN ) > 0.

Then, taking the marginal distributions with respect to (ξN ,ηM ) and denoting by

fN,M1 (x, t) the density of xN,M (t, ω), we have

fN,M1 (x, t) =

∫
RN+M

f0

(
xe−Ka(t,ξN ) −

∫ t

t0

Sb(s,ηM )e−Ka(s,ξN ) ds
)

× fξN ,ηM (ξN ,ηM )e−Ka(t,ξN ) dξN dηM .

For being able to compute the limit of fN,M1 (x, t) when N,M → ∞ easily,
without loss of generality, we will take N = M so that we work with the density
fN1 (x, t) of xN,N (t, ω):

fN1 (x, t) =

∫
R2N

f0

(
xe−Ka(t,ξN ) −

∫ t

t0

Sb(s,ηN )e−Ka(s,ξN ) ds
)

× fξN ,ηN (ξN ,ηN )e−Ka(t,ξN ) dξN dηN .

(2.5)

In the next theorem we establish the hypotheses under which {fN1 (x, t)}∞N=1 con-
verges to a density of the solution x(t, ω) given by (1.3).

Theorem 2.4. Assume the following four hypotheses:

(1) a, b ∈ L2([t0, T ]× Ω);
(2) x0 and (ξ1, . . . , ξN , η1, . . . , ηN ) are absolutely continuous and independent,

N ≥ 1;
(3) the density function of x0, f0, is Lipschitz on R;
(4) there exist 2 ≤ p ≤ ∞ and 4 ≤ q ≤ ∞ such that 1/p+ 2/q = 1/2,

‖µb‖Lp(t0,T ) +

∞∑
j=1

√
γj‖ψj‖Lp(t0,T )‖ηj‖Lp(Ω) <∞,

‖e−Ka(t,ξN )‖Lq(Ω) ≤ C, for all N ≥ 1 and t ∈ [t0, T ].

Then the sequence {fN1 (x, t)}∞N=1 given in (2.5) converges in L∞(J × [t0, T ]) for
every bounded set J ⊆ R, to a density f1(x, t) of the solution x(t, ω) given in (1.3).

Proof. We prove that {fN1 (x, t)}∞N=1 is Cauchy in L∞(J×[t0, T ]) for every bounded
set J ⊆ R. Fix two indexes N > M .

First of all, note that, taking the marginal distribution,

fξM ,ηM (ξM ,ηM ) =

∫
R2(N−M)

fξN ,ηN (ξN ,ηN ) dξM+1 · · · dξN dηM+1 · · · dηN ,
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so, according to (2.5) with index M ,

fM1 (x, t) =

∫
R2M

f0

(
xe−Ka(t,ξM ) −

∫ t

t0

Sb(s,ηM )e−Ka(s,ξM ) ds
)

× fξM ,ηM (ξM ,ηM )e−Ka(t,ξM ) dξM dηM

=

∫
R2N

f0

(
xe−Ka(t,ξM ) −

∫ t

t0

Sb(s,ηM )e−Ka(s,ξM ) ds
)

× fξN ,ηN (ξN ,ηN )e−Ka(t,ξM ) dξN dηN .

(2.6)

Using (2.5) and (2.6), we estimate the difference

|fN1 (x, t)− fM1 (x, t)|

≤
∫
R2N

{∣∣∣f0

(
xe−Ka(t,ξN ) −

∫ t

t0

Sb(s,ηN )e−Ka(s,ξN ) ds
)

e−Ka(t,ξN )

− f0

(
xe−Ka(t,ξM ) −

∫ t

t0

Sb(s,ηM )e−Ka(s,ξM ) ds
)

e−Ka(t,ξM )
∣∣∣

× fξN ,ηN (ξN ,ηN )
}

dξN dηN

≤
∫
R2N

{
f0

(
xe−Ka(t,ξN ) −

∫ t

t0

Sb(s,ηN )e−Ka(s,ξN ) ds
)

× |e−Ka(t,ξN ) − e−Ka(t,ξM )|fξN ,ηN (ξN ,ηN )
}

dξN dηN

+

∫
R2N

{∣∣∣f0

(
xe−Ka(t,ξN ) −

∫ t

t0

Sb(s,ηN )e−Ka(s,ξN ) ds
)

− f0

(
xe−Ka(t,ξM ) −

∫ t

t0

Sb(s,ηM )e−Ka(s,ξM ) ds
)∣∣∣e−Ka(t,ξM )

× fξN ,ηN (ξN ,ηN )
}

dξN dηN

=: (I1) + (I2).

Henceforth, concerning notation, we will denote by C any constant independent of
N , t and x, so that the notation will not become cumbersome. Call L the Lipschitz
constant of f0.

Now we introduce two inequalities that are direct consequence of Cauchy-Schwarz
inequality and that will play a crucial role later on:

‖Ka(t, ξN )−Ka(t, ξM )‖L2(Ω) = E
[( ∫ t

t0

(aN (s)− aM (s)) ds
)2]1/2

≤
√
t− t0 E

[ ∫ t

t0

(aN (s)− aM (s))2 ds
]1/2

≤ C‖aN − aM‖L2([t0,T ]×Ω),

(2.7)

∫ T

t0

E[|Sb(s,ηN )− Sb(s,ηM )|2]1/2 ds ≤ C‖bN − bM‖L2([t0,T ]×Ω). (2.8)

Now we find a bound for (I1). Since f0 is Lipschitz continuous (therefore uni-
formly continuous) and integrable on R, it is bounded on the real line.
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Recall that if a function f belongs to L1(R) and is uniformly continuous on R,
then limx→∞ f(x) = 0, and as a consequence f is bounded on R. Indeed, suppose
that limx→∞ f(x) 6= 0. By definition, there is an ε0 > 0 and a sequence {xn}∞n=1

increasing to ∞ such that |f(xn)| > ε0. We may assume xn+1 − xn > 1, for n ≥ 1.
By uniform continuity, there exists a δ = δ(ε0) > 0 such that |f(x)−f(y)| < ε0/2, if
|x−y| < δ. We may assume 0 < δ < 1/2, so that {(xn− δ, xn+ δ)}∞n=1 are pairwise
disjoint intervals. We have |f(x)| > ε0/2 for all x ∈ (xn − δ, xn + δ) and every

n ∈ N. Thereby,
∫
R |f(x)|dx ≥

∑∞
n=1

∫ xn+δ

xn−δ |f(x)|dx ≥
∑∞
n=1 δε0 =∞, which is a

contradiction.
Therefore

f0

(
xe−Ka(t,ξN ) −

∫ t

t0

Sb(s,ηN )e−Ka(s,ξN ) ds
)
≤ C.

To bound |e−Ka(t,ξN ) − e−Ka(t,ξM )|, we use the Mean Value Theorem to the real
function e−x, for each fixed t and ξN . We have

e−Ka(t,ξN ) − e−Ka(t,ξM ) = −e−δt,ξN {Ka(t, ξN )−Ka(t, ξM )},
where Ka(t, ξN ) ≤ δt,ξN ≤ Ka(t, ξM ) or Ka(t, ξM ) ≤ δt,ξN ≤ Ka(t, ξN ), which
implies

e−δt,ξN ≤ e−Ka(t,ξN ) + e−Ka(t,ξM ).

Thus,

|e−Ka(t,ξN )−e−Ka(t,ξM )| ≤ (e−Ka(t,ξN ) +e−Ka(t,ξM ))|Ka(t, ξN )−Ka(t, ξM )|. (2.9)

We have the bound

f0

(
xe−Ka(t,ξN ) −

∫ t

t0

Sb(s,ηN )e−Ka(s,ξN ) ds
)
|e−Ka(t,ξN ) − e−Ka(t,ξM )|

≤ C(e−Ka(t,ξN ) + e−Ka(t,ξM ))|Ka(t, ξN )−Ka(t, ξM )|.
Then (I1) is bounded by the expectation of the above expression:

(I1) =

∫
R2N

{
f0

(
xe−Ka(t,ξN ) −

∫ t

t0

Sb(s,ηN )e−Ka(s,ξN ) ds
)
|e−Ka(t,ξN )

− e−Ka(t,ξM )|fξN ,ηN (ξN ,ηN )
}

dξN dηN

≤ CE[(e−Ka(t,ξN ) + e−Ka(t,ξM ))|Ka(t, ξN )−Ka(t, ξM )|].
By Hölder’s inequality, hypothesis (4) and bound (2.7),

(I1) ≤ C(‖e−Ka(t,ξN )‖L2(Ω) + ‖e−Ka(t,ξM )‖L2(Ω))‖Ka(t, ξN )−Ka(t, ξM )‖L2(Ω)

≤ C‖Ka(t, ξN )−Ka(t, ξM )‖L2(Ω) ≤ C‖aN − aM‖L2([t0,T ]×Ω).

Now we bound (I2). Using the Lipschitz condition and the triangular inequality,∣∣∣f0

(
xe−Ka(t,ξN ) −

∫ t

t0

Sb(s,ηN )e−Ka(s,ξN ) ds
)

− f0

(
xe−Ka(t,ξM ) −

∫ t

t0

Sb(s,ηM )e−Ka(s,ξM ) ds
)∣∣∣

≤ L|x| |e−Ka(t,ξN ) − e−Ka(t,ξM )|

+ L

∫ t

t0

|Sb(s,ηN )e−Ka(s,ξN ) − Sb(s,ηM )e−Ka(s,ξM )|ds
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≤ L|x| |e−Ka(t,ξN ) − e−Ka(t,ξM )|+ L

∫ t

t0

|Sb(s,ηN )| |e−Ka(s,ξN ) − e−Ka(s,ξM )|ds

+ L

∫ t

t0

e−Ka(s,ξM )|Sb(s,ηN )− Sb(s,ηM )|ds

=: (B1) + (B2) + (B3).

Using the bound (2.9) from the mean value theorem,

(B1) ≤ L|x|(e−Ka(t,ξN ) + e−Ka(t,ξM ))|Ka(t, ξN )−Ka(t, ξM )|,

(B2) ≤ L
∫ T

t0

|Sb(s,ηN )|(e−Ka(s,ξN ) + e−Ka(s,ξM ))|Ka(s, ξN )−Ka(s, ξM )|ds.

Since

(I2) =

∫
R2N

{ ∣∣∣f0

(
xe−Ka(t,ξN ) −

∫ t

t0

Sb(s,ηN )e−Ka(s,ξN ) ds
)
− f0

(
xe−Ka(t,ξM )

−
∫ t

t0

Sb(s,ηM )e−Ka(s,ξM ) ds
)∣∣∣e−Ka(t,ξM )fξN ,ηN (ξN ,ηN )

}
dξN dηN

≤ E[(B1) · e−Ka(t,ξM )] + E[(B2) · e−Ka(t,ξM )] + E[(B3) · e−Ka(t,ξM )]

=: (E1) + (E2) + (E3),

we need to bound these three expectations (E1), (E2) and (E3). First, for (E1),
using Hölder’s Inequality, hypothesis (4) and (2.7), one obtains

(E1) ≤ L|x| ‖e−Ka(t,ξM )‖L4(Ω)(‖e−Ka(t,ξN )‖L4(Ω)

+ ‖e−Ka(t,ξM )‖L4(Ω))‖Ka(t, ξN )−Ka(t, ξM )‖L2(Ω)

≤ C|x| ‖Ka(t, ξN )−Ka(t, ξM )‖L2(Ω) ≤ C|x| ‖aN − aM‖L2([t0,T ]×Ω).

