

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/139771

Lucas Alba, S. (12-2). Proving semantic properties as first-order satisfiability. Artificial
Intelligence. 277:1-24. https://doi.org/10.1016/j.artint.2019.103174

https://doi.org/10.1016/j.artint.2019.103174

Elsevier

Proving Semantic Properties as First-Order
SatisfiabilityI

Salvador Lucas1

a Valencian Research Institute for Artificial Intelligence (VRAIN)
Universitat Politècnica de València, Spain

http: // slucas. webs. upv. es/

Abstract

The semantics of computational systems (e.g., relational and knowledge data
bases, query-answering systems, programming languages, etc.) can often be ex-
pressed as (the specification of) a logical theory Th. Queries, goals, and claims
about the behavior or features of the system can be expressed as formulas ϕ
which should be checked with respect to the intended model of Th, which is often
huge or even incomputable. In this paper we show how to prove such semantic
properties ϕ of Th by just finding a model A of Th ∪ {ϕ} ∪ Zϕ, where Zϕ is an
appropriate (possibly empty) theory depending on ϕ only. Applications to re-
lational and deductive databases, rewriting-based systems, logic programming,
and answer set programming are discussed.

Keywords: Automated reasoning, First-Order Logic, Logical models

1. Introduction

Artificial Intelligence (AI) is a main ‘user’ of logic (see [61] for a recent sur-
vey). In his 1995 book [45], Robert C. Moore distinguishes three main roles of
logic in AI: as an analytical tool, as a knowledge representation and reasoning
system, and as a programming language. For instance, knowledge databases can
be represented as theories of more or less sophisticated logics, like in relational
[10], or deductive databases [48]. Queries are presented as (or translated into)
specific formulas ϕ to be proved with respect to the underlying theory [22].
In a programming setting, declarative programming languages are intended to
represent programs as (the specification of) theories of a given logic and the
execution of the program as deduction of a goal ϕ representing some compu-
tation. Logic, functional, and rewriting-based programming languages (among
others) can be seen in this way. Imperative programs and their operational
semantics can also be represented as a theory of a given logic and its execution

IPartially supported by the EU (FEDER), and projects RTI2018-094403-B-C32, PROM-
ETEO/2019/098, and SP20180225.

Preprint submitted to Elsevier September 17, 2019

investigated by using logic [38]. Besides the intended or ‘normal’ deductive use
of logic to implement the expected functionality of databases (queries, checking
functional dependencies and integrity constraints, etc.) or programs (executing
them), logic can also be used to discover properties of the systems, by means of
formulas ϕ involving symbols which are meaningful for the user. From a logical
point of view, in all these cases the following approach is naturally adopted [22]:

can ϕ be proved from Th? (written Th ` ϕ) (1)

Example 1. Consider the following relational database about teachers (a, b, c, d)
and students (p, q, r) together with a relation teach giving information about the
students taught by each teacher, according to the table [50, page 59]

teach Teacher Student
a p

a q

b q

c r

This table describes a (many-sorted) first-order theory Teach consisting of the
following facts:

teach(a, p), teach(b, q), teach(a, q), teach(c, r)

where teach is a binary predicate with arguments of sort Teacher and Student,
respectively. The question “ is a teaching someone?” would be encoded as:

(∃y : Student) teach(a, y) (2)

McCune’s (first-order) theorem prover Prover9 [39] obtains a proof of (2).

However, in some cases, the approach (1) may lead to counterintuitive results.

Example 2. When faced to the question “ is d teaching someone?”, i.e.,

(∃y : Student) teach(d, y) (3)

Prover9 fails to obtain a proof of (3). An attempt to prove the negation of (3),

¬(∃y : Student) teach(d, y) (4)

with Prover9 also fails. Now, following Prover9/Mace4 documentation, “ if the
statement is the denial of some conjecture, any structures1 found by Mace4 are
counterexamples to the conjecture”.2 With Mace4 we obtain a countermodel3

1A structure is an interpretation of the function and predicate symbols in the usual sense,
see Section 2 below.

2https://www.cs.unm.edu/~mccune/prover9/manual/2009-11A/mace4.html
3i.e., a model of the theory together with the negation of the considered formula.

2

of (3). We would then conclude that (4) holds. Consider now the claim “ every
student is taught by some teacher”, i.e.,

(∀y : Student)(∃x : Teacher) teach(x, y) (5)

Prover9 fails to prove this goal, but Mace4 obtains a countermodel. However, we
expect (5) to hold; what should we think of such a ‘countermodel’?

In order to clarify this issue and answer the question posed in the last sentence of
Example 2, first note that the provability-based information retrieval/analysis
approach represented by (1) is equivalent, when using a sound and complete
proof method,4 to

is ϕ a logical consequence of Th? (written Th |= ϕ) (6)

where Th |= ϕ means that ϕ holds in all models of Th, i.e., each interpretation
A that makes true the formulas in Th, also makes ϕ true.

1.1. Our contribution

As remarked by Clark, sentences expressing properties should be checked
with respect to a given canonical model only [7, Chapter 4]. Similarly, in the
logical approach to relational databases [46], solving queries and checking func-
tional dependencies and integrity constraints is thought as the evaluation of
logical formulas ϕ with respect to the facts stored in the database which are
considered as a logical interpretation (or model). This perspective makes a dif-
ference when trying to check whether a computational system has a property
or not by using logic techniques and tools.

Example 3. Note that there are models of Teach which do not satisfy (3) (e.g.,
the interpretation which makes true the atoms in Teach only); and there are
models of Teach which do not satisfy ¬(3) (e.g., the interpretation which makes
all atoms teach(t, s) for all teachers t and students s true). Thus, neither (3)
nor ¬(3) are logical consequences of Teach and (by the standard correspondence
between provability and logical consequence) they are not provable in Teach.
Still, we expect ¬(3) to hold in Teach.

Relational databases (viewed as a set of ground atoms representing related
tuples of values), logic programs consisting of Horn clauses only [14], rewriting
logic programs [42] (viewed as first-order theories), etc., have a canonical model
ITh which is the set of atoms (without variables) which can be deduced from
the corresponding theory. Thus, we naturally consider the following:

is ϕ satisfiable in ITh? (written ITh |= ϕ) (7)

4resolution, Hilbert’s axiomatic calculus, natural deduction, etc.

3

Remark 4 (Theorems vs. properties). Note that ϕ in (7) does not need
to be a theorem of Th (as in (1)); thus, we better generically call ϕ in (7) a
semantic property of Th (precise definitions are given in Section 3).

In this paper, we investigate an alternative method to verify semantic prop-
erties formulated as in (7). We exploit the preservation of formulas under homo-
morphisms h between interpretations. A homomorphism h preserves a formula
ϕ if ϕ is satisfied in the target interpretation of h whenever ϕ is satisfied in
its domain interpretation [25, Section 2.4]. Hence, if the interpretation homo-
morphism h from ITh to a given model A of Th preserves ϕ, then proving the
negation of ϕ satisfiable in A implies that ¬ϕ holds in ITh, i.e., ¬ϕ is a se-
mantic property of Th. Homomorphisms preserve Existentially Closed Boolean
Combinations of Atoms (ECBCA), i.e., formulas (∃~x)

∨
i

∧
j Aij , where Aij are

atoms.

Example 5. (cont. Example 2) Since (3) is an ECBCA, the model of Teach
and ¬(3) obtained by Mace4 (with domain {0, 1}, interpreting d as 1 and any
other constant symbol as 0, and where only teach(0,0) holds) faithfully proves
that property ¬(3) holds in Teach (see Example 36 below for technical details).

Homomorphisms preserve other first-order sentences if further requirements are
imposed: (i) positive sentences (where connective ‘¬’ is absent) are preserved
under surjective homomorphisms5 and (ii) arbitrary sentences are preserved
under embeddings [25, Theorem 2.4.3].

Example 6. (cont. Example 2) Note that (5) is not an ECBCA due to the
universal quantification. The model of Teach and ¬(5) obtained by Mace4 has
domain {0, 1}, all constant symbols are interpreted as 0, and only teach(0,0)

holds. Note that the interpretation homomorphism is not surjective as the do-
main value 1 corresponds to no constant symbol in the signature. Thus, we
cannot conclude that property ¬(5) holds in Teach.

Our technique is summarized as follows: given a theory Th and a sentence ϕ,
we show that ITh |= ϕ holds if there is an interpretation A satisfying

A |= Th ∪ H ∪ N ∪ {ϕ} (8)

for appropriate theories H and N which only depend on ϕ and can be empty.
Theory H guarantees surjectivity of the homomorphism (when required). The-
ory N deals with the presence of negative literals (if any).

1.2. Structure of the paper

After some preliminaries in Section 2, Section 3 explains our notion of se-
mantic property of a first-order theory. Section 4 summarizes a number of
relevant fields where our techniques could be applied: relational and deductive

5A mapping f : A→ B is surjective if for all b ∈ B there is a ∈ A such that f(a) = b.

4

databases, logic programming, answer set programming, and rewriting-based
systems. We introduce some running examples further developed along the pa-
per. In Section 5 we provide a preservation theorem that improves [25]. In
contrast to [25], we focus on many-sorted logic [63] (see Section 2). This has an
advantage: since homomorphisms in many-sorted logic with set of sorts S are
actually a family hs of homomorphisms between components of sort s for each
s ∈ S, the preservation requirements for hs depend on the specific quantification
of variables x : s for such a sort. Section 6 investigates how to guarantee surjec-
tivity of homomorphisms. Section 7 discusses the possibility of providing more
information about disproved properties by means of refutation witnesses, i.e.,
(counter)examples of sentences which are synthesized from the models that are
used to disprove the property. Section 8 enumerates some explored applications
of our techniques. Section 9 discusses some related work. Section 10 concludes.

This paper is an extended and completely revised version of [34].6 In par-
ticular, Sections 3, 4, and 5.2 are completely new. Also, whilst examples in
[34] centered the attention in rewriting-based systems, in this paper we show
the generality of our approach by also considering examples from relational and
deductive databases, logic programming, etc.

