
Master thesis for the International Master’s Degree in Geomatics

Implementation of PPP as new GNSS Observation
Type in the Geomonitoring System GOCA

Author: Raquel Luján

Supervisor: Prof. Dr.-Ing. Reiner Jäger
Co-Supervisor: Dipl.-Ing. Lyudmila Gorokhova

Co-Supervisor: Prof. Dr.-Ing. Ángel Esteban Mart́ın Furones

November 2019

Abstract

Early detection of significant movements in both natural and artificial structures is
crucial to prevent human, environmental and economic losses. For this reason, Ge-
omonitoring in an active field. GNSS technics are also a filed in which lot of research
and improvement have been made in recent years. Some studies have indicated the
potential of GNSS technics in the field of Geomonitoring. The aim of this master
thesis is developing a software that allows processing GNSS data with Precise Point
Positioning technic in the context of the geomonitoring project GOCA. With this
implementation, potential of PPP with low cost receiver (U-Blox ZED-F9P) using
different products and settings is evaluated in this document.

Based on a literature review, that includes the study of GOCA project and a summary
of main PPP approaches, a C++ dialog-based software was design and developed,
using RTKLIB and WaPPP as software engines. Besides that, two different observa-
tions were made (one 12 hours to post-processing and one real time) in order to test
the developed software and evaluate the obtained results using different parameters
or products.

The obtained results reaffirm the potential of the PPP technique, even using low cost
receiver. Even some differences between different software engines or IGS products
were found, the results allow us to conclude that PPP is a technique with many
advantages in the field of geomonitoring, since it avoids the use of several receivers
and good accuracies are obtained. However, some aspects need further research in
this context, as there is no common criterion for establishing convergence time and
new methodologies and algorithms are being developed in the field of PPP processing.

Keywords: Precise Point Positioning (PPP), Geomonitoring, Global Navigation
Satellite System (GNSS), GOCA.

Contents
List of figures . vi
List of Abbreviations . vii

Introduction 1
1 Motivation . 2
2 Objectives . 4

Theoretical background 7
3 GOCA - GNSS/LPS/LS-based online Control and Alarm System . 8

3.1 Mathematical models used in GOCA 9
3.1.1 Gauss-Markov model . 9
3.1.2 Kalman filtering . 12

3.2 GOCA components . 13
3.3 GOCA computation steps . 14

3.3.1 Step 3. Deformation Analysis 17
3.4 Further developments: Integrated Deformation Analysis 18

3.4.1 Stuttgart TV Tower: Reference Object for SHM 19
3.4.2 SHM-Implementation on Stuttgart TV Tower 21

4 GNSS positioning . 23
4.1 Terminology . 23
4.2 Absolute Positioning: Benefits and Limitations 24
4.3 Fundamentals of Point Positioning 26

4.3.1 Ionosphere-free linear combination 28
4.4 Aproaches to Pecise Point Positioning 30

4.4.1 GNSS Error Mitigation for PPP 30
4.4.2 Ambiguity resolution . 35
4.4.3 Quasi Ionosphere Free (QIF) Algorithm 36
4.4.4 PPP-RTK . 38

4.5 GNSS processing software engines . 39
4.6 GNSS Low Cost Receiver: u-blox ZED-F9P 42

Development 43
5 Wa Software updating study 44

5.1 Theorical comparison . 44
5.2 Example comparison . 46

6 GKA files . 52
6.1 GKA 13 for baselines . 53

i

6.2 GKA 14 for PPP . 55
7 PPP software implementation 57

7.1 Study of processing parameters for PPP 57
7.1.1 Processing parameters in WaPPP 57
7.1.2 Processing parameters in RTKLIB 59
7.1.3 Comparison between WaPPP and RTKLIB for PPP 61

7.2 Graphical user interface . 63
7.2.1 Configuration error management 69

7.3 Software architecture - General aspects 71
7.3.1 Function files . 71
7.3.2 Dialog files . 77
7.3.3 Other files . 79

7.4 Software architecture - Post-processing 80
7.4.1 Dialog files . 80
7.4.2 Other files . 83
7.4.3 Software architecture diagram 86

7.5 Software architecture - Real-time . 88
7.5.1 Dialog files . 88
7.5.2 Other files . 89
7.5.3 Software architecture diagram 91

7.6 GKA information . 93
7.6.1 Cofactor matrix calculation 95

8 Integration proposal of PPP software with GOCA GNSS Control . 97
8.1 Add dialogs and source code files . 97
8.2 Create new PPP mode in GOCA . 99
8.3 Create code for PPP mode . 99
8.4 Re-write run PPP function . 101

9 Field tests . 102
9.1 Test 1: 12-hour observation for post-processing 102

9.1.1 Data collection . 103
9.1.2 Processing parameters . 106

9.2 Test 2: Real-time PPP processing . 108
9.2.1 Processing parameters . 109

Results 113
10 Test 1: 12-hour observation. 115

10.1 RTKLIB as software engine . 115
10.1.1 Ultra-rapid products . 115
10.1.2 Final products . 121
10.1.3 RTKLIB results comparison 123

10.2 WaPPP as software engine . 125

ii

10.2.1 Ultra-rapid products . 125
10.2.2 Final products . 127

11 Test 2: real-time processing. 129
12 Result comparison . 131

Discussion 135

Conclusion 139
13 Conclusions . 140
14 Future work . 142

References 143

Annexes 147
Annex A . 148
Annex B . 158

iii

List of Figures

1 GOCA Components . 8
2 computational steps in GOCA . 14
3 Deformation network . 15
4 Integrated deformation analysis methods 19
5 Structure for SHM with GNSS and MEMS sensors in Stuttgart TV

Tower . 20

6 Electromagnetic wave representation 27
7 GNSS error mitigation . 35
8 SSR corrections . 39

9 Comparative between Wa1 and Wa2 46
10 General information Wa1 and Wa2 47
11 Parameters Wa1 and Wa2 . 48
12 Station information in Wa1 and Wa2 48
13 Baseline information in Wa1 and Wa2 49
14 DGNSS solution in Wa1 and Wa2 . 50
15 Ionospheric model in Wa1 and Wa2 51

16 Comparison between WaPPP and RTKLIB for PPP 62
17 PPP software main window . 63
18 PPP processing mode . 64
19 PPP Settings GUI . 64
20 WaPPP orbit and clock information 65
21 RTKLIB Settings GUI . 66
22 WaPPP Settings GUI . 67
23 Real-time settings GUI . 68
24 NTRIP connection for SSR corrections GUI 68
25 Configuration error example . 70
26 Open file from directory function . 72
27 Open file from directory function call 72
28 Create file in directory function detail 72
29 Choose directory function . 73
30 Extract information of line . 73
31 Read RINEX header information example 74
32 Write GKA file example . 74
33 Get property and write it on configuration file 75
34 RTKLIB command . 76
35 Example of WaPPP parameter in command 76
36 WaPPP command . 76

iv

37 RTKLIB real-time command . 77
38 Open dialog example . 77
39 Parameters to create process . 78
40 Global variables . 80
41 Errors and messages example . 81
42 Check box code example . 81
43 Choose file or folder example . 82
44 Combo box code example . 82
45 Get function example . 83
46 Set function example . 84
47 RTKLIB settings object parameters 85
48 WaPPP settings object parameters 86
49 Software architecture diagram post-processing 87
50 Real-time settings object . 90
51 Software architecture diagram real-time 92
52 Rinex header example . 93
53 RTKLIB solution header example . 94
54 RTKLIB solution format example . 94
55 WaPPP solution format example . 95

56 Class assistant Visual Studio . 98
57 Code to add PPP mode . 100
58 Code to edit PPP mode . 100
59 If example to execute mode functions 101
60 GOCA messages example . 101

61 Antenna at pillar 300 . 102
62 12 hour observation information . 102
63 STRSVR configuration . 103
64 Input for STRSVR . 103
65 Output for STRSVR . 104
66 RINEX header . 105
67 Files to PPP processing . 106
68 PPP settings example . 107
69 RTKLIB settings example . 108
70 Real-time observation information . 108
71 Real time observation input parameters 109
72 Real time observation parameters . 110
73 Real time observation files . 111
74 GKA output file example . 114

75 Coordinates and errors RTKLIB with ultra-rapid products 115
76 Coordinates along time RTKLIB with ultra-rapid products 116

v

77 Coordinates along time RTKLIB with ultra-rapid products (detail) . 117
78 Errors along time RTKLIB with ultra-rapid products 118
79 Errors along time RTKLIB with ultra-rapid products (detail) 119
80 Coordinates and errors RTKLIB with ultra-rapid products - 30 seconds 119
81 Coordinates along time RTKLIB with ultra-rapid products - 30 seconds

(detail) . 120
82 Errors along time RTKLIB with ultra-rapid products - 30 seconds (detail)121
83 Coordinates and errors RTKLIB with final products 121
84 Coordinates along time RTKLIB with final products (detail) 122
85 Errors along time RTKLIB with final products (detail) 123
86 Cartesian coordinates pillar 300 with RTKLIB 124
87 Errors in coordinates pillar 300 with RTKLIB 125
88 Coordinates and errors WaPPP with ultra-rapid products 125
89 Coordinates along time WaPPP with ultra-rapid products 126
90 Errors along time WaPPP with ultra-rapid products 127
91 Coordinates and errors WaPPP with ultra-rapid products - 30 seconds 127
92 Coordinates and errors WaPPP with final products 128

93 Real time processing result . 129
94 Real time processing result graph . 129
95 Real time processing result errors graph 130

96 Cartesian coordinates pillar 300 . 131
97 Cartesian coordinates errors pillar 300 133
98 Geodetic coordinates pillar 300 . 133
99 Geodetic coordinates errors pillar 300 134
100 PPP error graph example . 136

vi

List of Abbreviations
DCB Differential Clock Bias
DGNSS Differential Global Navigation Satellite Sys-

tem
EOP Earth Orientation Parameters
ERP Earth Rotation Parameters
FEM Finite Element Model
GMM Gauss Markov Model
GNSS Global Navigation Satellite System
GOCA GNSS/LPS/LS-based Online Control and

Alarm System
GPS Global Positioning System
HSKA Karlsruhe University of Applied Sciences
IERS International Earth Rotation and Reference

Systems
IFB Integer Ionosphere-free Biases
IGS International GNSS Service
ITRF International Terrestrial Reference Frame
LPS Local Positioning System
LS Local Sensors
NTRIP Networked Transport of RTCM via Internet

Protocol
OSR Observation Space Representation
OTL Ocean Tide Loading
PPP Precise Point Positioning
QIF Quasi Ionosphere Free
RMS Root Mean Square
RTK Real Time Kinematic
RTS Real Time Service
SBAS Satellite Based Augmentation System
SHM Structural Health Monitoring
SSR State Space Representation
TEC Total Electron Content
TVEC Total Vertical Electron Content
VRS Virtual Reference Station

vii

Introduction

1

1. Motivation
Geomonitoring is an active research and application filed, as structural failures or
natural hazards are worldwide problems that often lead to significant economic, envi-
ronmental and personal loss. Monitoring this kind of issues in order to early detection
of significant movements and a good alarming system are crucial to prevent and min-
imize these problems.

PPP (Precise Point Positioning) is also a field in which great advances are being
made in recent years. The main utility of this technique is getting precise absolute
position, based on GNSS signal and only one receiver, what makes it an interesting
methodology to use when no GNSS network is available or if only one receiver wants
to be use in order to decrease costs.

Between different applications of PPP, geomonitoring has been pointed out as a pos-
sible application of PPP technic ([23], [5]).

In the context of geomonitoring, GOCA software has been developed by the Institute
of Applied Research (IAF) of Karlsruhe University of Applied Sciences (HSKA)This
project uses baselines in order to detect changes of some points with respect other
that are considered fixed. This implies that there must necessarily exist fixed points
and several receivers have to be used. As a possible alternative or complement to
this, PPP can be considered.

This idea, the use of PPP in the field of geomonitoring under GOCA project, has
motivated this master thesis, named Implementation of PPP as new GNSS observa-
tion type in the Geomonitoring System GOCA.

The main aim of this thesis is the implementation of PPP (Precise Point Positioning)
as further observation component into to the C/C++ based geomonitoring system
GOCA.

In this development, first implementation in C++ language has to be done to PPP
processing. Here the RTKLIB-software and the WaPPP software will be used as
GNSS processing engines for PPP. After that, the PPP software should be integrated
in already existing GOCA GNSS Control as first part of the geomonitoring chain. At
the same time the GOCA data interface GKA version 4.0 has be extended to version
4.1 respect, namely by the declaration of the new observation type PPP in terms of
absolute GNSS positions and covariance matrices.

The present document is divided as follows. First of all, a theoretical background
about the topic is provided. Then the development that has been done is presented.

2

After that, results are presented, followed by a discussion of them and finally some
conclusions are shown.

The theoretical background has been mainly divided in two different parts. The first
one provides a general overview of GOCA project, including its components and math-
ematical base. The second one is focused on GNSS positioning. This includes general
GNSS technics, PPP fundamentals and approaches and also information about soft-
ware and receiver that is going to be used.

The development part includes firstly theoretical information about the specific as-
pects that are going to be used in the implementation (as for example GKA files
structure or PPP processing parameters available in both software engines). Then,
the software implementation is described in detail, including all functions and vari-
ables involved in the code and finally, different field tests are described.

By last, obtained results and their corresponding discussion are presented and final
conclusions of the whole thesis are exposed.

3

2. Objectives
The objectives that are expected to be covered in the context of this master thesis
named ”Implementation of PPP as new GNSS Observation Type in the Geomoni-
toring System GOCA” can be grouped in four groups: the first one includes the
theoretical aspects, the second one the software development to PPP processing, the
third objective block is the realisation of measurements with the U-blox ZED-F9P
GNSS receiver in order to get real data to process and the last one includes the anal-
ysis and comparison of the obtained results.

The objectives to be covered in relation to theoretical aspects are:

• Provide a theoretical overview of the Geomonitoring System GOCA, including
how does it work and the developments that are currently been done under this
project.

• Provide a theoretical introduction to PPP processing, including the principles
and algorithms and different approaches that can be applied.

• Provide a comparison of version 1 and version 2 of WaSoft, in order to provide
an overview of the new version of that software that is currently used in GOCA
software.

• Provide a theoretical comparison of RTKLIB and WaPPP as software engines
to PPP processing. This theoretical background of both software engines would
be used as support to the software development.

The objectives related with the PPP software implementation can be summarized as:

• Design, according to the previous theoretical study, of the user interface of the
software for PPP processing.

• Development of the software in C++ language, as additional module of GOCA
GNSS Control. This new module will be developed with a similar structure that
the one in the GOCA GNSS Control module to facilitate the later integration
of both softwares.

• Elaboration of technical documentation of the software, in order to ensure its
comprehension.

• Integration proposal of PPP software in GOCA GNSS Control. Detail informa-
tion of how the integration should be done needs to be presented.

• Design of new GKA format, to hold absolute PPP position as new observable.
The results of PPP processing will be saved in this new GKA definition.

4

The practical measurements to be realized in the context of this master thesis are:

• Performance of 12-hour measurement with the U-blox ZED-F9P GNSS receiver
and the NavXperience antenna, in the pillar number 300 placed in the B-
building of the Hochschule Karlsruhe Technick and Wirtschaft University of
Applied Sciences. This data will be used as prove of concept of the developed
software.

• Performance of another measurement in the same pillar using the same equip-
ment. This second measurement will be processed on real time to test the
potential of this technique. This measurements and processing will be made
using RTKLIB NAVI module.

Finally, the analysis objectives that are pretended to be covered are:

• Compare the obtained results using both software engines, RTKLIB and WaPPP.

• Compare the results using RTKLIB in real time and in post-processing, to check
the potential of both techniques.

• Check the differences in the obtained results depending different products used
(ultra-rapid or final products), to analyse their importance to achieve good
accuracy and decrease convergence time using PPP.

5

Theoretical background

7

3. GOCA - GNSS/LPS/LS-based
online Control and Alarm System
GOCA (GNSS/LPS/LS based Online Control and Alarm System) (see www.goca.

info) is a geodetic geomonitoring system, developed at the Institute of Applied
Research (IAF) of Karlsruhe University of Applied Sciences (HSKA). Its aim is the
protection from natural hazards (landslides, dislocations zones, volcanoes), defor-
mation monitoring of geotechnical installations (mining, tunnelling, etc.) as well as
monitoring of deformations and changes in the physical parameters of object in struc-
tural and civil engineering (dams, towers, bridges, buildings) [19].

The geomonitoring system architecture is based on different components: data ac-
quisition (sensor network operation and data communication), modelling (network
adjustment and deformation analysis, detection of process changes), the reporting
(protocolling, web visualization and virtual sensor computation) and reaction (alert-
ing management) (see Figure 1).

Figure 1: GOCA Components [19]

The real-time multi-sensor system GOCA applies GNSS/GPS, terrestrial sensors
(LPS) such as total stations, levelling and hydrostatic levelling instruments and local
sensors (LS) for a deformation monitoring and analysis [27].

The deformation analysis concept implemented in the GOCA software is due to a
classical deformation analysis. It is based on a strict network adjustment and is re-
alized in three subsequent adjustment steps (1st, 2nd and 3rd step). The monitoring
network is physically realized by an array of GPS/GNSS and LPS sensors, while the
respective deformation network design has to be specified in the initialization step
(1st step) [18].

In this section, the different components and steps are introduced and the mathemat-
ical models involved are presented.

8

www.goca.info
www.goca.info

3.1 Mathematical models used in GOCA

In this section the main mathematical models used in GOCA system are described.

3.1.1 Gauss-Markov model

The parameter estimation in GOCA is based on the general concept of an M-estimation
in a so-called Gauss-Markov model. This Gauss-Markov model is constituted by the
two components of the functional and the stochastic model. According to [21], this
reads as (3.1), (3.2).The functional model of the GMM generally represents observa-
tions l as nonlinear functions of the unknown.

l̃ = l − ε = l(x̃) (3.1)

and

Cll (3.2)

where l are sensor observations, Cll is the covariance matrix, x are the parameters
and ε represents the observation errors. The symbol ˜ means expectation values or
true values.

For M-estimation of the parameters x from the sensor observations l, the model
in (3.1), that is not linear, has to be linearized. That linearization is based on
approximate values x0 for the parameters. With the simultaneous introduction of
correction v and estimated values dx̂ for the additions to the linearization, we obtain
the following model:

l + v = A(x0)dx̂+ l(x0), with ai,j =:

[
∂li(x̂)

∂xj

]
x0

(3.3)

In this linearized model, residuals (observation errors) are introduced as v and the
estimated parameters are also introduced with x̂ = x0 + dx̂ .

After this linearization, another step has to be applied, called homogenization. Ho-
mogenization is carried out by the left multiplication of the functional model with

the matrix C
− 1

2
εε :

A = Cεε
− 1

2 A, l = Cεε
− 1

2 l and ε = Cεε
− 1

2 ε (3.4)

The above transformation matrix Cεε can be calculated with the diagonal matrix Λ
of the eigenvalues and the associated modal matrix M of the eigenvectors, as follows:

9

Cεε = M Λ MT and Cεε
− 1

2 = M Λ−
1
2 MT (3.5)

With the above transformations the homogenized GMM invariant with respect to the
parameter x̃.

After carrying out the parameter estimation x̂ in the homogenized model, corrections
v can be compared with the inverse transformation:

v = C
1
2
εε v (3.6)

Maximum Likehood Estimation (M-Estimation)

Maximum likelihood estimation is a method of estimating the parameters of a statis-
tical model so the observed data is most probable. Specifically, this is done by finding
the value of the parameter (or parameter vector) that maximizes the likelihood func-
tion L(x̂, (l)), which is the joint probability of the observed data, over a parameter
space.

That M-estimation is done by the minimization of the estimation function ρ(v) of the
homogenized observation errors v with respect the linearized parameter part dx̂. The
M-estimation of parameters in a GMM is:

n∑
k=1

ρ(vk) = Min|dx̂ with (3.7)

n∑
k=1

ρ((Cεε
− 1

2 A)k dx̂− (Cεε
− 1

2 l)k) (3.8)

Depending on the type of M-estimation function, the parameters are due to one or
another kind of estimation. In GOCA system both least squares and robust estima-
tion are used. The availability of a robust parameter in parallel to ordinary least
squares increases the reliability of the online geomonitoring system and avoids wrong
alarm due to gross errors [27].

• Least squares estimation.

In case of least squares estimation (L2-norm), the estimation function is given
by:

ρ(vi) =
1

2
v̂i

2 (3.9)

10

that means the assumption of a normal distribution of residuals, and the solu-
tion minimizes the sum of the squares of the residuals.

A M-estimation is robust, if the derivative, the so-called influence function Ψ(vi)
(3.10) is bounded, so it is not sensitive to gross errors.

|Ψ(vi)] =

[
dρ(v)

dv

]
(3.10)

So the L2-norm (least squares) is not robust, as theis influence function is not
bounded, and must be robustified by data snooping.

• Robust estimation.

In order to avoid gross-errors in the sensor observations, another estimation
function can be used. L1-estimation is used in GOCA, where:

ρ(vi) = |vi| (3.11)

In this case, the result of the derivative (3.10) is bounded, so the estimation is
robust.

The numerical solution of M-estimation for the GMM can be leaded back to an iter-
ative least square estimation using the homogenized GMM and the diagonal matrix
(3.12) as weight-matrix in the iteration procedure (see [21]).