By an analogous reasoning, but using (2.8), one deduces the following bounds:

(E2) ≤ L
∫ T

t0

E[|Sb(s,ηN )|p]1/pE[e−qKa(t,ξM )]1/q
(
E[e−q Ka(s,ξN )]1/q

+ E[e−q Ka(s,ξM )]1/q
)
E[|Ka(s, ξN )−Ka(s, ξM )|2]1/2 ds

≤ C
∫ T

t0

E[|Sb(s,ηN )|p]1/p‖Ka(s, ξN )−Ka(s, ξM )‖L2(Ω) ds

≤ C‖aN − aM‖L2([t0,T ]×Ω)

∫ T

t0

E[|Sb(s,ηN )|p]1/p ds

≤ C‖aN − aM‖L2([t0,T ]×Ω)‖Sb(t,ηN (ω))‖Lp([t0,T ]×Ω)

≤ C‖aN − aM‖L2([t0,T ]×Ω)

and

(E3) = L

∫ T

t0

E[e−Ka(t,ξM )e−Ka(s,ξM )|Sb(s,ηN )− Sb(s,ηM )|] ds

≤ L
∫ T

t0

‖e−Ka(t,ξM )‖L4(Ω)‖e−Ka(s,ξM )‖L4(Ω)‖Sb(s,ηN )

− Sb(s,ηM )‖L2(Ω) ds
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≤ C
∫ T

t0

‖Sb(s,ηN )− Sb(s,ηM )‖L2(Ω) ds

≤ C‖bN − bM‖L2([t0,T ]×Ω).

Thus

(I2) ≤ (E1)+(E2)+(E3) ≤ C(|x|+1)‖aN−aM‖L2([t0,T ]×Ω)+C‖bN−bM‖L2([t0,T ]×Ω).

Since ‖aN − aM‖L2([t0,T ]×Ω) → 0 and ‖bN − bM‖L2([t0,T ]×Ω) → 0 when N,M →∞,

the sequence {fN1 (x, t)}∞N=1 is Cauchy in L∞(J × [t0, T ]) for every bounded set
J ⊆ R. Let

g(x, t) = lim
N→∞

fN1 (x, t),

x ∈ R and t ∈ [t0, T ]. Let us see that x(t, ·) is absolutely continuous and g(·, t) is a
density of x(t, ·).

First, note that g(·, t) ∈ L1(R), since by Fatou’s Lemma [27, Lemma 1.7, p.61],∫
R
g(x, t) dx =

∫
R

lim
N→∞

fN1 (x, t) dx ≤ lim inf
N→∞

∫
R
fN1 (x, t) dx︸ ︷︷ ︸

=1

= 1 <∞.

Recall that

xN,N (t, ω) = x0(ω)e
∫ t
t0
aN (s,ω) ds

+

∫ t

t0

bN (s, ω)e
∫ t
s
aN (r,ω) dr ds.

We check that xN,N (t, ω)
N→∞−→ x(t, ω) for every t ∈ [t0, T ] and a.e. ω ∈ Ω.

We know that aN (·, ω)→ a(·, ω) in L2([t0, T ]) and bN (·, ω)→ b(·, ω) in L2([t0, T ])
as N →∞, for a.e. ω ∈ Ω, because the Fourier series converges in L2.

On the one hand,
∫ t
t0
aN (s, ω) ds

N→∞−→
∫ t
t0
a(s, ω) ds for all t ∈ [t0, T ] and for a.e.

ω ∈ Ω, whence

x0(ω)e
∫ t
t0
aN (s,ω) ds N→∞−→ x0(ω)e

∫ t
t0
a(s,ω) ds

, (2.10)

for all t ∈ [t0, T ] and for a.e. ω ∈ Ω.
On the other hand,∣∣bN (s, ω)e

∫ t
s
aN (r,ω) dr − b(s, ω)e

∫ t
s
a(r,ω) dr

∣∣
≤ |bN (s, ω)− b(s, ω)|e

∫ t
s
aN (r,ω) dr + |b(s, ω)|

∣∣e∫ ts aN (r,ω) dr − e
∫ t
s
a(r,ω) dr

∣∣.
We bound the expressions involving exponentials. First, using the deterministic
Cauchy-Schwarz inequality for integrals, one gets

e
∫ t
s
aN (r,ω) dr ≤ e

√
T−t0 ‖aN (·,ω)‖L2([t0,T ]) ≤ eCω = Cω,

where Cω represents a constant depending on ω, and independent of N , t and x.
By the Mean Value Theorem applied to the real function ex,

e
∫ t
s
aN (r,ω) dr − e

∫ t
s
a(r,ω) dr = eδN,s,t,ω

(∫ t

s

aN (r, ω) dr −
∫ t

s

a(r, ω) dr
)
,

where

|δN,s,t,ω| ≤ max
{∣∣ ∫ t

s

aN (r, ω) dr
∣∣, ∣∣ ∫ t

s

a(r, ω) dr
∣∣}

≤
√
T − t0 max

{
‖a(·, ω)‖L2([t0,T ]), ‖aN (·, ω)‖L2([t0,T ])

}
≤ Cω.
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Thus, ∣∣e∫ ts aN (r,ω) dr − e
∫ t
s
a(r,ω) dr

∣∣ ≤ Cω∣∣ ∫ t

s

aN (r, ω) dr −
∫ t

s

a(r, ω) dr
∣∣

≤ Cω‖aN (·, ω)− a(·, ω)‖L2([t0,T ]).

Therefore, ∫ t

t0

∣∣bN (s, ω)e
∫ t
s
aN (r,ω) dr − b(s, ω)e

∫ t
s
a(r,ω) dr

∣∣ds
≤ Cω

{
‖bN (·, ω)− b(·, ω)‖L1([t0,T ]) + ‖b(·, ω)‖L1([t0,T ])‖

× aN (·, ω)− a(·, ω)‖L2([t0,T ])

} N→∞−→ 0.

(2.11)

This shows that xN,N (t, ω) → x(t, ω) as N → ∞ for every t ∈ [t0, T ] and a.e.
ω ∈ Ω. This says that xN,N (t, ·)→ x(t, ·) converges a.s. as N →∞, therefore there
is convergence in probability law:

lim
N→∞

FN (x, t) = F (x, t),

for every x ∈ R which is a point of continuity of F (·, t), where FN (·, t) and F (·, t)
are the distribution functions of xN,N (t, ·) and x(t, ·), respectively. Since fN1 (x, t)
is the density of xN,N (t, ω),

FN (x, t) = FN (x0, t) +

∫ x

x0

fN1 (y, t) dy. (2.12)

If x and x0 are points of continuity of F (·, t), taking limits when N →∞ we obtain

F (x, t) = F (x0, t) +

∫ x

x0

g(y, t) dy (2.13)

(recall that {fN1 (x, t)}∞N=1 converges to g(x, t) in L∞(J × R) for every bounded
set J ⊆ R, so we can interchange the limit and the integral). As the points of
discontinuity of F (·, t) are countable and F (·, t) is right continuous, we obtain

F (x, t) = F (x0, t) +

∫ x

x0

g(y, t) dy

for all x0 and x in R. Thus, g(x, t) = f1(x, t) is a density for x(t, ω), as wanted. �

2.2. Obtaining the density function when b = 0 and f0 is Lipchitz on R.
If b = 0, all our previous exposition can be adapted to approximate the density
function of the solution of the randomized non-autonomous homogeneous linear
differential equation associated to the initial value problem (1.1). In this case, the
solution stochastic process is

x(t, ω) = x0(ω)e
∫ t
t0
a(s,ω) ds

. (2.14)

We only need the Karhunen-Loève expansion of the stochastic process a,

a(t, ω) = µa(t) +

∞∑
j=1

√
νjφj(t)ξj(ω),

where {(νj , φj)}∞j=1 are the corresponding pairs of eigenvalues and eigenfunctions
and {ξj}∞j=1 are random variables with zero expectation, unit variance and pairwise
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uncorrelated. Truncating a via aN (t, ω) = µa(t) +
∑N
j=1

√
νjφj(t)ξj(ω), we obtain

a truncation for the solution,

xN (t, ω) = x0(ω)e
∫ t
t0
aN (s,ω) ds

. (2.15)

The density function of xN (t, ω) is given by

fN1 (x, t) =

∫
RN

f0

(
xe−Ka(t,ξN )

)
fξN (ξN )e−Ka(t,ξN ) dξN (2.16)

(see (2.5) with b = 0).
Note that the evaluation inside f0 in (2.16), xe−Ka(t,ξN ), has the same sign as

x. This is different to (2.5). We define

D(x0) =


(0,∞), if x0(ω) > 0a.s.

(−∞, 0), if x0(ω) < 0 a.s.

R, otherwise.

(2.17)

Theorem 2.4 becomes:

Theorem 2.5. Assume that

(1) a ∈ L2([t0, T ]× Ω);
(2) x0 and (ξ1, . . . , ξN ) are absolutely continuous and independent, N ≥ 1;
(3) the density function of x0, f0, is Lipschitz on D(x0);
(4) ‖e−Ka(t,ξN )‖L4(Ω) ≤ C for all N ≥ 1 and t ∈ [t0, T ] (p = ∞ and q = 4 in

Theorem 2.4).

Then the sequence {fN1 (x, t)}∞N=1 given in (2.16) converges in L∞(J × [t0, T ]) for
every bounded set J ⊆ R, to a density f1(x, t) of the solution (2.14).

2.3. Obtaining the density function when b(t, ·) is not a constant random
variable and fη1 is Lipchitz on R. Take truncation (2.4) of the solution x(t, ω)
given in (1.3), with N = M :

xN,N (t, ω) = x0(ω)eKa(t,ξN (ω)) +

∫ t

t0

Sb(s,ηN (ω))eKa(t,ξN (ω))−Ka(s,ξN (ω)) ds.

The idea is to compute (2.5) again, but instead of isolating x0 when using Lemma
2.1, we will isolate η1. This can be done whenever b(t, ω) 6= µb(t) for a.e. t ∈ [t0, T ]
and a.e. ω ∈ Ω, since in this case the Karhunen-Loève expansion of b will have
more terms than the mean, in particular the first term where it appears the random
variable η1.

To apply Lemma 2.1 we need to set some assumptions, as it will become clearer
when writing the map of the transformation g and its inverse h. We will assume
that the random variables ξ1, ξ2, . . . have compact support in [−A,A] (A > 0),∑∞
j=1

√
νj

∣∣∣∫ tt0 φj(s) ds
∣∣∣ < ∞ for all t ∈ [t0, T ] (see Remark 2.6), and ψ1 > 0 on

(t0, T ). In such a case,

e−Ka(t,ξM ) = e
−
∫ t
t0
µa(s) ds−

∑M
k=1

√
νk

( ∫ t
t0
φk(s) ds

)
ξk

≥ e
−
∫ t
t0
µa(s) ds−

∑M
k=1

√
νk

∣∣ ∫ t
t0
φk(s) ds

∣∣|ξk|
≥ e
−
∫ t
t0
µa(s) ds−

∑∞
k=1

√
νk

∣∣ ∫ t
t0
φk(s) ds

∣∣A
,
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whence∫ t

t0

ψ1(s)e−Ka(s,ξM ) ds ≥
∫ t

t0

ψ1(s)e
−
∫ s
t0
µa(r) dr−

∑∞
k=1

√
νk

∣∣∣∫ st0 φk(r) dr
∣∣∣A

ds

=: C(t) > 0,

(2.18)

for t ∈ (t0, T ].
Using the notation from Lemma 2.1, we have

g(x0, ξ1, . . . , ξN , η1, . . . , ηN )

=
(
x0, ξ1, . . . , ξN , x0eKa(t,ξN ) +

∫ t

t0

Sb(s,ηN )eKa(t,ξN )−Ka(s,ξN ) ds, η2, . . . , ηN

)
,

D = R× [−A,A]N × RN (so that g is injective on D by (2.18)),

g(D) = R× [−A,A]N × RN =: DN ,
h(x0, ξ1, . . . , ξN , η1, . . . , ηN )

=
(
x0, ξ1, . . . , ξN ,

η1e−Ka(t,ξN ) − x0 −
∫ t
t0

(
µb(s) +

∑N
i=2

√
γiψi(s)ηi

)
e−Ka(s,ξN ) ds

√
γ1

∫ t
t0
ψ1(s)e−Ka(s,ξN ) ds

,

η2, . . . , ηN

)
,

Jh(x0, ξ1, . . . , ξN , η1, . . . , ηN ) =
e−Ka(t,ξN )

√
γ1

∫ t
t0
ψ1(s)e−Ka(s,ξN ) ds

> 0.