2. Many-Sorted First-Order Logic

Given a set of sorts S, a (many-sorted) signature (with predicates) Ω =
(S,Σ,Π) consists of a set of sorts S, an S∗ × S-indexed family of sets Σ =
{Σw,s}(w,s)∈S∗×S containing function symbols f ∈ Σs1···sk,s, with a rank decla-
ration f : s1 · · · sk → s (constant symbols c have rank declaration c : λ → s,
where λ denotes the empty sequence), and an S+-indexed family of sets Π =
{Πw}w∈S+ of ranked predicates P : w. Given an S-sorted set X = {Xs | s ∈ S}
of mutually disjoint sets of variables (which are also disjoint from Σ), the set
TΣ(X)s of terms of sort s is the least set such that Xs ⊆ TΣ(X)s and for each
f : s1 . . . sk → s and ti ∈ TΣ(X)si , 1 ≤ i ≤ k, f(t1, . . . , tk) ∈ TΣ(X)s. If X = ∅,
we write TΣ rather than TΣ(∅) for the set of ground terms. The set TΣ(X) of
many-sorted terms is TΣ(X) =

⋃
s∈S TΣ(X)s. For w = s1 · · · sn ∈ S+, we write

TΣ(X)w rather than TΣ(X)s1 × · · · × TΣ(X)sn and also ~t ∈ TΣ(X)w rather than
ti ∈ TΣ(X)si for each 1 ≤ i ≤ n. The formulas ϕ ∈ FormΩ of a signature Ω are

built up from atoms P (~t) with P ∈ Πw and ~t ∈ TΣ(X)w, logic connectives (¬, ∧,
and also ∨, ⇒,...) and quantifiers (∀ and ∃) in the usual way. A closed formula,
i.e., one whose variables are all universally or existentially quantified, is called a
sentence. A theory is a set of sentences (from a signature Ω (sometimes we call
it an Ω-theory). Substitutions σ are S-sorted mappings such that for all sorts
s ∈ S, we have σ(x) ∈ TΣ(X)s.

An Ω-structure A consists of (i) an S-sorted family {As | s ∈ S} of sets called
the carriers or domains together with (ii) a function fAw,s ∈ Aw → As for each

6LOPSTR 2018 best paper award; it also continues and subsumes the results in [33].

5

f ∈ Σw,s (Aw is a one point set when w = λ and hence Aw → As is isomorphic
to As), and (iii) an assignment to each P ∈ Πw of a subset PAw ⊆ Aw; if the
identity predicate = : ss is in Πss, then (=)As s = {(a, a) | a ∈ As}, i.e.,

= : ss is interpreted as the identity on As.
A Herbrand interpretation H is an Ω-structure with S-sorted Herbrand Do-

mains TΣs of ground terms for s ∈ S. Given f : w → s and ~t ∈ TΣw, we let
fHw,s(~t) = f(~t). Given P : w, PHw is a subset of TΣw. Since the interpretation
of domains and function symbols is fixed, H is often just presented as a set of
atoms

⋃
w∈S+

⋃
P∈Πw

{P (~t) | ~t ∈ PHw }. Viceversa: every set of atoms Th yields
a Herbrand interpretation HΩ(Th) (or just H(Th) if no confusion arises).

Let A and A′ be Ω-structures. An Ω-homomorphism h : A → A′ is an S-
sorted function h = {hs : As → A′s | s ∈ S} such that for each f ∈ Σw,s and P ∈
Πw with w = s1, . . . , sk, (i) hs(f

A
w,s(a1, . . . , ak)) = fA

′

w,s(hs1(a1), . . . , hsk(ak))

and (ii) if ~a ∈ PAw , then h(~a) ∈ PA
′

w . Given an S-sorted valuation mapping
α : X → A, the evaluation mapping []Aα : TΣ(X) → A is the unique (S,Σ)-
homomorphism extending α. Finally, []Aα : FormΩ → Bool is given by:

1. [P (t1, . . . , tn)]Aα = true (with P ∈ Πw) iff ([t1]Aα , . . . , [tn]Aα) ∈ PAw ;

2. [¬ϕ]Aα = true iff [ϕ]Aα = false;

3. [ϕ ∧ ψ]Aα = true iff [ϕ]Aα = true and [ψ]Aα = true; and

4. [(∀x : s) ϕ]Aα = true iff for all a ∈ As, [ϕ]Aα[x 7→a] = true.

The interpretation of ground terms t does not depend on any valuation α; thus,
we write [t]A or even tA to refer its value. The truth value of sentences ϕ does
not depend on any valuation α; we write [ϕ]A or ϕA to denote it.

A valuation α ∈ X → A satisfies ϕ in A (written A |= ϕ [α]) if [ϕ]Aα = true.
We then say that ϕ is satisfiable. If A |= ϕ [α] for all valuations α, we write
A |= ϕ and say that A is a model of ϕ or that ϕ is true in A. We say that A is
a model of a set of sentences Th ⊆ FormΩ (written A |= Th) if for all ϕ ∈ Th,
A |= ϕ. Given a sentence ϕ, we write Th |= ϕ (ϕ is a logical consequence
of Th) iff A |= ϕ holds for all models A of Th. Let Mod(Th) be the class of
structures A which are models of Th. Two sets of sentences Th and Th′ are
logically equivalent if Mod(Th) = Mod(Th′). If ϕ can be proved from Th by
using an appropriate (sound and complete) calculus (see footnote 4) we write
Th ` ϕ.

A literal is an atom or the negation of an atom. A clause is a disjunction of
literals. A set of clauses C is regarded as a conjunction of all clauses in C, where
every variable in C is universally quantified [5]. A theory all whose sentences
are clauses is often called a clausal theory. For every sentence ϕ ∈ FormΩ there
is a sentence ϕ′ in clausal form which is inconsistent iff ϕ is [5, Section 4.2] (see
[55] for the MS-FOL setting). A Horn clause is a clause ¬A1 ∨ · · · ∨ ¬An ∨ B
with at most one non-negated atom.

6

3. Semantic Properties of First-Order Theories

Given a signature Ω, consider the the set of ground atoms which can be
proved from Th:

Th` = {A | Th ` A,where A is a ground atom} (9)

Th` can be seen as a Herbrand interpretation ITh = HΩ(Th`). For every set
Th of ground atoms, we have Th = Th`. For arbitrary theories Th we have the
following.

Proposition 7. Every model of a theory Th is a model of Th`.

Proof. For all ground atoms A,

A ∈ Th` ⇔ Th ` A by (9)
⇔ Th |= A sound & complete
⇔ (∀A)A |= Th⇒ A |= A logical consequence

If A |= Th holds for some structure A, then A |= A holds and A |= Th`. 2

Thus, Mod(Th) ⊆ Mod(Th`). van Emden and Kowalski [14] proved that, for
theories Th consisting of clauses, Th` is the intersection of all Herbrand models
of Th (and hence Th` ⊆ M for all Herbrand model M of Th). However, ITh
may fail to be a model.

Example 8. [14] For Th = {p(a) ∨ p(b)}, with a and b constants, we have
Th` = ∅. Although H = {p(a)} and H′ = {p(b)} are (minimal) models of Th,
ITh 6|= Th.

Thus, in general Mod(Th) 6⊇ Mod(Th`). Furthermore, we have the following.

Proposition 9. If a clausal theory Th has a least Herbrand model, it is ITh.

Proof. Let M be a least Herbrand model of Th different from ITh. Since
Th` ⊆M, there is A ∈M− Th`. Since M is the least Herbrand model of Th,
for every Herbrand model M′ of Th, we have A ∈ M ⊆M′. Thus, A is in the
intersection of all Herbrand models of Th. Since Th` is the intersection of all
Herbrand models of Th, A ∈ Th` leading to a contradiction. 2

In the following, given an Ω-structure A, hA : ITh → A (or just h) is the
interpretation mapping hA(t) = tA that associates tA to each ground term t.

Proposition 10. For each model A of a theory Th, hA is the unique homo-
morphism from ITh to A.

Proof. By Proposition 7, Amodels Th`, which is a set of ground atoms. Thus,
the theorem follows by [25, Theorem 1.5.2]; although Hodges’ result concerns
unsorted FOL, it is also valid in our many-sorted setting ([20, Section 3.2]). 2

7

Definition 11 (Semantic property). Let Th be a theory and ϕ ∈ Form(Th).
We say that ϕ is an Th-property if ITh |= ϕ holds; if ITh |= Th also holds, we
say that ϕ is a semantic property of Th.

Propositions 9 and 10 motivate our choice of ITh as a semantic reference for a
theory Th. Our purpose is using arbitrary models A of theories Th to prove
properties of such theories given as first-order formulas ϕ. The existence of a
unique homomorphism from ITh to any model A is essential to use the preser-
vation results in Section 5. As mentioned in Remark 4, we have the following.

Proposition 12. Every logical consequence ϕ of a theory Th such that ITh |=
Th holds is a semantic property of Th: Th ` ϕ implies ITh |= Th ∪ {ϕ}.

Proof. Th ` ϕ is equivalent to Th |= ϕ. Thus, for all structures A, A |= Th
implies A |= ϕ. If ITh |= Th holds, then ITh |= ϕ holds, i.e., ITh |= Th∪ {ϕ}. 2

Thus, theorem proving can be used for checking whether a given formula ϕ
is a semantic property of a theory.

Remark 13 (Horn theories). van Emden and Kowalski proved that Horn
theories Th have the model intersection property: the intersection of Herbrand
models of Th is also a model of Th. Thus, ITh is the least Herbrand model of
Th and Proposition 10 can be seen as establishing initiality of ITh in Mod(Th).

Non-Horn sets of sentences Th may have a least Herbrand model as well, which
(by Proposition 9) is ITh. Furthermore, for theories Th with several Herbrand
models of interest (as in Example 8), we are often able to make use of our
approach by representing each model Hi as the initial model IThi of a Horn
theory Thi obtained from Th and Hi. We discuss these issues in Section 4.4
below.

Corollary 14. Every logical consequence ϕ of a Horn theory Th is a semantic
property of Th.

There are theories Th which are incomplete: some formulas ϕ cannot be proved
and the negation ¬ϕ cannot be proved either. In contrast, according to Defini-
tion 11 either ϕ or ¬ϕ is a semantic property of Th. If ITh |= ¬ϕ holds, then
ITh |= ϕ does not hold and we often say that ϕ is not a semantic property of
Th.

Remark 15 (Negative literals). Theories usually specify true instances of
relations only (see [6]) and there is no way to derive negative information from
them by logical reasoning. This means that using theorem proving to verify a
semantic property ¬A for a given atom A is usually impossible. In Section 5 we
investigate alternative methods to achieve this goal.

4. Application to logic-based systems and languages

In this section we consider some systems whose specification can be trans-
lated into a MS-FOL theory so that we can reason about them by using FOL.

8

4.1. Relational databases

In the relational model of databases [10], data are organized as collections
of n-tuples on possibly different domains (see Example 2). Codd used FOL
to model relational databases: tuples are represented by atoms of MS-FOL
where only constant function symbols are used to denote components of the
domains (as in Example 2). A data sublanguage to qualify the information
stored in the data base and also to formulate queries is also described. As
remarked by Nicolas and Gallaire [46], the set DB of atoms representing the
tuples in a relational data base (which coincide with its ground consequences,
i.e., DB = DB`) are more naturally viewed as specifying a (Herbrand) in-
terpretation IDB = HΩ(DB`) = HΩ(DB) and formulas ϕ representing queries,
functional dependencies, (static) integrity constraints, data base properties, etc.
[4, 10, 16], are treated as sentences to be evaluated (i.e., checked for satisfiabil-
ity) with respect to the interpretation: IDB |= ϕ [46, pages 42 & 44].

Example 16. Sentence (5) could be thought of as an integrity constraint of the
relational database in Example 2 guaranteeing that no student is left unattended.