W (vi) = diag

[
∂Ψ(vi)

vi

]
(3.12)

M-estimation provides unique estimates for the parameters x̂ at any time t. This M-
estimation also allows the computation of the covariance matrix Cx̂ of the estimated
parameters as shown in (3.13).

Cx̂ = (ATWA)−1 (ATW 2A) (ATWA)−1 (3.13)

With the covariance matrix we have also an statistical foundation with respect to the
statistical analysis and assessment of estimated parameters.

11

3.1.2 Kalman filtering

The Kalman filter is a set of mathematical equations that provides an efficient com-
putational (recursive) means to estimate the state of a process. The filter is very
powerful in several aspects: it supports estimations of past, present, and even future
states, and it can do so even when the precise nature of the modelled system is un-
known [36].In the 3rd GOCA step, Kalman filtering is used, related to the transition
equation T (t) for the parametric state vector x(t).

In the GOCA project, for the transition from the past (t−∆t) to the present time t
we have [27]:

u(t) = T (t) u(t−∆t), with (3.14)

u(t) = Xo(t)−Xo(t0) and (3.15)

u(t)
u̇(t)
ü(t)

 =

I [∆t]
[

1
2
∆t
]

0 I [∆t]
0 0 I

 u(t−∆t)
u̇(t−∆t)
ü(t−∆t)

 and (3.16)

x(t) = [u(t), u̇(t), ü(t)]T (3.17)

The state vector of the parameters x(t) comprises the individual 3D displacements
u(t) , the velocities u̇(t) and the accelerations ü(t) of the object-points between two
subsequent time intervals.

The state transition model shown in (3.14) - (3.17) corresponds to the Taylor series
of the unknown displacement function, truncated after the second term (considering
constant acceleration within the interval).

The covariance-matrix Cx of the prediction x(t) can be computed according to the
law of error propagation from the covariance-matrix of the preceding state vector
x(t−∆t) and the preceding Kalman-filtering respectively.

The observations l(t) are the difference between the present object-point positions
(out of GOCA step 2 (FIN-files) in the time interval) and the initial position derived
for the start of the Kalman-Filtering (3.18).

l(t) = l(x(t)) =: u(t) = xO(t)− xO(t0) (3.18)

Their covariance matrices Cl referenced to the time t and read:

Cl = CxO(t) + CxO(t0) (3.19)

12

The Kalman-Filtering is equivalent to the common adjustment of the predicted state
vector and the state vector related observations. The generalized M-estimation (see
section 3.1.1) of the parameters x̂(t) for these two observation components and their
stochastic models can be computed iteratively as:

x̂(t)(j) = x(t) +K(j) (I(t)− I(x(t)), with (3.20)

K(j) = (C
− 1

2
x W (j)

x C
− 1

2
x + A W

(j)
l A)−1 A W

(j)
l) (3.21)

The Kalman matrix K(j) is recomputed in each step. In each step diagonal weight
matrices are set up according to (3.12). These weighting functions are related to the
argument of homogenized corrections vx,i and vl,i of the parameter and the observation
component.

3.2 GOCA components

GOCA is divided in different components (see Figure 1). This components are [19]:

• Component 1 - Data acquisition: sensor network operation and data communi-
cation.

This component uses an open data interface (GKA format), that has been de-
fined for GOCA. In that way, any GNSS and terrestrial sensors (LPS) can
be connected to the GOCA modelling and deformation analysis software. As
components of it, several packages GNSS-Control and TPS-Control have been
developed in GOCA.

• Component 2 - Modelling: network adjustment and deformation analysis, statis-
tically founded evaluation of the state parameters, detection of process changes.

This component is responsible of the mathematically and statistically rigorous
geodetic network adjustment in a so-called observation-related deformation-
analysis. This includes the three different computational steps in the network
adjustment. These steps are defined in section 3.3 and the mathematical models
behind them are discussed in section 3.1.

13

• Component 3 - Reporting: web-visualization and virtual sensor computation.

GOCA- Earth, developed for this component, visualizes, based on Google Earth,
the deformation states and also provides the respective numerical values.

• Component 4 - Reaction: alerting management.

The software component GOCA-Alarm sets alarm when critical values for the
state parameter estimations or predictions and/or statistical significance levels
are exceeded. GOCA- Alarm then transmits a respective short information out
of the stored results files.

3.3 GOCA computation steps

GOCA network adjustment and deformation analysis is made in three steps, as men-
tioned before. Step 1, the initialization step, is responsible of determining coordinates
of the reference frame. These coordinates are used in step 2 to obtain the object co-
ordinates and their covariance matrices. This information is used in the step 3 for the
estimation of 3D displacements of the object points, applying different approaches.
Steps 2 and 3 are running online parallel.

A schema of these processing steps is shown in Figure 2.

Figure 2: computational steps in GOCA

14

In this section, how these steps work and their relationship with the mathematical
models (see section 3.1) are exposed.

Steps 1 and 2. Initialization and Georeferencing

The GOCA sensor array is divided into a stable reference point frame xR and a
deformable object area xO (Figure 3). The sensor points xR set up the unique 3D co-
ordinate reference frame for the network adjustment-based computation and further
modelling of the object point positions xO in the different areas. For this, the GNSS
and LPS sensor data are transmitted online or near-online and processed in a three
steps network adjustment and deformation state x(t) parameter estimation concept.

Figure 3: Deformation network [27]

In the GOCA network adjustment step 1, also called initialization, the functional
adjustment model is based on observation equations l = l(t, x). The adjustment step
1 objective is the determination of the 3D reference point xR frame and the respective
covariance matrix Cx,R ,previously to the permanent monitoring. The GOCA step 2
covers then the continuous 3D georeferencing of the object points xO in the reference
point datum [19].

This first adjustment step is based on a least squares (L2-norm) free network ad-
justment of the GNSS- and LPS-based related to the Gauss- Markov model (see
section3.1). This adjustment is related to the observation equations ((3.22) - (3.26)).

GNSS horizontal baselines (2D):[
∆xij
∆yij

]
GNSS

+

[
v∆x,ij

v∆y,ij

]
GNSS

=

[
∆x̂ij
∆ŷij

]
(3.22)

15

Horizontal distances (2D):

sij + vs,ij =

√
∆x̂2

ij + ∆ŷ2
ij (3.23)

Directions (2D):

rij + vr,ij = arctan
∆ŷij
∆x̂ij

− ôi (3.24)

GNSS vertical baselines (1D):

∆hGNSS,ij + v∆h,ij = ∆ĥij (3.25)

Terrestial heiht difference (1D):

∆Hterr,ij +v∆H,ij = smh ∆ĥij +(â00 + â10 xj + â01 yj)
m−(â00 + â10 xi+ â01 yi)

m (3.26)

where m is the area index, ∆smh is the scale difference and amik the polynomial coeffi-
cients for the modelling of height reference surface in the different local area parts m
(ĝm) .

The parameters of the initialization step depend on the applied sensor types. The
initialization adjustment of the sensor data is done for a user-defined starting epoch
and initialization time interval [27].

In the GOCA-adjustment step 2, the 3D permanent georeferencing of the object-
point positions is done, making again use of the observation equations l = l(t, x)
in the 2D/1D concept given by ((3.22) - (3.26)). The reference frame coordinates
and the additional and observation specific parameters s , sh and ĝm are kept as fix
parameters in this second step according to the results of the first one. With that,
influence of observation errors on the reference frame are avoided, and the risk of a
wrong alarm is reduced [19].

The step 2 step is running online and the resulting estimated object-point positions
xO(t) and their covariance matrix CO(t) are stored in daily object-point FIN-files [19].

In order to avoid possible false alarms due to gross sensor data and other systematic
errors, the parameter estimations y(t) in the GOCA deformation analysis in the real-
time step 2 (and also in step 3, see section 3.3.1) is based on the concept of robust
M-estimation.

Both adjustment steps 1 and 2 are based on the linearized GMM (section 3.1).

16

3.3.1 Step 3. Deformation Analysis

The GOCA adjustment step 3, named deformation analysis, deals with the estimation
of the parameters of different deformation functions, and it is again based either on
least squares (L2 norm) or on robust M estimations. The parameter estimation runs
online and parallel to GOCA step 2 and its objective is to set u an alarm in case of
significant critical parameters.

The observation input for the different deformation state estimations is the observa-
tion data in terms of the object-point position time series xO(t) and CO(t), which
have been stored in the simultaneous running GOCA adjustment step 2 as FIN files.

Three different deformation functions are used: moving average estimation, online
displacement estimation and Kalman filtering prediction.

Moving average estimation.

The moving average estimation (MVE) is a simple deformation function used in
GOCA software where xO(t) and CO(t) are direct observations with respect the MVE
position y(t)T = (x(t), y(t), h(t)) in each adjustment interval. Local sensor data and
their covariance matrix information can be also used in this function.

This function includes an alarm setting due to critical displacements compared to the
current displacements u(t) = y(t)− xO(t0), derived with respect to the initial object
point positions xO(t0) [27].

Online displacement estimation.

Another deformation function is the online displacement estimation (SHT) between
different extended epochs t0 and ti. That means that the two epochs statrs at in-
dividual times and have interval lengths. The functional model of the object point
displacement is: [

lt0
lti

]
+

[
vt0
vti

]
=

[
E1 0
E2 E2

] [
x̂0

û(t)

]
= A ŷ (3.27)

ŷ = [x̂0(t0), û(t0, ti)]
T (3.28)

where v are the observation residuals. The deformation parameters ŷ(t) are for each
object point the 3D adjusted epoch state position x̂0(t0) = [x̂, ŷ|ĥ]T and the 3D dis-
placements û(t0, ti) = [yx, uy|uh]Tt0,ti between t0 and ti. Design matrices E1 and E2

are column matrices composed of (3x3) unit matrices for each 3D point observation

17

in the respective epoch intervals.

The observations lt0 and lti and their covariance matrices are taken of the object-point
time series (xO(t) and CO(t)).

The displacement estimation can be done in three different modes:

• Epoch 1 = Static initialization (Step 1 of GOCA). Epoch 2 repeated periodically.

• Epoch 1 = Static and fixed by the user. Epoch 2 repeated periodically.

• Epoch 1 = Repeated also periodically such as the epoch 2.

Here also local sensor data can be added to the displacement estimation.

Kalman-Filtering.

The third component of the deformation parameter is the Kalman filtering (see sec-
tion 3.1.2).

The GOCA Kalman-filtering can be performed by setting either a least squares or
a robust L1-norm estimation. The results (x̂(t), Cx̂(t)) are stored as Kalman-Files
(KAL). Local sensor data can be used as observation input of the Kalman-Filtering.
The equation (3.16) allows to predict the time∆t , which is left until given critical
values for the state vector are reached. This enables to use GOCA as a early-warning
system.

3.4 Further developments: Integrated Deforma-

tion Analysis

In order to improve the deformation analysis in geodetic monitoring, new develop-
ments are being made. In this context, named integrated deformation analysis, aims
to integrate the classic geodetic geomonitoring (based on geometry) together with
additional physical observations.

The geometric parameters y(t) can be used commonly with physical system param-
eters p in an integrated deformation analysis, which then allows to detect changes
∆p in the physical parameters p of structures, meaning Structural Health Monitoring
(SHM) [19].

18

Advanced evaluation models for deformation analysis do not only consider the change
of the geometry of an object in space and time. They rather investigate and incorpo-
rate also the influencing factors (causative forces, internal and external loads) causing
the deformation. They regard in addition the object’s physical properties which are
characteristic and responsible for the response of the object to the acting forces [37].

In the general classification of integrated deformation analysis in black, grey and
white box system descriptions (Figure 4) .

Figure 4: Integrated deformation analysis methods [37]

If the physical relationship between input and output signals, is supposed to be known
and can be described by differential equations, then the model is called a parametric
model (structural model). The system identification is carried out in a so-called white
box model [37]. The class of finite-element models (FEM) belongs to the white-box
category.

There exist two different approaches for FEM-based structural health monitoring, the
static and the dynamic cases. In the static case, only changes in the parametrized
stiffness matrix K(pK) can be identified and in the dynamic FEM approach is enabled
additionally the identification of parameter changes in the damping and the mass
matrix C(pC) and M(pM), respectively of a structure.

3.4.1 Stuttgart TV Tower: Reference Object for SHM

The PPP developments made in the context of this Master thesis in the GOCA
project will be tested in this Stuttgart as a proof of concept by a TCP/IP Internet-
based adressing and data receiption of the ublox ZED-F9P GNSS receiver as one
sensor part of the new SHM (Structural Health Monitoring) GNSS/MEMS box used

19

as a so-called passive sensornetwork node.

Stuttgart TV Tower is used as a reference for innovative methods for the early de-
tection of potential hazards of structures (SHM) by new algorithms, sensor systems
and information technologies presented. The latter includes a general Internet-based
server client for integrated geomonitoring of objects (Figure 5) [20].

Stuttgart TV Tower is used in the project ”The Stuttgart TV tower as reference object
for testing of innovative sensor systems, mathematical models, algorithms, software
and IT for the early detection of damage and potential risks of structural systems”.
This is carried out in the GOCA and NAVKA projects of the GNSS and Navigation
Laboratory of the University of Karlsruhe and also by the engineering office for Ap-
plied Geodesy, Photogrammetry and Geoinformatics E. Messmer, Schwaikheim and
other partners (as the owner of the TV tower and the State Office for Geobasis In-
formation and Land Development (LGL) Karlsruhe).

Figure 5: Structure for SHM with GNSS and MEMS sensors in Stuttgart TV Tower
[20]

In this project, GNSS data and MEMS (accelerometers, gyroscopes, cameras) are
integrated, so the state vector y(t) is composed of a total of 15 state parameters
(equation (3.29)).

y(t) = [xe ye ze | ẋe ẏe że | ẍe ÿe z̈e | r ρ γ | s]T (3.29)

In contrast to navigation, in this case the data fusion can be essentially stablized via
the introduction of inequalities to the state space with a robust SIMPLEX-based L1

20

standard parameter estimation [20]. It is based on the dynamic state form of FEM-
based vibration equation (see 3.4). The equations of this FEM-based oscillation
equations are the following:

K(pK)∆u(t) + C(pc)∆u̇(t) +M(pM)∆ü(t) = f(t) and, (3.30)

K(pK)∆u(t) + C(pc)∆u̇(t) +M(pM)∆ü(t) = 0 (3.31)

where equation (3.30) is the case of damped oscillation with excitation f(t) and equa-
tion (3.31) corresponds to damped free natural oscillation.In the static case of SHM,
only the stiffness matrix K is accessible for parametrization.

The state transition of the FEM-based reads as follows (note the difference with
equation (3.16) of the pure geometric case):u(t)

u̇(t)
ü(t)

 =

I [∆t]
[

1
2
∆t
]

0 I [∆t]
0 [−M(pM)−1 K(pM) ∆t] [I −M(pM)−1 C(pc) ∆t]

 u(t−∆t)
u̇(t−∆t)
ü(t−∆t)

(3.32)

In the dynamic case, the aprameter estimation is based agains on a Kalman-Filtering
approach, based on equation (3.32) and the integration of different kind of suitable
sensors.

The parametrization of changes in the physical parameters ∆pk,∆pM as a function
of changes (ωi refers to vibration of frequencies and ui to vibration modes) in the
spectral and modal matrix are given by:

∆ω2
i (∆pk,∆pM) = uTi [dK(∆pK)− ω2

i dM(∆pM)] ui (3.33)

∆u(∆pK ,∆pM) =
uTi dM(∆pM) ui

2
ui+

n∑
j=1,j 6=i

[
1

ω2
i − ω2

j

uTi [dK(∆pK)− dM(∆pM)] uj

]
uj

(3.34)
This approach implies a so-called inverse eigenvalue-eigenvector problem, meaning the
task to conclude from changes in the respective spectral characteristics to changes in
the parametrization of the general eigenvalue problem itself [19].

3.4.2 SHM-Implementation on Stuttgart TV Tower

As exposed in section 3.4.1, the TV Tower of Stuttgart is used as a reference object
for Structural Health Monitoring (SHM). In this section, two different approaches are
going to be explained: the first one, that uses only GNSS sensors as the current project
and the second one, under development, that also includes other kind of sensors.

21

GOCA GNSS Control and pure GNSS Box

Currently, the TV Tower of Stuttgart has installed a GNSS receiver (Leica receiver),
in a fixed position of the TV tower. Low cost receiver will be installed and tested on
it also.

It is known that it rotates (approximately one rotation each 5 seconds) and the aim
of having this tower monitored is to see how it rotates.

The receiver sends raw data to a server, where GOCA GNSS Control is installed and
the data in GKA format is collected to compute it using afterwards the main module
of GOCA software.

In GNSS Control module, software engines RTKLIB and WaSoft are used to process
data. In the existing GOCA GNSS Control, information about base lines is storage
in GKA format. The PPP information, developed under the context of this master
thesis, will be also a part of this process, taking PPP position and storing it in another
GKA file.

GONA GNSS Control and Multisensor SHM Box

As explained in the previous point, currently just pure GNSS data is used to the
monitoring of TV Tower of Stuttgart, but new multi-sensor box is being developed
and it is going to be placed in the TV Tower also in order to have, not only the GNSS
information, but also additional information of different sensors.

This box will have LAN/WLAN, internet access and a TCP/IP addressing, so infor-
mation will be able to stream down via Internet and used in GNSS Control. It also
will contain different sensors. The GNSS sensor in this box with be the ZED F9 low
cost receiver. This box is under design jet.

22

4. GNSS positioning
GNSS positioning has been long time used in geomonitoring projects. In this chapter,
the main aspects of it are exposed, focussing on the PPP technic as principal objective
of study of the master thesis regarding this document.

4.1 Terminology

In this section, some basic concepts regarding GNSS positioning are exposed.

Code Pseudoranges and Phase Pseudoranges

The satellite navigation observables are ranges which are deduced from measured time
or phase differences based on a comparison between received signals and receiver-
generated signals [13].

Code pseudoranges are obtained by calculating the travel time of the signal, correlat-
ing the received signal from the satellite and the replicated receiver signal, until the
correlation is maximum. To achieve a good accuracy, time synchronization and other
factors has to be taken into account. Formulation is shown in Equation(4.3).

Phase pseudoranges are obtained from the difference of phase of the carrier wave of
satellite and the one generated by the oscillator in receiver. It is a distance related
with the integer number of wave lengths and its phase. Mathematic equation for
phase is shown in Equation(4.11).

These carrier phase measurements are much more precise than the code measure-
ments (typically two orders of magnitude more precise), but they are ambiguous by
an unknown integer number of wavelengths. Indeed, this ambiguity changes arbitrar-
ily every time the receiver loss the lock on the signal [8].

Static and Kinematic Positioning

Static denotes a stationary observation location, while kinematic implies motion. So,
static positioning is used when the receiver is fixed in one place, such as in case of
base of control establishing and kinematic when the receiver is moving, for example
in vehicle navigation.

Kinematic and dynamic are usually used as synonymous, but they are slightly differ-
ent. The term kinematic describes the pure geometry of a motion, whereas dynamic
considers the forces causing the motion.

23

Absolute and Relative Positioning

Absolute positioning is when the coordinates of a single point are determined by using
a single receiver which measures pseudoranges to four or more satellites. The terms
point positioning, single-point positioning, and the term absolute point positioning
are synonymously used.

Relative positioning refers to simultaneous measurements for two different receivers
and the same satellites. The measurements taken at both sites are directly combined.
Normally, the coordinates of one site are known and the position of the other site is
to be determined relatively to the known site.

Relative positioning and differential positioning are often used as synonymous but
they are different. Differential positioning is a technique based on applying correc-
tions to pseudoranges measured at an unknown site. The technique provides instan-
taneous solutions where improved accuracies with respect to a reference station are
achieved.

Advantages and disadvantages of both approaches are discussed in section 4.2

Real-time Processing and Post-Processing

For real-time GNSS, the results must be available in the field immediately. The re-
sults are denoted as instantaneous if the observables of a single epoch are used for
the position computation and the processing time is negligible. A different and less
stringent definition is quasi (or near) real-time which includes computing results with
a slight delay.

Post-processing refers to applications when data are processed after the fact.

4.2 Absolute Positioning: Benefits and Limitations

The powerful of GNSS in geomonitoring applications has been proved in different
studies [23, 5, 11, 31]. In section 4.1 different terms of GNSS positioning has been
introduced. In case of geomonitoring both code and phase can be used; normally
static technique is applied as the points are supposed to be fixed; with regard abso-
lute of relative, both can be again used, in case of GOCA project, relative positioning
is used but with the implementation of PPP also absolute positioning could be used;
real-time or near real-time is important for geomonitoring to achieve early alarms.

24

Benefits and limitation of using absolute positioning instead of relative positioning
are discussed in this section.

Absolute positioning or Precise Point Positioning, presents some advantages. The
main ones are [38]:

• PPP involves only a single GNSS receiver and, therefore, removes the need for
GNSS users to establish local base stations. As a result, it eliminates the spatial
operating range limit as well as the constraint of simultaneous observations on
both rover and base receivers.

• PPP can be regarded as a global positioning approach because its position
solutions are referred to a global reference frame. As a result, PPP provides
much greater positioning consistency than the differential approach in which
position solutions are relative to the local base station or stations.