Note that all denominators are distinct from 0 because of (2.18). Suppose that
(ξ1, . . . , ξN , η2, . . . , ηN ), x0, η1 are independent, for N ≥ 1. Then, taking the
marginal distributions we obtain another expression for the density fN1 (x, t) of
xN (t, ω) given in (2.5):

fN1 (x, t)

=

∫
DN

fη1

(xe−Ka(t,ξN ) − x0 −
∫ t
t0

(
µb(s) +

∑N
i=2

√
γiψi(s)ηi

)
e−Ka(s,ξN ) ds

√
γ1

∫ t
t0
ψ1(s)e−Ka(s,ξN ) ds

)
× f0(x0)f(ξ1,...,ξN ,η2,...,ηN )(ξ1, . . . , ξN , η2, . . . , ηN )

× e−Ka(t,ξN )

√
γ1

∫ t
t0
ψ1(s)e−Ka(s,ξN ) ds

dx0 dξ1 · · · dξN dη2 · · · dηN .

(2.19)

Remark 2.6. We show that the condition

sup
t∈[t0,T ]

∞∑
j=1

√
νj
∣∣ ∫ t

t0

φj(s) ds
∣∣ <∞

is fulfilled, so it is not a requirement in our development. Let X ∈ L2([t0, T ] × Ω)
be a stochastic process. Write its Karhunen-Loève expansion as X(t, ω) = µ(t) +∑∞
j=1

√
νjφj(t)ξj(ω). Then

sup
t∈[t0,T ]

∞∑
j=1

√
νj
∣∣ ∫ t

t0

φj(s) ds
∣∣E[|ξj |] ≤ sup

t∈[t0,T ]

∞∑
j=1

√
νj
∣∣ ∫ t

t0

φj(s) ds
∣∣ <∞.
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Indeed, as E[|ξj |]2 ≤ E[ξ2
j ] = 1, the first inequality holds. For the second inequality,

first use Pythagoras’s theorem in L2([t0, T ]× Ω):

N∑
j=M+1

νj =
∥∥ N∑
j=M+1

√
νjφjξj

∥∥2

L2([t0,T ]×Ω)

N,M→∞−→ 0,

therefore
∑∞
j=1 νj < ∞. By Parseval’s identity for deterministic Fourier series,

since {φj}∞j=1 is an orthonormal basis of L2([t0, T ]), one gets

∞∑
j=1

(∫ t

t0

φj(s) ds
)2

=

∞∑
j=1

〈1[t0,t], φj〉
2
L2([t0,T ]) = ‖1[t0,t]‖

2
L2([t0,T ]) = t−t0 ≤ T−t0 <∞.

By Cauchy-Schwarz inequality for series,

sup
t∈[t0,T ]

∞∑
j=1

√
νj
∣∣ ∫ t

t0

φj(s) ds
∣∣ ≤ sup

t∈[t0,T ]

( ∞∑
j=1

νj

)1/2( ∞∑
j=1

(∫ t

t0

φj(s) ds
)2)1/2

≤
( ∞∑
j=1

νj

)1/2√
T − t0 <∞.

This completes the proof of the remark.

Theorem 2.7. Assume that

(1) a, b ∈ L2([t0, T ]× Ω), x0 ∈ L2(Ω);
(2) x0, η1, (ξ1, . . . , ξN , η2, . . . , ηN ) are absolutely continuous and independent,

N ≥ 1;
(3) the density function of η1, fη1 , is Lipschitz on R;
(4) ξ1, ξ2, . . . have compact support in [−A,A] (A > 0) and ψ1 > 0 on (t0, T ).

Then, for each fixed t ∈ (t0, T ], the sequence {fN1 (x, t)}∞N=1 given in (2.19) (which
is the same as (2.5)) converges in L∞(J) for every bounded set J ⊆ R, to a density
f1(x, t) of the solution (1.3).

Proof. The idea is to prove that, for each fixed t ∈ (t0, T ], the sequence {fN1 (x, t)}∞N=1

given in (2.19) is Cauchy in L∞(J), for every bounded set J ⊆ R.
First, we deal with some inequalities that will facilitate things later on. Fix

two indexes N > M and t ∈ (t0, T ]. Fix real numbers ξ1, . . . , ξN that belong to
[−A,A] and real numbers η1, . . . , ηN . To make the notation easier, hereinafter we
will denote by C any constant independent of N and x. We have

∣∣∣ e−Ka(t,ξN )

√
γ1

∫ t
t0
ψ1(s)e−Ka(s,ξN ) ds

− e−Ka(t,ξM )

√
γ1

∫ t
t0
ψ1(s)e−Ka(s,ξM ) ds

∣∣∣
=
∣∣∣e−Ka(t,ξN )

∫ t
t0
ψ1(s)e−Ka(s,ξM ) ds− e−Ka(t,ξM )

∫ t
t0
ψ1(s)e−Ka(s,ξN ) ds

√
γ1

( ∫ t
t0
ψ1(s)e−Ka(s,ξN ) ds

)( ∫ t
t0
ψ1(s)e−Ka(s,ξM ) ds

) ∣∣∣.
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Recall that Remark 2.6 and the boundedness of ξ1, . . . , ξN imply (2.18), further-
more:∫ t

t0

ψ1(s)e−Ka(s,ξM ) ds ≥
∫ t

t0

ψ1(s)e
−
∫ s
t0
µa(r) dr−

∑∞
k=1

√
νk

∣∣ ∫ t
t0
φk(s) ds

∣∣A
ds

≥
∫ t

t0

ψ1(s)e
−
∫ s
t0
|µa(r)| dr−CA

ds

≥
∫ t

t0

ψ1(s) dse
−
∫ T
t0
|µa(r)| dr−CA

≥ e−‖µa‖L2([t0,T ])−CA‖ψ1‖L1([t0,t]) > 0.

(2.20)

Then∣∣∣ e−Ka(t,ξN )

√
γ1

∫ t
t0
ψ1(s)e−Ka(s,ξN ) ds

− e−Ka(t,ξM )

√
γ1

∫ t
t0
ψ1(s)e−Ka(s,ξM ) ds

∣∣∣
≤ C

∣∣∣e−Ka(t,ξN )

∫ t

t0

ψ1(s)e−Ka(s,ξM ) ds− e−Ka(t,ξM )

∫ t

t0

ψ1(s)e−Ka(s,ξN ) ds
∣∣∣

≤ C
{(∫ t

t0

ψ1(s)e−Ka(s,ξM ) ds
)
|e−Ka(t,ξN ) − e−Ka(t,ξM )|

+ e−Ka(t,ξM )
∣∣∣ ∫ t

t0

ψ1(s)e−Ka(s,ξN ) ds−
∫ t

t0

ψ1(s)e−Ka(s,ξM ) ds
∣∣∣}.

We have

e±Ka(t,ξN ) ≤ e
∫ t
t0
|µa(s)| ds+A

∑∞
j=1

√
νj

∣∣ ∫ t
t0
φj(s) ds

∣∣
≤ e‖µa‖L2([t0,T ])+CA, (2.21)

whence ∫ t

t0

ψ1(s)e−Ka(s,ξM ) ds ≤ e‖µa‖L2([t0,T ])+CA‖ψ1‖L1([t0,T ]) <∞. (2.22)

By (2.9) (recall it was a consequence of the Mean Value Theorem) and (2.21),∣∣e−Ka(t,ξN ) − e−Ka(t,ξM )
∣∣ ≤ (e−Ka(t,ξN ) + eKa(t,ξM ))|Ka(t, ξN )−Ka(t, ξM )|
≤ C|Ka(t, ξN )−Ka(t, ξM )|.

(2.23)
Finally, by (2.23) and Cauchy-Schwarz inequality for integrals,∣∣∣ ∫ t

t0

ψ1(s)e−Ka(s,ξN ) ds−
∫ t

t0

ψ1(s)e−Ka(s,ξM ) ds
∣∣∣

=
∣∣∣ ∫ t

t0

ψ1(s)
(
e−Ka(s,ξN ) − e−Ka(s,ξM )

)
ds
∣∣∣

≤
∫ t

t0

ψ1(s)
∣∣∣e−Ka(s,ξN ) − e−Ka(s,ξM )

∣∣∣ ds

≤
∫ T

t0

ψ1(s)
∣∣∣e−Ka(s,ξN ) − e−Ka(s,ξM )

∣∣∣ ds

≤ ‖ψ1‖L2([t0,T ])‖e−Ka(·,ξN ) − e−Ka(·,ξM )‖L2([t0,T ])

≤ C‖Ka(·, ξN )−Ka(·, ξM )‖L2([t0,T ]).

(2.24)
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Inequalities (2.22), (2.23), (2.21) and (2.24) yield∣∣∣ e−Ka(t,ξN )

√
γ1

∫ t
t0
ψ1(s)e−Ka(s,ξN ) ds

− e−Ka(t,ξM )

√
γ1

∫ t
t0
ψ1(s)e−Ka(s,ξM ) ds

∣∣∣
≤ C

{
|Ka(t, ξN )−Ka(t, ξM )|+ ‖Ka(·, ξN )−Ka(·, ξM )‖L2([t0,T ])

}
.

(2.25)

Another bound that will be used later on, and which is a consequence of (2.20) and
(2.21), is

e−Ka(t,ξM )

√
γ1

∫ t
t0
ψ1(s)e−Ka(s,ξM ) ds

≤ C. (2.26)

Let L be the Lipschitz constant of fη1 on R. Then∣∣∣fη1(xe−Ka(t,ξN ) − x0 −
∫ t
t0

(
µb(s) +

∑N
i=2

√
γiψi(s)ηi

)
e−Ka(s,ξN ) ds

√
γ1

∫ t
t0
ψ1(s)e−Ka(s,ξN ) ds

)

− fη1
(xe−Ka(t,ξM ) − x0 −

∫ t
t0

(
µb(s) +

∑M
i=2

√
γiψi(s)ηi

)
e−Ka(s,ξM ) ds

√
γ1

∫ t
t0
ψ1(s)e−Ka(s,ξM ) ds

)∣∣∣
≤ L

∣∣∣xe−Ka(t,ξN ) − x0 −
∫ t
t0

(
µb(s) +

∑N
i=2

√
γiψi(s)ηi

)
e−Ka(s,ξN ) ds

√
γ1

∫ t
t0
ψ1(s)e−Ka(s,ξN ) ds

−
xe−Ka(t,ξM ) − x0 −

∫ t
t0

(
µb(s) +

∑M
i=2

√
γiψi(s)ηi

)
e−Ka(s,ξM ) ds

√
γ1

∫ t
t0
ψ1(s)e−Ka(s,ξM ) ds

∣∣∣
(common denominator to subtract both fractions and inequality (2.20))