Remark 17 (Dynamic aspects). Data bases have a dynamic ingredient: they
change by means of updates and deletions of the stored information. An impor-
tant aspect of the maintenance of a database is fulfilling dependency conditions
and dynamic integrity constraints, i.e., conditions that the data should satisfy
after database transactions. In this paper we pay no attention to these issues.

4.2. Deductive databases

In deductive databases [48], stored knowledge is represented by means of
atomic components (the extensional database, EDB), and also by a deductive
component consisting of derivation rules (intensional database, IDB) [48, page
128]. The FO theory DDB = EDB ∪ IDB fully describes the database.

Example 18. A new monadic predicate active with argument of sort Teacher
is added to Teach to qualify teachers as active if they teach some student:

active(X) <- teach(X,Y).

Again, Nicolas and Gallaire’s approach uses a canonical Herbrand interpretation
IDDB = HΩ(DDB`) to solve formulas ϕ. Relational and deductive databases
can be investigated as logic programs.

4.3. Logic programs

A (basic) logic program P consists of a set of Horn clauses usually written

A← B1, . . . , Bn (10)

for some n ≥ 0, where A,B1, . . . , Bn are atoms. We obtain a theory P (or
just P if no confusion arises) associated to P by just interpreting each clause
A← B1, . . . , Bn as a sentence (∀~x) B1 ∧ · · · ∧Bn ⇒ A.

9

(∀y) times(0, y, 0) (11)

(∀u, x, y, z) times(x, y, u) ∧ add(y, u, z)⇒ times(s(x), y, z) (12)

(∀y) add(0, y, y) (13)

(∀x, y, z) add(x, y, z)⇒ add(s(x), y, s(z)) (14)

(∀x) pow(x, 0, s(0)) (15)

(∀n, x, y, z) pow(x, n, y) ∧ times(x, y, z)⇒ pow(x, s(n), z) (16)

even(0) (17)

(∀x) odd(x)⇒ even(s(x)) (18)

odd(s(0)) (19)

(∀x) even(x)⇒ odd(s(x)) (20)

Figure 1: FO theory for program in Example 19

Example 19. Consider the following logic program:

times(0,Y,0).

times(s(X),Y,Z) <- times(X,Y,U), add(Y,U,Z).

add(0,Y,Y).

add(s(X),Y,s(Z)) <- add(X,Y,Z).

pow(X,0,s(0)).

pow(X,s(N),Z) <- pow(X,N,Y), times(X,Y,Z).

even(0).

even(s(X)) <- odd(X).

odd(s(0)).

odd(s(X)) <- even(X).

Theory Powers associated to this program is in Figure 1.

Goals (or queries) G to be solved with respect to logic programs are sequences
of atoms, written ?-A1, . . . , Am. What is proved is that the existential closure
(∃~x)A1 ∧ · · · ∧Am of the conjunction of the atoms holds in the least Herbrand
model IP , i.e., IP |= (∃~x) A1 ∧ · · · ∧ Am, possibly providing witnesses of it by
means of appropriate substitutions of variables in the atoms.

Example 20. A goal ?-even(X) will be solved by a typical LP system by an-
swering ‘yes’ and providing an instantiation of X which makes the atom true:
X/0, then (if asked for more solutions) X/s(s(0)), etc.

Although the most representative logic programming language (Prolog [11]) is
untyped, other logic programming languages like Mercury [57] are typed and
programs are naturally considered as many-sorted theories.

4.4. Answer Set Programming

Answer Set Programming (ASP, see [18] and the references therein), ex-
tends logic programming so that program clauses have a more general syntax,

10

including (classical and ‘as-failure’) negation, disjunction, arithmetic operations,
choice, constraints, preferences, etc. For instance, in ASP Prolog, clauses are of
the following form (compare with (10))

L0 or · · · or Lk ← Lk+1, . . . , Lm, not Lm+1, . . . , not Ln (21)

where L0, . . . , Ln are (many-sorted) literals and connectives not and or are
called negation as failure or default negation and epistemic disjunction respec-
tively [18]. Negation ‘¬’ occurring in literals is often called classical negation.

Remark 21 (ASP programs as FO theories). Logic program clauses (10)
can be viewed as first-order Horn clauses, and logic programs P as Horn theories
P. In contrast, ASP clauses (21) are not immediately viewed as FO sentences:
they include two different negation operators (‘not’ and ¬); also, epistemic dis-
junction ‘or’ is not equivalent to FO connective ∨.

ASP programs without classical negation or epistemic disjunction are often
called normal logic programs (NLPs).7 Program execution in ASP computes
answer sets, which are “a possible set of beliefs of an agent associated to the
program” see [18, page 288]. In contrast to (basic) logic programs, the collec-
tion of answer sets for ASP programs can be empty (there is no answer set)
or contain (infinitely) many of them. Accordingly, “the answer to a query may
depend on which answer set is selected”.

Example 22. When the non-Horn theory Th = {p(a) ∨ p(b)} in Example 8
is viewed as an ASP program P = {p(a) or p(b)}, the answer sets of P are
H = {p(a)} and H′ = {p(b)} in Example 8.

When dealing with NLPs, answer sets are Herbrand interpretations.8

Example 23. (cont. Example 22) The following NLP program P could be (equiv-
alently) associated to Th in Example 8 [18, Section 7.3.4]:

p(a) <- not p(b)

p(b) <- not p(a)

Its answer sets are H and H′ in Example 8, see Example 60 below.

4.5. Rewriting-based systems

The insertion of a ‘rewriting-based system’ R (e.g., Term Rewriting Sys-
tems (TRSs, Context-Sensitive TRSs Conditional TRSs (CTRSs, Membership
Equational Programs [32, 47, 41], and more general rewriting-based formalisms

7Classical negation can be removed from ASP programs by adding predicates p′ associated
to predicates p to obtain a positive form p′(~t) for literals ¬p(~t), see [18, Section 7.3.1].

8Answer sets of fully general ASP programs admit negative literals in (consistent) answer
sets S. A three valued logic for knowledge representation is used: the truth value of atoms A
in S is true; if ¬A is in S, then A is false; otherwise the truth value of A is unknown [18].

11

(Rf)
x→∗ x

(C)f,i
xi → yi

f(x1, . . . , xi, . . . , xk)→ f(x1, . . . , yi, . . . , xk)
for all f ∈ F and 1 ≤ i ≤ k = arity(f)

(T) x→ y y →∗ z
x→∗ z

(Rl)α
s1 →∗ t1 · · · sn →∗ tn

`→ r
for α : `→ r ⇐ s1 → t1, . . . , sn → tn ∈ R

Figure 2: Inference rules for conditional rewriting with a CTRS R with signature F

[3, 20, 42]) into FOL is made in two steps: first a specialized inference system
I(R) is obtained from the generic inference system I describing the operational
semantics of R as provability (à la natural deduction) of goals with predicate
symbols→ (one-step reduction),→∗ (many-step reduction), ↓ (joinability), : s
(membership for a given sort s), etc.; then, a set R of sentences is obtained from
I(R) by just treating inference rules B1 ··· Bn

A as universally quantified implica-
tions (∀~x) B1 ∧ · · · ∧ Bn ⇒ A (with provability equivalently implemented now
as resolution [54] or using Hilbert’s style [40, Section 2.3]).

For instance, a (many-sorted) CTRS is a pair R = (Σ, R) where Σ is a
many-sorted signature of function symbols and R is a set of conditional rules.
A conditional rule ` → r ⇐ c is a triple where ` and r are terms and the
conditional part c is a sequence s1 ≈ t1, . . . , sn ≈ tn of expressions si ≈ ti.
Such expressions are usually interpreted as reachability or joinability problems
after an appropriate instantiation with a substitution σ, i.e., for all i, 1 ≤ i ≤
n, σ(si) →∗R σ(ti) (for the rewriting semantics); or σ(si) ↓R σ(ti) (for the
joinability semantics9) [47]. We focus on the rewriting semantics. We write
s →∗R t for terms s and t iff there is a proof tree for s →∗ t using R in the
inference system of Figure 2 (and similarly for one-step rewriting steps s→R t
regarding proofs of the goal s→ t) [37].

Remark 24. Schematic rules B1 ··· Bn
A actually denote instances σ(B1) ··· σ(Bn)

σ(A)

by a substitution. For instance, (Rl)α in Figure 2 establishes that, for all sub-
stitutions σ, σ(`) rewrites into σ(r) whenever σ(si)→∗ σ(ti) for 1 ≤ i ≤ n.

In the logic of CTRSs R, with binary predicates → and →∗, I(R) is obtained
from the inference rules in Figure 2 by specializing (C)f,i for each f ∈ F and
1 ≤ i ≤ ar(f), and (Rl)α for all α : ` → r ⇐ c ∈ R. Inference rules B1 ··· Bn

A

become universally quantified implications B1 ∧ · · · ∧Bn ⇒ A to obtain R.

Example 25. Consider the following Maude [8] specification implementing the
usual arithmetic operations over the naturals (sort N) together with function
head, which returns the head of a list of natural numbers (sort LN):

9A joinability condition s ↓ t is equivalent to a reachability condition s →∗ x, t →∗ x if x
is a fresh variable not occurring elsewhere in the rule.

12

(∀x : N) x →∗ x
(∀x : LN) x →∗ x

(∀x, y, z : N) x → y ∧ y →∗ z ⇒ x →∗ z
(∀x, y, z : LN) x → y ∧ y →∗ z ⇒ x →∗ z

(∀x, y : N) x → y ⇒ s(x) → s(y)

(∀x, y, z : N) x → y ⇒ add(x, z) → add(y, z)

(∀x, y, z : N) x → y ⇒ add(z, x) → add(z, y)

(∀x, y, z : N) x → y ⇒ mul(x, z) → mul(y, z)

(∀x, y, z : N) x → y ⇒ mul(z, x) → mul(z, y)

(∀x, y : N, xs : LN) x → y ⇒ cons(x, xs) → cons(y, xs)

(∀x : N, xs, ys : LN) x → y ⇒ cons(x, xs) → cons(x, ys)

(∀x, y : LN) x → y ⇒ head(x) → head(y)

(∀x : N) add(0, x) → x

(∀x, y : N) add(s(x), y) → s(add(x, y))

(∀x : N) mul(0, x) → 0

(∀x, y : N) mul(s(x), y) → add(y,mul(x, y))

(∀x : N, xs : LN) head(cons(x, xs)) → x

Figure 3: Horn theory for ExAddMulHead (→ and →∗ are overloaded)

mod ExAddMulHead is

sorts N LN .

op Z : -> N . op suc : N -> N . ops add mul : N N -> N .

op head : LN -> N . op nil : -> LN . op cons : N LN -> LN .

vars x y : N . var xs : LN .

rl add(Z,x) => x . rl add(suc(x),y) => suc(add(x,y)) .

rl mul(Z,x) => Z . rl mul(suc(x),y) => add(y,mul(x,y)) .

rl head(cons(x,xs)) => x .

endm

The MS-FO theory ExAddMulHead for ExAddMulHead is in Figure 3.