• PPP can bring to applications is that it reduces labor and equipment cost and
simplifies operational logistics to field work since it eliminates the dependency
on base station(s).

• In case of relative positioning, the reference station must typically be placed
in a stable area. Such a place could be difficult to find: in the case of strong
earthquakes, for example, the reference station may also be displaced. PPP
technique overcomes this limitation as it does not require reference stations [5].

Despite these benefits of PPP technique, there exist also several limitations in its use:

• PPP requires a long initialization period for phase ambiguities to converge to
near constant values and for the solution to reach its optimal precision. This
convergence time depends on the required accuracy and the chosen approach to
achieve PPP [3].

• The primary factors that limit the accuracy of PPP are the limited precision
of current precise orbit and clock products and the effects of unmodeled error
sources [3].

• Single frequency PPP users are requested to obtain external information on the
ionospheric delay. This ionospheric delay can be obtained in real-time from
models delivered for example by the IGS, SBAS services or regional service
providers. This uncertainty maps into range errors in the order of 30 cm up to
1 m [15].

• If two frequency receiver is used to mitigate ionospheric error, the integer char-
acteristic of ambiguities is lost (see section 4.4.2).

25

4.3 Fundamentals of Point Positioning

The basic undifferentiated observation equations for code and carrier phase measure-
ments are related to the user position, clock, troposphere, ionosphere, and ambiguity
parameters [23, 13].

Denoting ts(sat) the signal emission time referred to the satellite clock and tr(rec)
the signal reception time referred to the receiver clock; δs the satellite clock bias and
δr the receiver clock bias, understanding bias as the difference with respect a common
time system, the difference between the clock readings of the receiver and the satellite
can be expressed as:

tr(rec)− ts(sat) = [tr + δr]− [ts + δs] = ∆t+ (δr − δs) (4.1)

When multiplaying the time interval by the speed of ligth, we obtain the code pseu-
dorange:

R = c∆t+ c(δr − δs) (4.2)

The first term in the obtained equation (4.2) is the range calculated from the true
signal travel time, expressed as ρ. Considering this and the other biases that affect
the measurement, the general equation for code observations is obtained:

R = ρ+ c(δr − δs) + dTROP + dION + εp (4.3)

where R is the measeured pseudo-range; ρ is the geometric range; c represents the
speed of the light; δs corresponds to the satellite clock bias; δr is the receiver clock
bias; dTROP is the tropospheric delay; dION represents the ionospheric delay and εp
represents all remaining biases including the measurement noise and multipath effect
in code pseudo-range.

The corresponding observation equation for phase is based on the basic principles of
waves (Figure 6).

26

Figure 6: Electromagnetic wave representation [13]
.

The phase of a wave can be given in radians or in cycles:

ϕ = wt = ft (4.4)

where w is the angular velocity; f is the frequency and t represents the time.

Considering a single epoch, the phase also varies with increasing distance between
emitter and receiver. In this spatial context, the phase is expressed by range(ρ) and
wavelength(λ). The complete phase equation combines both variations, so phase can
be expressed as:

ϕ = ft− ρ

λ
(4.5)

Applying this to both the phase of the received and reconstructed carrier(ϕs(t)) with
frequency f s, and the phase of a reference carrier generated in the receiver(ϕr(t))
with frequency fr, taking also into consideration the initial phases caused by clock
errors (ϕs0(t) = −f sδs,ϕ0r(t) = −frδr), and using the relation c = fλ,we obtain:

ϕs(t) = f st− f sρ
c
− φs0(t) (4.6)

ϕr(t) = frt− ϕ0r(t) (4.7)

So, the phase difference is given by:

ϕsr(t) = ϕs − ϕr = −f sρ
c

+ f sδs − frδr + (f s − fr)t (4.8)

The deviation of the frequencies from the nominal frequency is in the order of only
some fractional parts of hertz. So a frequency error may be neglected (f s = fr = f).
Eq. (4.8) may be written in the simplified form:

27

ϕsr(t) = −f ρ
c
− f(δr − δs) (4.9)

The phase is formed by a fractional phase and a number of integer cycles, that means
ϕsr(t) = ∆ϕsr + N . Rewriting Eq. (4.9) with this, and considering φc = −∆ϕsr we
obtain the expresion of phase in cycles:

φc = f
ρ

c
+ f(δr − δs) +N (4.10)

Taking into account again the relationship c = fλ, and multiplying the above expres-
sion by λ, we obtain the phase expressed in range φ (in meters). Additionally, as in
case of code, we have to consider other biases as atmospheric effects. So finally, we
obtain the expression:

φ = ρ+ c(δr − δs) + dTROP − dION + λN + εφ (4.11)

where φ is the measured carrier phase; λ is the carrier wavelength; N corresponds
to the integer phase ambiguity and εφ represents all remaining biases including the
measurement noise and multipath effect in phase pseudo-range.

In both (4.3) and (4.11), the geometric range is given by:

ρ(ti) =

√(
Xs

(
ti −

ρ(ti)

c

)
−X(ti)

)2

+

(
Ys

(
ti −

ρ(ti)

c

)
− Y (ti)

)2

+

(
Zs

(
ti −

ρ(ti)

c

)
− Z(ti)

)2

(4.12)
where (Xs, Ys, Zs) is the satellite position and (X, Y, Z) represents the receiver posi-
tion.

4.3.1 Ionosphere-free linear combination

The most used mathematical model in PPP is the dual frequency, that means that
is based on an ionosphere-free combination of code pseudoranges and carrier phases,
that eliminates the effect of the ionosphere by using two different frequencies.

The ionosphere free combination is based on a linear combination of two different fre-
quencies, in which the ionosphere effect is eliminated, or more precisely, the reduced.
The ionosphere effect can be represented as:

dION = ± 1

cosz′
40.3

f 2
TV EC (4.13)

where z′ is the zenith angle of the satellite, f is the frequency and TV EC represents

28

the total vertical electron content. In equation (4.13), positive correction (+) is ap-
plied in code measurements and the negative one (−) in case of phase measurements.

In case of code pseudoranges, the ionosphere free combination is obtained from ap-
plying (4.3) (without taking into account dTROP and εp) to both frequencies f1 and
f2:

R1 = ρ+ c(δr − δs) + dION1 (4.14)

R2 = ρ+ c(δr − δs) + dION2 (4.15)

Multiplying both (4.14) and (4.15) by f 2
1 and f 2

2 respectively, and taking into account
the relationship shown in (4.13), we obtain the difference as:

R1f
2
1 −R2f

2
2 = (f 2

1 − f 2
2)(ρ+ c(δr − δs)) (4.16)

Dividing the previous equation by (f 2
1 − f 2

2) and adding the other errors that affect
the signal, we obtain the iono-free equation for code:[

R1 −R2
f 2

2

f 2
1

]
f 2

1

f 2
1 − f 2

2

= ρ+ c(δr − δs) + dTROP + εp (4.17)

In case of phase, ionosphere free combination is obtained following a similar devel-
opment. In this case we start from simplified version of (4.11), dividing it by λ and
then rewriting it using the relationship c = fλ. So we obtain, for each frequency:

φ1 =
f1

c
ρ+ f1(δr − δs) +N1 −

f1

c
dION1 (4.18)

φ2 =
f2

c
ρ+ f2(δr − δs) +N2 −

f2

c
dION2 (4.19)

Can be rewritten as:

φ1 = af1 +N1 −
b

f1

(4.20)

φ2 = af2 +N2 −
b

f2

(4.21)

where a is the geometry term and b the ionospheric term:

a =
ρ

c
+ (δr − δs) (4.22)

29

b =
f 2
i

c
dION (4.23)

In (4.23), dION refers to (4.13). So, the linear combination is, in this case:

φ1f1 − φ2f2 = a(f 2
1 − f 2

2) +N1f1 −N2f2 (4.24)

Multiplying by f1/(f
2
1−f 2

2) , reordering it and adding the additional biases, we finally
obtain the iono-free equation for phase:[

φ1 −
f2

f1

φ2

]
f 2

1

f 2
1 − f 2

2

=
f1

c
ρ+ f1(δr − δs) + dTROP + εφ (4.25)

The unknown parameters to be determined are the point position contained in ρ,
the biases of receiver’s clock δr, the tropospheric delay dTROP , and the ambiguities
N [15]. It should be noted that the ionosphere-free ambiguity term is no longer an
integer number.
As an alternative for this linear combination, werer the ambiguity term is not more
an integer number, Quasi Ionosphere Free can be used. This algorithm is shown in
section 4.4.3.

4.4 Aproaches to Pecise Point Positioning

The traditional PPP model, presented in section 4.3, uses the ionosphere-free code
and phase observations. The main limiting factors with respect to the achievable
accuracy are the orbit errors, the clock errors, and the atmospheric influences.

In order to go from Point Positioning to Precise Point Positioning corrections have
to be applied and different approaches has been studied to increase the accuracy and
reduce the convergence time. In this section, different corrections and approaches are
presented.

4.4.1 GNSS Error Mitigation for PPP

Various positioning accuracies are obtainable depending on the employed GNSS error
mitigation methods. With only one single receiver, PPP has to separately consider
all GPS errors in order to obtain comparable positioning accuracy as DGNSS [29].

GNSS errors and their respective mitigations are presented in three groups: errors
related to satellites, errors in the propagation of the signals and errors related to the
receiver.

30

Satellite related errors

The satellite-related errors include the GNSS satellite orbit and clock errors, the rel-
ativistic effect, the satellite antenna phase centre offset and variation, and the phase
wind-up effect [29].

• Satellite orbit and clock errors

As mentioned before, errors in clocks and satellite orbits are the most limiting accu-
racy factors in a single receiver positioning. To achieve PPP, good corrections need
to be applied.

There are two types of widely used GPS satellite orbit and clock corrections: GNSS
broadcast ephemeris and IGS precise products. GNNS broadcast ephemeris has not
enough accuracy, as they are based on orbit predictions.

IGS releases three satellite orbit and clock products: IGS final, IGS rapid, and IGS
ultra-rapid products [29]. However, these products are made available to the user with
significant lag times or latencies, ranging from 3 hours for Ultra Rapid, 17 hours for
Rapid, and days for Final products [23], so the use of them in real-time applications
is not possible. In recent years, the accuracy of IGS orbit and clock products has im-
proved drastically: the orbit accuracy of the predicted IGU products (IGS ultra-rapid
products, which are the basis for the real-time products) is better than 5 cm, and the
real-time estimated and short-term predicted clock accuracies are approximately 0.1
ns [23].

IGS had developed real-time infrastructure and processes, launched of the IGS Real-
Time Service (IGS-RTS) in the second half of 2012 [4]. The Real-time Service (RTS),
the IGS extends its capability to support applications requiring real-time access to
IGS products. RTS is a GNSS orbit and clock correction service that enables precise
point positioning and related applications. RTS is based on the IGS global infras-
tructure of network stations, data centres and analysis centres that provide world
standard high-precision GNSS data products. The RTS is currently offered as a
GPS-only operational service [17].

• Relativistic error

The relativistic effect occurs for two objects with different motions and gravity po-
tential. The frequency drift due to relativistic effects which comprises of a constant

31

offset and a periodical variation.

The constant frequency offset can be calibrated by satellite clock manufacturers be-
fore the satellite launch. The periodical variation is caused by the satellite orbit
eccentricity, that is the no completely circular orbit of satellites. This effect can be
modelled by the expression:

drel = −2vsat xsat
c2

(4.26)

where vsat is the satellite velocity, xsat is the satellite position and c is the speed of
light in vacuum.

The correction in Equation (4.26) is directly applied in the satellite’s clock term.

• Satellite antenna phase centre offset and variation

IGS orbit products refers to the satellite mass centre, while GNSS measurements
are made to the satellite antenna phase centre, that are not exactly the same point.
Therefore, satellite antenna phase centre corrections must be taken into account. IGS
provides satellite antenna phase centre corrections files. The most used are called
igs08.atx, but there are other newer files (such as igs14 wwww.atx) [16].

• Phase wind-up effect

For a receiver with fixed coordinates, the wind-up is due to the satellite orbital mo-
tion. As the satellite moves along its orbital path it must perform a rotation to keep
its solar panels pointing to the sun direction in order to obtain the maximum energy
while the satellite antenna keeps pointing to the earth’s centre. This rotation causes
a phase variation that the receiver misunderstands as a range variation [8].

The phase wind-up effect can be eliminated in double-difference applications, or ab-
sorbed into the receiver clock for kinematic applications. However, this effect cannot
be removed and must be calibrated for un-differenced static point positioning appli-
cations.

The correction to this effect is given by [25]:

∆ϕ = sign(ζ)cos−1

(
~D′ ~D

| ~D′| | ~D|

)
(4.27)

where ζ = eloc
(
~D′ ~D

)
, eloc is the satellite to receiver line-of-sight unit vector.

32

The ~D′ , ~D are the effective dipole vectors of the satellite and receiver computed based
on the unit vectors of the satellite’s body-fixed b-frame (ebx, e

b
y, e

b
z) and the receiver’s

local level or local geodetic ll-frame East, North, Up (ENU) as follows:

~D′ = ebx − eloc(eloc ebx)− elocxeby (4.28)

~D = ellN − eloc(eloc ellN)− elocxellE (4.29)

Propagation errors

• Tropospheric effect

Troposphere, or neutral atmosphere, contains atomic and molecular constituents
which can delay and bend radio signals. When compared to the delay effect, the
signal bending effect is very small.

There exist different formulations to model the tropospheric delay. Usually the effect
is divided into a wet and a dry component. The tropospheric hydrostatic delay can be
calculated by, for example, the Saastamoinen model, based on the surface pressure,
the latitude and the geodetic height.

The wet delay can be estimated also with the Saastamoinen model, from the tem-
perature and water vapour pressure at the user location, but it is difficult to obtain
precisely a model, so it is usually estimated in PPP with the other unknown param-
eters.

The precise a-priori troposphere hydrostatic delay is only available with precise me-
teorological data. In order to overcome this limitation, an empirical global pressure
and temperature model was proposed and recommended as the current IGS and IERS
standard, so it can be used as a model without meteorological data [29].

• Ionospheric effect

The ionosphere error is the biggest error related to the propagation of the signal.

Usually, for PPP applications the combination iono-free (see section 4.3.1) is used, so
the majority of the effect is eliminated, there still some effect.

Also there is the possibility to use the original equations, so the ionosphere effect
has to be corrected. To correct this effect, there exist also models that allow this

33

estimation. The content of electrons is needed in these corrections, so again a good
model of the atmosphere is needed.

Receiver related errors

The receiver-related errors include the receiver antenna phase centre offset and vari-
ation, the sagnac effect, the receiver clock error, the multipath and the observation
noise. All these errors can be classified as observation-dependent.

• Receiver antenna phase centre offset and variation

The receiver’s antennas, as it occurs in case of satellite’s antennas, needs to be cor-
rected, as the phase centre is not the same as the mass centre. IGS ANTEX files
for receiver’s antennas are also available. In some high accuracy applications, the
receiver’s antennas are individually calibrated to obtain specific corrections.

• Sagnac effect

In general, GNSS satellite orbit is determined in an Earth-centre inertial reference
frame, while the user location is required on the Earth-centre Earth-fixed reference
frame [29]. Due to that, the earth rotation during the signal transmitting period pre-
vents the clock synchronization for the satellite and receiver. This time synchroniza-
tion issue, called the sagnac effect, must be calibrated for high precision applications.

According to [2] the correction to this effect can be done using the expression:

dsag =
v dr

c2
(4.30)

where v is the receiver velocity in Earth-centre inertial reference frame, dr is the vec-
tor increment of path in the direction of signal propagation and c is the speed of light.

• Receiver clock error

The receiver clock error is defined as the difference between the receiver nominal time
and the reference GNSS time. For PPP applications, the receiver clock error should
be estimated along with other unknown parameters at every epoch.

34

• Receiver site displacement

The obtained coordinate solution by GNSS of the receiver is not consistent with the
commonly used reference frames such as IGS08 or ITRF2008. This is because some
periodic receiver site displacements, including the solid earth tides, the polar tides,
the ocean loading and the effect of earth rotation parameters, affect receiver coordi-
nates.

For the mentioned effects, there exists corrections that need to be applied in precise
GNSS positioning applications. For each effect different corrections are applied, based
on several factors such as gravitational parameters, mean pole coordinates, etc.

To apply these corrections, there exist different models, such as global ocean tide
models or gravitational models, that allow the obtention of the implicated values in
each correction for the user’s approximate position.

Figure 7 shows the above mentioned errors and their corresponding mitigations as a
sumary of this section.

Figure 7: GNSS error mitigation (adapted from [29])

4.4.2 Ambiguity resolution

In the traditional PPP model, based on ionosphere-free combination, the ambiguity
parameter estimated cannot be resolved to the integer value. In fact, the estimated
ambiguity parameter is a combination of the integer ambiguity, the receiver biases
and the satellite biases, so the integer property of the ambiguity parameter is lost [30].

35

The fact that losing the integer property causes two negative effects [29]. First, it
takes a long time to achieve the convergence of ambiguity parameters. If the ambigu-
ities could be isolated and estimated as integer values then, in principle, their integer
nature represents more information that can be exploited to accelerate convergence
[7].

The second effect is that, the fractional ambiguity part, defined as the difference
between real-valued and integer ambiguities, still remains even after the ambiguity
convergence. Furthermore, the fractional ambiguity part degrades accuracies of other
parameters such as the coordinates and the troposphere delay.

For these reasons, several PPP integer ambiguity resolution methods have been de-
veloped and implemented in recent years, such as ”Uncalibrated Hardware Delays”
method and the “Integer-Recovery-Clocks” or “Decoupled Clock Model”. The above-
mentioned PPP-AR (Ambiguity Resolution) methods vary in terms of the strategies
used to separate the hardware delays from integer ambiguities. [6] but these methods
provide equivalent positioning solution and precision once the phase ambiguities are
correctly resolved to their integer values [30].

Isolating the phase ambiguities as integer values in PPP does not by itself permit
rapid ambiguity resolution. Even fixing the ambiguities as an integer, the convergence
period of standard float-PPP processing remains. What is even more problematic is
that this convergence process has to be repeatedly applied whenever satellite tracking
loss occurs [6], so this approach need to continue in development to achieve real-time
PPP applications.

4.4.3 Quasi Ionosphere Free (QIF) Algorithm

Alternatively to the Ionosphere-free linear combination, Quasi Ionosphere Free (QIF)
Algorithm of Bernese software package (Bernese) can be used. The main characteris-
tic of this algorithm is to add ionospheric pseudo-observables (artificial observation)
to the observation model [14].

The quasi-ionosphere-free (QIF) strategy is used to solve ambiguities of baselines over
several hundred kilometers long. The criterion used in the QIF strategy is to min-
imize the difference between the real-valued and integer ionosphere-free biases (IFBs).

In the QIF algorithm, the L1 and L2 ambiguities are fixed as pair. Firstly, the IFB
standard deviations of all pairs of the original float ambiguities and the newly formed
float ambiguities with changed reference satellite are computed based on the variance-
covariance matrix of float ambiguities estimates. Then the ambiguity fixing process

36

starts from the ambiguity pair with the smallest IFB standard deviation. Its integer
candidates are defined by the integer candidates of L1 and widelane ambiguities. The
pair of integer candidates with the smallest difference between the real-valued and
integer IFBs is accepted as the optimal solution, as long as such difference is smaller
than the user- defined maximum value. Once such a pair of integer candidates is
accepted, the entire sequential LS adjustment and the procedure described above are
repeated so that all or some of the ambiguity pairs are fixed [22]

The algorithm definition can be read in Bernese manual [28]. It begins with the
ionosphere-free linear combination.The initial least–squares adjustment using both
frequencies L1 and L2 gives real–valued ambiguity estimates b1 and b2 and we may
compute the corresponding ionosphere–free bias B̃3 as:

B̃3 =
c

f 2
1 − f 2

2

(f1b1 − f2b2) (4.31)

This bias may be expressed in narrow–lane cycles (one cycle corresponding to a wave-
length of λ3 = c/(f1 + f2).

b̃3 =
B̃3

λ3

=
f1

f1 − f2

/b1 −
f2

f1 − f2

/b2 = β1b1 + β2b2 (4.32)

Denoting the resolved integer ambiguity values by n1p and n2q and introducint the
associated L3 bias:

b3pq = β1n1p + β2n2q (4.33)

we way use the difference between the real valued and integer L3 bias as a criterion
for the selection of the “best” pair of integers n1p, n2q. However, many pairs give
differencesof the same (small) order of magnitude. These pairs lie on a narrow band
in the space. The band width is essentially given by the RMS of the bias b̃3. A unique
solution only results if it is possible to limit the search range.

For baselines longer than about 10 km separate processing of the two frequencies L1
and L2 does not result in sufficiently good initial real valued estimates b1 and b2 due
to the influence of the ionospheric refraction. To solve that, two kind of models can
be used to reduce the ionospheric biases.

• Satellite and Epoch Specific Ionosphere Estimation. Estimating these param-
eters without any a priori constraints would be equivalent to processing the
ionosphere–free linear combination. If we want to resolve the integer ambigu-
ities it is necessary to constrain these parameters to within a few decimeters.
This constraining may be achieved by introducing an artificial observation for
each epoch with a non–zero a priori weight (see more at [28]).