≤ C
∣∣∣( ∫ t

t0

ψ1(s)e−Ka(s,ξM ) ds
)(
xe−Ka(t,ξN ) − x0

−
∫ t

t0

(
µb(s) +

N∑
i=2

√
γiψi(s)ηi

)
e−Ka(s,ξN ) ds

)
−
(∫ t

t0

ψ1(s)e−Ka(s,ξN ) ds
)(
xe−Ka(t,ξM ) − x0

−
∫ t

t0

(
µb(s) +

M∑
i=2

√
γiψi(s)ηi

)
e−Ka(s,ξM ) ds

)∣∣∣
(add and subtract, then use (2.22) and (2.24) and triangular inequality)

≤ C
{
‖Ka(·, ξN )−Ka(·, ξM )‖L2([t0,T ])

(
|x|e−Ka(t,ξN ) + |x0|+

∫ t

t0

∣∣∣µb(s)
+

M∑
i=2

√
γiψi(s)ηi

∣∣∣e−Ka(s,ξM ) ds
)

+ |x|
∣∣e−Ka(t,ξN ) − e−Ka(t,ξM )

∣∣
+
∣∣∣ ∫ t

t0

(
µb(s) +

M∑
i=2

√
γiψi(s)ηi

)
e−Ka(s,ξM ) ds

−
∫ t

t0

(
µb(s) +

N∑
i=2

√
γiψi(s)ηi

)
e−Ka(s,ξN ) ds

∣∣∣}



EJDE-2019/85 APPROXIMATE SOLUTIONS 19

(use bounds (2.21) and (2.23))

≤ C
{
|x|+ |x0|+

∫ t

t0

∣∣∣µb(s) +

M∑
i=2

√
γiψi(s)ηi

∣∣∣ds}‖
×Ka(·, ξN )−Ka(·, ξM )‖L2([t0,T ]) + C|x| |Ka(t, ξN )−Ka(t, ξM )|

+ C

∫ t

t0

∣∣e−Ka(s,ξN ) − e−Ka(s,ξM )
∣∣∣∣∣µb(s) +

N∑
i=2

√
γiψi(s)ηi

∣∣ds
+

∫ t

t0

e−Ka(s,ξN )
∣∣∣ N∑
i=M+1

√
γiψi(s)ηi

∣∣∣ds
(Cauchy-Schwarz, (2.21) and (2.23))

≤ C
{
|x|+ |x0|+

∥∥µb(·) +

M∑
i=2

√
γiψi(·)ηi

∥∥
L2([t0,T ])

}
× ‖Ka(·, ξN )−Ka(·, ξM )‖L2([t0,T ]) + C|x||Ka(t, ξN )−Ka(t, ξM )|
+ C‖Ka(·, ξN )−Ka(·, ξM )‖L2([t0,T ])

∥∥µb(·)
+

N∑
i=2

√
γiψi(·)ηi

∥∥
L2([t0,T ])

+ C
∥∥ N∑
i=M+1

√
γiψi(·)ηi

∥∥
L2([t0,T ])

. (2.27)

Since fη1 is Lipschitz and integrable on R, it is bounded; therefore

fη1

(xe−Ka(t,ξN ) − x0 −
∫ t
t0

(
µb(s) +

∑N
i=2

√
γiψi(s)ηi

)
e−Ka(s,ξN ) ds

√
γ1

∫ t
t0
ψ1(s)e−Ka(s,ξN ) ds

)
≤ C. (2.28)

We estimate |fN1 (x, t) − fM1 (x, t)|. Using expression (2.19) and taking marginal
distributions with respect to ξM+1, . . . , ξN , ηM+1, . . . , ηN , we obtain the following
expression for fM1 (x, t),

fM1 (x, t)

=

∫
DM

fη1

(xe−Ka(t,ξM ) − x0 −
∫ t
t0

(
µb(s) +

∑M
i=2

√
γiψi(s)ηi

)
e−Ka(s,ξM ) ds

√
γ1

∫ t
t0
ψ1(s)e−Ka(s,ξM ) ds

)
× f0(x0)f(ξ1,...,ξM ,η2,...,ηM )(ξ1, . . . , ξM , η2, . . . , ηM )

× e−Ka(t,ξM )

√
γ1

∫ t
t0
ψ1(s)e−Ka(s,ξM ) ds

dx0 dξ1 · · · dξM dη2 · · · dηM

=

∫
DN

fη1

(xe−Ka(t,ξM ) − x0 −
∫ t
t0

(
µb(s) +

∑M
i=2

√
γiψi(s)ηi

)
e−Ka(s,ξM ) ds

√
γ1

∫ t
t0
ψ1(s)e−Ka(s,ξM ) ds

)
× f0(x0)f(ξ1,...,ξN ,η2,...,ηN )(ξ1, . . . , ξN , η2, . . . , ηN )

× e−Ka(t,ξM )

√
γ1

∫ t
t0
ψ1(s)e−Ka(s,ξM ) ds

dx0 dξ1 · · · dξN dη2 · · · dηN .

Then, using the triangle inequality, we have

|fN1 (x, t)− fM1 (x, t)|
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≤
∫
DN

∣∣∣fη1(xe−Ka(t,ξN ) − x0 −
∫ t
t0

(
µb(s) +

∑N
i=2

√
γiψi(s)ηi

)
e−Ka(s,ξN ) ds

√
γ1

∫ t
t0
ψ1(s)e−Ka(s,ξN ) ds

)
× e−Ka(t,ξN )

√
γ1

∫ t
t0
ψ1(s)e−Ka(s,ξN ) ds

− fη1
(xe−Ka(t,ξM ) − x0 −

∫ t
t0

(
µb(s) +

∑M
i=2

√
γiψi(s)ηi

)
e−Ka(s,ξM ) ds

√
γ1

∫ t
t0
ψ1(s)e−Ka(s,ξM ) ds

)
× e−Ka(t,ξM )

√
γ1

∫ t
t0
ψ1(s)e−Ka(s,ξM ) ds

∣∣∣f0(x0)f(ξ1,...,ξN ,η2,...,ηN )(ξ1, . . . ,

ξN , η2, . . . , ηN ) dx0 dξ1 · · · dξN dη2 · · · dηN

≤
∫
DN

∣∣∣fη1(xe−Ka(t,ξN ) − x0 −
∫ t
t0

(
µb(s) +

∑N
i=2

√
γiψi(s)ηi

)
e−Ka(s,ξN ) ds

√
γ1

∫ t
t0
ψ1(s)e−Ka(s,ξN ) ds

)

− fη1
(xe−Ka(t,ξM ) − x0 −

∫ t
t0

(
µb(s) +

∑M
i=2

√
γiψi(s)ηi

)
e−Ka(s,ξM ) ds

√
γ1

∫ t
t0
ψ1(s)e−Ka(s,ξM ) ds

)∣∣∣
× e−Ka(t,ξM )

√
γ1

∫ t
t0
ψ1(s)e−Ka(s,ξM ) ds

f0(x0)f(ξ1,...,ξN ,η2,...,ηN )(ξ1, . . . ,

ξN , η2, . . . , ηN ) dx0 dξ1 · · · dξN dη2 · · · dηN

+

∫
DN

fη1

(xe−Ka(t,ξN ) − x0 −
∫ t
t0

(
µb(s) +

∑N
i=2

√
γiψi(s)ηi

)
e−Ka(s,ξN ) ds

√
γ1

∫ t
t0
ψ1(s)e−Ka(s,ξN ) ds

)
×
∣∣∣ e−Ka(t,ξN )

√
γ1

∫ t
t0
ψ1(s)e−Ka(s,ξN ) ds

− e−Ka(t,ξM )

√
γ1

∫ t
t0
ψ1(s)e−Ka(s,ξM ) ds

∣∣∣
× f0(x0)f(ξ1,...,ξN ,η2,...,ηN )(ξ1, . . . , ξN , η2, . . . , ηN ) dx0 dξ1 · · · dξN dη2 · · · dηN .

Using the definition of expectation as an integral with respect to the corresponding
density function, bounds (2.25), (2.26), (2.27) and (2.28), Cauchy-Schwarz inequal-
ity and (2.7), we have

|fN1 (x, t)− fM1 (x, t)|

≤ C
{
E
[
|Ka(t, ξN )−Ka(t, ξM )|+ ‖Ka(·, ξN )−Ka(·, ξM )‖L2([t0,T ])

]
+ E

[(
|x|+ |x0|+

∥∥µb(·) +

M∑
i=2

√
γiψi(·)ηi

∥∥
L2([t0,T ])

)
‖

×Ka(·, ξN )−Ka(·, ξM )‖L2([t0,T ])

]
+ |x|E[|Ka(t, ξN )−Ka(t, ξM )|]

+ E
[
‖Ka(·, ξN )−Ka(·, ξM )‖L2([t0,T ])

∥∥µb(·) +

N∑
i=2

√
γiψi(·)ηi

∥∥
L2([t0,T ])

]
+ E

[∥∥ N∑
i=M+1

√
γiψi(·)ηi

∥∥
L2([t0,T ])

]}



EJDE-2019/85 APPROXIMATE SOLUTIONS 21

≤ C
{

(|x|+ 1)E[|Ka(t, ξN )−Ka(t, ξM )|] + (|x|+ ‖x0‖L2(Ω) + 1)

× E
[
‖Ka(·, ξN )−Ka(·, ξM )‖2L2([t0,T ])

]1/2
+ E

[
‖Ka(·, ξN )−Ka(·, ξM )‖L2([t0,T ])

∥∥µb(·) +

M∑
i=2

√
γiψi(·)ηi

∥∥
L2([t0,T ])

]
+ E

[
‖Ka(·, ξN )−Ka(·, ξM )‖L2([t0,T ])

∥∥µb(·) +

N∑
i=2

√
γiψi(·)ηi

∥∥
L2([t0,T ])

]
+ E

[∥∥ N∑
i=M+1

√
γiψi(·)ηi

∥∥
L2([t0,T ])

]}
≤ C

{
(|x|+ 1)‖Ka(t, ξN )−Ka(t, ξM )‖L2(Ω) + (|x|+ ‖x0‖L2(Ω) + 1)

× E
[
‖Ka(·, ξN )−Ka(·, ξM )‖2L2([t0,T ])

]1/2
+ E

[
‖Ka(·, ξN )−Ka(·, ξM )‖2L2([t0,T ])

]1/2
E
[∥∥µb(·) +

M∑
i=2

√
γiψi(·)ηi

∥∥2

L2([t0,T ])

]1/2
+ E

[
‖Ka(·, ξN )−Ka(·, ξM )‖2L2([t0,T ])

]1/2
E
[∥∥µb(·) +

N∑
i=2

√
γiψi(·)ηi

∥∥2

L2([t0,T ])

]1/2
+ E

[∥∥ N∑
i=M+1

√
γiψi(·)ηi

∥∥2

L2([t0,T ])

]1/2}

≤ C
{(
|x|+ ‖x0‖L2(Ω) + 1 +

∥∥µb(·) +

M∑
i=2

√
γiψi(·)ηi

∥∥
L2([t0,T ]×Ω)

+
∥∥µb(·) +

N∑
i=2

√
γiψi(·)ηi

∥∥
L2([t0,T ]×Ω)

)
‖aN − aM‖L2([t0,T ]×Ω)

+
∥∥ N∑
i=M+1

√
γiψi(·)ηi

∥∥
L2([t0,T ]×Ω)

}
.

Since aN → a and bN → b as N → ∞ in L2([t0, T ] × Ω), we conclude that the
sequence {fN1 (x, t)}∞N=1 given in (2.19) is Cauchy in L∞(J), for every bounded set
J ⊆ R.