In the canonical model IR = H(R `) of R, → and →∗ are interpreted as the
sets (→)IR and (→∗)IR of pairs (s, t) of ground terms s and t such that s→R t
and s→∗R t, respectively. Semantic properties of CTRSs are referred to IR.

13

5. Preservation of Many-Sorted First-Order Sentences

In the following, we consider sentences in prenex form10

(Q1x1 : s1) · · · (Qkxk : sk)

m∨
i=1

ni∧
j=1

Lij (22)

where M(x1, . . . , xk) =
∨m
i=1

∧ni
j=1 Lij is often called the matrix of (22). Here,

(a) for all 1 ≤ i ≤ m and 1 ≤ j ≤ ni, Lij are literals Lij = Aij or Lij = ¬Aij
for some atom Aij (in the first case, we say that (the sign of) Lij is positive;
otherwise, it is negative [14]) (b) x1, . . . , xk for some k ≥ 0 are the variables
occurring in those literals (of sorts s1, . . . , sk, respectively), and (c) Q1, . . . , Qk
are universal/existential quantifiers. A sentence (22) is said to be positive if all
literals are; if, additionally, Qq = ∃ for all 1 ≤ q ≤ k, then it is an ECBCA.

Remark 26 (The normal form (22)). The matrix M(x1, . . . , xk) of (22) is
presented as a disjunction of conjunctions (disjunctive normal form, DNF. By
the distributive laws for ∧ and ∨, M(x1, . . . , xk) can be written in conjunctive

normal form (CNF) M ′(x1, . . . , xk) =
∧m′
i=1

∨n′i
j=1 L

′
ij without changing the sign

of the literals. Our results rely on the sequence of quantifiers and the sign of the
literals, which remain unchanged if a CNF-based form

(Q1x1 : s1) · · · (Qkxk : sk)

m′∧
i=1

n′i∨
j=1

L′ij (23)

is used instead. Thus, using (22) or (23) is not essential.

The main result of this section is the following (where, following Section 2, hsq
is the component of hA for sort sq).

Theorem 27. Let Ω be a signature, Th be a set of ground atoms, ϕ be as (22),
and A be a model of Th such that (a) for all q, 1 ≤ q ≤ k, if Qq = ∀ then hsq is

surjective and (b) for all negative literals ¬P (~t) in ϕ and ground substitutions
σ, if h(σ(~t)) ∈ PA then σ(~t) ∈ P ITh . Then, ITh |= ϕ =⇒ A |= ϕ.

Proof. Denote as M(x1, . . . , xk) the matrix formula
∨m
i=1

∧ni
j=1 Lij (contain-

ing variables x1, . . . , xk). We proceed by induction on k.
If k = 0, then each Lij is a ground literal for all 1 ≤ i ≤ m and 1 ≤ j ≤ ni. If

ITh |= M , then there is i, 1 ≤ i ≤ m such that ITh |= Lij for all 1 ≤ j ≤ ni. Let
A be a model of Th. There is a unique homomorphism h : ITh → A. Since Lij
is ground, whenever Lij is positive, by definition of homomorphism, A |= Lij
holds. If Lij = ¬P (~t) for some predicate P : w and ~t ∈ TΣw, since ITh |= Lij ,
we have ~t /∈ P I ; hence, since σ(~t) = ~t, by condition (b), h(~t) = [~t]A /∈ PA, i.e.,
A |= Lij . Thus, A |= Lij for all 1 ≤ j ≤ ni and A |= M .

10Every sentence ϕ can be equivalently written in prenex normal form.

14

If k > 0, then if ITh |= (Q1x1 : s1)(Q2x2 : s2) · · · (Qkxk : sk)M(x1, . . . , xk),
we consider two cases according to Q1.
(1) If Q1 = ∃, then there is t ∈ TΣs1 such that

ITh |= (Q2x2 : s2) · · · (Qkxk : sk)M(x1, x2, . . . , xk)[x1 7→ t]

Hence ITh |= (Q2x2 : s2) · · · (Qkxk : sk)M(t, x2, . . . , xk). By the induction
hypothesis, A |= (Q2x2 : s2) · · · (Qkxk : sk)M(t, x2, . . . , xk). Thus, there is an
element b = tA ∈ A such that

A |= (Q2x2 : s2) · · · (Qkxk : sk)M(x1, x2, . . . , xk)[x1 7→ b]

and hence A |= (Q1x1 : s1) · · · (Qkxk : sk))M(x1, . . . , xk) as well.
(2) If Q1 = ∀, then for all t ∈ TΣs1 , we have ITh |= (Q2x2 : s2) · · · (Qkxk :
sk)M(t, x2, . . . , xk). By the induction hypothesis, for each such terms t, A |=
(Q2x2 : s2) · · · (Qkxk : sk)M(t, x2, . . . , xk). Since h : TΣs1 → As1 is surjective,
for all b ∈ As1 there is t ∈ TΣ such that h(t) = b. Thus,

A |= (Q2x2 : s2) · · · (Qkxk : sk)M(x1, x2, . . . , xk)[x1 7→ b]

for all b ∈ As1 , i.e., A |= (Q1x1 : s1) · · · (Qkxk : sk)M(x1, x2, . . . , xk). 2

In the following, unless stated otherwise, Th is a theory and ϕ is a sentence
(22), whose notation is often referred in the statements of our results.

Corollary 28. Let A be a model of Th such that (a) for all q, 1 ≤ q ≤ k, if
Qq = ∀ then hsq is surjective and (b) for all negative literals ¬P (~t) in ϕ and

ground substitutions σ, if h(σ(~t)) ∈ PA then σ(~t) ∈ P ITh . If A |= ¬ϕ, then
ITh |= ¬ϕ.

Proof. Proposition 10 and Theorem 27. 2

Models A in Corollary 28 can be generated from Th and ϕ by using tools
like AGES [23] or Mace4. Note that, for ECBCA formulas, conditions (a) and
(b) vacuously hold. Thus, as already established in [25, Theorem 2.4.3(a)],
homomorphisms always preserve ECBCA formulas.

Example 29. Consider the theory Powers for the logic program in Example 19.
The existence of a (natural) number which is the nth root of 3 (for some n > 1)
is claimed by the following (ECBCA) sentence:

(∃x)(∃n) pow(x, s(s(n)), s(s(s(0)))) (24)

With Mace4 we obtain a model A of Powers ∪ {¬(24)}. By Corollary 28, we
conclude that (24) is not a semantic property of Powers.

Remark 30 (Verification as satisfiability). We can verify that ϕ is an Th-
property by satisfiability as follows: (i) let ϕ be ¬ϕ; then (ii) find a structure A
satisfying (a) and (b) with regard to ϕ and such that (iii) A |= Th ∪ {ϕ} (note
that ¬ϕ and ϕ coincide). By Corollary 28, ITh |= ϕ holds.

We postpone the treatment of condition (a) in the previous results (surjectivity
of hs for a given sort s) to Section 6. In the following section, we discuss
condition (b) about dealing with negative literals in (22).

15

5.1. Dealing with negative literals

Given a predicate P ∈ Πw, let NTh(P) = Iw − P ITh be the tuples in TΣw

obtained as the complement of the interpretation of P in ITh. Let NTh(P) =
{¬P (~t) | ~t ∈ NTh(P)} be the corresponding tuples viewed as negative literals.

Remark 31. In general, NTh(P) is infinite and incomputable. We can provide
a finite description of NTh(P) for P ∈ Πw, though, if w is a sequence s1 · · · sn
of sorts such that TΣsi is finite for all 1 ≤ i ≤ n (for instance, dealing with
relational databases, see Example 34).

In the following, we let NTh,ϕ =
⋃
¬P (~t) in ϕNTh(P).

Proposition 32. Let A be a model of Th ∪ NTh,ϕ, ¬P (~t) be a negative literal
in ϕ and σ be a ground substitution. If hA(σ(~t)) ∈ PA, then σ(~t) ∈ P ITh .

Proof. If σ(~t) /∈ P ITh then ¬P (σ(~t)) ∈ NTh(P) ⊆ NTh,ϕ. Since A |=
Th ∪ {¬P (σ(~t))}, by Proposition 10 h(σ(~t)) /∈ PA. 2

By using Proposition 32, we recast Corollary 28 as follows:

Corollary 33. Let A be a model of Th ∪ NTh,ϕ such that for all q, 1 ≤ q ≤ k,
if Qq = ∀ then hsq is surjective. If A |= ¬ϕ, then ITh |= ¬ϕ.

Example 34. According to Remark 30, we can prove that (5) is a semantic
property of Teach by first obtaining its negation ¬(5), i.e.,

(∃y : Student)(∀x : Teacher) ¬teach(x, y) (25)

and then applying Corollary 33 to (25). Since

N(teach) = {(t, s) | t ∈ {a, b, c, d}, s ∈ {p, q, r}} − {(a, p), (a, q), (b, q), (c, r)}

we have to consider (the proof finishes in Example 38 below):

NTeach,(25) = {¬teach(a, r),¬teach(b, p),¬teach(b, r),¬teach(c, p),
¬teach(c, q),¬teach(d, p),¬teach(d, q),¬teach(d, r)}

5.2. Removing sort information if necessary

In some cases, removing sort information from the original signature Ω =
(S,Σ,Π) can be useful (or necessary) to use model generators which do not
support sorts (e.g., Mace4). Let Ω↓ = ({s},Σ↓,Π↓) be a new, one-sorted signa-
ture where s is a dummy sort. Each f ∈ Σw,s for w = s1 · · · sn ∈ S∗ becomes
an n-ary symbol f↓ : s · · · s → s, and each P ∈ Πw becomes an n-ary predi-
cate P ↓ (overloaded symbols collapse into a single symbol). For each s ∈ S,
terms t ∈ TΣs inductively become terms t↓ ∈ TΣ↓ and similarly for atoms and
more complex formulas ϕ. In this way, given a set of atoms Th, we obtain an
interpretation I↓Th = HΩ↓(Th

↓) from ITh. Note that I↓Th is also an Ω-structure.

In the following result, which is a consequence of Theorem 27, h : ITh → I↓Th
is the (S-sorted) interpretation Ω-homomorphism h(t) = t↓, and h↓A : I↓Th → A
(or just h↓) is the interpretation Ω↓-homomorphism mapping ‘desorted’ terms
in TΣ↓ into elements in the domain of the Ω↓-structure A.

16

Corollary 35. Let Ω be a signature, Th be an Ω-theory, ϕ be as (22), and A
be an Ω↓-structure such that (a) for all q, 1 ≤ q ≤ k, if Qq = ∀, then h↓ ◦ hsq :

Isq → A is surjective and (b) for all Lij = ¬P (~t) and ground substitutions σ,

if h↓(h(σ(~t))) ∈ (P ↓)A, then σ(~t) ∈ P I . If A |= Th↓ ∪ {¬ϕ↓}, then ITh |= ¬ϕ.