37

• Deterministic Model. Single–layer model developing the electron content within
a layer of infinitesimal thickness at a height of about 450 km above the surface
of the Earth into a series of harmonical coefficients in latitude and hour angle
of the Sun.

4.4.4 PPP-RTK

Real Time Kinematics (RTK) is a differential GNSS technique which provides high
positioning accuracy. The technique is based on the use of carrier measurements and
the transmission of SSR corrections to the rover, so that the main errors that drive the
stand-alone positioning cancel out [8]. RTK can be done with a reference station set
up by the user or with a virtual reference station when connected to a GNSS network.

On conventional RTK, the errors for all sources are observed and provided together
to the rover as range corrections, for each combination of station, satellite, frequency
and signal.

As seen in previous sections, real-time PPP is limited by the convergence period and
the need of corrections. To solve this, the method known as PPP-RTK has been
developed in recent years. PPP-RTK is a synthesis of the positive characteristics of
PPP and network [6], so it takes advantage of the GNSS network to have corrections
to apply to the PPP observations.

Network- RTK solutions can be generalised in two ways. The mostly commonly used
technique is the use of Observation Space Representation (OSR) such as the Virtual
Reference Station (VRS) techniques (DGNSS) and the other is State Space Repre-
sentation (SSR- RTK).

In State-Space-Modelling, all relevant physical effects are represented by a mathe-
matical model with parameters that are estimated in real time using the network
observations. In SSR corrections, the different error source (satellite clocks, satellite
orbits, satellite signal biases, ionospheric delay, and tropospheric delay) are modelled
and distributed separately (Figure 8).

38

Figure 8: SSR corrections [12]

Improved modelling of the spatial behaviour of the physical effects enables better
error estimation between reference stations. This allows for an increased reference
station distance up to 200 km [12].

PPP is a positioning technique that can truly offer global solutions without the re-
quirements of local or regional reference networks; whereas RTK will continue to
dominate regional positioning especially when a dense regional GNSS infrastructure
has already been established. Integration of these two techniques would lead to im-
proved position accuracy and convergence time but the performance is now dependent
on the extent and density of the reference networks, which is critical for the provision
of accurate atmospheric information to aid rapid ambiguity fixing [6].

4.5 GNSS processing software engines

In order to process GNSS data, there are different software available, with different
possibilities and characteristics. Depending on the need of the user, one or another
software would be most adequate.

To standard applications, commercial software is often used, as they are easy to use.
For example, LEICA Geo Office. In works that requires a bigger control of the pro-
cessing parameters, scientific software is usually applied. An example of this kind of
software could be BERNESE, developed by the Astronomical Institute of the Uni-
versity of Bern (AIUB).

Apart from these two kinds of software, there also exist software engines, that allow
using GNSS processing algorithms from user’s developed code. That means that user
can develop his own application and use that software engines inside of it. In GOCA
project, these software engines are required, so they can be applied directly inside the

39

code of the project. GOCA project uses both RTKLIB and WA software as processing
engines, so both are introduced in this section.

RTKLIB

RTKLIB is an open source program package for standard and precise positioning with
GNSS. RTKLIB consists of a portable program library and several APs (application
programs) utilizing the library. The main features of RTKLIB are [1]:

• It supports standard and precise positioning algorithms with GPS, GLONASS,
Galileo, QZSS, BeiDou and SBAS.

• It supports various positioning modes with GNSS for both real-time and post-
processing (Single, DGNSS, kinematic, static...).

• It supports many standard formats and protocols for GNSS (RINEX 2.X, RINEX
3.X, NTRIP, RTCM...).

• It supports several GNSS receivers’ proprietary messages (NovAtel, u-blox...).

• It supports external communication (NTRIP, FTP/HTTP...).

• It provides many library functions and APIs (application program interfaces),
such as Satellite and navigation system functions and matrix and vector func-
tions.

• It includes the following GUI (graphical user interface), that allows ussing it by
itself and CUI (command-line user interface), that is the option used in GOCA
because it can be integrated by code.

• All of the executable binary APs for Windows are included in the package as
well as whole source programs of the library and the Aps.

The RTKLIB software package is distributed under the following BSD 2-clause license
and additional two exclusive clauses. Users are permitted to develop, produce or
sell their own non-commercial or commercial products utilizing, linking or including
RTKLIB as long as they comply with the license.

WaSoft

WaSoft is a software engine that have several modules to different GNSS processing
developed by Lambert Wanninger. These modules are [33]:

• WaRINo+WaRINn: Editing and manipulating of GNSS data (GPS, GLONASS,
Galileo, BeiDou...).

40

• Wa2: baseline processing engine.

• WaV2: virtual GNSS reference stations.

• Wa2Ant+CCANTEX: antenna calibration.

• WaPPP: PPP processing engine.

• WaPNet: Highly precise GNSS network processing.

• WaPNet+Mul: GNSS carrier phase multipath detection and localization

The modules that concern GOCA project are Wa2 and WaPPP.

This software engine works by command line, where different parameters are defined
and then a .exe file is executed, so it can be integrated in other code as in case of
GOCA project.

Wa2

The baseline processing engine Wa2 is designed for adding precise post-processing
GNSS positioning capabilities to application software. Wa2 computes baseline coor-
dinates based on the observations in RINEX-format of two GNSS receivers.

Wa2 includes static and kinematic positioning based on sophisticated ambiguity
search algorithms. Fast static processing is applicable to baselines with lengths of
up to several kilometres or Virtual Reference Station (VRS) observations. It sup-
ports single and dual frequency processing. Antenna phase centre corrections can be
applied to the observations. Wa2 processes precise ephemerides and estimates iono-
spheric and tropospheric models in the case of long baseline (up to a few 100 km).
Then, it also uses ionosphere-resistant ambiguity resolution algorithms to obtain a
high ambiguity fixing rate.

WaPPP

The Precise Point Positioning processing engine WaPPP is designed for adding pre-
cise GNSS single station positioning capabilities to application software. WaPPP
computes coordinates based on GNSS observations in RINEX-format. It is useful for
obtaining sub-metre, decimetre, or centimetre level accuracies. Highest accuracies
require long-term of continuous dual-frequency carrier-phase observations. Precise
satellite orbits and clock corrections are needed as well. They are available for free
from several data centres via internet connection. The geodetic datum of the position
solution is determined by the satellite orbit data.

41

WaPPP expects corrections for satellite antennas and the user antenna. In general
PPP is based on dual-frequency observations, but WaPPP is also able to process
single-frequency observations. WaPPP weights the different observations types (code
and carrier phase, various GNSS) according to a variance component estimation. The
position results are obtained using a robust estimation algorithm.

4.6 GNSS Low Cost Receiver: u-blox ZED-F9P

There exists a high number of GNSS receivers in the market, whose characteristics
and specifications differ from each other so they are adequate to different applications.
In the context of the Master Thesis presented at this document, the low cost receiver
u-blox ZED-F9P will be used, so in this section its main characteristics are presented.

The ZED-F9P positioning module features the u-blox F9 receiver platform, which
provides multi- band GNSS to high volume industrial applications. The ZED-F9P
has integrated u-blox multi-band RTK technology for centimetre level accuracy [32].

Its main characteristics are:

• Accuracy on time pulse signal: RMS 30ns.

• Frequency of time pulse signal: from 0.25 Hz to 10 MHz.

• Velocity accuracy: 0.05 m/s.

• Dynamic heading accuracy: 0.3 deg.

With regard to supported GNSS constellations, ZED-FP9 can receive all four major
GNSS constellations (GPS, GLONASS, Galileo and BeiDou) plus QZSS satellites. It
supports also different protocols as UBX, NMEA and RTCM 3.3.

42

Development

43

5. Wa Software updating study
GOCA software, in the module GNSS control, uses Wa1 as software engine to process
baselines. There is already available the second version of this software, called Wa2.
As a previous step from the implementation of PPP, this new version is going to be
studied, in order to analyse what changes should be done in GOCA GNSS control if
the new version wants to be used.

So, a comparison between both versions has been done in order to detect changes
between both versions. This comparison is shown in this section, and it is organised
as follows: first of all, a theoretical comparison with regard both manuals has been
done in order to detect relevant changes; secondly, a simple example has been executed
using both versions with the command line to analyse if the obtained result is the
same or not in both versions.

5.1 Theorical comparison

The fist comparison that has been made is regarding both manuals ([34],[35]). Gener-
ally, the software works in the same way: the software can be controlled by command
line options, by options written to the option file wa2.ini, or in mixed mode. In case
of GOCA GNSS control, the configuration is done using the .ini file.

The changes in the configuration options of both versions that can be seen in both
manuals are presented here.

Output

There exist some differences between the options of the output between the first and
in the second version.

• Solution format. In the second version (wa2) more options have been added
to the output file format, as EMDS (Einheitliche Messdatenschnittstelle) and
Carlson (this format is a JSON (JavaScript Object Notation) format. This
output is for Carlson’s SurveyGNSS).

• Keep file. With this option some information can be stored in a file. In case of
version 1 only the processed observations can be stored, while in the version 2
also ionospheric corrections can be stored in a file.

44

Processing parameters

In processing parameters options there are also some differences between versions.

• In version 2, there is an option to read a table of a priori GLONASS interfre-
quency biases from file. This option is not included in the version 1.

• Approximate value identical for L1 and L2 or two different values for L1 and
L2 of GLONASS inter-frequency bias differences between adjacent channels.
This option has little differences between both versions. In the first one, this
has three different options: GloLinFreqCorr, that works for both stations;
GloLinFreqCorr1, that is only for station 1 and GloLinFreqCorr2 that is for
the second station. In case of version 2, only the option that includes both sta-
tions are available and the name of parameter has changed into GloFreqCorr.

• Delete observation to satellite. In this option there are some differences. In
the version 1, with the option DeleteSV only the number of satellite has to be
included while in the version 2 also the constellation of the satellite has to be
specified. In version 2 additional parameters to control the exclusion of satellites
have been included: DeleteSV O to delete observations to satellites with orbit
type, delete GLONASS observations according to their frequency number and
also the opposite option (use observations to satellite) is included in second
version (both to GNSS (OnlySV) and to orbit satellites (OnlySV O)).

• Phase single frequency. In version 1, you can force single-frequency (code and
carrier-phase L1) processing. In version 2, you can do it also but a new option is
included: you can force single-frequency processing using ionosphere-free phase-
code combination.

• Code single frequency. As in the previous point, you can force single-frequency
code only (C1) processing. In the version 2 there is also the option of activate
it only for some data.

Kinematic processing parameters

In this section, a new parameter has been included in version 2. This option is Stop
and go processing (StopAndGo). In case of Stop & Go baseline processing, the coor-
dinates of several static stations are output to wa2sol.txt, while in case of kinematic
baseline processing, coordinates are written to the position file wa2pos.txt.

Other options

Few additional parameters are included in version 2 with respect version 1:

• Read further options from file (with the option @).

45

• The software internal standard table of GLONASS inter-frequency biases can
be written to file.

Figure 9 shows these changes, as a resume of the above described.

Figure 9: Comparative between Wa1 and Wa2

5.2 Example comparison

In order to compare the obtained results with both versions and also check if there
are any change in the result file, a simple test with same data and same options has
been made using both versions of Wa software.

In this example, two GNSS stations of the Spanish Permanent GNSS Stations Network
has been used (called UTIE and VCIA), with observations for one day (01/02/2016).

The options that have been defined are:

• Input data: file 1 corresponding to the station UTIE and file 2 corresponding
to the station VCIA.

• Use of antenna corrections (igs08.atx file).

• Use of precise ephemerids (.sp3 file).

46

• Write extended log file to see possible differences between versions.

The rest of options has been set as default.

Both the resulting log file and solution file are going to be analysed in order to detect
differences between versions.

Solution file

The first part of the solution file, the one that includes basic information is the same
in both results with the exception of standard deviation of unit weight and the stan-
dard deviation of the single observation [m], that is slightly different (Figure 10).

Figure 10: General information Wa1 and Wa2

In the observations parameter section, we find as a little difference, the default value
of the parameter elevation minimum in degrees, that is 0 in case of Wa1 and 10 in
Wa2. We can also see a new parameter in the version 2, that is selected frequencies
(Figure 11).

47

Figure 11: Parameters Wa1 and Wa2

The part containing information of the stations is completely equal in both verions
(Figure 12).

Figure 12: Station information in Wa1 and Wa2

48

Finally, in the result of the baseline, small differences in the result can be pointed
out. Additionally, version 2 includes the baseline azimuth, that was not shown in the
result of version 1 (Figure 13).

Figure 13: Baseline information in Wa1 and Wa2

So, the result file is almost the same in both versions. Few parameters has been
added in the version 2. Little differences in the result must be due to changes and
adjustments in the internal algorithms of the software.

Log file

A log file is also generated, where little differences can be also detected. In this case
there are more differences than in the solution file, but the majority of them are not
relevant to the functionality, and are mainly related to the way that information is
presented.

First, there are a difference regarding the observations, as this is shown with more
detail in version 2. In case of broadcast ephemerids, version 2 only shown the ones
corresponding to the used constellation, while in the version 1 all constellations were
shown even if only one is selected (then we have 0, as in this case that we have 0-
GLONASS ephemerids).

49

Additional information is included in version two, as in case of the absolute position
of the second station, where, apart from que information that appeared in version 1,
also information about the number of epochs in which solution is based is shown.

In baseline pre-processing section of the log file, we can appreciate in version 1 a sec-
tion including all the observations deleted, while in version 2 this section is divided
into observations deleted due to not having broadcast ephemerids and the same with
precise ephemerids, so is more detailed than in version 1.

In DGNSS solution, little differences in the result are obtained and also additional
information is shown (Figure 14).

Figure 14: DGNSS solution in Wa1 and Wa2

Another difference is that in the version 1 more cycle-slip were detected and there are
also some differences in cycle-slip fixing. That kind of difference could be also due to
changes in internal algorithms.

The part regarding ionospheric model is different in both versions. Both the way of
presenting it and even the parameters differs from one version to another (Figure 15).
Tropospheric delays also present differences in both versions.

50

Figure 15: Ionospheric model in Wa1 and Wa2

As in version 2 several internal algorithms could have been changed, the obtained
final result (that is the one presented in the solution file) is slightly different in both
versions even using the same data and input parameters.

51

6. GKA files
The output format of GOCA GNSS control is GKA files. These files are the ones
containing the information obtained by the module GOCA GNSS Control that will
be use in the main module of GOCA afterwards.

Currently, version 4.0 is used. It includes different GKA blocks depending on the
data that is contained on it. In GOCA GNSS Control, block GOKA13 is used, which
contains GPS-Session (including uncorrelated Baseline). A new block (GOKA14) has
to be designed under the context of this master thesis to contain the PPP information
in order to use it as further observation type in GOCA main module.

General characteristics for GKA version 4.0 files are:

• GKA files are saved daily. From the beginning of the data recording a file for
every day is expected.

• The file name is built as: yymmdd.gka, where yy refers to the year, mm to the
month and dd to the day.

• The end of observations on a file is represented by the string ”Ende” or ”End”.

• A comment starts with ”;” and ends with a line end.

• Blank lines are accepted.

The different block that are possible currently in GKA are:

• GOKA10: Approximate coordinates for the GOCA network adjustment.

• GOKA11: LPS-Total station data.

• GOKA12: LPS-Height differences (level, barometric level...).

• GOKA 13: GPS-Session (including uncorrelated Baseline).

In this section, both the already existing GKA 13 and the proposed new GKA 14
format are exposed.

52

6.1 GKA 13 for baselines

In GOCA GNSS Control, GKA13 is used. It contains GPS sessions, including the
baselines. The information that it contains id the following one:

GOKA13; GPS session (special case baseline included)

BASE, Descr, X BASE, Y BASE, Z BASE, h BASE, N Rover, N Sess Type, I EX BASE,
EX BASE, EY BASE, EZ BASE ; N Rover lines
ROV, Descr, GPS ww, GPS d, GPS ss, X ROV, Y ROV, Z ROV, h ROV, I Status,
I Stat Typ, Stat String, I ex ROV, EX ROV, EY ROV, EZ ROV
; 1 line
Sigma, QXX MAT WERTE

END13

Where the different values are:

• BASE = Point name of the GPS reference / base station.

• Descr = Description.

• X BASE = ITRF-based geocentric Cartesian X coordinate [m].

• Y BASE = ITRF-based geocentric Cartesian Y-coordinate [m].

• Z BASE = ITRF-based geocentric Cartesian Z-coordinate [m] .

• h BASE = Antenna height of the base receiver .

• N Rover = Number of following GPS Rover .

• N Sess Typ = Correlation or not of baselines (0: mutually uncorrelated base-
lines, 1: fully correlated session).

Optional parameters: the following eccentric data are only transferred if present
(otherwise empty string)

• I EX BASE = Eccentricity (1: eccentricity in Cartesian geocentric ITRF co-
ordinates, 2: eccentricity in geographic ITRF coordinates, 3: eccentricity in
topocentric Cartesian coordinates (u, v, w)) .

• EX BASE = Eccentric value 1 (X or B or u) .

• EY BASE = Eccentric value 2 (Y or L or v) .

53

• EZ BASE = Eccentric value 3 (Z or h or w) .

Single Rover line:

• ROV = Point number of the GPS reference / base station .

• Descr = Description .

• GPS ww = GPS week of the observation time.

• GPS d = GPS day of the week .

• GPS ss = GPS second .

• X ROV = ITRF-based geocentric Cartesian X coordinate [m] .

• Y ROV = ITRF-based geocentric Cartesian Y-coordinate [m].

• Z ROV = ITRF-based geocentric Cartesian Z-coordinate [m].

• h ROV = Standard antenna height of the receiver.

• I Status = 0: No further information on the evaluation of the baseline , N:
Number of data fields in the Stat String.

• I Stat Typ = evalutation mode (0: I Status = 0 , 1: Trimble RTK specifica-
tions, 2: Leica RTK information, 3: Topcon RTK information, 4: other types
or evaluation modes).

• Stat String = Status String with N information (at the moment just accept
value 0).

Optional parameters: the following eccentric data are only transferred if present
(otherwise empty string)

• I ex ROV = Coordinate system (1: Cartesian geocentric ITRF coordinates, 2:
geographic ITRF coordinates, 3: topocentric Cartesian system).

• EX ROV = Eccentric value 1 (X or B or u).

• EY ROV = Eccentric value 2 (Y or L or v).

• EZ ROV = Eccentric value 3 (Z or h or w).

Variance factor and cofactor matrix:

• Sigma = Variance factor for subsequent cofactor matrix.

54

• QXX MAT= (6 * N ROV Qxx matrix values for NSESS TYP=0, 4.5 * N ROV
* N ROV + 1.5 * N ROV) Qxx matrix values for NSESS TYP=1. The QXX MAT
values represent always the upper trip matrix of the cofactor matrix.

For the covariance matrix Cxx : Cxx = Sigma ∗ Sigma ∗QXX MAT .

6.2 GKA 14 for PPP

The proposed new GKA block, corresponding to PPP observations, is exposed in this
section.

GOKA14; GNSS PPP session

NAME, Rec, Descr, GPS ww, GPS d, GPS ss, X, Y, Z, h , I Status, I Stat Typ,
Stat String, I EX, EX, EY, EZ
; 1 line
Sigma, QXX MAT

END14

Where the different values are:

• NAME = Point name of the point.

• Rec = Receiver used in the observation.

• Descr = Description.

• GPS ww = GPS week.

• GPS d = GPS weekday.

• GPS ss = GPS seconds.

• X = ITRF-based geocentric Cartesian X coordinate [m].

• Y = ITRF-based geocentric Cartesian Y-coordinate [m].

• Z = ITRF-based geocentric Cartesian Z-coordinate [m] .

• h = Antenna height of the receiver .

• I Status = 0: No further information , N: Number of data fields in the Stat String.

55

• I Stat Typ = evalutation mode (0: I Status = 0 , 1: Trimble RTK specifica-
tions, 2: Leica RTK information, 3: Topcon RTK information, 4: other types
or evaluation modes).

• Stat String = Status String with N information (at the moment just accept
value 0).

Optional parameters: the following eccentric data are only transferred if present
(otherwise empty string)

• I EX = Eccentricity (1: eccentricity in Cartesian geocentric ITRF coordinates,
2: eccentricity in geographic ITRF coordinates, 3: eccentricity in topocentric
Cartesian coordinates (u, v, w)) .

• EX = Eccentric value 1 (X or B or u) .

• EY = Eccentric value 2 (Y or L or v) .

• EZ = Eccentric value 3 (Z or h or w) .

Variance factor and cofactor matrix:

• Sigma = Variance factor for subsequent cofactor matrix.

• QXX MAT = Cofactor matrix. The QXX MAT values represent always the
upper trip matrix of the cofactor matrix.

For the covariance matrix Cxx : Cxx = Sigma ∗ Sigma ∗QXX MAT .

56

7. PPP software implementation
In the context of this master thesis, a PPP dialog-based software in C++ language
has been developed in order to perform PPP processing. This software has been de-
veloped in two different phases.

The first one, was focussed on post-processing options, using both software engines
RTKLIB and WaPPP. After that, also the real-time option was added, in order to
connect with a sensor using TPC/IP connection and do real-time processing. Both
versions of the software, the one with only post-processing and the one with both
real-time and post-processing are available under the context of this master thesis, as
the post-processing part has been tested deeper.