As we saw in the proof of Theorem 2.4, xN,N (t, ω) → x(t, ω) as N → ∞ for all
t ∈ [t0, T ] and a.e. ω ∈ Ω. As we showed there, this fact is enough to ensure that
the limit of the sequence {fN1 (x, t)}∞N=1 is a density of the process x(t, ω) given in
(1.3). �

2.4. Obtaining the density function when b = 0 and fξ1 is Lipchitz on R.
If b = 0, then the truncation (2.4) becomes (2.15),

xN (t, ω) = x0(ω)eKa(t,ξN (ω)).

We use Lemma 2.1 to compute (2.16) in a different way. The idea is that, instead
of isolating x0, we isolate ξ1. Indeed, in the notation of Lemma 2.1,

g(ξ1, . . . , ξN , x0) =
(
x0eKa(t,ξN ), ξ2, . . . , ξN , x0

)
,
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D = RN × {x0 ∈ R : x0 6= 0},
g(D) ={(ξ1, . . . , ξN , x0) ∈ RN+1 : ξ1/x0 > 0, x0 6= 0}

=((0,∞)× RN−2 × (0,∞)) ∪ ((−∞, 0)× RN−2 × (−∞, 0)),

h(ξ1, ξ2, . . . , ξN , x0)

=
( 1
√
ν1

∫ t
t0
φ1(s) ds

{
log
( ξ1
x0

)
−
∫ t

t0

µa(s) ds−
N∑
j=2

√
νj

(∫ t

t0

φj(s) ds
)
ξj

}
,

ξ2, . . . , ξN , x0

)
and, assuming that

∫ t
t0
φ1(s) ds 6= 0 for all t ∈ (t0, T ],

|Jh(ξ1, . . . , ξN , x0)| = 1

|ξ1|
√
ν1

∣∣ ∫ t
t0
φ1(s) ds

∣∣ 6= 0.

Assume independence of x0, ξ1 and (ξ2, . . . , ξN ), N ≥ 2. Then, taking the marginal
distributions we arrive at the following form of (2.16),

fN1 (x, t) =

∫
RN−1×Isign(x)

fξ1

( 1
√
ν1

∫ t
t0
φ1(s) ds

{
log
( x
x0

)
−
∫ t

t0

µa(s) ds

−
N∑
j=2

√
νj

(∫ t

t0

φj(s) ds
)
ξj

})
f(ξ2,...,ξN )(ξ2, . . . , ξN )f0(x0)

× 1

|x|√ν1

∣∣ ∫ t
t0
φ1(s) ds

∣∣ dξ2 · · · dξN dx0,

(2.29)

where sign(x) = + if x > 0 and sign(x) = − if x < 0, and I+ = (0,∞) and
I− = (−∞, 0). This density function (2.29) is not defined at x = 0, but it does not
matter since density functions may only be defined almost everywhere on R.

Theorem 2.8. Assume that:

(1) a ∈ L2([t0, T ]× Ω);
(2) x0, ξ1 and (ξ2, . . . , ξN ) are absolutely continuous and independent, N ≥ 2;
(3) the density function of ξ1, fξ1 , is Lipschitz on R;

(4)
∫ t
t0
φ1(s) ds 6= 0 for all t ∈ (t0, T ].

Then, for each fixed t ∈ (t0, T ], the sequence {fN1 (x, t)}∞N=1 given in (2.29) (which
is the same as (2.16)) converges in L∞(J) for every bounded set J ⊆ R\[−δ, δ], for
every δ > 0, to a density f1(x, t) of the solution stochastic process (2.14).

Proof. Let us see that, for each fixed t, {fN1 (x, t)}∞N=1 is Cauchy in L∞(J), for
every bounded set J ⊆ R\[−δ, δ], δ > 0. Fix two indexes N > M ≥ 2. If we denote
by L the Lipschitz constant of fξ1 , we have∣∣∣fξ1( 1

√
ν1

∫ t
t0
φ1(s) ds

{
log
( x
x0

)
−
∫ t

t0

µa(s) ds−
N∑
j=2

√
νj

(∫ t

t0

φj(s) ds
)
ξj

})

− fξ1
( 1
√
ν1

∫ t
t0
φ1(s) ds

{
log
( x
x0

)
−
∫ t

t0

µa(s) ds−
M∑
j=2

√
νj

(∫ t

t0

φj(s) ds
)
ξj

})∣∣∣
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≤ L 1
√
ν1

∣∣ ∫ t
t0
φ1(s) ds

∣∣
N∑

j=M+1

√
νj
∣∣ ∫ t

t0

φj(s) ds
∣∣|ξj |.

Taking marginal distributions in expression (2.29), one obtains

fM1 (x, t) =

∫
RM−1×Isign(x)

fξ1

( 1
√
ν1

∫ t
t0
φ1(s) ds

{
log
( x
x0

)
−
∫ t

t0

µa(s) ds−
M∑
j=2

√
νj

(∫ t

t0

φj(s) ds
)
ξj

})
× f(ξ2,...,ξM )(ξ2, . . . , ξM )f0(x0)

1

|x|√ν1

∣∣ ∫ t
t0
φ1(s) ds

∣∣ dξ2 · · · dξM dx0

=

∫
RN−1×Isign(x)

fξ1

( 1
√
ν1

∫ t
t0
φ1(s) ds

{
log
( x
x0

)
−
∫ t

t0

µa(s) ds

−
M∑
j=2

√
νj

(∫ t

t0

φj(s) ds
)
ξj

})
× f(ξ2,...,ξN )(ξ2, . . . , ξN )f0(x0)

1

|x|√ν1

∣∣ ∫ t
t0
φ1(s) ds

∣∣ dξ2 · · · dξN dx0.

We can estimate

|fN1 (x, t)− fM1 (x, t)|

≤ L
∫
RN−1×Isign(x)

1
√
ν1

∣∣ ∫ t
t0
φ1(s) ds

∣∣
N∑

j=M+1

{√
νj
∣∣ ∫ t

t0

φj(s) ds
∣∣|ξj |}

× f(ξ2,...,ξN )(ξ2, . . . , ξN )f0(x0)
1

|x|√ν1

∣∣ ∫ t
t0
φ1(s) ds

∣∣ dξ2 · · · dξN dx0

= L

∫
RN−1×Isign(x)

1

|x|ν1

( ∫ t
t0
φ1(s) ds

)2 N∑
j=M+1

{√
νj
∣∣ ∫ t

t0

φj(s) ds
∣∣|ξj |}

× f(ξ2,...,ξN )(ξ2, . . . , ξN )f0(x0) dξ2 · · · dξN dx0

≤ L 1

|x|ν1

( ∫ t
t0
φ1(s) ds

)2 N∑
j=M+1

√
νj
∣∣ ∫ t

t0

φj(s) ds
∣∣E[|ξj |].

Since
∞∑
j=1

√
νj |
∫ t

t0

φj(s) ds|E[|ξj |] <∞

by Remark 2.6, we obtain that {fN1 (x, t)}∞N=1 is Cauchy in L∞(J), for every
bounded set J ⊆ R\[−δ, δ], for every δ > 0.

As we saw in the end of Theorem 2.4, the truncation xN (t, ω) given in (2.15)
converges to the process x(t, ω) given in (2.14) for all t and a.e. ω as N →∞. This
allows us to conclude that the limit of {fN1 (x, t)}∞N=1 is the density function of the
solution x(t, ω) given in (2.14). �
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2.5. Obtaining the density function under the weaker assumption of con-
tinuity. We present some results that substitute the Lipschitz hypothesis by a
continuity assumption. Notice that we “only” prove a pointwise convergence to
the density of x(t, ω), not a uniform convergence on compact sets, as we did in the
previous theorems.

Theorem 2.9. Assume the following four hypotheses:

(1) a, b ∈ L2([t0, T ]× Ω);
(2) x0 and (ξ1, . . . , ξN , η1, . . . , ηN ) are absolutely continuous and independent,

N ≥ 1;
(3) the density function of x0, f0, is continuous and bounded on R;
(4) ‖e−Ka(t,ξN )‖L2(Ω) ≤ C for all N ≥ 1 and t ∈ [t0, T ].

Then, for all x ∈ R and t ∈ [t0, T ], the sequence {fN1 (x, t)}∞N=1 given in (2.5)
converges to a density f1(x, t) of the solution x(t, ω) given in (1.3).

Proof. Fix x ∈ R and t ∈ [t0, T ]. If we define the random variables

YN (ω) := e−Ka(t,ξN (ω)), ZN (ω) :=

∫ t

t0

Sb(s,ηN (ω))e−Ka(s,ξN (ω)) ds,

then notice that the density function given by (2.5) becomes

fN1 (x, t) = E [f0(xYN − ZN )YN ] . (2.30)

By (2.10) and (2.11), we have

lim
N→∞

e−Ka(t,ξN (ω)) = e
−
∫ t
t0
a(s,ω) ds

=: Y (ω),

lim
N→∞

∫ t

t0

Sb(s,ηN (ω))e−Ka(s,ξN (ω)) ds =

∫ t

t0

b(s, ω)e
−
∫ s
t0
a(r,ω) dr

ds =: Z(ω),

for a.e. ω ∈ Ω. Then (YN (ω), ZN (ω))→ (Y (ω), Z(ω)) as N →∞, for a.e. ω ∈ Ω.
Let g(x, t) = E[f0(xY − Z)Y ]. By the triangular and Cauchy-Schwarz inequali-

ties, we can estimate the difference between (2.30) and g(x, t):

|fN1 (x, t)− g(x, t)|
≤ E[|f0(xYN − ZN )− f0(xY − Z)||YN |] + E[f0(xY − Z)|YN − Y |]

≤ E[|f0(xYN − ZN )− f0(xY − Z)|2]1/2E[Y 2
N ]1/2 + E[f0(xY − Z)|YN − Y |].

By hypotheses (3) and (4),

|fN1 (x, t)−g(x, t)| ≤ CE[|f0(xYN −ZN )−f0(xY −Z)|2]1/2 +‖f0‖L∞(R)E[|YN −Y |].

As f0 is continuous on R, |f0(xYN (ω) − ZN (ω)) − f0(xY (ω) − Z(ω))|2 → 0 as
N → ∞, for a.e. ω ∈ Ω. Since f0 is bounded, by the dominated convergence
Theorem [23, result 11.32, p.321],

lim
N→∞

E[|f0(xYN − ZN )− f0(xY − Z)|2]1/2 = 0.

On the other hand, as a consequence of the mean value theorem used in (2.9),

|YN (ω)− YM (ω)| ≤
(

e−Ka(t,ξN ) + e−Ka(t,ξM )
)
|Ka(t, ξN )−Ka(t, ξM )|.

By Cauchy-Schwarz inequality and hypothesis (4),

E[|YN − YM |]
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≤
(
‖e−Ka(t,ξN )‖L2(Ω) + ‖e−Ka(t,ξM )‖L2(Ω)

)
‖Ka(t, ξN )−Ka(t, ξM )‖L2(Ω)

≤ 2C‖Ka(t, ξN )−Ka(t, ξM )‖L2(Ω).

By (2.7),

E[|YN − YM |] ≤ 2C
√
T − t0‖aN − aM‖L2([t0,T ]×Ω).

As aN → a in L2([t0, T ]× Ω), we conclude that E[|YN − Y |]→ 0 as N →∞.
Thus, limN→∞ fN1 (x, t) = g(x, t), as wanted. We need to ensure that g(x, t) is

a density of x(t, ω). We know, by the proof of Theorem 2.4, that truncation (2.4),
xN,N (t, ω), tends a.s., hence in law, to x(t, ω), for all t ∈ [t0, T ]. However, we
cannot conclude as in the end of the proof of Theorem 2.4, because we do not have
uniform convergence in order to justify the step from (2.12) to (2.13). We need
an alternative. First, notice that g(·, t) is a density function for each t ∈ [t0, T ],
because ∫

R
g(x, t) dx =

∫
R
E[f0(xY − Z)Y ] dx = E

[ ∫
R
f0(xY − Z)Y dx

]
= E

[ ∫
R
f0(x) dx

]
= 1.