Example 36. (cont. Example 5) Semantic property (4) of Teach is verified with
Mace4 by computing a model of Teach↓ ∪ {(4)↓}, where (4)↓ is

¬(∃y : s) teach(d, y) or just ¬(∃y) teach(d, y) (26)

Proposition 37. Let Ω be a signature, Th be a set of ground atoms, ϕ be as
(22), and A be a model of Th↓ ∪N↓Th,ϕ. Let ¬P (~t) be a negative literal in ϕ and

σ be a ground substitution. If h↓(h(σ(~t))) ∈ (P ↓)A, then σ(~t) ∈ P I .

In general, hs : TΣs → TΣ↓ is not surjective: after collapsing all sorts into a
single one, many terms in TΣ↓ have no corresponding well-formed term in TΣs.
Thus, in order to guarantee surjectivity of h↓ ◦ hs, requiring surjectivity of h↓

does not suffice. We need to impose more stringent conditions (see Section 6).

Example 38. (cont. Example 34) We failed to obtain a model of Teach ∪
NTeach,(25) ∪ {(5)} with AGES. However, Mace4 can be used to verify (5) by
using Corollary 35 for the unsorted version

(∀y)(∃x) teach(x, y) (27)

of (5). The negation of (27) is

(∃y)(∀x) ¬teach(x, y) (28)

With Mace4 we obtain a model A of Teach↓ ∪ N↓Teach,(25) ∪ {(27)} with A =

{0, 1, 2, 3}; aA = pA = 0, bA = qA = 1, cA = rA = 2, and dA = 3; finally
teachA = {(0, 0), (0, 1), (1, 1), (2, 2)}. Since only constant function symbols are
involved, h↓ ◦ hTeacher is surjective.

Note that, when using Corollary 35, sort information in ϕ is somehow preserved
due to the local requirements of surjectivity for h↓ ◦ hs (for sort s only) and

also considering negative atoms ¬P (~t)↓ ∈ N↓Th,ϕ (usually strictly included in
NTh↓,ϕ↓).

Example 39. (cont. Example 38) Note that (27) is not a semantic property of
Teach↓: after clearing sorts from the signature, all constants represent the same
kind of objects. In particular, no constant k satisfies teach↓(k, a).

Many-sorted sentences can be recasted as unsorted sentences by treating sorts
s ∈ S as new monadic predicates πs [63] leading to an alternative (more com-
plex) sort elimination procedure. For instance, (5) would be written as follows:

(∀y)(∃x) Student(y)⇒ Teacher(x) ∧ teach(x, y) (29)

(instead of (27)) and Teach would be extended to an equivalent unsorted theory
UTeach by adding appropriate atoms to explicitly give sorts to constant symbols:

17

teacher(a). teacher(b). teacher(c). teacher(d).

student(p). student(q). student(r).

Note, however, that the normalized version of (29)

(∀y)(∃x) ¬Student(y) ∨ (Teacher(x) ∧ teach(x, y)) (30)

is structurally different from (5): it contains a negative literal. Thus, we often
better remove sorts as to use Corollary 35 instead of Corollary 28.

6. Surjective homomorphisms

Given a signature Ω = (S,Σ,Π), s ∈ S, and an Ω-structure A, ensuring
surjectivity of h : TΣs → As is important to use our results. We investigate
how to guarantee surjectivity of h by satisfiability of an appropriate theory H.
Although condition (∀x : s)

∨
t∈TΣs

x = t would do the work, if TΣs is infinite the
obtained infinite disjunction is disallowed in FOL. We investigate appropriate
refinements: for As finite, and for the general case (Section 6.2).

6.1. Structures with finite domains

Given a set T ⊆ TΣs of ground terms, consider the following sentences:

(∀x : s)
∨
t∈T

x = t (31)∧
t,u∈T,t 6=u

¬(t = u) (32)

In the following, we write (31)s to make sort s referred in (31) explicit. We do
the same with (32) and similar formulas below.

Proposition 40. Let A be a model of Th, s ∈ S, and T ⊆ TΣs. (a) If A |=
(31)s, then hs is surjective and |As| ≤ |T |. (b) If A |= (32), then |As| ≥ |T |.

Proof. By Proposition 10, h : ITh → A is the unique homomorphism. For
(a), we consider two cases. If T = ∅, then A |= (31)s holds only if As = ∅.
Thus, h is trivially surjective and |As| = |T |. If T 6= ∅, then surjectivity follows
because for all x ∈ As we have x = tA = h(t) for some t ∈ T due to (31),
i.e., cardinality of As cannot exceed that of T . For (b), since (32) imposes that
distinct terms have different interpretations, we need at least |T | elements in
As to interpret terms in T , i.e., |As| ≥ |T |. 2

Due to Proposition 40(a), denote (31)s as SuHTs (Ω) (or just SuHTs or SuHT

if no confusion arises).

Example 41. (cont. Example 2) For T = {p, q, r}, SuHTStudent is

(∀x : Student) x = p ∨ x = q ∨ x = r (33)

In contrast to the situation discussed in the second part of Example 2, no model
of Teach ∪ SuHTStudent ∪ {¬(5)} is obtained now.

18

Example 42. (cont. Example 38) For T ′ = {a, b, c, d}, we obtain the model of

Teach ∪ SuHT
′

Teacher ∪ N(25) ∪ {(27)} (34)

displayed in Example 38. The use of SuHT
′

Teacher guarantees surjectivity of h↓ ◦
hTeacher as required by Corollary 35.

The following example illustrates the need of an alternative approach when sorts
with an infinite number of ground terms are used.

Example 43. With regard to program ExAddMulHead in Example 25, we ex-
press the claim of add being commutative as follows:

(∀x : N)(∀y : N)(∃z : N) add(x, y)→∗ z ∧ add(y, x)→∗ z (35)

with →∗ the many-step rewriting predicate. For ExAddMulHead in Figure 3 and
T = {0, head(nil)}, with AGES we obtain a model A of

ExAddMulHead ∪ SuHTN ∪ {¬(35)} (36)

Sorts are interpreted by AN = ALN = {0, 1}. For function and predicate symbols:

0A = 1 nilA = 0 sucA(x) = x addA(x, y) = y

mulA(x, y) = 1 consA(x, xs) = x headA(xs) = xs
x→AN y ⇔ x = y x(→∗N)Ay ⇔ x = y x→ALN y ⇔ x = y x(→∗LN)Ay ⇔ true

This proves that property (35) does not hold in ExAddMulHead.

Remark 44 (The choice of terms in T). We failed to obtain a model of (36)
with sets T without head(nil). In particular, with Tn = {0, suc(0), . . . , sucn(0)}
we obtained no model for any attempted n ≥ 0. Thus, the choice of T can be
crucial when using SuHTs . Not only the number but also the specific shape of
terms in T can be important (possibly depending on the focused property).

In the following, we investigate correct approaches to avoid such a choice.

6.2. Structures with arbitrary (possibly infinite) domains

Consider the following sentence:

(∀x : s)(∃n : Nat) terms(x, n) (37)

where Nat is a new sort, to be interpreted as the set N of natural numbers, and
terms : sNat is a new predicate for each s ∈ S. The intended meaning of (37)s
is that, for all x ∈ As, there is t ∈ TΣs of height at most n such that x = tA. We
substantiate this, for each sort s ∈ S, by means of two (families of) formulas:

(∀x : s) terms(x, 0) ⇒
∨

c∈Σλ,s

x = c (38)

19

(∀x : s)(∀n : Nat)(∃m : Nat) (n > 0 ∧ terms(x, n))⇒

n > m ∧

terms(x,m)∨
∨

f ∈ Σw,s

w ∈ S+

(∃~y : w)

x = f(~y) ∧
∧
si∈w

termssi (yi,m)


 (39)

By (38)s, values x satisfying terms(x, 0) will be represented by a constant c of
sort s. By (39)s, values x satisfying terms(x, n) for some n > 0 will be repre-
sented by some ground term u of height m < n, or by a term t = f(t1, . . . , tk),
where f has rank w → s for some w ∈ S+ and t1, . . . , tk have height m at most.

The set K(s) of s-relevant sorts is the least set satisfying: (i) s ∈ K(s) and
(ii) if f ∈ Σs1···sk,s′ and s′ ∈ K(s), then {s1, . . . , sn} ⊆ K(s).

Example 45. For ExAddMulHead in Example 25, K(N) = {N, LN} due to

op head : LN -> N .

whose argument is of sort LN.

Let ΩNat,s = (SNat ,ΣNat ,ΠNat,K (s)) be an extension of Ω where SNat = S ∪
{Nat}, ΣNat extends Σ with a new constant 0 : λ→ Nat , and ΠNat,K(s) extends
Π with > : Nat Nat and a predicate terms′ : s′ Nat for each s′ ∈ K(s). We let

SuHs = {(37)s′ , (38)s′ , (39)s′ | s′ ∈ K(s)} (40)

Proposition 46. Let s ∈ S and A be an ΩNat,s-structure which is a model
of Th. Assume that ANat = N, 0A = 0, and m >A n ⇔ m >N n for all
m, n ∈ ANat . If A |= SuHs, then hs′ : TΣs′ → As′ is surjective for all s′ ∈ K(s).

Proof. We have to prove that for all x ∈ As′ , there is t ∈ TΣs′ such that
x = h(t). Since A |= (37)s′ holds, and due to the restrictions imposed to the
interpretation of sort Nat, there is n ∈ ANat such that

A |= terms′(x, n)[x 7→ x, n 7→ n] (41)

We prove by complete induction on n that there is t ∈ TΣs′ such that x = h(t).
For the base case, if n = n0 is the least element of ANat , then, since A |= (38)s′

holds, and (41) holds, there is a constant symbol c of sort s′ such that x = cA, as
required. If n > n0, then A |= (39)′s′ and together with (41) there is m such that
n > m such that we have two possibilities: If A |= terms′(x, n)[y 7→ x, n 7→ m],
then, by the induction hypothesis the conclusion follows.

If A |=

∨
f ∈ Σw,s′
w ∈ S+

(∃~y)
(
x = f(~y) ∧

∧
si∈w termssi(yi,m)

) [x 7→ x,m 7→

m], then there is a function symbol f : s1 · · · sk → s′ and values yi ∈ Asi , 1 ≤
i ≤ k such that x =As′ f

A(y1, . . . , yk) and A |= termssi(yi,m)[yi 7→ yi,m 7→ m]
holds for all 1 ≤ i ≤ k. By the induction hypothesis, there are terms ti ∈ TΣsi

such that tAi = yi for all 1 ≤ i ≤ k. Therefore, for t = f(t1, . . . , tk), we have
h(f(t1, . . . , tk)) = [f(t1, . . . , tk)]A = fA(y1, . . . , yk) = x as required. 2

20

Given an extension Ω′ of Ω, every Ω′-structure A′ defines an Ω-structure
A: just take As = A′s for all s ∈ S, and then fAw,s = fA

′

w,s and PAw = PA
′

w for
all w ∈ S∗, s ∈ S, f ∈ Σw,s, and P ∈ Πw. Thus, Proposition 46 is used to
guarantee surjectivity of h : TΣs′ → As′ , rather than h : TΣNat s′ → As′ . By
Propositions 40 and 46, and assuming Hϕ to be an appropriate (maybe empty)
version of SuH to be used with ϕ, we finally recast Corollary 33 as follows:

Corollary 47 (Satisfiability criterion). Let A be a structure.