In this section, all aspects related with its implementation including the previous
study of PPP parameters, the architecture of the developed PPP software and the use
from a point of view if the user are explained. The explanation has been done accord-
ing to the version including both processing modes (real-time and post-processing).

7.1 Study of processing parameters for PPP

A short introduction about both software engines WaPPP and RTKLIB was provided
in section 4.5 as theoretical background. Now, in the context of PPP implementation
both software engines have to be studied in more detail, in order to analyse the dif-
ferent options they provide for PPP processing.

In this section, main options for both processing engines are described, focussing on
that parameters that are important for PPP processing, such as the corrections that
can be applied.

7.1.1 Processing parameters in WaPPP

This software engine expects, by default, finding the following files in the working di-
rectory: antenna correction in ANTEX format, precise orbits in SP3 format, satellite
clock corrections in CLK format and RINEX broadcast ephemeris for GLONASS if
these observations has to be processed.

There exist different options for the PPP processing.

57

Orbits and clock corrections

Both orbit information and clock information can be provided, using only one file to
both information (.sp3) or two different files (.sp3 and .clk). The main formats that
can be provided are:

• SP3 format. The first Standard Product 3 format (SP3-a) was proposed in
1989, with the main purpose of exchanging satellite related data (orbit and
clock information). The basic format of an SP3 file is a header, followed by a
series of records containing the position and clock records for each satellite listed
in the header. A second, optional, record contains the satellite velocity and clock
correction rate-of-change. After this first format, SP3 version b, proposed in
1998 was defined to allow the combination of GPS orbits and GLONASS orbits.
The current SP3 version is c, proposed in 2000 [8].

• RINEX clock format CLK (only for clocks). RINEX CLOCK format is based
on RINEX format and it was developed with the purpose of having a common
standard to exchange satellite and receiver clock offsets data [8].

• Broadcast ephemerids (mixed files, GPS, GLONASS, Galileo. . .).

Application of corrections

Antenna corrections can be applied from the same file to both receiver and satellites
antennas or specify different files for each case. Correction tolerance can be also ad-
justed and antenna files can even not be used, but this will decrease the achieved
accuracy.

P1C1 and P1P2 code biases corrections can be applied from files. These are Differen-
tial Code Bias (DCB). They are the systematic errors, or biases, between two GNSS
code observations at the same or different frequencies. DCBs are required for code-
based positioning of GNSS receivers, extracting ionosphere Total Electron Content
(TEC), and other applications [24]. Manual 2 of this software indicates that the file
used is gnssbias.dcb, from Bernese GNSS group, but is said in the manual that it is
not more available at their webpage.

About the ionospheric corrections also different options can be chosen:

• Ionospheric corrections from a model in IONEX format can be applied to code
and phase observations.

• Parameters of single-layer ionosphere model from dual-frequency observation
data can be estimated and applied as corrections.

58

By default, tropospheric zenith delay and horizontal gradients are estimated, but
these options can be disabled.

Other processing parameters

Elevation mask angle can be changed. The default value is 10 degrees.

Certain observations can be removed, entry constellations or specific satellites if
needed.

According to the manual, WaPPP is able to read RINEX observation files of versions
2.X only. Observation files in RINEX 3.X must be converted to RINEX 2.X before
being processed by WaPPP. This conversion can be done using WaRINo. If BeiDou
or QZSS observations are to be processed, WaRINo must be used. Thus, a non-
standard WaSoft-specific RINEX 2.X file including BeiDou and QZSS observations is
produced. So, in this case, only RINEX 2.X version can be used and constellations
allowed are GPS, GLONASS, Galileo and SBAS, because WaRINo is no available in
the context of this master thesis.

Output options

Result can be obtained in different formats and also containing different information.
This is not essential to PPP processing, so is not going to be detailed, but it has to
be taken into account to analyse the obtained results.

7.1.2 Processing parameters in RTKLIB

RTKLIB has no specific module for PPP, so the PPP processing is done depending
on the chosen options. In this document, only the options affecting PPP are going to
be exposed.

RTKLIB allows both real time and post processing, using different executables for
that purpose: RTKLIB NAVI for real-time and RTKLIB POST to post-processing

The main configuration options that affect PPP are shown in this section.

Orbits and clock corrections

This software engine also need to be provided with orbit and cock information. For-
mats that are allow for that are:

• SP3 format, as in case of WaPPP software.

59

• RINEX clock format CLK.

• RTSM SSR corrections. These corrections are explained in section 4.4.4. RK-
TLIB can use this kind of option in real time processing with a NTRIP connec-
tion and also can be used as input file in case of post processing mode. This
option is only available for real-time processing.

• Broadcast ephemerids.

Application of corrections

Antenna correction can be applied. In this case, is it also possible to introduce dif-
ferent files for the receiver’s antenna and the satellite’s antennas.

DCB files can be also used (see explanation in WaPPP section). In this case, only
one DCB file can be used.

There are different options for ionospheric corrections:

• OFF : Not apply ionospheric correction.

• Broadcast: Apply broadcast ionospheric model.

• SBAS: Apply SBAS ionospheric model.

• Iono-Free Linear Combination: Used with dual frequency measurements.

• IONEX TEC: Use IONEX TEC grid data in IONEX file.

Tropospheric corrections also have different options the user can choose:

• OFF: Not apply troposphere correction.

• Saastamoinen: Apply Saastamoinen model.

• SBAS: Apply SBAS tropospheric model.

• Estimate ZTD: Estimate ZTD (zenith total delay) parameters.

• Estimate ZTD+Grad: Estimate ZTD and horizontal gradient parameters.

With respect Earth Tides Correction, RTKLIB allows different options:

• OFF: Not apply earth tides correction.

• Solid: Apply solid earth tides correction.

60

• Solid/OTL: Apply solid earth tides, OTL (ocean tide loading) and pole tide
corrections. If the option OTL is chosen, then BLQ and ERP files has to be in-
troduced. BLQ file contains the corrections we have to apply to our coordinates
due to the ocean tide loading. It is provided by the Onsala Space Observatory
for free (http://holt.oso.chalmers.se/loading/). You have to send your
station coordinates and you receive the corrections by email. ERP files contain
information about the pole.

It is also possible to activate or not the option of applying the phase windup correc-
tion (see section 4.4.1).

Other processing parameters

Specific observations can be removed for the processing. Similar to WaPPP, satellites
to exclude can be indicated using the constellation or the specific number of satellite.
As a difference, RTKLIB also allows the user to exclude those satellites in eclipse, as
they can degrade the PPP solution.

Elevation mask angle can be also set by user. By default, this value is 15 degrees.

The geoid model can be indicated and even the file containing it can be loaded and
used.

The satellite’s constellations that can be used in RTKLIB software are GPS, GLONASS,
Galileo, SBAS, QZSS and BeiDou. It allows using RINEX 2.X and also RINEX 3.X
versions.

Output options

Different options to configure the result of the processing can be established. Again
it is not essential for PPP, so it is not described now, despite it has to be studied to
analyse the results.

7.1.3 Comparison between WaPPP and RTKLIB for PPP

In the above sections, main parameters that affect PPP processing in both software
engines has been shown. In general, RTKLIB allows the user a greater number of
configurations regarding what kind of corrections to apply, as for example the correc-
tions related with Earth Tides or Ocean loadings.

61

http://holt.oso.chalmers.se/loading/

As a resume of what was exposed in previous sections, the Figure16 is presented.
RTKLIB allows real-time processing, while WaPPP only allows post-processing, so
the comparison is focussed on post-processing options.

Figure 16: Comparision between WaPPP and RTKLIB for PPP

62

7.2 Graphical user interface

According to the preliminary study (section 7.1) of both RTKLIB and WaPPP as
software engines for PPP processing, in which different configuration parameters have
been exposed, a user interface for new GOCA PPP module, developed under the con-
text of this master thesis, has been designed. The user interface shown in this section
is the complete version of the software, including real-time option.

The aim of this design is to be simple and functional, where different parameters can
be easily changed or introduced by the user.

In this section, the proposed user interface is shown. In the figure provided in this
section as draft of design, that controls that are enabled or disabled depending on
other parameters are marked in red, while parameters that depend on the software
engine are marked in blue.

The main window of the PPP software is shown in Figure 17. It includes one button
to go to PPP mode settings dialog, one to make the process run another to stop the
process (in case of real-time processing only), a text box that shows progress messages
and a progress bar. This window has been made with the purpose to provide the PPP
software a main window, so messages can be seen on it, but in case of integration
with main GOCA GNSS module, it should be not necessary.

Figure 17: PPP software main window

When the button settings of the previous dialog is clicked, a new windows to choose
the PPP processing mode (post-processing or real-time) is opened (Figure 18). In
case of the post-processing only version of the software, this window is not included,
so directly Figure19 is opened.

63

Figure 18: PPP processing mode

The main settings window for PPP in post-processing includes the configuration
parameters that are used in both software engines. This design in shown in Figure
19.

Figure 19: PPP Settings GUI

As can be seen in Figure 19, the first part is regarding the software engine to use
and the elevation mask to apply. If RTKLIB is chosen, navigation file input buttons
are enabled, while if the chosen processor is WaPPP this option is disabled (because
this processor does not allow to specify navigation files, it just use them if they are
in the working directory or in the same folder as the observation file). After that, is
the main input data section (observation and navigation data).

64

In the orbit and clock information, user can choose what kind of orbit information to
use (broadcast or precise) and also what kind of clock information (broadcast, .sp3
file or .clk file). When an option that requires that a file is chosen, corresponding
buttons are enabled to choose the files. In case of RTKLIB, as shown in Figure 19,
ephemerids and clock files can be chosen, while in case of WaPPP this orbit and
clock part changes (Figure 20) in order to allow the user choosing a folder instead
of specific files (According to the manual, also specific files can be chosen, but when
it was trying during the development of this master thesis, this option didn’t work
properly).

Figure 20: WaPPP orbit and clock information

Next information to be set is antenna corrections. It is chosen, user can introduce
one correction file for receiver and for satellite antennas. Same file can be applied for
both satellites and receiver if the corresponding check box is checked.

Last part of this dialog is focus on the output of the software. Both GKA (own format
of GOCA) and position file must be set by the user. The first one will allow using
the obtained data in GOCA main module and the second one allows the user analyse
the results in more detail, having the coordinates and errors in each epoch.

The button settings allow the user to set up specific configuration of one processor.
The interface in case of RTKLIB is shown in Figure 21.

65

Figure 21: RTKLIB Settings GUI

Satellite systems to be used can be chosen with different checkboxes. By default,
GPS and GLONASS are checked.

In this dialog, different corrections can be configured. The first one is the ionospheric
correction, that can be broadcast, using IONEX file, SBAS, iono-free or not apply.
In case of IONEX model, file has to be introduced.

Tropospheric correction can be chosen between different options (see Figure 21).

Earth tide corrections can be applied or not, and also EOP and BLQ files can be
introduced to apply this correction. DCB file can be also used or not and phase wind
up correction and the rejection of eclipsed satellites can be activated or not with the
corresponding checkbox.

WaPPP software also has some options to be configured if chosen. This interface is
shown in Figure 22.

66

Figure 22: WaPPP Settings GUI

WaPPP interface is similar to the RTKLIB settings interface, but with less options.
Navigation systems can be chosen, different ionospheric and tropospheric corrections
(see Figure 22) and also DCB files can be introduced. In this case, two DCB files can
be introduced (P1C1 and also P1P2).

If real-time option is chosen, then a dialog to set the TPC/IP address connection
with the sensor (Figure 23).

67

Figure 23: Real-time settings GUI

Main aspects of the settings for real-time processing are the same than in the post-
processing case, no they are not going to be explained in detail. What is different,
is the button that allows opening the SSR dialog if the option of SSR corrections
is chosen in the orbit combo box. This dialog is shown in Figure 24, where there
are different parameters to be introduced by the user in order to make the NTRIP
connection to get SSR corrections.

Figure 24: NTRIP connection for SSR corrections GUI

68

In this section, a general overview of the user interface has been provided. In case
some part needs to be modified in future works, Annex A provides a list with the
identification and names of all the variables involved in the graphical user interface.

7.2.1 Configuration error management

Following the idea of making the interface simple and useful for the user some possi-
ble configuration errors has to be managed. This management prevents errors when
making software engines run.

First of all, before running the application it is checked if the settings are configured.
If not, the program cannot be run.

In the next dialog, the one that allows choosing the processing mode (post-processing
and real-time) also it is compulsory to configure the corresponding settings before
accepting.

In case of port-processing mode, information that is checked in the main settings
dialog is:

• Observation file is compulsory; user must introduce it.

• Navigation file (at least GPS one) is compulsory in case of RTKLIB.

• Output files are also compulsory.

• If precise ephemeris or clock file option are chosen, user must introduce corre-
sponding files.

• If apply antenna corrections option is checked, antenna two files (or one file if
apply same file is checked) have to be introduced.

• Specific processor settings has to be configured before running the program.

When clicking in the button “Accept”, if some of the above items are not correct, a
message with the error information is shown (see example in Figure 25) and program
cannot been run until there are no errors.

69

Figure 25: Configuration error example

In case of RTKLIB processor, errors that have to be checked are:

• At least one satellite system has to be selected.

• If IONEX model is chosen as ionospheric correction, file has to be introduced.

• If application of solid/OTL Earth tide corrections is chosen, both EOP and
BLQ files has to be introduced.

• If use DCB file option is selected, file must be introduced.

Analogously, in case of WaPPP, following errors have to be checked:

• At least one navigation system has to be chosen.

• If IONEX model is chosen as ionospheric correction, file has to be introduced.

• If apply P1C1 DCB file option is checked, file must be introduced.

• If apply P1P2 DCB file option is checked, file must be introduced.

In case of real-time mode, first of all the TPC/IP address to connect with the sensor
has to be introduced.

Then, the settings has to be configured. Errors managed in these settings are:

• Output files are compulsory.

• If precise ephemeris or clock file option are chosen, user must introduce corre-
sponding files.

• If SSR corrections option is choosen, the corresponding configuration has to be
set and all the fields on that SSR dialog are compulsory.

• If apply antenna corrections option is checked, antenna two files (or one file if
apply same file is checked) have to be introduced.

• At least one satellite system has to be selected.

70

• If IONEX model is chosen as ionospheric correction, file has to be introduced.

• If use DCB file option is selected, file must be introduced.

Apart from these configuration errors, also processing errors have been taken into
account, so if something goes wrong during the execution, a message is shown in the
main PPP window (for example if the result cannot be opened to write GKA file).

7.3 Software architecture - General aspects

The developed PPP software has been explained from a point of view of user interface
in section 7.2. In this section again the developed software is explained, but in this
case as a technical guide of the software architecture.

The project contains different files (.h files, where the class declaration is done and
.cpp files, that have all the corresponding code) that can be divided into three dif-
ferent groups: files containing functions, dialog classes and others. All of them that
are relevant to PPP processing are exposed in this section. In addition, there exist
other files that are created automatically to build the application, but they are not
shown as they are created automatically and nothing has been changed. In case of in-
tegration with GOCA GNSS Control, these automatically created files are not needed.

In this section, those files that are used in both post-processing and real-time modes
are shown. Specific aspects for each mode are exposed in further sections.

7.3.1 Function files

The first group of files that are included in the project are those that contain func-
tions that are used in different parts of the code.

FileDirPPP.cpp

This file contains the functions that allow the user choose a file or a folder of the
system. These functions are:

• openFileFromDir. This function allows choosing one file from the system. As
inputs it requires the filter name and the filter extension. It returns the path
name of the selected file or empty string if there is some problem. This function
is shown in Figure 26.

71

Figure 26: Open file from directory function

The way to call this function using extension filters is shown in Figure 27.

Figure 27: Open file from directory function call

• saveFileInDir. This function allows choosing also a file in the system, but in
this case the file does not need to exist in advanced (NULL parameter in Figure
26), so is used to output files. Inputs are again filter name and filter extension.

Figure 28: Create file in directory function detail

• chooseFolder. This function allows choosing a folder. It has no inputs and
returns the chosen path. This function is show in Figure 29.

72

Figure 29: Choose directory function

GKA PPP.cpp

In this file functions to write GKA output files are included. There is one function
to write data from RTKLIB and other to WaPPP. The structure of both functions
is really similar, but the information is taken from a different place depending on
the software engine used. Where each information is taken is going to be explained
in section 7.6. Functions in this file are writeGKARTKLIB, writeGKAWAPPP and
writeGKART for real-time.

These functions receive as inputs:

• Path in which the file has to be written.

• Last line of results.

• Last time of observation (only in case of RTKLIB).

• Path of observation file (RINEX) (only in case of post-processing).

They are both Boolean functions, that returns true.

What these functions done is:

• Read information from last line of result. To do that it looks in specific positions
of this line. Figure 30 shows an example of how this is done.

Figure 30: Extract information of line

73

• Read RINEX heading to extract information. To prevent reading all the RINEX,
it finishes when it finds the end of header. It looks in each header line for spe-
cific characters and takes the corresponding information with the position of
the data in this specific line (Figure 31). This is not done in case of real-time
processing because the RINEX is not included.

Figure 31: Read RINEX header information example

• Before continue, the RINEX file is closed.

• Assign default values in case there is no information in RINEX heading (name,
receiver...).

• Cofactor matrix item calculation (according to section 7.6).

• Calculation of GPS time data (according to section 7.6).

• Write information in an output file. After that, the file is closed (Figure 32).

Figure 32: Write GKA file example

74

PPP Processing.cpp

This file contains the functions that are used to prepare the execution of both software
engines. These functions are: PPP RTKLIB, RTKLIBCommand and WAPPPCom-
mand for post-processing. In case of real-time, functions in this file are PPP RT and
RTCommand.

PPP RTKLIB:

This function writes the configuration file RTKLIB needs. As input, this function
receives a rtklibSettings object that contains the properties to be used set by the
user. It is a void function, so it does not return anything. The structure of this
function is:

• Read information from settings object. This is done using the get methods
implemented in this object.

• Read RINEX observation file header to get the antenna height, as in case of
previous example of read RINEX. Close RINEX after getting height.

• Open configuration file and write, line by line, all the configuration. To do that,
values extracted from object are used (example can be seen in Figure 33). Close
this file at the end.

Figure 33: Get property and write it on configuration file

RTKLIBCommand:

This function prepares the command that has to be executed to start RTKLIB pro-
cessing. It doesn’t need any input and it returns the complete command.

What it does is getting the information that needs from the global RTKLIB settings
using get methods and concatenate the different information in the way RTKLIB
command must be formed. As the main part of the configuration is in the configura-
tion file, this function just need to get few additional parameters. These parameters
are: configuration file, observation file, navigation files, orbit and clock files if they
are used and output files. The command is obtained as shown in Figure 34.

75

Figure 34: RTKLIB command

WAPPPCommand:

This function prepares the command needed to execute WaPPP software. As in the
case of the previous one, this is done by getting the corresponding parameters of the
global WaPPP settings using get methods and structure them as necessary.

In this case, WaPPP software does not need configuration file, so all parameters must
be included in the command to execute. Based on the WaPPP manual, each param-
eter stored in the settings is translated into the corresponding WaPPP parameter
(example in Figure 35).

Figure 35: Example of WaPPP parameter in command

The full command is constructed as Figure 36.

Figure 36: WaPPP command

This function does not need any input and it returns the WaPPP Command to be
used in the execution.

The functions related to real-time processing are PPP RT and RTCommand.

PPP RT:

This function writes the configuration file RTKLIB needs, in this case for real-time
processing. As input, this function receives a rtSettings object that that contains the
properties to be used set by the user. It is a void function, so it does not return
anything.

76

What this function does is getting configuration parameters using get methods and
write them in the corresponding configuration file as needed in case of each parame-
ter, as was the case of PPP RTKLIB.

RTCommand:

This function prepares the command needed to execute RTKLIB real-time modoule.
In this case, all options are in the configuration file, so the command to execurte is
really simple (Figure 37).

Figure 37: RTKLIB real-time command

7.3.2 Dialog files

This section includes the different classes that corresponds to different dialogs used
in both processing modes.

GOCA PPPDlg.cpp

This is the class corresponding to the main PPP dialog (Figure 17). This class has
two main functions, corresponding to the three buttons in this dialog: OnBnClicked-
ButtonPppSettings, OnBnClickedButtonPppRun and OnBnClickedButtonT. What
these functions make is:

OnBnClickedButtonPppSettings:

It is executed when the button settings is clicked. It just open de PPP mode settings
dialog as a modal window (Figure 38), to choose the post-processing mode or the
real-time mode.

Figure 38: Open dialog example

77

OnBnClickedButtonPppRun:

This function is executed when the button run is clicked. First, it checks for the
chosen processing mode if settings have been set.

In case of post-processing mode, there are three different cases: if settings have not
been set, RTKLIB is chosen and configured, and WaPPP is chosen and configured.

If RTKLIB has been chosen the actions that are made are: first the parameters need
to start a process (that means to call an external .exe file) are prepared (Figure 39).

Figure 39: Parameters to create process

After that, the function RTKLIBCommand is called and the corresponding command
is obtained. Once the command is obtained, the program rnx2rtkp.exe is executed
using CreateProcess function.

Then it is checked if the process is started or not. In case it cannot be started, a
message is shown in the text window of the dialog.

In case the process has started correctly, as it takes some time, it is checked if the
process still running. In that case the progress bar is moving and the message “Exe-
cution in progress. . . ” is shown.

Once the process ends, the process variables are closed.