Now, let y(t, ω) be a random variable with law given by the density g(x, t). By
Scheffé’s Lemma [30, p.55], xN,N (t, ω) tends in law to y(t, ω). Therefore, y(t, ω) and
x(t, ω) are equal in distribution (the limit in law is unique), so x(t, ω) is absolutely
continuous with density function f1(x, t) = g(x, t), as wanted. �

As a consequence, for the homogeneous problem (1.1) with b = 0 we have (recall
the definition of D(x0) in (2.17)).

Theorem 2.10. Assume the following four hypotheses:

(1) a ∈ L2([t0, T ]× Ω);
(2) x0 and (ξ1, . . . , ξN ) are absolutely continuous and independent, N ≥ 1;
(3) the density function of x0, f0, is continuous and bounded on D(x0);
(4) ‖e−Ka(t,ξN )‖L2(Ω) ≤ C for all N ≥ 1 and t ∈ [t0, T ].

Then, for all x ∈ R and t ∈ [t0, T ], the sequence {fN1 (x, t)}∞N=1 given in (2.16)
converges to a density f1(x, t) of the solution (2.14).

For the random homogeneous problem (1.1) with b = 0, the following theorem
imposes a growth condition on f0 (which is usually accomplished), so that hypothe-
sis (4) of Theorem 2.10 can be avoided. Probably, this is the most general theorem
on the random non-autonomous homogeneous linear differential equation in this
paper.

Theorem 2.11. Assume the following three hypotheses:

(1) a ∈ L2([t0, T ]× Ω);
(2) x0 and (ξ1, . . . , ξN ) are absolutely continuous and independent, N ≥ 1;
(3) the density function of x0, f0, is continuous on D(x0) and f0(x) ≤ C/|x|

for all 0 6= x ∈ D(x0).

Then, for all 0 6= x ∈ R and t ∈ [t0, T ], the sequence {fN1 (x, t)}∞N=1 given in (2.16)
converges to a density f1(x, t) of the solution (2.14).

Proof. Fix 0 6= x ∈ R and t ∈ [t0, T ]. By (2.16), we may write fN1 (x, t) =
E[f0(xYN )YN ], where YN (ω) and Y (ω) are the same as in the proof of Theorem
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2.9. Recall that YN (ω)→ Y (ω) as N →∞, for a.e. ω ∈ Ω. By the continuity of f0

on D(x0), f0(xYN (ω))YN (ω)→ f0(xY (ω))Y (ω) as N →∞, for a.e. ω ∈ Ω. Since

f0(xYN )YN =
1

|x|
f0(xYN )|x|YN ≤

C

|x|
,

the Dominated Convergence Theorem does the rest:

lim
N→∞

fN1 (x, t) = E[f0(xY )Y ] =: g(x, t).

As in the end of the proof of Theorem 2.9, one shows that g(x, t) is a density
function of the solution stochastic process x(t, ω). �

A second result for the random complete linear differential equation is the fol-
lowing reformulation of Theorem 2.7. The Lipschitz hypothesis is substituted by
continuity and boundedness, although the uniform convergence is replaced by point-
wise convergence.

Theorem 2.12. Assume that

(1) a, b ∈ L2([t0, T ]× Ω);
(2) x0, η1, (ξ1, . . . , ξN , η2, . . . , ηN ) are absolutely continuous and independent,

N ≥ 1;
(3) the density function of η1, fη1 , is continuous and bounded on R;
(4) ξ1, ξ2, . . . have compact support in [−A,A] (A > 0) and ψ1 > 0 on (t0, T ).

Then, for each fixed t ∈ (t0, T ] and x ∈ R, the sequence {fN1 (x, t)}∞N=1 given in
(2.19) (which is the same as (2.5)) converges to a density f1(x, t) of the solution
(1.3).

Proof. Fix x ∈ R and t ∈ (t0, T ]. From the expression (2.19), define

YN (ω) :=
e−Ka(t,ξN (ω))

√
γ1

∫ t
t0
ψ1(s)e−Ka(s,ξN (ω)) ds

,

ZN (ω)

:=
xe−Ka(t,ξN (ω)) − x0(ω)−

∫ t
t0

(
µb(s) +

∑N
i=2

√
γiψi(s)ηi(ω)

)
e−Ka(s,ξN (ω)) ds

√
γ1

∫ t
t0
ψ1(s)e−Ka(s,ξN (ω)) ds

.

As in (2.10) and (2.11) (details are left for the reader to do),

lim
N→∞

YN (ω) =
e
−
∫ t
t0
a(s,ω) ds

√
γ1

∫ t
t0
ψ1(s)e

−
∫ s
t0
a(r,ω) dr

ds
=: Y (ω),

lim
N→∞

ZN (ω)

=
xe
−
∫ t
t0
a(s,ω) ds − x0(ω)−

∫ t
t0

(µb(s) + b(s, ω)− b1(s, ω)) e
−
∫ s
t0
a(r,ω) dr

ds
√
γ1

∫ t
t0
ψ1(s)e

−
∫ s
t0
a(r,ω) dr

ds

=: Z(ω),

for a.e. ω ∈ Ω. By (2.19), fN1 (x, t) = E[fη1(ZN )YN ]. As ξ1, ξ2, . . . live in [−A,A], we
can use bound (2.21) again to conclude that |YN (ω)| ≤ B for certain B > 0, for all
N . By the continuity of fη1 , fη1(ZN (ω))YN (ω) → fη1(Z(ω))Y (ω) as N → ∞, for
a.e. ω ∈ Ω. As |fη1(ZN (ω))YN (ω)| ≤ B‖fη1‖L∞(R), by the dominated convergence
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theorem, limN→∞ fN1 (x, t) = E[fη1(Z)Y ] =: g(x, t). To check that g(x, t) is indeed
a density of x(t, ω), one concludes as in the proof of Theorem 2.9. �

A third and final result for the homogeneous problem is the following. It sub-
stitutes the Lipschitz hypothesis of Theorem 2.8 by the weaker assumptions of
continuity and boundedness, but we loose the uniform convergence on compact
sets not containing 0. The proof is very similar to that of Theorem 2.9.

Theorem 2.13. Assume that:

(1) a ∈ L2([t0, T ]× Ω);
(2) x0, ξ1 and (ξ2, . . . , ξN ) are absolutely continuous and independent, N ≥ 2;
(3) the density function of ξ1, fξ1 , is continuous and bounded on R;

(4)
∫ t
t0
φ1(s) ds 6= 0 for all t ∈ (t0, T ];

(5) either x0(ω) > 0 for a.e. ω ∈ Ω or x0(ω) < 0 for a.e. ω ∈ Ω.

Then, for each fixed t ∈ (t0, T ] and x 6= 0, the sequence {fN1 (x, t)}∞N=1 given in
(2.29) (which is the same as (2.16)) converges to a density f1(x, t) of the solution
stochastic process (2.14).

Proof. We assume x0(ω) > 0 for a.e. ω ∈ Ω (the other case is analogous). From
expression (2.29), we deduce that fN1 (x, t) = 0 if x < 0. Thus, it suffices to consider
the case x > 0, so that (2.29) becomes

fN1 (x, t) =

∫
RN−1×(0,∞)

fξ1

( 1
√
ν1

∫ t
t0
φ1(s) ds

{
log
( x
x0

)
−
∫ t

t0

µa(s) ds

−
N∑
j=2

√
νj

(∫ t

t0

φj(s) ds
)
ξj

})
f(ξ2,...,ξN )(ξ2, . . . , ξN )f0(x0)

× 1

|x|√ν1

∣∣ ∫ t
t0
φ1(s) ds

∣∣ dξ2 · · · dξN dx0,

(2.31)

Let

YN (ω)

:=
1

√
ν1

∫ t
t0
φ1(s) ds

{
log
( x

x0(ω)

)
−
∫ t

t0

µa(s) ds−
N∑
j=2

√
νj

(∫ t

t0

φj(s) ds
)
ξj(ω)

}
.

Then, by (2.31),

fN1 (x, t) =
1

|x|√ν1

∣∣ ∫ t
t0
φ1(s) ds

∣∣E[fξ1(YN )].

We have

lim
N→∞

YN (ω) =
1

√
ν1

∫ t
t0
φ1(s) ds

{
log
( x

x0(ω)

)
−
∫ t

t0

µa(s) ds

−
∫ t

t0

(a(s, ω)− a1(s, ω)) ds
}

=: Y (ω),

for a.e. ω ∈ Ω.
One could use again the dominated convergence theorem, as in Theorem 2.9, to

conclude. We present another reasoning which we believe is interesting. We use the
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following facts: the a.s. limit implies limit in law, and a sequence {Xn}∞n=1 of ran-
dom vectors with p components tends in law to X if and only if limn→∞ E[H(Xn)] =
E[H(X)] for every continuous and bounded map H on Rp [28, p.144 (iii)]. Taking

H(y) :=
1

|x|√ν1

∣∣ ∫ t
t0
φ1(s) ds

∣∣fξ1(y),

which is continuous and bounded on R, we deduce that

lim
N→∞

fN1 (x, t) = E[H(Y )] =: g(x, t).

This reasoning uses strongly the convergence in law, rather than the a.s. convergence
necessary to apply the dominated convergence theorem. These ideas are useful for
random differential equations in which the truncation converges in law, but not
a.s. (for the random linear differential equation (1.1) this is not the case, so the
dominated convergence theorem is applicable, as we did). �

2.6. Comments on the hypotheses of the theorems. The hypotheses of the
theorems in Subsection 2.5 are weaker than the hypotheses of the theorems from the
previous subsections. In the theorems from Subsection 2.5, one has to put condi-
tions so that the dominated convergence theorem can be applied in an expectation,
essentially. This yields a pointwise convergence of the approximating sequence of
density functions. However, when dealing with uniform convergence in Subsection
2.1, 2.2, 2.3 and 2.4, the Lipschitz condition plus other assumptions are necessary.

In terms of numerical experiments, every time Theorems 2.4, 2.5, 2.7 and 2.8 are
applicable, Theorems 2.9, 2.10, 2.12 and 2.13 are also applicable, respectively.

The Lipschitz (or continuity) condition on R is satisfied by the probability density
function of some named distributions:

• Normal(µ, σ2), µ ∈ R and σ2 > 0;
• Beta(α, β), α, β ≥ 2;
• Gamma(α, β), α ≥ 2 and β > 0.

In general, any density with bounded derivative on R satisfies the Lipschitz condi-
tion on R, by the Mean Value Theorem.

Some non-Lipschitz (and non-continuous) density functions on R are the uni-
form distribution, the exponential distribution, or any other density with a jump
discontinuity at some point of R. Notice however that, if x0 is an exponentially
distributed initial condition, then f0 is Lipschitz on D(x0) = (0,∞). Nevertheless,
if x0 is a uniform random variable, then f0 remains being non-continuous on D(x0).

In Theorem 2.7 and Theorem 2.8, for instance, we included the hypotheses fη1
and fξ1 Lipschitz, respectively. It must be clear that ξ1 and η1 are not important,
in the sense that, if some ξk or ηl satisfies the hypotheses for certain k and l not
equal to 1, then we may reorder the pairs of eigenvalues and eigenfunctions of the
Karhunen-Loève expansions of a and b so that the necessary hypotheses hold.