If A |= Th ∪ Hϕ ∪ Nϕ ∪ {¬ϕ}, then ITh |= ¬ϕ.

Or, taking into account Remark 30,

If A |= Th ∪ H¬ϕ ∪ N¬ϕ ∪ {ϕ}, then ITh |= ϕ.

Example 48. We disprove (35) by using Corollary 47 by obtaining a model of

ExAddMulHead ∪ SuHN ∪ {¬(35)} (42)

Since K(N) = {N, LN} (Example 45), SuHN consists of the following sentences:

(∀x : N)(∃n : Nat) termN(x, n)
(∀x : N) termN(x, 0)⇒ x = 0
(∀x : N)(∀n : Nat)(∃m : Nat)(∃y : N)(∃z : N)(∃ys : LN)
n > 0 ∧ termN(x, n)⇒ n > m ∧ [termN(x,m) ∨

(termN(y,m) ∧ termN(z,m) ∧ termLN(ys,m) ∧
(x = suc(y) ∨ x = add(y, z) ∨ x = mul(y, z) ∨ x = head(ys)))]

for sort N, together with the following ones for sort LN:

(∀xs : LN)(∃n : Nat) termLN(xs, n)
(∀xs : LN) termLN(xs, 0)⇒ xs = nil
(∀xs : LN)(∀n : Nat)(∃m : Nat)(∃y : N)(∃ys : LN)
n > 0 ∧ termN(x, n)⇒ n > m ∧ [termN(x,m) ∨

(termN(y,m) ∧ termLN(ys,m) ∧ xs = cons(y, ys))]

With AGES we obtain a model A of (42). Sorts are interpreted as AN = {0, 1},
ALN = {−1, 0}, and ANat = N. For function and predicate symbols, we have:

ZA = 0 nilA = −1 sucA(x) = x addA(x, y) = y
mulA(x, y) = 0 consA(x, xs) = −x headA(xs) = −xs
x→AN y ⇔ x = y x(→∗N)Ay ⇔ x = y x→ALN y ⇔ x = y x(→∗LN)Ay ⇔ x ≥ y

We obtain surjective homomorphisms (for N and LN). For instance, we have:

[Z]A = 0 [head(nil)]A = 1 for sort N
[nil]A = −1 [cons(Z, nil)]A = 0 for sort LN

21

7. Refutation Witnesses

A main purpose of a database language is providing primitive operations
to retrieve information from the database satisfying some conditions. As dis-
cussed in Section 4, this is related with proving existentially quantified formulas
and also giving witnesses of such proofs, i.e., specific values (or even formulas)
for which the property holds [22]. From a logical point of view, queries ϕ(~x),
where ~x are the free variables in ϕ, can be handled as existentially closed sen-
tences (∃~x) ϕ(~x) which are proved and for which (possibly many) witnesses ~t
are returned to the user. Each ~t is a tuple of terms such that Th ` ϕ(~t) holds.
Theorem proving mechanisms like resolution [54] can be used for this purpose.

Example 49. cf. [50, page 59] As remarked in Example 1, Prover9 obtains a
proof of (2), which can be viewed as a query to the database. The proof is
obtained by resolution. From the proof report, a witness y = p can be obtained.

In logic, a witness for an existentially quantified sentence (∃x)ϕ(x) is a specific
value b to be substituted by x in ϕ(x) so that ϕ(b) is true (see, e.g., [2, page
81]). Similarly, we can think of a value b such that ¬ϕ(b) holds as a witness of
(∃x)¬ϕ(x) or as a refutation witness for (∀x)ϕ(x); we can also think of b as a
counterexample to (∀x)ϕ(x). Witnesses given as values b from an interpretation
domain A, though, can be meaningless for users familiarized with the first-order
language Ω at use, but not with abstract values from A (often automatically
synthesized by some tool). Users would be happier to get terms t connected to
witnesses b so that tA = b. Corollary 28 permits a refutation of ϕ by finding
a model A of ¬ϕ to conclude that I |= ¬ϕ. In this section, we want to obtain
ground instances of ϕ to better understand unsatisfiability of ϕ.

The negation of (22), i.e., of (Q1x1 : s1) · · · (Qkxk : sk)
∨m
i=1

∧ni
j=1 Lij is

(Q1x1 : s1) · · · (Qkxk : sk)

m∧
i=1

ni∨
j=1

¬Lij(x1, . . . , xk) (43)

where Qi is ∀ whenever Qi is ∃ and Qi is ∃ whenever Qi is ∀.

Example 50. The negations of (24) and (35) are

(∀x)(∀n) ¬pow(x, s(s(n)), s(s(s(0)))) (44)

(∃x : N)(∃y : N)(∀z : N) ¬(add(x, y)→∗ z) ∨ ¬(add(y, x)→∗ z) (45)

We assume η ≤ k universal quantifiers in (43) with indices U = {υ1, . . . , υη} ⊆
{1, . . . , k} and hence k−η existential quantifiers with indices E = {ε1, . . . , εk−η} =
{1, . . . , k} − U . In the following η denotes k − η. For each ε ∈ E, we let
Uε = {υ ∈ U | υ < ε} be the (possibly empty) set of indices of universally
quantified variables in (43) occurring before xε in the quantification prefix of
(43). Let ηε = |Uε|. Note that Uε1 ⊆ Uε2 ⊆ · · · ⊆ Uεη . Let U∃ be the
set of indices of universally quantified variables occurring before some existen-
tially quantified variable in the quantification prefix of (43). Note that U∃

22

is empty whenever υ1 > εk−η (no existential quantification after a universal
quantification); otherwise, U∃ = {υ1, . . . , υ∃} for some υ∃ ≤ υη. Accordingly,
U∀ = U − U∃ = {εη + 1, . . . , k} is the set of indices of universally quantified
variables occurring after all existentially quantified variables in the quantifi-
cation prefix of (43). Note that U∀ is empty whenever ε1 > υη (no universal
quantification after an existential quantification).

Example 51. For the sentences in Example 50, we have the following:

• For (44), η = 2, U = {1, 2} and E = ∅. Also, U∃ = ∅ and U∀ = {1, 2}.

• For (45), η = 1, U = {3} and E = {1, 2}. Also, U1 = U2 = ∅, U∃ = ∅,
and U∀ = {3}.

Most theorem provers transform sentences into universally quantified formulas
by Skolemization (see, e.g., [28]). Thus, if (43) contains existential quantifiers,
we introduce new Skolem function symbols skε : wε → sε for each ε ∈ E, where
wε is the (possibly empty) sequence of ηε sorts indexed by Uε. Note that skε is
a constant if ηε = 0. The Skolem normal form of (43) is

(∀xυ1
: sυ1

) · · · (∀xυη : sυη)

m∧
i=1

ni∨
j=1

¬Lij(e1, . . . , ek) (46)

where for all 1 ≤ q ≤ k, (i) eq ≡ xq if q ∈ U and (ii) eq ≡ skq(~xηq) if q ∈ E,
where ~xηq is the sequence of variables xν1

, . . . , xνηq .

Example 52. The Skolem normal forms of (44) and (45) are

(∀x)(∀n) ¬pow(x, s(s(n)), s(s(s(0)))) (47)

(∀z : N) ¬(add(skx, sky)→∗ z) ∨ ¬(add(sky, skx)→∗ z) (48)

where skx and sky are constants of sort N.

If E 6= ∅ (i.e., (43) and (46) differ), then (46) is a sentence of an extended
signature Ωsk = (S,Σsk,Π) where Σsk extends Σ with skolem functions. Since
(46) logically implies (43) [2, Section 19.2], every model A of (46) satisfies (43).

Definition 53 (Set of refutation witnesses). Let A be an Ωsk-structure with
hsq surjective for all q ∈ U∃∪E. The Ωsk-sentence (46) is given a set of refuta-
tion witnesses Φ consisting of Ω-sentences φα for each valuation α of variables
xυ1 , . . . , xυ∃ indexed by U∃; each φα is defined as follows:

(∀xεη+1 : sεη+1) · · · (∀xk : sk)

m∧
i=1

ni∨
j=1

¬Lij(e′1, . . . , e′k) (49)

where for all 1 ≤ q ≤ k, (i) e′q ≡ xq if q ∈ U∀ and (ii) e′q ≡ t if q ∈ U∃ ∪ E and

t ∈ TΣsq is such that tA = [eq]
A
α .

23

In Definition 53 we could fail to find terms t ∈ TΣsq if hsq is not surjective.
Note also that, whenever E is empty, Φ is a singleton consisting of (49) which
coincides with (46). Refutation witnesses are built from symbols in the original
signature Ω only. They provide more intuitive counterexamples to property ϕ.

Example 54. For (47), we obtain a single refutation witness:

(∀x)(∀n) ¬pow(x, s(s(n)), s(s(s(0)))) (50)

expressing that for every (natural) number there is no n+ 2-nth root.

Example 55. For (48), the model A computed by AGES in Example 48 also
includes the following interpretation for skx and sky:

skx = 1 and sky = 0

Since U∃ = ∅ there is a single (empty) valuation α : U∃ → AN which we use
to obtain the refutation witnesses. Examples of terms t ∈ TΣN such that [t]A =
[skx]A = 1 are head(nil), head(cons(head(nil), xs)) for all ground terms xs of sort
LN, etc. For terms t′ = sucn(0) for some n > 0, we have [t′]A = [sky]A = 0. In
this way, we obtain infinitely many refutation witnesses:

(∀z : N) ¬(add(head(nil), 0)→∗ z) ∨ ¬(add(0, head(nil))→∗ z)
(∀z : N) ¬(add(head(nil), suc(0))→∗ z) ∨ ¬(add(suc(0), head(nil))→∗ z)

...

These refutation witnesses express that whenever head(nil) is an argument of
add, the normal form of the addition depends on the argument that holds it.

Proposition 56. For every Ωsk-structure A, A |= (46) if and only if A |= Φ.

Proof. For the only if part, consider an arbitrary valuation α of variables
xυ1

, . . . , xυ∃ . Since A |= (46), we have that(∀xεη+1 : sεη+1) · · · (∀xk : sk)

m∧
i=1

ni∨
j=1

¬Lij(e1, . . . , ek)

A
α

(51)

is true. Now, consider φα ∈ Φ. For all 1 ≤ p ≤ k, we have [e′p]
A
α = [ep]

A
α .