Then last line of the output is extracted and also the end time. If this file contains a
solution, GKA file is created using the writeGKARTKLIB function. If this function
ends successfully, the progress bar is completed and “DONE!” message is shown. If
not, an error message is shown.

If WaPPP has been chosen, the process is analogous to the one above described.
WaPPPCommand function is here called to prepare the execution and writeGKAWAPPP
to write the GKA file.

In case of real-time it is also checked if the corresponding settings have been set. If
not, an message is shown.

78

As in the case of the post-processing mode, first the function to build the correspond-
ing command is called. Once the command is obtained, the program rtkrcv navka.exe
is executed using CreateProcess function, as in previous cases. As a difference, the
process started is a global variable, because the process does not stop until the user
stop it.

If the process cannot be started an error message is shown and if it is has correctly
started a execution message is shown. As the process has to be stopped by the user,
this function also enables the stop button.

OnBnClickedButtonT:

This function is executed when the button stop is clicked. It only can be clicked when
real-time processing is running. What it done in this function is:

• Terminate the real-time process using the global process variables.

• Solution file is read, as in case of post-processing. If the solution is not correct,
an error message is shown. If it is correct, the function to write the GKA file is
called.

• Check if the GKA file could be created and shown the corresponding message
(error or finished).

PPPMode.cpp

This dialog allows choosing the processing mode (post-processing or real-time) with
a combo box. It only has one function to choose the processing mode.

OnBnClickedOk:

this function opens with a DoModal() method the corresponding dialog depending
on the mode chosen (0 in case of post-processing and 1 in case of real-time).

7.3.3 Other files

There is another file, that is not a dialog class or a file containing functions to be use
in different parts of the software. This file is the one called Globals. In this file, those
global variables, used along different parts of the software are defined.

These variables defined in this file are shown in Figure 40. Using global variables
allows calling and using them from every part of the code.

79

Figure 40: Global variables

7.4 Software architecture - Post-processing

In this section, specific files of the PPP software that are realted with the post-
processing mode are explained.

7.4.1 Dialog files

In this section, specific dialog files for post-processing mode are explained.

PPPDlg.cpp

This is the class corresponding to the main PPP settings dialog (Figure 19). Functions
included in this class are:

• OnInitDialog. This function is executed when the dialog is started. It is used
to restore the options selected by the user, so if the window is closed and
opened again, previous configuration is not lost. To do that, global settings are
get and, depending on the values in the settings object (using get functions)
different actions (as set combo boxes values and enable or disable buttons) are
performance.

• OnBnClickedOK. This function is executed when the “Accept” button is clicked.
First of all, it checks if the configuration the user has made is correct (according
to configuration errors in section 7.2.1). These errors are controlled as shown
as an example in Figure 41.

80

Figure 41: Errors and messages example

If the configuration of the chosen processor is correct, parameters are stored
in the corresponding global setting object using set methods. After that, func-
tion PPP RTKLIB (explained in previous section) is called in case of RTKLIB
processor, so the configuration file is written.

• OnBnClickedCheckAntenna. When the check box of use antenna file is checked,
this function is called. First, the data is updated. After that, if is checked
buttons to choose .atx files are enabled and also the check box for using same
file as receiver and satellite. If it is unchecked, these are disabled. Finally, the
window is update. Figure 42 shows how this is done, and serves as an example
for all the similar check boxes in the dialogs.

Figure 42: Check box code example

• OnBnClickedCheckSame. Similar to the previous one, data is updated and
button of choosing a second .atx file is enabled or disabled.

• OnEnChangeEditElevationMask. When editable text of elevation mask is changed,
the value of the elevation variable is updated.

• Buttons: these functions are executed when different buttons are clicked. All
these functions call some of the functions in FileDir.cpp file. These functions
are: OnBnClickedButtonAtxFile, OnBnClickedButtonAtxFile2, OnBnClicked-
ButtonObsFile, OnBnClickedButtonGpsNav, OnBnClickedButtonGlonassNav,
OnBnClickedButtonPreciseEph, OnBnClickedButtonClock, OnBnClickedBut-
tonPppOut, OnBnClickedButtonGka.

81

As an example, Figure 43 shows the function OnBnClickedButtonPreciseEph, to
collect precise ephemerids file. In this case, different function is called depending
on the processor.

Figure 43: Choose file or folder example

• Combo boxes: These functions are called when a combo box is changed. All
these functions change the corresponding variable depending on the chosen op-
tion of the combo box and they enable or disable other components of the dialog
depending the option. These functions are: OnCbnSelchangeComboOrbit, On-
CbnSelchangeComboClock, OnCbnSelchangeComboPpp.

As an example, Figure 44 is shown. It corresponds to the combo box to choose
the kind of orbit to use (precise or broadcast). If precise option is chosen, then
button to choose the file (RTKLIB) or folder (WaPPP) is enabled, taking into
account also the clock option.

Figure 44: Combo box code example

• OnBnClickedButtonSettings. This function creates a dialog object and open it
as new modal window, depending on the chosen processor.

82

RTKLIBDlg.cpp and WAPPPDlg.cpp

These are the files corresponding to the RTKLIB and WaPPP settings dialogs. They
are quite similar to the previous one, but containing settings specific to RTKLIB or
WaPPP processor. The functions contained on them are:

• OnInitDialog. Analogous to the function with the same name in previous dialog,
it takes the RTKLIB settings from the global object and restore the correspond-
ing information.

• OnBnClickedOk. This function is executed when button ”Accept” is clicked.
First it controls there no configuration errors and then, if all is correct, infor-
mation is saved in global settings objects using set methods.

• Other functions. In these files there are other functions, as in the previous one,
that are executed when a check box is selected or when a button to choose a
file is clicked. hey are not detailed due to their similarity to the ones in other
files explained before.

7.4.2 Other files

In addition to the previously explained files that contain functions and the code cor-
responding to dialogs, in the project there are other files with other functionalities.
They are shown in this section.

PPP WaSettings and PPP RTKLIBSettings

These two files contain the definition of configuration classes. These classes contain
all the properties that can be set and also corresponding definition of set and get
methods.

In header files (.h) variables and methods are specified and in the code files (.cpp),
these methods are defined.

Get functions don’t receive anything and return the corresponding value (Example
in Figure 45)

Figure 45: Get function example

83

Set functions receive a value, assign it to the corresponding parameter and return
true (Example in Figure 45)

Figure 46: Set function example

The way that these classes are used is the following one: a global object of each class
(one for WaPPP and other for RTKLIB) is created and their properties are defined
with set functions in different dialogs of the software. After all the properties are in
the object, this global object is used to extract these properties with get functions
and this information is used to run the corresponding software engines.

Figures 47 (RTKLIB) and 48 (WaPPP) show all the different parameters that are
included in each file, with thier variable type and the corresponding set and get
methods.

84

Figure 47: RTKLIB settings object parameters

85

Figure 48: WaPPP settings object parameters

7.4.3 Software architecture diagram

In order to provide a better overview of the software architecture, Figure 49 is pro-
vided. Here, the most important classes are included (so general classes automatically
generated are not presented). Those classes in grey corresponds to dialog classes,
classes represented in blue are files that contains functions and orange represents
other classes.

In order make it easy to understand, not every single function is presented, some of
them are group, for example all the functions that are executed when a file button is
clicked, are represented by ”file button functions”. Arrows represent which functions
call other functions. As explained in previous sections, when a dialog is opened, stored
settings are taken, using get functions of the properties objects. These relationships
are not included in the diagram, to simplify it.

In case of the first version of the software, in which only post-processing mode is
available, the diagram is the same but without the dialog PPPMode, so PPPDlg is
opened directly from GOCA PPPDlg.

86

F
ig

u
re

49
:

S
of

tw
ar

e
ar

ch
it

ec
tu

re
d
ia

gr
am

p
os

t-
p
ro

ce
ss

in
g

87

7.5 Software architecture - Real-time

In this section, those files that are realted with real-time processing are shown.

7.5.1 Dialog files

In this section, specific dialog files for real-time processing mode are explained.

PPPRTDlg.cpp

This is the class corresponding to the main PPP settings dialog in real-time option.
Functions included in this class are:

• OnInitDialog. This function is executed when the dialog is started. It is used to
restore the options selected by the user, so if the window is closed and opened
again, previous configuration is not lost. To do that, global settings for real-time
are get and, depending on the values in the settings object (using get functions)
different actions (as set combo boxes values and enable or disable buttons) are
performance.

• OnBnClickedOk. This function is executed when the “Accept” button is clicked.
First of all, it checks if the configuration the user has made is correct, at is
was the case of post-processing. If the configuration is correct, parameters are
stored in the corresponding global setting object using set methods., if not, the
corresponding errors are shown.

• OnBnClickedCheckAntennaRt. When the check box of use antenna file is
checked, this function is called. It is the same than the case of post-processing:
first, the data is updated. After that, if is checked buttons to choose .atx files
are enabled and also the check box for using same file as receiver and satellite.
If it is unchecked, these are disabled. Finally, the window is update.

• OnBnClickedCheckSameRt. Similar to the previous one, data is updated and
button of choosing a second .atx file is enabled or disabled.

• OnEnChangeEditElevationMaskRT and OnEnChangeEditAntennaH. When ed-
itable text of elevation mask or height is changed, the value of the corresponding
variable is updated.

• Buttons: these functions are executed when different buttons are clicked. The
functionality is the same that the one explained in case of post-processing mode.

88

• Combo boxes: These functions are called when a combo box is changed. All
these functions change the corresponding variable depending on the chosen op-
tion of the combo box and they enable or disable other components of the dialog
depending the option.

• OnBnClickedButtonSsr. This function creates a SSR dialog object and open it
as new modal window. This button is enabled or disabled depending on the
option chosen in the orbit combo box.

SSTDlg.cpp

This class corresponds to the dialog to introduce data to use SSR corrections with
NTRIP protocol. It contains the function to remember previous configuration (OnInit-
Dialog), the one that is executed when button ”Accept” is clicked (OnBnClickedOk)
that check if the configuration is correct and then use set methods to save these vari-
ables and the functions that allow updating the different variables of the edit inputs.

TPCPPPDlg.cpp

This is the class corresponding to the first dialog that is opened when real-time
option is chosen. It contains the same function that in the previous case (OnInit-
Dialog, OnBnClickedOk and functions to update variables). The difference in this
case is than, hen clicking the button ”Accept”, apart from checking errors and sav-
ing configuration, the function PPP RT is called in order to write the corresponding
configuration file using all the options the user has choose.

It also contains a function to open the PPP real-time dialog (PPPRTDlg) when the
corresponding button is clicked.

7.5.2 Other files

In addition to the previously explained files that contain functions and the code cor-
responding to dialogs, in the project there is other file with other functionalities also
in case of real-time. It is shown in this section.

RTSettings

This file contains the definition of configuration class. This class contains all the
properties that can be set and also corresponding definition of set and get methods.

As in case of post-processing, In header files (.h) variables and methods are specified
and in the code files (.cpp), these methods are defined.

89

Get functions don’t receive anything and return the corresponding value, analogous
to the one shown in post-processing mode and Set functions receive a value, assign it
to the corresponding parameter and return true.

The way that this class is used is the following one: a global object is created and
their properties are defined with set functions in different dialogs of the software.
After all the properties are in the object, this global object is used to extract these
properties with get functions and this information is used to run the software.

Figure 50 shows all the different parameters that are included, with thier variable
type and the corresponding set and get methods.

Figure 50: Real-time settings object

90

7.5.3 Software architecture diagram

As in case of post-processing mode, real-time diagram (Figure 51) is shown to make
clearer the software architecture. Again the most important classes are included (so
general classes automatically generated are not presented). Those classes in grey cor-
responds to dialog classes, classes represented in blue are files that contains functions
and orange represents other classes.

In order make it easy to understand, not every single function is presented, some of
them are group, for example all the functions that are executed when a file button is
clicked, are represented by ”file button functions”. Arrows represent which functions
call other functions. As explained in previous sections, when a dialog is opened, stored
settings are taken, using get functions of the properties objects. These relationships
are not included in the diagram, to simplify it.

91

F
ig

u
re

51
:

S
of

tw
ar

e
ar

ch
it

ec
tu

re
d
ia

gr
am

re
al

-t
im

e

92

7.6 GKA information

In section 6.2 new GKA format defined for PPP results is exposed. All the informa-
tion that has to be written in .gka file has to be extracted by the program. In this
section, where this information is picked up from is described.

In case of post-processing option, some of the information is extracted from the
RINEX observation file used in the computation, while other issues are get from the
result file.

Figure 52: Rinex header example

The information extracted from the RINEX header (example in Figure 52), in both
cases RTKLIB and WaPPP, is:

• Station name: from the header row where MARKER NAME appears. 4-
character name (short name) is used.

• Receiver type: this information is placed in the RINEX header asREC#/TY PE.
If this information is not included in RINEX file, default value that will appear
in GKA file is “NONE”.

• Antenna height: extracted from the delta position information, indicated with
ANTENNA : DELTA H/E/N in the RINEX header. The required informa-
tion is the one corresponding to H.

In the real-time option, as the RINEX is not used, this information cannot be ex-
tracted from here. At the moment, as this part needs a little more testing, the antenna

93

heigth is directly set by the user as an input in the software and the marker name
and receiver type is set as ”NONE” by default. In further developments this has to
be set, fixed or as additional inputs in the software.

The rest of information that has to be included in GKA file is extracted from the
position file result. The structure for the resulting position file is different for each
processor.

Figure 53: RTKLIB solution header example

The information corresponding to RTKLIB is in both the file header and the final
result row (corresponding to last epoch of observation processed). Information in
header is:

• GPS week: This information appear in the header of the result file (see Figure
53). The key that indicates this row is % obs end.

• GPS week second. This information is also in % obs end row. This information
is used to obtain GPS week-day and GPS second. The week day is calculated
as the integer part of the quotient between GPS week second and 86400. This
value is the number of seconds in one day (24 hours * 60 minutes per hour *
60 seconds per minute), so the integer part of this quotient corresponds to the
day of the week. The GPS second corresponds to the remainder of the above
division, that means is the corresponding second in one specific day.

Remaining information is extracted from the last processed epoch (see Figure 54).

Figure 54: RTKLIB solution format example

This information includes:

• X, Y and Z coordinates.

94

• Covariance matrix information, that is used in the calculation of cofactor matrix,
which is included in GKA file (see 7.6.1).

In case of WaPPP result, all the information is extracted from the last epoch processed
(Figure 55).

Figure 55: WaPPP solution format example

This information is:

• GPS week and GPS week second (used as same way explained in RTKLIB part,
for calculating the week-day and GPS second).

• X, Y and Z coordinates.

• Covariance matrix information, that is used in the calculation of cofactor matrix,
which is included in GKA file (see 7.6.1).

Description, I Status, I Stat Type and Stat String are set by default in both cases
(with values NONE, 0 and 0 respectively).

7.6.1 Cofactor matrix calculation

In GKA file, as explained in previous section, cofactor matrix is provided. In this
section, the calculation of these terms of the cofactor matrix is explained.

First of all, the resulting files (both RTKLIB and WaPPP), provides the information
to reconstruct the covariance matrix (Cxx). This symmetric matrix looks as:

Cxx =

sdx ∗ sdx sdxy ∗ sdxy sdzx ∗ sdzx
sdy ∗ sdy sdyz ∗ sdyz

sdz ∗ sdz

 =

CxxXX CxxXY CxxXZ
CxxY Y CxxY Z

CxxZZ

(7.1)

The covariance matrix Cxx can always be factorized as a product of variance factor
sigma ∗ sigma and a cofactor-matrix (Qxx):

Cxx = sigma ∗ sigma ∗Qxx (7.2)

Variance factor can be calculated as:

95

sigma =
√
CxxXX + CxxY Y + CxxZZ (7.3)

Despite Equation (7.3), sigma can be also set as an arbritary factor.The standard
factor is often 0.001, because the mm is a standard accuracy level in engineering. In
the context of this master thesis, 0.001 is going to be used as sigma value.

So, cofactor matrix (symmetric) can is defined as:

Qxx

qxx qxy qxz
qyy qyx

qzz

 (7.4)

where:

qxx =
CxxXX

sigma ∗ sigma
(7.5)

and the same with the other terms. In GKA file, these 6 terms are provided (qxx, qxy, qzx, qyy, qyz, qzz).
Value of sigma is also provided in the resulting GKA file, so the covariance matrix
can be reconstructed.

96

8. Integration proposal of PPP soft-
ware with GOCA GNSS Control
The developed PPP software under the context of this master thesis was thought to
be a part of GOCA GNSS Control. However, technical difficulties have prevented
integration from taking place. In this section, a proposal for further integration is
going to be done.

In this case, the integration proposal is related to the software’s version that only con-
tains post-processing, because this first version is the one that were developed and
is tested deeper than the second version. In case of the whole software, the process
should be analogous but adding all the corresponding C++ files.

In resume, the steps to follow are:

• Add executables (wappp and rnx2rtkp).

• Add source code files. Change resource file and application file.

• Add dialogs. Make sure dialogs are correctly linked to classes.

• Add new option in GOCA GNSS Control for new mode.

• Create corresponding code for this new mode (add, edit and delete).

• Re-write run function.

First of all, executables wappp and rnx2rtkp (RTKLIB) has to be added in the folder
of GOCA GNSS Control where all the scripts are included, because they are need by
the PPP software.

8.1 Add dialogs and source code files

Different source code files have to be added to the GOCA GNSS Control project. For
that they have to be copied in the folder that contains all the GOCA GNSS Control
code files and then, using Visual Studio, add them to the project, by adding existing
files. Both .cpp and .h files have to be added. The name of these files are:

FileDirPPP, GKA PPP, Globals, PPP Processing, PPP RTKLIBSettings, PPP WaSettings,
PPPDlg, RTKLIBDlg, WAPPPDlg

In case of GOCA PPPDlg, the file has not to be added but the code on it has to be
copied. This dialog has been designed to provide PPP software a main dialog, but in

97

case of GOCA GNSS Control is not needed, because the main PPP settings dialog is
going to be directly opened.

Other files presented in the PPP software are not necessary for integrating it on other
application. After that, some little changes have to be done in all these files in or-
der to use them. In .cpp files, the resource file and the application file are included
at the beginning of the scripts, in case of PPP software this is made by #include
”pch.h” and #include ”PPP GOCA.h”. When including these files in GOCA GNSS
Control, this has to be changed to #include ”stdafx.h” (resource file) and #include
”GOCA GNSSControl.h” (application file).

Then, dialogs (user interface) has to be also included. To do that, resource files of
both projects has to be opened in Visual Studio (GOCA GNSSControl.rc and PPP-
GOCA.rc) and copy the corresponding dialogs from PPP software to GOCA GNSS
Control (IDD DIALOG PPP, IDD DIALOG RTKLIB, IDD DIALOG WAPPP di-
alogs are the one needed.

Once dialogs are copied, then in the GOCA project, corresponding classes have to
be assigned to these dialogs if this is not automatically made. This can be made by
right click on the dialog and then the option “Class assistant” (Figure 56).

Figure 56: Class assistant Visual Studio

Corresponding classes for each dialog, that have to be correctly set, are:

• IDD DIALOG PPP: PPPDlg

• IDD DIALOG RTKLIB: RTKLIBDlg

• IDD DIALOG WAPPP: WAPPPDlg

After that, dialogs should be prepared to be used in GOCA GNSS Control.

98

8.2 Create new PPP mode in GOCA

New mode has to be added to PPP processing. The mode option has to be added
in the dialog IDD SEL MODE TYPE of GOCA GNSS Control. To do that, in the
data section of properties of the IDC MODE combo-box control, PPP mode has to
be included by adding “;PPP” after what is currently written in this part (“RINEX-
Datacollection;RINEX-Processing;RTK-Processing”). With that, this new mode will
be the option 4.

8.3 Create code for PPP mode

In order to add PPP as new mode in GOCA GNSS Control, some ode has to be
added. This is done in the MeasureList.cpp and MeasureList.h files.

First of all, variables that are going to be used have to be defined in the header
file. These variables, all of them with CString type, are: m messPPPProcessing,
m messPPPProcessingMode, m messPPPProcessingModeCreated and m messPPP-
ProcessingModeEdited.

After that, the values for these variables have to be initialized. The variable m messPPP-
Processing has to be initialized as: m messPPPProcessing = T(”PPP-Processing”);

The values of the other variables are set from the function OnSetActive as: m messPPP-
ProcessingMode = T(”PPP Processing Mode...”); m messPPP- ProcessingModeCre-
ated = T(”PPP Processing Mode created”) and m messPPPProcessingModeEdited
= T(”PPP Processing Mode edited”);

In the function DrawModeTable(), new mode has to be added as one more if sentence:
if (pMode-¿m iMode == 4) strMode = m messPPPProcessing;

Then all variables are ready for be used when creating, editing or deleting the new
PPP mode. To do that, some code has to be added in these functions of the code.

First of all, the function responsible for adding a new mode is the one named OnBnClicked-
ModeAdd(). In this function, new condition has to be set (if (modus == 4)). The
process to follow is analogous to the other modes, but a little simpler as no time spans
are used. An example of how this can be done is shown in Figure 57.

99

Figure 57: Code to add PPP mode

As can be seen in previous Figure, first of all a PPPDlg has to be created (so PP-
PDlg.h has to be included at the top of the file). After creating this dialog object,
the number of the created mode has to be set and then the name of the mode has to
be created using the name assigned in the variable m messPPPProcessingMode plus
the corresponding number.