Let us see examples of processes a for which, given any c ∈ R, there is a constant
C > 0 such that the inequality E[ecKa(t,ξN )] ≤ C holds for all N ≥ 1 and t ∈ [t0, T ]:

• Case ξ1, ξ2, . . . are independent and Normal(0, 1) distributed, that is, when a is a
Gaussian process. Indeed, taking into account that the moment generating function
of a Gaussian random variable X with zero expectation and unit variance is given
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by E[eλX ] = eλ
2/2, and using Cauchy-Schwarz inequality, one deduces

E[ecKa(t,ξN )] = e
c
∫ t
t0
µa(s) dsE

[ N∏
j=1

e
c ξj
√
νj
∫ t
t0
φj(s) ds

]

= e
c
∫ t
t0
µa(s) ds

N∏
j=1

E
[
e
c ξj
√
νj
∫ t
t0
φj(s) ds]

= e
c
∫ t
t0
µa(s) ds

N∏
j=1

e
1
2 c

2νj

( ∫ t
t0
φj(s) ds

)2

≤ e
c
∫ t
t0
µa(s) ds

e
1
2 c

2(T−t0)
∑N
j=1 νj

∫ t
t0
φj(s)

2 ds

≤ e
c
∫ t
t0
µa(s) ds

e
1
2 c

2(T−t0)
∫ T
t0

(∑N
j=1 νjφj(s)

2
)

ds
.

Now we bound each of the terms. First observe that, by Cauchy-Schwarz inequality,

µa(s)2 = E[a(s)]2 ≤ E[a(s)2],

therefore, by Cauchy-Schwarz inequality again, one gets∫ T

t0

|µa(s)|ds ≤
√
T − t0

(∫ T

t0

µa(s)2 ds
)1/2

≤
√
T − t0 ‖a‖L2([t0,T ]×Ω) <∞.

(2.32)

For the other term, we have∫ T

t0

( N∑
j=1

νjφj(s)
2
)

ds ≤
∫ T

t0

( ∞∑
j=1

νjφj(s)
2
)

ds

=

∫ T

t0

(
E[a(s)2]− µa(s)2

)
ds

= ‖a‖2L2([t0,T ]×Ω) − ‖µa‖
2
L2([t0,T ]) <∞.

• Case ξ1, ξ2, . . . are compactly supported in [α, β]. In this case,

ecKa(t,ξN (ω)) = e
c
∫ t
t0

(
µa(s)+

∑N
j=1

√
νjφj(s)ξj(ω)

)
ds

≤ e
c
∫ T
t0
|µa(s)| ds

e
c
∑N
j=1

√
νj

∣∣ ∫ t
t0
φj(s) ds

∣∣|ξj(ω)|

≤ e
c
∫ T
t0
|µa(s)| ds

e
cmax{|α|,|β|}

∑N
j=1

√
νj

∣∣ ∫ t
t0
φj(s) ds

∣∣
≤ e

c
∫ T
t0
|µa(s)| ds

e
cmax{|α|,|β|}

∑∞
j=1

√
νj

∣∣ ∫ t
t0
φj(s) ds

∣∣
.

By (2.32),
∫ T
t0
|µa(s)|ds <∞. By Remark 2.6,

sup
t∈[t0,T ]

∞∑
j=1

√
νj

∣∣∣ ∫ t

t0

φj(s) ds
∣∣∣ <∞.

Thereby, there is a constant C > 0 such that ecKa(t,ξN (ω)) ≤ C, for a.e. ω ∈ Ω,
N ≥ 1 and t ∈ [t0, T ]. Applying expectations, E[ecKa(t,ξN (ω))] ≤ C, for every
N ≥ 1 and t ∈ [t0, T ].

If we add the hypothesis of independence to compactly supported in [α, β], the
proof is analogous to the normal case. But instead of using the generating moment
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function of a normal distribution, one has to use Hoeffding’s Lemma: “Let X be
a random variable with E[X] = 0 and support in [α, β]. Then, for all λ ∈ R,

E[eλX ] ≤ e
λ2(β−α)2

8 ”. For a proof, see [20, p.21].
Let us see examples of processes b for which hypothesis (4) from Theorem 2.4

holds:

‖µb‖Lp(t0,T ) +

∞∑
j=1

√
γj ‖ψj‖Lp(t0,T )‖ηj‖Lp(Ω) <∞

for some 2 < p ≤ ∞.

• Consider {b(t, ω) : t0 = 0 ≤ t ≤ T = 1} a standard Brownian motion on [0, 1].
By [19, Exercise 5.12 p. 206], we know that

γj =
1(

j − 1
2

)2
π2
, ψj(t) =

√
2 sin(t(j − 1

2
)π), j ≥ 1, (2.33)

and η1, η2, . . . are Normal(0, 1) and independent random variables. We check that
we can choose p = 3 (so q = 12). We need to check that

∑∞
j=1

√
γj ‖ψj‖L3(0,1) <∞.

We have that

‖ψj‖L3(0,1) =
√

2
(∫ 1

0

| sin(t(j − 1

2
)π)|3 dt

)1/3

= 2
( √

2

3π(2j − 1)

)1/3

∼ 1

j1/3
,

therefore
√
γj ‖ψj‖L3(0,1) ∼ 1/j1+ 1

3 , and since
∑∞
j=1 1/j1+ 1

3 < ∞, by comparison

we obtain
∑∞
j=1

√
γj ‖ψj‖L3(0,1) <∞, as wanted.

• Consider {b(t, ω) : t0 = 0 ≤ t ≤ T = 1} a standard Brownian bridge on [0, 1]. By
Example 5.30 in [19, p. 204], we know that

γj =
1

j2π2
, ψj(t) =

√
2 sin(tjπ), j ≥ 1, (2.34)

and η1, η2, . . . are Normal(0, 1) and independent random variables. As before, one
can take p = 3.

Finally, we want to make some comments on the hypotheses ψ1 > 0 on (t0, T )

from Theorem 2.7 and Theorem 2.12, and
∫ t
t0
φ1(s) ds 6= 0 for all t ∈ (t0, T ] from

Theorem 2.8 and Theorem 2.13. There are some eigenvalue problems in the theory
of deterministic differential equations in which one can ensure the existence of
a positive eigenfunction for the largest eigenvalue (for instance, Sturm-Liouville
problems, see [12]; the Poisson equation with Dirichlet boundary conditions, see
[24, p.452]; etc.). We ask ourselves if the same holds with the operator (2.3) of the
Karhunen-Loève expansion.

Consider a generic Karhunen-Loève expansion (2.2), µ(t)+
∑∞
j=1

√
νjφj(t)ξj(ω),

of a stochastic process X ∈ L2(T ×Ω), T ⊆ R. Suppose in this particular discussion
that ν1 is the largest eigenvalue (in general it may not, because one can order
the pairs of eigenvalues and eigenfunctions in the Karhunen-Loève expansion as
desired). In general, one cannot ensure whether ν1 has a positive eigenfunction
φ1. For example, if T = [−π, π], we know that {1} ∪ {cos(tj), sin(tj) : j ≥ 1}
is an orthonormal basis of L2([−π, π]), so we can consider the stochastic process
X(t, ω) = cos(t)ξ(ω), where ξ ∼ Normal(0, 1). The eigenvalues of the associated
integral operator C given by (2.3) are 0 and 1. The eigenspace associated to 0 is
infinite dimensional, whereas the eigenspace associated to 1 is spanned by φ1(t) =
cos(t). This eigenfunction takes positive and negative values on (−π, π).
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To gain some intuition on why this phenomenon occurs, recall that in a finite
dimensional setting, the largest eigenvalue of a matrix has an eigenvector with non-
negative entries if all the entries of the matrix are nonnegative, by Perron-Frobenius
Theorem, see [13, Th. 8.2.8 in p. 526; Th. 8.3.1, p. 529]. In our setting, there are
some results in the literature that give conditions under which the eigenfunction
φ1 can be taken nonnegative or positive. Let K(t, s) = Cov[X(t), X(s)] be the
so-called kernel of the operator C given by (2.3). In [17, p. 6], Theorem 1 says that,
if K(t, s) ≥ 0 for all t, s ∈ T , then one can choose a nonnegative eigenfunction
φ1 for the largest eigenvalue ν1. In [17, p. 7], Theorem 2 gives as a consequence
that, if T is open and K(t, s) > 0 for all t, s ∈ T , then ν1 is simple and φ1 can be
chosen positive on T . This is what happens for example with the standard Brow-
nian motion and the standard Brownian bridge on [0, 1]. They have covariances
K(t, s) = min{t, s} and K(t, s) = min{t, s}− ts, respectively, which are positive on
(t, s) ∈ (0, 1)×(0, 1), therefore the eigenfunction associated to the largest eigenvalue

can be picked positive on (0, 1). Indeed, take ν1 = 4/π2 and φ1(t) =
√

2 sin(πt/2)

for the Brownian motion (see (2.33)), and ν1 = 1/π2 and φ1(t) =
√

2 sin(πt) for the
Brownian bridge (see (2.34)). These eigenfunctions φ1 are positive on (0, 1).

3. Numerical examples

Under the hypotheses of Theorem 2.4, Theorem 2.7, Theorem 2.9 or Theorem
2.12, the density function (2.5) gives an approximation of the density function of
the solution process to the non-autonomous complete linear differential equation,
x(t, ω), given in (1.3). Under the hypotheses of Theorem 2.7 or Theorem 2.12 the
approximating density (2.19) is obviously valid as well (it is equal to (2.5)), but we
believe that (2.5) has a simpler expression.

On the other hand, under the hypotheses of Theorem 2.5, Theorem 2.8, Theorem
2.10, Theorem 2.11 or Theorem 2.13, the density function (2.16) approximates
the density of the solution process to the non-autonomous homogeneous linear
differential equation, x(t, ω), given in (2.14). Under the assumptions of Theorem
2.8 and Theorem 2.13, the approximation via the density (2.29) is valid too (it is
equal to (2.16)), but we think that (2.16) has a simpler expression.

That is why we will make use of (2.5) (under the hypotheses of Theorem 2.4,
Theorem 2.7, Theorem 2.9 or Theorem 2.12), and of (2.16) (under the hypotheses
of Theorem 2.5, Theorem 2.8, Theorem 2.10, Theorem 2.11 or Theorem 2.13) to
perform numerical approximations of the densities of the processes (1.3) and (2.14),
respectively.

We will use the software MathematicaR© to perform the computations. The
density function (2.16) can be numerically computed in an exact manner with the
built-in function NIntegrate. Using this function, we have drawn the shape of
(2.16) in Example 3.1, Example 3.2 and Example 3.3, which deal with the case
b = 0.

The computational time spent for (2.5) is much larger than for (2.16), due to
the additional terms that b involves: there is a parametric numerical integration
in the evaluation of f0 in (2.5). For N = 1, the function NIntegrate has been
successfully used in Example 3.4 and Example 3.5 (case b 6= 0). However, for N ≥
2, the function NIntegrate has been tried, with the consequence that numerical
integration becomes unfeasible. Thereby, we use the following trick: (2.5) is an
integral with respect to a density function, so it may be seen as an expectation, as
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we did in (2.30). The Law of Large Numbers allows approximating the expectation
via sampling. This is the theoretical basis of Monte Carlo simulations [32, p.53].
Hence, there are two possibilities to compute (2.5) for N ≥ 2: the built-in function
NExpectation with the option Method -> ‘‘MonteCarlo’’ (we used this function
for N = 2 and N = 3 in Example 3.4), or programming oneself a Monte Carlo
procedure (we did so for N = 2 in Example 3.5, with 40, 000 realizations of each
one of the random variables ξi and ηi taking part).

We would like to remark that there are different ways one may carry out the
computations in MathematicaR© or any other software. The best built-in function or
programming procedure depends on each case, and we have just presented different
settings showing how one may act.