Thus, A |= φα and therefore A |= Φ. With regard to the if part, we have
to prove that every valuation α for xυ1

, . . . , xυη satisfies the matrix formula of
(46), i.e., [

∧m
i=1

∨ni
j=1 ¬Lij(e1, . . . , ek)]Aα is true. Consider the formula φα ∈ Φ

for α (restricted to xυ1 , . . . , xυ∃), i.e.,

(∀xεη+1 : sεη+1) · · · (∀xk : sk)

m∧
i=1

ni∨
j=1

¬Lij(e′1, . . . , e′k)

SinceA |= φα, we know that [
∧m
i=1

∨ni
j=1 ¬Lij(e′1, . . . , e′k)]Aα is true. By definition

of φα, [ep]
A
α = [e′p]

A
α for all 1 ≤ p ≤ k. We conclude that A |= (46) holds. 2

24

Proposition 57. Let Ω be a signature, Th be a theory, ϕ be a sentence (22),
and A be a model of Th such that for all negative literals Lij = ¬P (~t) with
P ∈ Πw and substitutions σ, if h(σ(~t)) ∈ PA then σ(~t) ∈ P I . For all φ ∈ Φ,
I |= φ.

Proof. The refutation witnesses φ for (the Skolem normal form of) ¬(22) are
of the form (∀xεη+1 : sεη+1) · · · (∀xk : sk)

∧m
i=1

∨ni
j=1 ¬Lij(t1, . . . , tεη , xεη+1, . . . , xk).

If I |= φ does not hold, then we have I |= ¬φ instead, i.e., there are terms
tεη+1, . . . , tk of sorts sεη+1, . . . , sk, respectively, such that

I |=
ni∧
j=1

Lij(t1, . . . , tεη , tεη+1, . . . , tk)

for some 1 ≤ i ≤ m. Positive literals Lij , i.e., atoms, are preserved under homo-
morphism, and for all Lij(t1, . . . , tεη , tεη+1, . . . , tk) = ¬P (t1, . . . , tεη , tεη+1, . . . , tk),
we must have A |= Lij(t1, . . . , tεη , tεη+1, . . . , tk); otherwise, since I |= Lij holds,

i.e., ~t 6∈ P I , we contradict our initial assumption for negative literals. Therefore,

A |=
m∨
i=1

ni∧
j=1

Lij(t1, . . . , tεη , tεη+1, . . . , tk).

Thus, for the valuation α of variables xεη+1, . . . , xk given by α(xp) = tAp for all
εη + 1 ≤ p ≤ k, we have that m∨

i=1

ni∧
j=1

Lij(t1, . . . , tεη , xεη+1, . . . , xk)

A
α

is true, contradicting A |= φ, which holds by definition of Φ and Proposition 56.
2

Corollary 58. If (22) is positive, then for all φ ∈ Φ, I |= φ.

8. Some explored applications

Some applications of the theory described in the previous sections have been
explored for rewriting-based systems. In this section we give a brief account. In
order to save space, we point to appropriate references for additional examples.
Figures 4–6 show some properties of interest about (unsorted) CTRSs which
have been investigated in the literature. Here, x, y, z denote variables, s and
t denote ground terms, s1, . . . , sn, t1, . . . , tn and u are arbitrary terms with ~x
referring all variables in such terms.

25

Property ϕ Negation
Reachable s→∗ t Unreachable
Feasible (∃~x)s1 →∗ t1 ∧ · · · ∧ sn →∗ tn Infeasible
Joinable (∃x) (s→∗ x ∧ t→∗ x) Non-joinable
Meetable (∃x) (x→∗ s ∧ x→∗ t)

Peak (∃x) (x→ s ∧ x→ t)
Reducible (∃x) t→ x Irreducible

Narrowable (∃~x, y) u→ y nonvariable reduction!
Cycl ing term (∃x) t→ x ∧ x→∗ t

Cycl ing system (∃x, y) x→ y ∧ y →∗ x

Figure 4: Feasibility problems for CTRSs

8.1. (In)feasibility problems

Figure 4 shows some examples of feasibility properties for CTRSs, where
given pairs of terms si, ti, 1 ≤ i ≤ n, we want to find a substitution σ such
that, for all 1 ≤ i ≤ n, σ(si) ./ σ(ti) holds (with ./ either → or →∗). From a
logical point of view, they can be handled as ECBCAs ϕ and then proved by
using Corollary 14 and disproved by using Corollary 47 with Hϕ = Nϕ = ∅.
This approach has been implemented in the tool infChecker [24] using Prover9
as a backend to use Corollary 14 and Mace4 and AGES to implement the use
of Corollary 47. infChecker proved to be the most powerful tool among the
participants in the new infeasibility category of the 2019 Confluence Competition
[44, Section 5.2].11 Quite surprisingly, with our logic-based, generic techniques,
we could handle most examples coming from papers developing several specific
techniques to deal with these problems (including tree automata [43], unification
[59], theorem proving [58] and interpretation methods [1]).

8.2. Other properties of rewriting-based systems expressed as ECBCAs

Figure 5 shows other properties of rewriting-based systems which can also
be expressed as ECBCAs. In this case, though, further predicate symbols,
appropriately defined by a first-order theory, are used. We discuss them briefly:

Root reduction. A predicate
Λ→ is used to represent root-reduction, i.e., rewriting

at the root of terms only. Its Horn theory H Λ→R
, where reductions with

Λ→R are

not propagated below the root of terms (as done by rules Cf,i in Figure 2), is
as follows: for each rule `→ r ⇐ s1 → t1, . . . , sn → tn, we have a sentence:

(∀x1, . . . , xk) s1 →∗ t1 ∧ · · · ∧ sn →∗ tn ⇒ `
Λ→ r (52)

11Competition results here: http://cops.uibk.ac.at/results/?y=2019&c=INF. infChecker
also implements some transformations for CTRSs [36, 24], but their contribution to the results
in the competition is small. The main bulk corresponds to Corollaries 14 and 47.

26

Property ϕ Negation

Root reducible (∃x) t
Λ→ x

Convertible s→ t ∨ t→ s
Looping term (∃x, y) t→ x ∧ x→∗ y ∧ y � t

Looping system (∃x, y, z) x→ y ∧ y →∗ z ∧ z � x
Redex -reducible (∃~x)

∨
`→r∈R t→∗ ` Head-normal form

C ond. Redex -reducible (∃~x, y)
∨
`→r⇐c∈R(t→∗ ` ∧ ` Λ→ y) Head-normal form

Figure 5: ECBCA properties about rewriting-based systems

in H Λ→R
(where x1, . . . , xk are the variables occurring in the rule) and nothing

else. The conditions in the rules are evaluated with→∗R rather than with
Λ−→∗R .

For this reason, no definition of the reflexive and transitive closure of
Λ→ is given.

Subterm. Predicate symbol � represents the subterm relation among terms.
The corresponding Horn theory H� is:

(∀x) x � x

(∀x, y, z) x� y ∧ y � z ⇒ x � z

(∀x1, . . . , xk) f(x1, . . . , xk) � xi

for each f ∈ F and 1 ≤ i ≤ k

Examples of the use of our techniques for proving properties in Figure 5 can be
found in [33, Sections 5.4 and 5.5].

8.3. More general properties of (C)TRSs
A TRS R is top-terminating if no infinitary reduction sequence performs in-

finitely many root-rewritings [13]. Top-termination is important in the semantic
description of lazy languages as it is an important ingredient to guarantee that
every initial expression has an infinite normal form [13, 15]. Accordingly, given
a dummy sort s, the negation of

(∃x : s)(∀n ∈ N)(∃y : S) x(→∗ ◦ Λ→)ny (53)

(which claims for the existence of a term with infinitely many rewriting steps at
top) captures top-termination. We introduce a new predicate→?,Λ for the com-

position→∗ ◦ Λ→ of the many-step rewriting relation→∗ and topmost rewriting
Λ→ in Section 8.2. Sequences s →n

?,Λ t meaning that s →?,Λ-reduces into t in
n+ 1 →?,Λ-steps are defined as follows:

(∀x, y, z : s) x→∗ y ∧ y Λ→ z ⇒ x→0
?,Λ z (54)

(∀x, y, z : S)(∀n ∈ N) x→0
?,Λ y ∧ y →n

?,Λ z ⇒ x→n+1
?,Λ z (55)

Overall, the sentence ϕ to be disproved is:

(∃x : S)(∀n : Nat)(∃y : S) x→n
?,Λ y (56)

where Nat is intended to be interpreted as N. Figure 6 shows further well-known
properties of CTRSs. Examples of use can be found in [34, Section 5.2].

27

Property ϕ
Ground reducible (∀~x) (∃y) t(~x)→ y

Completely defined f (∀~x)(∃y) f(x1, . . . , xk)→ y

Completely defined TRS (∀~x)(∃y1, . . . , yD)
∧D
i=1 fi(x1, . . . , xar(fi))→ yi

for D the number of nonconstant defined symbols
Productive (∀x)(∃~y)

∨
c∈C x→∗ c(y1, . . . , yk)

Inf initely root-reducible (∃x)(∀n ∈ N)(∃y) x(→∗ ◦ Λ→)ny
Normalizing term (∃x) (s→∗ x ∧ ¬(∃y) x→ y)

Normalizing TRS (WN) (∀x)(∃y) (x→∗ y ∧ ¬(∃z) y → z)
Locally confluent (WCR) (∀x, y, z) x→ y ∧ x→ z ⇒ (∃u) x→∗ u ∧ z →∗ u

Conf luent (CR) (∀x, y, z) x→∗ y ∧ x→∗ z ⇒ (∃u) x→∗ u ∧ z →∗ u

Figure 6: Arbitrary properties about rewriting-based systems

9. Related work

9.1. Reiter’s assumptions for relational databases

In [51], as part of his logical approach to relational databases, Reiter defines
a Domain Closure Axiom (DCA, “the individuals occurring in the database
are all and only the existing individuals”) and a Unique Name Axiom (UNA,
“individuals with distinct names are distinct”)12 which correspond to (31) and
(32), respectively [52, page 207]. Reiter’s purpose is making satisfiability of
formulas in IDB equivalent to provability in a new theory including DB , DCA,
UNA and further axioms (see [52, Section 3.1]).

Our results provide an alternative approach: since relational data bases can
be seen as Horn theories DB , we can prove sentences ϕ by using theorem proving
with respect to DB (Corollary 14); if this fails, disprove ϕ by using Corollary
47 with DB , and Hϕ and Nϕ appropriately defined: since relational databases
use finitely many constant symbols only,

• Hϕ = ∪s∈USuHTss for U the set of sorts with variables universally quanti-
fied in ϕ and Ts the set of constants of sort s in the signature.

• Nϕ is easily computable if ϕ contains negative literals.

9.2. Dealing with negative literals in deductive databases and logic programming

Theories obtained from Horn clauses can be used to prove positive liter-
als only (Remark 15). In logic programming, negative literals are handled by
adopting Reiter’s Closed World Assumption (CWA): everything which cannot
be proved is assumed to be false [50]. This is consistent with the model-theoretic
semantics of logic programs P where atoms not belonging to IP are considered

12The description of the axioms is taken from [52, page 191], where they are called assump-
tions. Furthermore, in [51, page 247], UNA is actually introduced as E-saturation.