Then, the dialog is opened and when the button OK is clicked, the mode is created
and the corresponding message is shown in the report zone.

When the mode is edited, in the function OnBnClickedModeEdit() also a new con-
dition to this new PPP mode has to be created. Following the structure of other
modes, the code that has to be added is shown in Figure 58.

Figure 58: Code to edit PPP mode

100

8.4 Re-write run PPP function

After the mode is created, it has to run when the check box of the mode is checked
(this is the reason why the main dialog is not used in case of integration with GOCA
GNSS Control). To do that, the run function has to be re-written.

The mode is started with the function OnStartMode, in the file GNSSMode.cpp.
There are different conditionals here, as the example in Figure 59. New condition has
to be added, to check if the chosen mode is the PPP one (if ((pMode-m iMode ==
4))).

Figure 59: If example to execute mode functions

Inside this if, the PPP run function has to be called. This function, that has to be re-
written in the GNSSMode.cpp. The function, is the GOCA PPPDlg::OnBnClickedButton-
PppRun one in GOCA PPPDlg.cpp file. This function has to be copied into a new
function in the GNSSMode.cpp (called, for example StartPPPProcessing).

Besides copying the code, some things has to be modified to show messages in the
corresponding place of GOCA GNSS Control interface (Figure 60) instead in the
message box on PPP software.

Figure 60: GOCA messages example

To do that, the command “m messages.SetWindowText(“text”)” has to be replaced
to “m strModeReport = “text” ”, so all the messages shown in the PPP software will
be shown in the corresponding place of GOCA GNSS Control.

As the progress bar is not needed, “m PPP progress.SetPos(i)” has to be removed or
commented.

101

9. Field tests
As part of the objectives to be covered in the context of this master thesis different
measurements have to be done in order to test the developed software and check the
potential of PPP technic with real data and using a low cost receiver.

In this section, the methodology followed in each of the field test are exposed.

9.1 Test 1: 12-hour observation for post-processing

The first test consists on the performance of 12-hour measurement with the ublox
ZED-F9P GNSS receiver and the NavXperience antenna, in the pillar number 300
(Figure 61) placed in the b-building of the Hochschule Karlsruhe Technick and Wirtschaft
University of Applied Sciences.

Figure 61: Antenna at pillar 300

The date this observation and its characteristics is shown in Figure 62.

Figure 62: 12 hour observation information

How data was collected and the processing parameters chosen is explained in next
sections.

102

9.1.1 Data collection

Data was taken using the module STRSVR of RTKLIB software, that is a commu-
nication server utility, with which user can configure input and output data stream
[1]. So, with this raw data of the receiver can be stored in a file. There are two main
options that has to be configured: the input as serial (the receiver) and the output
as file (Figure 63).

Figure 63: STRSVR configuration

In the input section, it is important to select the corresponding port of the receiver
(this port automatically changes every time the receiver is connected to the computer)
and the bit rate (Figure 64).

Figure 64: Input for STRSVR

In the output configuration, file in which raw data is going to be stored has to be
defined (Figure 65). In this case, the file extension, as the observation was made with
u-blox sensor, is .ubx.

103

Figure 65: Output for STRSVR

After the measurement, an .ubx file is obtained. This file contains the raw data
of the observation, in the u-blox specific format. In order to process this data in
other software as RTKLIB and WaPPP, this file has to be converted into RINEX.
To do this, another module of RTKLIB, called RTKCONV was used. This module
allows different configurations (version of RINEX, observables to include, additional
information to include in RINEX file, etc.). In this case, the main aspects of the
configuration are:

• Station name fixed as p300 (pillar 300).

• RINEX version 2.11. Despite version 3 was also available, version 2.11 was
chosen because WaPPP does not allow the use of RINEX 3.

• Antenna height was introduced, so it appears in the RINEX header.

• All constellations and observables available are used.

Once the RINEX was obtained, some additional information was manually added
to the RINEX header, because the conversion program used does not include this
information that is useful in the processing and also in the final GKA result file. This
information is:

• Pillar name. Even it was indicated in RTKCONV and it is used in the RINEX
file name, it was not included on it.

• Antenna model. This information is necessary to process the data with WaPPP
software if antenna file wants to be use. If not, this software is not able to assign
the corrections as doesn’t know which antenna is it.

• Receiver type. This information is not compulsory, but as its included on GKA
format it was indicated.

These items, with the antenna height can be shown in the RINEX header (Figure
66).

104

Figure 66: RINEX header

As mentioned above, data time interval is 1 second. This can make the processing
slow, so in order to make tests easier and also have a comparison between different
time intervals, RINEX was resampled to 30 seconds. To do this, TEQC software was
used. This is a free software that allows [9]:

• Translate (convert) certain native binary formats to RINEX files.

• Check a RINEX file or files for compliance with the RINEX version 2 specifica-
tion.

• Modify (edit) any existing RINEX header fields in a RINEX file.

• Quality check a valid RINEX.

• Window, cut, or splice two or more RINEX files.

• Create a new RINEX file with a longer sample interval.

Both the 1 second RINEX and the 30 second one have been processed. Results can
be shown in results chapter.

Two different treatments are going to be done of this data: using ultra-rapid products
(near real time processing) and final precise products. In order to process the data,
different files have to be downloaded. These files and the source in which they are
obtained is shown in Figure 67.

105

Figure 67: Files to PPP processing

Not all previous files are needed, but they can be used depending on the processing
parameters.

In addition, the RINEX observation file, navigation files and the antenna files (one
specific for the receiver, and one general for satellites obtained from IGS) are going
to be used in the processing.

9.1.2 Processing parameters

3 different processes have been done with each software engine (RTKLIB and WaPPP)
using the developed PPP software. These are:

• Processing using final products.

• Processing using ultra-rapid products.

• Processing using ultra-rapid products and 30 second sample.

In order to achieve the best results, precise options have been chosen in all cases.
These corrections have been explained at sections 4.4.1 and 4.3.1. That means:

• Use of precise information for orbits and clocks (no broadcast ephemerids are
used).

• Use of iono-free lineal combination.

• Estimate tropospheric delay.

• Use of DCB files.

• Use of BLQ and EOP files (RTKLIB).

106

• Phase wind up correction and rejection of eclipsed satellites (RTKLIB).

Data has been procesed using the developed software in the context of this Master
Thesis. Example of configuration of PPP settings (Figure 68) and RTKLIB settings
(Figure 69) are provided:

Figure 68: PPP settings example

107

Figure 69: RTKLIB settings example

Processing with RTKLIB with 1 second RINEX takes about 8 minutes, while the
same process with the 30 second RINEX takes less than a minute. In case of WaPPP
the process in slower, taking even 20 minutes to process the 1 second RINEX and
about 1 minute in case of 30 second resampled one.

9.2 Test 2: Real-time PPP processing

The second test consists on the performance of PPP real time processing also with
the ublox ZED-F9P GNSS receiver and the NavXperience antenna, in the same pillar
number 300.

The date this observation and its characteristics is shown in Figure 70.

Figure 70: Real-time observation information

108

9.2.1 Processing parameters

The aim of this test is to performance a real-time PPP processing, using SSR cor-
rections, in order to analyze the potential of this technique together with the u-blox
receiver and its later comparison with post-processing results. The software used to
carry on this test is RTKLIB, specifically the module RTKNAVI.

When this test was performed, the real-time part of the developed PPP software was
not available, as it was done after that in order to connect with the sensor using
TPC-IP connection to test it on the TV tower of Stuttgart.

As input, the receiver has to be put as serial and, to get SSR corrections with NTRIP
protocol, this has to be configured with a IGS NTRIP user in the section corrections
of the input dialog (Figure 71).

Figure 71: Real time observation input parameters

Main aspects of the configuration are shown in Figure 72. The most important
parameters, based on previous literature review ([10], [26]), that have been used are:

• Positioning mode: PPP static.

• Apply Solid Earth corrections.

• Ionosphere correction: use iono-free combination.

• Troposphere correction: estimate ZTD and horizontal gradients.

• Satellite and clock information: broadcast + SSR APC. This is the configuration
to use in order to apply SSR corrections to the orbit and clock information.

109

• Apply wind phase up correction.

• Reject eclipsed satellites.

Figure 72: Real time observation parameters

In addition to previous parameters, also antenna files are used (Figure 73). For
satellites, antenna file provided by IGS is used and for receiver, the specific file of it
has been used.

110

Figure 73: Real time observation files

111

Results

113

This chapter shows the result of the different test made under the context of this
master thesis. These results are divided in post-processing observation and real-time
observation.

In the part of post-processing, both software RTKLIB and WaPPP have been used, so
both results are shown. Also, different products (final and ultra-rapid) where used, so
also their results are exposed. All the parameters chosen for both kind of processing
are explained in the previous chapter of development.

In this result section, numerical and graphical results are shown. Later, in the chapter
of discussion, a more in-depth analysis of these results will be shown.

In all the processing approaches that have been done, apart from the position file in
the own format of RTKLIB or WaPPP from which the graphs have been build, a GKA
file is obtained. Figure 74 shows an example of the obtained file. The information
included on it is described in section 6.2.

Figure 74: GKA output file example

114

10. Test 1: 12-hour observation
First test, according to section 9 was 12 hour observation. The results of the process-
ing of this data is shown in this section.

10.1 RTKLIB as software engine

10.1.1 Ultra-rapid products

Results in terms of coordinates (cartesian and geodetic) and their corresponding errors
are shown in Figure 75.

Figure 75: Coordinates and errors RTKLIB with ultra-rapid products

The evolution of geocentric coordinates along observation time obtained after pro-
cessing the 12 hour observation data with RTKLIB using ultra-rapid products are
shown in Figure 76. Coordinates along the observation time. Coordinates are shown
in meters.

115

Figure 76: Coordinates along time RTKLIB with ultra-rapid products

In general coordinates seem to get stable after the first hour of observation. As in
first epochs the result changes considerably, Figure 77 has been done, representing
the same of the first one but in this case the Y axis shown includes only a range of
50 centimetres.

116

Figure 77: Coordinates along time RTKLIB with ultra-rapid products (detail)

According to previous Figure, coordinates get stable in a range of 50 centimetres after
1 hour of observation in case of X and Z and after 3 hours in Y coordinate. X coordi-
nate gets stable in a range of 20 centimetres after 5 hours and around 10 centimetres
after 7 hours. Y coordinate also seem stable at 20 centimetre level after 5 hours and
the range of 10 centimetres is achieved after 7-8 hours, but the final hours are less
stable than in case of the other coordinates. Z coordinate is stable at 10 centimetres
level in approximately 3 hours.

Usually, in PPP processing, it is important to see the evolution of the error along
time. This is shown in Figure 78. This error in first minutes of observation is quite
high (around 4 meters) so the graph can not be fully interpreted.

117

Figure 78: Errors along time RTKLIB with ultra-rapid products

In order to see errors in more detail, Figure 79 shows again the evolution of error
along time but in this case with a more detailed Y axis.

118

Figure 79: Errors along time RTKLIB with ultra-rapid products (detail)

After the first hour of observation, the estimated error is less than 2 centimetres and
it remains approximately in 1 centimetre level from 5-6 hours, even less after 9 hours
of observation.

RINEX resampled to 30 seconds

As mentioned in section 9.1, processing 1 second interval RINEX with 12 hour data
can take high time. In order to test how the time interval affects the results, the
same processing but this time with the resampled RINEX has been done. Results are
shown in Figure 80.

Figure 80: Coordinates and errors RTKLIB with ultra-rapid products - 30 seconds

The evolution of coordinates with time in this case is shown in Figure 81. This graph
is detailed at 50 centimetres in Y axis, the complete one is shown in Annex B (same
with all the graphs from here on).

119

Figure 81: Coordinates along time RTKLIB with ultra-rapid products - 30 seconds
(detail)

In this case, coordinates are more stable along time. After one hour of observation,
coordinates are stable at around 10 centimetres and even better after 4-6 hours.

The evolution of errors along time in this case is shown in Figure 82 (complete one
in Annex B).

120

Figure 82: Errors along time RTKLIB with ultra-rapid products - 30 seconds (detail)

Errors have a value around 4 centimetres after 2 hours and they decrease to 2 centime-
tres after 7 hours of observation. In case of Y coordinate, it is around 1 centimetre
from 10 hours on.

10.1.2 Final products

In this section results of using final products are shown. Complete graphs are included
in Annex B. The obtained results are shown in Figure 83. Both geocentric and
geodetic coordinates are shown.

Figure 83: Coordinates and errors RTKLIB with final products

Coordinates are shown in cartesian and geodetic coordinates, but all graphs are shown
in cartesian ones. Figure 84 shown the evolution of coordinates along time.

121

Figure 84: Coordinates along time RTKLIB with final products (detail)

As it happened in the case of ultra-rapid products, X and Z coordinate get stable
at 50 centimetres level after 1 hour and in case of Y this time is around 3 hours.
Coordinate X is stable at 20 centimetres level after 20 centimetres and the stability
gets better (10-15 centimetres) in 7 hours. Case of Y coordinate is quite similar, 20
centimetres of variation after 5 hours and 10-12 centimetres in 7 hours of observation.
Coordinate Z gets a 10-12 centimetres stability after 3 or 4 hours.

Evolution of errors is shown in Figure 85.

122

Figure 85: Errors along time RTKLIB with final products (detail)

After the first hour of observation errors are less than 2 centimetres and after 5 hours
from the beginning they are around 1 centimetre, even less in case of Y coordinate.

10.1.3 RTKLIB results comparison

Previous sections show the results of different processing with RTKLIB. In order to
compare them easier, all graphs have been put together: results with final products,
ultra-rapid and ultra-rapid with a resample of 30 seconds. The full comparison, in-
cluding WaPPP software and real-time is done in section 12.

Figure 86 shows the obtained Cartesian coordinates (detailed in Y axis). Red line
represents the reference coordinates of the pillar number 300. From these graphs can
be pointed out that, in general, the result with final and with ultra-rapid products is
really similar.

In case of X coordinate, both final and ultra-rapid products provide almost the same
result, but at the end of the observation little differences can be seen, being final prod-
ucts the ones that are closer to the reference X. With ultra-rapid products 30 seconds
resampled, obtained X seems to be more stable, but its value is below the reference
one. In case of Y coordinate, is the ultra-rapid 30 seconds resampled computation
is the one that provides a closer value to the reference one. At last, Z coordinate is

123

similar to the case of X coordinate, being ultra-rapid product result the one that is
closer to reference coordinate and ultra-rapid resampled one is under the reference
value.

Figure 86: Cartesian coordinates pillar 300 with RTKLIB

Figure 87 shows the corresponding obtained errors. As can been seen, final and ultra-
rapid products provide almost the same result while the resampled one has always a
higher value and it takes more time to be stable as the other two.

124

Figure 87: Errors in coordinates pillar 300 with RTKLIB

10.2 WaPPP as software engine

10.2.1 Ultra-rapid products

Results obtained when processing the data with WaPPP and ultra-rapid products
are shown in Figure 88.

Figure 88: Coordinates and errors RTKLIB with ultra-rapid products

Evolution of coordinates obtained in each epoch can be seen in Figure 89. No tendency
can be extracted from the graph and in the whole time of observations coordinates
vary less than 1.5 meters. This does not provide useful information about convergence.

125

Figure 89: Coordinates along time WaPPP with ultra-rapid products

The same occurs with the variation of error along time (Figure 90). Errors are under
8 centimetres in that main part of time and do not exceed 18 centimetres at any
epoch. Again this kind of graph is not really useful, so they are not included in
further WaPPP sections.

126

Figure 90: Errors along time WaPPP with ultra-rapid products

RINEX resampled to 30 seconds

When processing the resampled RINEX, obtained values are almost the same than
using 1 second RINEX. Results are shown in Figure 91.

Figure 91: Coordinates and errors RTKLIB with ultra-rapid products - 30 seconds

Corresponding graphs, as they don’t provide additional information, are included in
Annex B.

10.2.2 Final products

Results obtained with WaPPP as softare engine when using final products are shown
in Figure 92.

127

Figure 92: Coordinates and errors RTKLIB with final products

Accuracy obtained when using final products is better than the one obtained when
using ultra-rapid products also in case of WaPPP software. However, graphs are not
relevant so the have been included in Annex B.

128

11. Test 2: real-time processing
The obtained results from the real-time PPP processing (section 9.2) are shown in
Figure 93. The results are latitude, longitude and height and the corresponding errors.

Figure 93: Real time processing result

Estimated accuracy in North and East directions is 8 millimetres and in Up direction
(corresponding to height) is about 2 centimetres.

The evolution of the coordinates along the observation time is shown in Figure 94.
The red line represents the reference coordinates of pillar 300.

Figure 94: Real time processing result graph

As can be seen in above graph, both latitude and longitude get practically stable,
under approximately 5 cm level, after 30 minutes of observation. However, height is
less stable at it needs about 60 minutes of observation to get more or less stable in a

129

decimetre level.

The evolution of errors is shown in detail in Figure 95 (complete one in Annex B).
Errors in horizontal coordinates are under 5 centimetres after 10 minutes of observa-
tion and get around 1 centimetre in 40-50 minutes. Height error is higher, under 15
centimetres after first 15 minutes and it takes 50 minutes to get under 5 centimetres.
Finally, it is about 2 centimetres.

Figure 95: Real time processing result errors graph

130

12. Result comparison
In previous sections, obtained results using both RTKLIB and WaPPP software with
ultra-rapid and final products have been shown. In order to analyse them deeper,
in this section a comparison will be made between them. All coordinates are going
to be compared with reference coordinates, obtained in a test field done by HSKA
Laboratory on GNSS and Navigation, processed with an online PPP service, in the
reference frame ITRF2014.2019.08.

Figure 96 shows all the obtained coordinates, included ones with RTKLIB and WaPPP
in post-processing and also the ones obtained in the real-time observation.

Figure 96: Cartesian coordinates pillar 300

In case of RTKLIB processor, differences between obtained coordinates and reference
ones are:

• X coordinate:

– Final products: 2 mm.

– Ultra-rapid products: 14 mm.

– Ultra-rapid products 30 seconds: 63 mm.

– Real-time: 198 mm.

So the most similar is the one with final products and the one that differs the
most corresponds to the real time observation.

• Y coordinate:

– Final products: 256 mm.

– Ultra-rapid products: 214 mm.

– Ultra-rapid products 30 seconds: 47 mm.

131

– Real-time: 213 mm.

This coordinate differs more with the reference one, being the most similar the
one corresponding to the resampled RINEX and ultra-rapid products.

• Z coordinate:

– Final products: 13 mm.

– Ultra-rapid products: 2 mm.

– Ultra-rapid products 30 seconds: 46 mm.

– Real-time: 229 mm.

Real-time is again the one that differs more with respect the reference coordinate
and, in this case. the ultra-rapid results are the most similar, but the final
products also provide a quite similar solution.

In case of WaPPP processor, differences between obtained coordinates and reference
ones are:

• X coordinate:

– Final products: 30 mm.

– Ultra-rapid products: 65 mm.

– Ultra-rapid products 30 seconds: 90 mm.

• Y coordinate:

– Final products: 50 mm.

– Ultra-rapid products: 4 mm.

– Ultra-rapid products 30 seconds: 3 mm.

• Z coordinate:

– Final products: 83 mm.

– Ultra-rapid products: 60 mm.

– Ultra-rapid products 30 seconds: 79 mm.

It can be pointed out that the results in WaPPP are more stable, that means that
all coordinates differ more or less the same with respect the reference ones, while
RTKLIB provides more similar X and Z coordinates but in Y coordinate the results
is more different. In terms of coordinates, there is not a clear pattern about what
results are better, except of the case of real-time, that is always more different to the

132

reference coordinates that in any other case.

Corresponding errors are shown in Figure 97. In case of RTKLIB, both final and
ultra-rapid products provide errors between 4 and 7 millimetres. With the resampled
RINEX, errors get between 10 and 15 millimetres. In case of WaPPP, errors with final
products are between 23 and 37 millimetres, between 31 and 49 in case of ultra-rapid
products and also between 31-49 in the resampled RINEX case.

Figure 97: Cartesian coordinates errors pillar 300

Despite results of PPP are usually give as Cartesian coordinates, it is more intu-
itive to see geodetic coordinates, because we can analyse separately horizontal and
vertical components, so this are also included in this section (Figure 98). In this
case, the obtained results with the data of the 12 hour measurement processed
using the CSRS PPP online service (https://webapp.geod.nrcan.gc.ca/geod/
tools-outils/ppp.php) are also included.

Figure 98: Geodetic coordinates pillar 300

Latitude and longitude are really similar in all results. In case of latitude, the only
one that differs in the sixth decimal corresponds to WaPPP processor with final prod-
ucts. In case on longitude, there are some little differences in RTKLIB and also in
WaPPP (final products).

133

https://webapp.geod.nrcan.gc.ca/geod/tools-outils/ppp.php
https://webapp.geod.nrcan.gc.ca/geod/tools-outils/ppp.php

Main differences can be noticed in height. Differences between reference one and
obtained are:

• CSRS service, both final and ultra-rapid products: 24-25 mm.

• RTKLIB with final products: 32 mm.

• RTKLIB with ultra-rapid products: 13 mm.

• RTKLIB with ultra-rapid products - 30 seconds: 79 mm.