Example 3.1. Consider the homogeneous linear differential equation (b = 0) with
initial condition x0 ∼ Uniform(1, 2) and a(t, ω) = W (t, ω), where W is a standard
Brownian motion on [t0, T ] = [0, 1]. The Karhunen-Loève expression of a(t, ω) is

a(t, ω) =

∞∑
j=1

√
2

(j − 1
2 )π

sin(t(j − 1

2
)π)ξj(ω),

where ξ1, ξ2, . . . are independent and Normal(0, 1) random variables (see [19, Exer-
cise 5.12]).

We want to approximate the probability density function of the solution process
x(t, ω) given in (2.14). The assumptions of Theorem 2.8 hold, therefore (2.16) is a
suitable approximation of the density of x(t, ω). In Figure 1, we can see fN1 (x, t)
for N = 1 (up left), N = 2 (up right) and N = 3 (down) at t = 0.5. In Figure 2, a
three dimensional plot gives fN1 (x, t) for N = 2, x ∈ R and 0 ≤ t ≤ 1.

In fact, in this case it is possible to compute the exact density function of
x(t, ω). Since a(t, ω) = W (t, ω) is a continuous process, the Lebesgue integral∫ t

0
a(s, ω) ds turns out to be a Riemann integral, for each fixed ω ∈ Ω. Therefore

it is an a.s. limit of Riemann sums. Each Riemann sum is a normal distributed
random variable (because the process a is Gaussian), and since the a.s. limit of

normal random variables is normal again, we obtain that Zt :=
∫ t

0
a(s, ω) ds is

normally distributed. Its expectation is E[
∫ t

0
a(s, ω) ds] =

∫ t
0
E[a(s, ω)] ds = 0 and

its variance is V[
∫ t

0
a(s, ω) ds] = E[(

∫ t
0
a(s, ω) ds)2] = E[

∫ t
0

∫ t
0
a(s, ω)a(r, ω) dsdr] =∫ t

0

∫ t
0
E[a(s, ω)a(r, ω)] dsdr =

∫ t
0

∫ t
0

min{s, r} dsdr = t3/3. Using Lemma 2.1, we
can compute the density of x(t, ω). Indeed, in the notation of Lemma 2.1, let
g(x0, Zt) = (x0eZt , Zt), D = R2, g(D) = R2, h(u, v) = (ue−v, v) and Jh(u, v) =
e−v 6= 0. Then we compute the density of (x0eZt , Zt), and taking the marginal
distribution,

f1(x, t) =

∫
R
f0(xe−y)fNormal(0,t3/3)(y)e−y dy. (3.1)

In Figure 3 we present a plot of this density for t = 0.5 (left) and a three dimensional
plot for x ∈ R and 0 ≤ t ≤ 1 (right). In this way we can compare visually the
approximation performed via fN1 (x, t) in Figure 1 and Figure 2.

To assess analytically the accuracy of the approximations fN1 (x, t) with respect
to the exact probability density function f1(x, t) given in (3.1), in Table 1 we collect
the values of the errors for different orders of truncation N at t = 0.5. We observe
that the error decreases as N increases, so this agrees with our theoretical findings.
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Figure 1. Density fN1 (x, t) for N = 1 (left), N = 2 (center) and
N = 3 (right) at the point t = 0.5. Example 3.1.

Figure 2. Density fN1 (x, t) for N = 2, x ∈ R and 0 ≤ t ≤ 1.
Example 3.1.

Figure 3. Density f1(x, t) for t = 0.5 (left) and three dimensional
plot for x ∈ R and 0 ≤ t ≤ 1 (right). Example 3.1.

Example 3.2. Again, consider the homogeneous linear differential equation (b = 0)
with x0 ∼ Uniform(1, 2), but now a will not be a Gaussian process. We consider

a(t, ω) =

∞∑
j=1

√
2

j
sin(jπt)ξj(ω),
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Table 1. Error with respect to the exact density function f1(x, t)
given by (3.1) for N = 1, N = 2 and N = 3, at t = 0.5. Example
3.1.

N ‖fN1 (x, 0.5)− f1(x, 0.5)‖L∞(R)

1 0.0687343
2 0.00743475
3 0.00332728

where [t0, T ] = [0, 1] and ξ1, ξ2, . . . are independent random variables with common

density function fξ1(ξ1) =
√

2/(π(1 + ξ4
1)). These random variables have zero

expectation and unit variance, so we have a proper expansion for a (its Karhunen-
Loève expansion).

We want to approximate the probability density function of the solution process
x(t, ω) given in (2.14). The assumptions of Theorem 2.8 hold, because fξ1 is a

Lipschitz function on R (hypothesis (3)) and φ1(t) =
√

2 sin(tπ) > 0 on (0, 1)
(hypothesis (4)). Hence, (2.16) is a suitable approximation of the density of the
process x(t, ω) given in (2.14). In Figure 4, we can see fN1 (x, t) for N = 1 (up left),
N = 2 (up right) and N = 3 (down) at t = 0.7. In Figure 5, a three dimensional
plot gives fN1 (x, t) for N = 2, x ∈ R and 0 ≤ t ≤ 1. In Table 2 we have written
the difference between two consecutive orders of truncation N at t = 0.7. Observe
that these differences decrease to 0, which agrees with the theoretical results.

Figure 4. Density fN1 (x, t) for N = 1 (left), N = 2 (center) and
N = 3 (right) at the point t = 0.7. Example 3.2.

Table 2. Difference between two consecutive orders of truncation
N and N + 1, for N = 1 and N = 2, at t = 0.7. Example 3.2.

N ‖fN1 (x, 0.7)− fN+1
1 (x, 0.7)‖L∞(R)

1 0.010764
2 0.000177

Example 3.3. Consider the homogeneous linear differential equation (b = 0) with
x0 ∼ Beta(5, 6), [t0, T ] = [0, 1] and

a(t, ω) = −1 +

∞∑
j=1

√
2

j
sin(jπt)ξj(ω),
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Figure 5. Density fN1 (x, t) for N = 2, x ∈ R and 0 ≤ t ≤ 1.
Example 3.2.

where ξ1, ξ2, . . . are independent random variables with uniform distribution on
(−
√

3,
√

3) (they have zero expectation and unit variance). Notice that a is not a
Gaussian process.

The hypotheses of Theorem 2.5 hold, because the density function of a Beta(5, 6)
random variable is Lipschitz on R and E[ecKa(t,ξN )] ≤ C for all n ≥ 1, t ∈ [t0, T ]
and c ∈ R (see Subsection 2.6). Then (2.16) approximates the density of the process
x(t, ω) given in (2.14).

In Figure 6, we can see fN1 (x, t) for N = 1 (up left), N = 2 (up right), N = 3
(down left) and N = 4 (down right) at t = 0.3. In Figure 7, a three dimensional
plot gives fN1 (x, t) for N = 2, x ∈ R and 0 ≤ t ≤ 1. To assess analytically the
convergence, in Table 3 we show the difference between two consecutive orders of
truncation N at t = 0.3. We observe that these differences decrease to 0, which
goes in the direction of our theoretical results.

Table 3. Difference between two consecutive orders of truncation
N and N + 1, for N = 1, N = 2 and N = 3, at t = 0.3. Example
3.3.

N ‖fN1 (x, 0.3)− fN+1
1 (x, 0.3)‖L∞(R)

1 0.225333
2 0.0799602
3 0.0203143

Example 3.4. Consider a complete linear differential equation with x0 ∼ Normal(0, 1),
a(t, ω) = W (t, ω) a standard Brownian motion on [0, 1] and b(t, ω) a standard Brow-
nian bridge on [0, 1]:

a(t, ω) =

∞∑
j=1

√
2

(j − 1
2 )π

sin(t(j − 1

2
)π)ξj(ω), b(t, ω) =

∞∑
i=1

√
2

iπ
sin(tiπ)ηi(ω),
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Figure 6. Density fN1 (x, t) for N = 1 (up left), N = 2 (up right),
N = 3 (down left) and N = 4 (down right) at the point t = 0.3.
Example 3.3.

Figure 7. Density fN1 (x, t) for N = 2, x ∈ R and 0 ≤ t ≤ 1.
Example 3.3.

where ξ1, ξ2, . . . , η1, η2, . . . are independent and Normal(0, 1) distributed random
variables (see [19, Example 5.30 p. 204, and Exercise 5.12 p. 216]).

The hypotheses of Theorem 2.4 hold (see Subsection 2.6). Therefore, the density
fN1 (x, t) given in (2.5) is an approximation of the density function of the process
x(t, ω) given in (1.3). In Figure 8 we have plotted fN1 (x, t) for N = 1, N = 2 and
N = 3 at t = 0.5.
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Figure 8. Density fN1 (x, t) for N = 1 (left), N = 2 (center) and
N = 3 (right) at the point t = 0.5. Example 3.4.

Example 3.5. Consider a complete linear differential equation with initial condi-
tion x0 ∼ Gamma(4, 9) (4 is the shape and 9 is the rate), domain [t0, T ] = [0, 1],

a(t, ω) =

∞∑
j=1

√
2

j3
sin(tjπ)ξj(ω), b(t, ω) =

∞∑
i=1

√
2

i4 + 6
sin(tiπ)ηi(ω),

where ξ1, ξ2, . . . , η1, η2, . . . are independent with distribution ξj ∼ Uniform(−
√

3,
√

3)
and ηj ∼ Normal(0, 1), j ≥ 1.

The assumptions of Theorem 2.4 hold (see Subsection 2.6). Hence, the density
fN1 (x, t) from (2.5) approximates the density function of the stochastic process
x(t, ω) given in (1.3). In Figure 9 we have represented fN1 (x, t) for N = 1 and
N = 2 at t = 0.4.

Figure 9. Density fN1 (x, t) for N = 1 (left) and N = 2 (right) at
the point t = 0.4. Example 3.5.

Conclusions. In this article we have determined approximations for the probabil-
ity density function of the solution to the randomized non-autonomous complete
linear differential equation. This solution is a stochastic process expressed by means
of Lebesgue integrals of the data stochastic processes, therefore its probability den-
sity function cannot be obtained in an exact manner and approximations for it are
required.

The main ideas of this paper can be summarized as follows. Using Karhunen-
Loève expansions of the data stochastic processes and truncating them, we obtained
a truncation of the solution stochastic process. The random variable transformation
technique permitted us to obtain the exact probability density function of the trun-
cation process, which, intuitively, approximates the density function of the solution
stochastic process. Theorems 2.4, 2.5, 2.7 and 2.8 give the conditions under which
the approximations constructed via these truncations converge uniformly, while
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Theorems 2.9, 2.10, 2.11, 2.12 and 2.13 give conditions for pointwise convergence.
Theorems 2.5, 2.8, 2.10, 2.11 and 2.13 deal with the non-autonomous homogeneous
linear differential equation, which give interesting and particular results when there
is no source term in the random differential equation.

It is remarkable that, depending on the way the random variable transforma-
tion technique is applied (which variable is essentially isolated when computing the
inverse of the transformation mapping), we obtain different but equivalent expres-
sions for the probability density function of the truncation process. This permitted
us to have different hypotheses (theorems) under which the approximating den-
sity functions converge. Hence, the generality achieved in terms of applications is
notable, as our numerical examples illustrated.

In the numerical experiments we dealt with both Gaussian and non-Gaussian
data stochastic processes for which their Karhunen-Loève expansion is available. It
was evinced that the convergence to the probability density function of the solution
process is achieved quickly.
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València, Camino de Vera s/n, 46022, Valencia, Spain
Email address: jccortes@imm.upv.es



40 J. CALATAYUD, J. C. CORTÉS, M. JORNET EJDE-2019/85
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