• RTKLIB real-time: 321 mm.

• WaPPP with final products: 75 mm.

• WaPPP with ultra-rapid products: 75 mm.

• WaPPP with ultra-rapid products - 30 seconds: 75 mm.

The corresponding errors, in N,E and U directions, are shown in Figure 99.

Figure 99: Geodetic coordinates errors pillar 300

The analysis of the meaning of all these results is made in the Discussion section.

134

Discussion

135

In the previous part, the different results obtained from the PPP processing using
different products and software engines are shown. In this section, those results are
going to be analysed.

First of all, it is notorious that the resulting graph of the processing using RTKLIB is
not the same that the one obtained using WaPPP software. The result of the first one,
RTKLIB, provides a kind of graph, with the traditional appearance of PPP graphs
presented in papers and books (example in Figure 100). In this kind of graphs, it can
be seen how obtained coordinates get more and more stable along time, and the same
with the corresponding error, that is every time lower and more stable. However,
WaPPP result graph is not like that and the in the obtained graph no pattern can
be interpreted.

Figure 100: PPP error graph example [3]

RTKLIB uses extended Kalman filter, so the unknown parameters including the re-
ceiver position and velocity, the receiver clock bias, the troposphere parameters and
the ionosphere-free LC carrier-phase biases are estimated with a measurement vector
in a specific epoch [1]. This can explain the resulting graph, as each new computa-
tion is based in prediction and also contains all the previous epochs, so each time
is smoother and more stable. In case of WaPPP the manual does not provide the
algorithm used by the program, so no more conclusions can be extracted.

Some differences can be also seen between both software engines in terms of how the
use of different products or sample intervals affects the results.

In case of RTKLIB, using final or ultra-rapid products does not make a big difference,
as obtained coordinates are quite similar and their corresponding errors are practi-
cally the same. However, when data is resampled from 1 second to 30 seconds, the
obtained coordinates change a little bit with respect the previous ones and errors get
higher (approximately they become the double of the obtained with 1 second data
processing). As RTKLIB computes a solution from a prediction it makes sense that,
having less observations (in the resampled file), the result is worse than having a

136

larger number of epochs.

In case of WaPPP software, the result using final and ultra-rapid products is not the
same. Using final products provides a lower error than using ultra-rapid ones. In this
case, when the resampled file is processed, the results does not vary significantly with
respect the previous one.

In terms of resulting errors, RTKLIB provides lower ones than WaPPP software. The
range of RTKLIB is around half centimetre in horizontal and about 1 centimetre in
height in 2 second data and below 1 centimetre in horizontal and around 2 centime-
tres in height in case of the resampled one. In case of WaPPP, errors are close to
2 centimetres in horizontal and 4 in vertical component when using final products
and they come to 3 centimetres in horizontal and 5 in height in case of ultra-rapid
products.

With respect the coordinate differences with the reference ones, in case of Cartesian
coordinates no significant differences can be appreciated, as X and Z coordinates are
better in RTKLIB but in Y coordinate, WaPPP results is closer to the reference
one. When analysing geodetic coordinates, in terms of latitude and longitude they
are quite similar, but in case of height RTKLIB seem to be closer to the reference one.

In real-time processing using SSR via NTRIP protocol, despite RTKLIB is used, can-
not be included in the previous analysis as the way of processing is different. In this
case, the obtained coordinates differ more with the reference ones with respect to the
reference coordinates. The convergence time, is lower than in case of post-processing,
after one hour and a half, the same errors that the ones obtained in the post pro-
cessing mode of 12 hours of observation with the resampled RINEX and ultra-rapid
products are achieved.

In general, the obtained results confirm the potential of PPP as technic for high ac-
curacy applications, as errors obtained are, in all cases, in centimetre level, what is a
nice result taking into account that the receiver used was a low cost one.

The obtained results are consistent with other results provided by other authors in
the literature. As the case of [31], that shows an overall horizontal accuracy of 15
centimetres and a vertical accuracy of 25 centimetres after 10-minute initialization
time using SSR corrections. Also in post-processing mode, other authors have pointed
out accuracies below the centimetre when using large range of data (24 hours) and
post-processing [3].

Results show, as mentioned, a high potential of the PPP technic. However, in the
context of this master thesis, that is geomonitoring, some aspects have to be taken

137

into account to choose one or another kind of products and processing.

In permanent geomonitoring is needed to early detection of movements, final prod-
ucts could not be used, as their latency time is about 13 days. However, it can be
useful to obtain precise coordinates in certain circumstances, as the case of the stable
points used in the current version of GOCA GNSS Control, so they can be checked
from time to time.

Both real-time and post-processing with ultra-rapid products can be used for ge-
omonitoring. Real-time, theoretically can detect earlier changes, but as seen in the
results section it less stable and also has some technical limitations as the need of
internet connection. Using ultra-rapid products could be a good option to process,
for example 12-hour package data when the expected movement is not really fast (as
in case of some buildings or mountains, where the movement is quite slow).

138

Conclusions and future work

139

13. Conclusions
The main aim of this master thesis was the development of a dialog-based C++ soft-
ware for PPP processing, using both RTKLIB and WaPPP as software engines in the
context of the geomonitoring software GOCA. This development. This development
is complemented by the theoretical research of different PPP processing approaches
and general GNSS processing issues.

In addition, two different measurements have been carried out to perform PPP pro-
cessing. These measurements are: first one, 12-hour measurement in order to process
static PPP in post-processing and a second one, 90 minutes, with real-time process-
ing. Both measurements were done using a low cost receiver (U-Blox ZED-F9P), so
under the context of this master thesis the possibility of using a low cost receiver to
geomonitoring applications would also be checked.

By last, this master thesis also pretended to make an analysis of differences found in
different PPP processing aspects, such as using different processing engines, different
IGS products (ultra-rapid and final ones) and even different PPP technics (post-
processing and real-time).

In summary, this master thesis encompasses the whole process of PPP, from data
collection to analysis of results using different approaches, going through the devel-
opment of the necessary software to process the data.

Focusing on the development part of this work, it was initially raised as a part of the
geomonitoring software GOCA, in the module named GOCA GNSS Control, with the
introduction of PPP processing as a new mode, with the purpose to obtain absolute
coordinates as a new observation type on it. At this point some difficulties have been
found, so the integration of the new PPP software with the already existing GOCA
GNSS Control could not be fully developed.

The PPP software itself has been tested with different data, and during the implemen-
tation obtained results were compared with the ones obtained directly using RTKLIB
user interface or WaPPP command line, in order to ensure they were the same. So, it
can be concluded that the software developed under the context of this master thesis
is functional and its main advantage regarding using directly the software engines
is that it makes it easier to the user, using a unique interface for both. In case of
WaPPP, having a user interface is ne, as the software engine itself works with com-
mand line. In case of RTKLIB, eliminating unnecessary options to PPP is helpful
to the user comprehension, as the interface provided in RTKPOST have additional
option for other kind of processing.

140

In relation to the results obtained from the field tests, analysed in the Discussion
section, it can be concluded that, in general, this master thesis supports other stud-
ies that say the PPP technique has great potential. After evaluating two different
software engines and different products and time intervals in case of post-processing,
some aspects can be pointed out:

• RTKLIB provides, in general, lower errors than WaPPP software.

• RTKLIB provides a resulting graph in which we can see how coordinates an
errors are getting more constant with time, while the graph obtained with the
data processed using WaPPP is not interpretable.

• When using a large range of data (12-hours) and different settings to increase
accuracy (Earth tide corrections, iono-free combination, etc.) final products
does not make a great difference with respect ultra-rapid products.

With respect real-time observation, obtained results were worst in general. Although
the results get good accuracy faster, the coordinates obtained differ more than the
actual ones.

In view of the results obtained mentioned above, we can ensure that PPP technique
can be used in the context of geomonitoring. Using IGS final products was for re-
search reasons, as in practice the latency time is too high (around 2 weeks) to use
them in a continuous monitoring. However, they can be used when some point wants
to be precisely checked from time to time. Using ultra-rapid products is a good op-
tion for quasi-real time monitoring. Even it is post-processing, the low convergence
time allows this kind of “quasi-real time”. That means that data can be processed,
for example, each 12 hours, that is a time range enough to detect movements, as the
kind of movements usually presented in geomonitoring are not really fast.

Real-time is of course an alternative to post-processing, but some more research has
to be done to ensure good results and it is needed internet connexion, what can be a
limitation in certain areas or applications.

The obtained results can with a low cost receiver are fully comparable with results in
other studies using a more expensive receiver, so it can be also confirmed the potential
of this U-Blox ZED-F9P receiver to high accuracy GNSS applications.

So, in general, this master thesis has covered the expected objectives. The still some
limitations and future work to do (see Future work section) but it can contribute
to PPP processing field, as it has pointed out good results using a low cost receiver
and also an analysis of different software engines and processing parameters has been
made.

141

14. Future work
Many different developments, tests, and experiments have been left for the future due
to lack of time and the huge range of possibilities that can be studied in the context
of PPP and also geomonitoring. Future work concerns integration issues with GOCA
GNSS Control module, deeper analysis of particular PPP settings and further testing
of absolute coordinates obtained from PPP in the context of geomonitoring. Some
suggestions for future work are presented in this section.

In relation to the integration of the developed PPP software into GOCA GNSS Con-
trol, as explained before, some work is still needed to finish the integration. The
most important aspect on this point is updating the existings GOCA GNSS Control
software in order to make it fully functional and compilable under Visual Studio 2019.
The limitating factor is that, even the .dll can be compiled and changes in function-
allity can be applied, the user interface does not get updated when re-compiling the
software, so no one additional mode (PPP mode) can be added.

Processing parameters chosen to PPP processing has been set according a previous
literature review, but using the ones available in existing software engines. It could
be interesting making a deeper analysis of how specific parameters affect the results,
as for example see what is the contribution of a specific parameter as could be the
BLQ file or any other.

In addition, there exist some other approaches, as PPP with ambiguity resolution,
that are not jet finished in RTKLIB or WaPPP, but some studies point out the po-
tential of this approach, so it could be a good future work, implementing some of this
technics and comparing the results with the ones presented in this document.

In relation to real-time PPP, some more research is needed in order to obtain more
stable coordinates, especially in case of height, that has been the most problematic
coordinate in this master thesis.

142

References
[1] RTKLIB 2.4.2 Manual. 2013.

[2] Neil Ashby. The Sagnac Effect in the Global Positioning System. In Guido Rizzi
and Matteo Luca Ruggiero, editors, Relativity in Rotating Frames. Fundamental
Theories of Physics. Springer, Dordrecht, 2004.

[3] Sunil Bisnath and Yang Gao. Precise Point Positioning. A powerful technique
with a promising future. GPS World, April 2009:43–50, 2009.

[4] Mark Caissy, Loukis Agrotis, Georg Weber, Manuel Hernandez-Pajares, and Urs
Hugentobler. The International GNSS Real-Time Service. GPS World, 2012.

[5] Raquel M. Capilla, José Luis Berné, Angel Mart́ın, and Raul Rodrigo. Simulation
case study of deformations and landslides using real-time GNSS precise point
positioning technique. Geomatics, Natural Hazards and Risk, 7(6):1856–1873,
2016.

[6] Suelynn Choy, Sunil Bisnath, and Chris Rizos. Uncovering common misconcep-
tions in GNSS Precise Point Positioning and its future prospect. GPS Solutions,
2016.

[7] Collins. Undifferenced GPS Ambiguity Resolution Using the Decoupled Clock
Model and Ambiguity Datum Fixing. 57(2):1–35, 2009.

[8] ESA. Navipedia.

[9] Lou Estey and Stuar Wier. Teqc Tutorial. Basics of Teqc Use and Teqc Products.
UNAVCO, 2014.

[10] Tim Everett. rtklibexplorer, 2018.

[11] J. Geng, F. N. Teferle, X. Meng, and A. H. Dodson. Towards PPP-RTK: Ambigu-
ity resolution in real-time precise point positioning. Advances in Space Research,
47(10):1664–1673, 2011.

[12] Geo++ GmbH. State Space Representation. 2015.

[13] Bernhard Hofman-Wellenhof, Herbert Lichtenegger, and Elmar Wasle. GNSS:
Global Navigation Satellite Systems. GPS, GLONASS, Galileo & more. Springer-
WienNewYork, 2008.

[14] Chen Horng-yue, Kuo Long-chen, Chung Wang-shung, and Yu Shui-beih. Using
quasi ionosphere-free post-processing algorithm on the medium-range kinematic
high accuracy GPS relative positioning. Wuhan University Journal of Natural
Sciences, 8(2):610–618, 2008.

143

[15] Katrin Huber, Florian Heuberger, Christoph Abart, Ana Karabatic, Robert We-
ber, and Philipp Berglez. PPP: Precise Point Positioning – Constraints and
Opportunities Katrin. TS 10C - GNSS Modernisation and Trends, (April):11–
16, 2010.

[16] IGS Antenna Working Group. IGS antenna files. Technical report, ESA, 2017.

[17] International GNSS Service. IGS.

[18] Reiner Jäger. GNSS / GPS / LPS based Online Control and Alarm System
(GOCA) - Mathematical Models and Technical Realisation of a System for
Natural and Geotechnical Deformation Monitoring and Analysis -. Online, 0:1–
11, 2006.

[19] Reiner Jäger. Methods and Approaches for Integrated Deformation Analysis. In
International Workshop ”Integration of Point- and Area-wise Geodetic Monitor-
ing for Structures and Natural Objects”, number 0, Novosibirsk, 2014.

[20] Reiner Jäger and Lyudmila Gorokhova. Integrated geomonitoring with innova-
tive sensor technology, IT and modelling on the reference object Fernsehturm
Stuttgart.

[21] Reiner Jäger, Tilman Müller, Heinz Saler, and Rainer Schwäble. Klassische und
robuste Ausgleichungsverfahren - Ein Leitfaden für Ausbildung und Praxis von
Geodäten und Geoinformatikern. Herbert Wichmann Verlag, Heidelberg, 2005.

[22] Bofeng Li and Peter J.G. Teunissen. High Dimensional Integer Ambiguity Res-
olution: A First Comparison between LAMBDA and Bernese. Journal of Navi-
gation, 64(S1):S192–S210, 2011.

[23] A. Mart́ın, A. B. Anquela, A. Dimas-Pagés, and F. Cos-Gayón. Validation of
performance of real-time kinematic PPP. A possible tool for deformation moni-
toring. Measurement: Journal of the International Measurement Confederation,
69:95–108, 2015.

[24] NASA. NASA CDDIS, 2019.

[25] Thomas D Papanikolaou and Stavros Melachroinos. Quantifying mis-modelling
effects in the GNSS yaw- attitude and phase wind-up. International Global
Navigation Satellite Systems Association IGNSS Conference 2016, (December),
2016.

[26] Mauricio Ernesto Paredes Wiedehold. Procesamiento PPP de observaciones
GNSS utilizando RTKLIB. PhD thesis, Universidad de Santiago de Chile, 2013.

144

[27] M. Oswald R. Jäger, A. Hoscislawski. GNSS/LPS/LS based Online Control and
Alarm System (GOCA) - Mathematical Models and Technical Realization of
a Scalable System for Natural and Geotechnical Deformation Monitoring and
Analysis -. Geodetic Deformation Monitoring: From Geophysical to Engineering
Roles: IAG Symposium Jaén, Spain March 17–19, 2005, 131(August):376–383,
2006.

[28] Pierre Fridez Rolf Dach, Simon Lutz, Peter Walser. Bernese GNSS Software,
Version 5.2, volume 47. 2015.

[29] Junbo Shi. Precise Point Positioning Integer Ambiguity Resolution with Decou-
pled Clocks. PhD thesis, University of Calgary, 2012.

[30] Junbo Shi and Yang Gao. A comparison of three PPP integer ambiguity resolu-
tion methods. GPS Solutions, 18(4):519–528, 2014.

[31] Junbo Shi, Chaoqian Xu, Jiming Guo, and Gao Yang. A Performance Analysis
of Real-Time Precise Point Positioning for Deformation Monitoring. 2013.

[32] U-blox. ZED-F9P Data Sheet. www.u-blox.com, 2019.

[33] Lambert Wanninger. WaSoft, 2019.

[34] WaSoft. User ’ s Guide Wa1. (September), 2010.

[35] WaSoft. WaSoft User ’ s Guide. 2(July), 2018.

[36] Greg Welch and Gary Bishop. An Introduction to the Kalman Filter. In Practice,
7(1):1–16, 2006.

[37] Walter M Welsch and Otto Heunecke. Models and terminology for the analysis
of geodetic monitoring observations. The 10th FIG Internaitonal Symposium on
Deformation Measurements, (25):390–412, 2001.

[38] Gao Yang. GNSS Solutions: Precise point positioning and its challenges, aided-
GNSS and signal tracking. Inside GNSS, 1(8):16–18, 2006.

145

Annexes

147

Annex A. GUI variables
In this annex, the different interface variables that have been used in the PPP soft-
ware are indicating. For each variable, the ID, the variable name used in the code
and the variable type is shown. The purpose of this annex is to provide a help in case
something needs to be modified.

Variables on the main PPP window 1:

Figure A1: Main PPP dialog

Figure A2: Variables in main PPP dialog

1This image corresponds to the fisrt version of the software, in the second one stop button is
added with id IDC BUTTON T

148

Variables corresponding to general PPP settings dialog in post-processing:

Figure A3: General PPP settings dialog

149

Figure A4: Variables in general PPP settings dialog

150

Variables corresponding to RTKLIB settings dialog (post-processing):

Figure A5: RTKLIB settings dialog

151

Figure A6: Variables in RTKLIB settings dialog

152

Variables corresponding to WaPPP settings dialog:

Figure A7: WaPPP settings dialog

Figure A8: Variables in WaPPP settings dialog

153

Variables corresponding to main window to choose the processing mode:

Figure A9: Main window dialog

Figure A10: Variables in main window dialog

Variables corresponding to TPC dialog:

Figure A11: TPC dialog

Figure A12: Variables in TPC dialog

154

Variables corresponding to PPP settings (real-time) :

Figure A13: PPP settings dialog (real-time)

155

Figure A14: Variables in PPP settings dialog (real-time)

156

Variables corresponding to SSR dialog:

Figure A15: SSR dialog

Figure A16: Variables in SSR dialog

157

Annex B. Other results
In this Annex, graphs that are not included in section ”Results” are provided.

RTKLIB with ultra-rapid products - 30 seconds

Figure B1: Coordinates along time RTKLIB with ultra-rapid products - 30 seconds

Figure B2: Errors along time RTKLIB with ultra-rapid products - 30 seconds

158

RTKLIB with final products

Figure B3: Coordinates along time RTKLIB with final products

Figure B4: Errors along time RTKLIB with final products

159

WaPPP with ultra-rapid products - 30 seconds

Figure B5: Coordinates along time WaPPP with ultra-rapid products - 30 seconds

Figure B6: Errors along time WaPPP with ultra-rapid products - 30 seconds

160

WaPPP with final products

Figure B7: Coordinates along time WaPPP with final products

Figure B8: Errors along time WaPPP with final products

161

	List of figures
	List of Abbreviations
	Introduction
	Motivation
	Objectives
	Theoretical background
	GOCA - GNSS/LPS/LS-based online Control and Alarm System
	Mathematical models used in GOCA
	Gauss-Markov model
	Kalman filtering

	GOCA components
	GOCA computation steps
	Step 3. Deformation Analysis

	Further developments: Integrated Deformation Analysis
	Stuttgart TV Tower: Reference Object for SHM
	SHM-Implementation on Stuttgart TV Tower

	GNSS positioning
	Terminology
	Absolute Positioning: Benefits and Limitations
	Fundamentals of Point Positioning
	Ionosphere-free linear combination

	Aproaches to Pecise Point Positioning
	GNSS Error Mitigation for PPP
	Ambiguity resolution
	Quasi Ionosphere Free (QIF) Algorithm
	PPP-RTK

	GNSS processing software engines
	GNSS Low Cost Receiver: u-blox ZED-F9P
	Development
	Wa Software updating study
	Theorical comparison
	Example comparison

	GKA files
	GKA 13 for baselines
	GKA 14 for PPP

	PPP software implementation
	Study of processing parameters for PPP
	Processing parameters in WaPPP
	Processing parameters in RTKLIB
	Comparison between WaPPP and RTKLIB for PPP

	Graphical user interface
	Configuration error management

	Software architecture - General aspects
	Function files
	Dialog files
	Other files

	Software architecture - Post-processing
	Dialog files
	Other files
	Software architecture diagram

	Software architecture - Real-time
	Dialog files
	Other files
	Software architecture diagram

	GKA information
	Cofactor matrix calculation

	Integration proposal of PPP software with GOCA GNSS Control
	Add dialogs and source code files
	Create new PPP mode in GOCA
	Create code for PPP mode
	Re-write run PPP function

	Field tests
	Test 1: 12-hour observation for post-processing
	Data collection
	Processing parameters

	Test 2: Real-time PPP processing
	Processing parameters

	Results
	Test 1: 12-hour observation
	RTKLIB as software engine
	Ultra-rapid products
	Final products
	RTKLIB results comparison

	WaPPP as software engine
	Ultra-rapid products
	Final products

	Test 2: real-time processing
	Result comparison

	Discussion
	Conclusion
	Conclusions
	Future work

	References

	Annexes
	Annex A
	Annex B