28

false. Clark proved that this view of negation is consistent with provability of
negative literals (in the usual sense) with respect to a completed theory Comp(P)
associated to program P [6]. Clark’s approach to prove negative literals ¬A by
theorem proving (i.e., Comp(P) ` ¬A) may fail to work.

Example 59. The following logic program P [19, Example 6.1]:

edge(a,b). edge(c,d). edge(d,c).

reachable(a).

reachable(X) <- edge(Y,X), reachable(Y).

represents the graph:

a b c d

and predicate reachable for vertices reachable from a. Gelfond and Lifschitz
note that ¬reachable(c) cannot be proved from Clark’s completion of reachable:

reachable(x) ⇔ (x = a ∨ (∃y) reachable(y) ∧ edge(y, x)) (57)

This is not surprising: Clark’s completion precisely captures proofs by SLDNF
resolution and ¬reachable(c) cannot be proved as a failure of reachable(c)
by SLDNF resolution due to an infinite computation branch.

We prove that ¬reachable(c) is a semantic property of P by finding a model
A of P∪{¬reachable(c)} (note that reachable(c) is an ECBCA) with Mace4:
the domain is A = {0, 1}; constants are interpreted by aA = bA = 0, cA = dA =
1; for predicate symbols: reachableA(x)⇔ x = 0 and edgeA(x, y)⇔ x = y.

The example shows that approaching negation by satisfiability in arbitrary
structures can be useful when negation-as-failure does not work.

9.3. Entailment in ASP

Stable models X for ASP programs P are often obtained as least Herbrand
models IPX of basic logic programs PX , often called reducts so that the (fix-
point) stability condition IPX = X is satisfied. For NLPs P, reducts are ob-
tained by first considering all ground instances of the rules in P and (i) removing
rules containing (extended) literals not B with B ∈ X, and then (ii) removing
negative literals from any other rule [19, Section 2].

Example 60. (cont. Example 23) For H = {p(a)} in Example 8, PH = {p(a)}.
Since IPH = H, it follows that H is stable. For H′ = {p(b)}, we have PH′ =
{p(b)}, i.e., H′ is a stable model of P.

An ASP program P entails a ground literal L (written P |= L) if L is satisfied
by every answer set X of P. ASP queries q are solved by entailment : “yes”, if
P |= q; “no”, if P |= ¬q, and “unknown” otherwise [18, Defs. 7.2.4 and 7.2.5].

29

Remark 61 (Proving entailment with NLPs). For NLP programs P, we
have P |= L iff for all stable models X of P, IPX |= L. Therefore, we can prove
the entailment of a sentence ϕ by an NLP program P if for all answer sets X
of P, ϕ is a semantic property of the reduct PX (a set of ground Horn clauses).

In this way, the techniques discussed in this paper could also be of some use in
ASP programming.

Example 62. For P in Example 23, we have

P |= p(a) ⇔ IPH |= p(a) and IPH′ |= p(a)
⇔ true and false
⇔ false

and similarly for ¬p(a). The answer to queries p(a) and ¬p(a) is “unknown”.

Although reducts are usually obtained after grounding the original ASP pro-
gram, limiting the attention to constant functions only is frequent in ASP sys-
tems. Thus, reducts PX representing stable sets X can be computed and the
application of our results as explained in Remark 61 would also be feasible.

9.4. The First-Order Theory of Rewriting

The so-called first-order theory of rewriting for a TRS R (FOThR in the
following) uses a restricted first-order language without constant or function
symbols, and with only two predicate symbols → and →∗. Predicate symbols
are interpreted on an intended model which gives meaning to → and →∗ as the
one-step and many-step rewrite relations →R and →∗R for R on ground terms,
respectively [12]. This is just the least Herbrand model IR for the Horn theory
R ofR (see Section 4.5). FOThR is often used to express and verify properties of
TRSs. For instance, confluence or local confluence (see Figure 6) fit this format.
Given a TRS R and a formula ϕ in the language of FOThR, IR |= ϕ (i.e., the
satisfiability of ϕ in IR) actually means that the property expressed by ϕ holds
forR. For instance IR |= CR means ‘R is ground confluent’. And ¬(IR |= CR),
which is equivalent to IR |= ¬CR means ‘R is not ground confluent’. Decision
algorithms for these properties exist for restricted classes of TRSs R like left-
linear right-ground TRSs, where variables are allowed in the left-hand side of
rules (with no repeated occurrences of the same variable) but disallowed in the
right-hand side [49]. However, a simple fragment of FOThR like the First-Order
Theory of One-Step Rewriting, where only predicate → is allowed, has been
proved undecidable even for linear TRSs [62]. Some specialized approaches to
deal with reachability analyses in proofs of confluence or termination of rewriting
have been recently proposed [60].

Other approaches like the ITP tool, a theorem prover that can be used to
prove properties of membership equational specifications [9] work similarly: the
tool can be used to verify such properties with respect to ITP-models which are
actually special versions of the Herbrand model of the underlying theory. Then,
one may have similar decidability problems as discussed for FOThR.

30

In contrast to FOThR, we use the full expressive power of FOL to repre-
sent sophisticated rewrite theories where sorts, conditional rules and equations,
membership predicates, etc., are allowed. We do not impose any restriction on
the class of rewrite systems we can deal with. In contrast to FOThR, where
function symbols are disallowed in formulas, we use sentences involving arbi-
trary terms. Also in contrast to FOThR, with a single allowed model HR, we
permit the arbitrary interpretation of the underlying first-order logic language
for proving properties. The application of this approach to well-known prob-
lems in rewriting leads to new methods which show their practical usefulness
(see Section 8.1). In FOThR, strong restrictions are imposed on the shape of for-
mulas that can be treated. For instance, most sentences in Figures 4–6 are not
expressible in FOThR, as they involve specific terms with or without variables.

9.5. Verification of safety properties of rewrite systems

In [29], Lisitsa investigates verification of safety properties of TRSs R. He
uses first-order descriptions ΨR of TRSs R. ΦR is analogous to R as given
in Section 4.5. However, only a predicate R (instead of → or →∗, but which
actually plays the role of→∗) is used, and rewrite rules do not have conditional
part, as R is a TRS.

Targetted safety properties are encoded as reachability problems t1 →∗R t2
where t1 and t2 are ground terms respectively belonging to the language of
appropriate tree automata AI and AU over the signature F extended with
appropriate finite sets of constans QI and QU respectively denoting the sets of
states of the automata. Without loss of generality, F , QI , and QU are assumed
to be disjoint. The rewriting steps are issued using R. Any tree automaton A
can be simulated as a TRS (also denoted A) and the language L(A) accepted
by the automaton can be described by means of a set of reachability problems
for the TRS A. Overall, the considered safety problems are rephrased as the
formula

ψP = (∃x)(∃y)
∨

qi∈QI ,qu∈QU

R(x, qi) ∧R(x, y) ∧R(y, qu) (58)

The refutation of ψP proceeds by finding a model A of ΦP ∪ {¬ψP }, where
ΦP is the union of ΦAI , ΦAU and ΦR [29, Theorem 3.5]. Since ΦP is a first-
order theory and ψP is an ECBCA, this is a particular case of Corollary 28.
This is also true for the variants of the aforementioned safety problem for TRSs
investigated by Lisitsa in [29, Sections 3.6 and 4].

9.6. Term rewriting systems as logic programs

Gallagher and Rosendahl use Horn clauses to encode TRSs and then inves-
tigate reachability issues [17]. Their approach, however, is quite different from
ours. As explained in Section 4.5, our starting point is not just a TRS R but the
inference rules I(R) associated to R in a given computational logic which can
be different for the same TRS (e.g., a TRS R yields a different inference system
and logical theory when considered as a context-sensitive rewrite system [32]).

31

In this way, we make explicit not only the rules of the TRS but also the de-
scription of the considered operational semantics (and possibly other relations).
Such a semantic description is implicit (and therefore fixed) in their encoding.
Also, we view rewrite rules ` → r just as atoms for a binary predicate →,
whereas they translate each rewrite rule into several Horn clauses which flatten
the original terms to simulate pattern matching [17, Section 3]. Furthermore,
we do not restrict the attention to TRSs; our method applies to more general
rewriting-based systems.

9.7. Verification of concurrent systems

In [30], Lisitsa investigates reachability problems for transition systems rep-
resented as finite automata (with the possibility of using some arithmetic op-
erators together with standard arithmetic properties encoded as equations) by
using a logic-based approach similar to ours. Only monadic predicates are con-
sidered. A reachability predicate Reach is intended to hold if a given state is
reachable from the initial state of the considered automaton. Furthermore, only
ECBCA sentences are considered to express semantic properties.

9.8. Protocol verification

In [56], Selinger shows how to encode cryptographic protocols as first-order
formulas so that a proof of correctness of a given protocol can be pursued by
just finding a model of a set of axioms representing properties of cryptographic
properties (see [56, Figure 1]) together with a description of some particular
protocol, and (the negation of) a formula Ψ which represents a violation of se-
crecy (and thus, its negation represents the desired correctness requirement of
the protocol), see [56, page 79]. In order to illustrate his technique, Selinger
uses a corrected version of Needham-Schroeder protocol derived from the anal-
ysis of Lowe [31], for which he obtains a proof of correctness by satisfiability [56,
Section 2.5]. Goubault-Larrecq further develops Selinger’s approach by showing
that formally checkable proofs of correctness of protocols can be obtained from
the obtained models. He also investigates the specific interest (concerning de-
cidability issues) of using finite models in protocol verification (despite he shows
that there are protocols requiring infinite models too). In these two papers, the
considered formulas Ψ are ECBCAs. Thus, the correctness of the approach
actually follows from Corollary 28. We think that more general properties of
security protocols which do not fit the ECBCA format could be analyzed by
using our methods.

A similar technique is also used by Jürjens and Weber [26], where theories
are restricted to limit sentences, which are universally quantified implications
where some variables in the consequent can be quantified with the uniqueness
quantifier ∃! instead13. Limit sentences properly extend Horn clauses. Their use
is motivated by specific requirements that the computed models are intended

13As usual, (∃! x)P (x) abbreviates (∃x)(P (x) ∧ (∀y)(P (y)⇒ x = y))

32

to fulfill when dealing with protocols involving equational components, see [26,
Theorem 2]. On the other hand, sentences to be refuted (called conjectures)
must be universally quantified conjunctions of atoms (∀~x)

∧n
i=1Ai [26, Section

2]. Also, the paper considers finite models only, although no strong technical
reason is apparently given to justify this restriction (which is not imposed in
[56], for instance). Jürjens and Weber’s approach involves universally quanti-
fied conjunctions of atoms which are not ECBCAs. Thus, an interesting subject
for future work is investigating how to exploit the specific shape of the consid-
ered theories Th (e.g., limit sentence) to guarantee soundness without adding
sentences reinforcing surjectivity, as required by Corollary 28.

9.9. Proof by consistency

The idea of proving logic formulas ϕ with respect to a theory Th by show-
ing that Th ∪ {ϕ} is not contradictory is called proof by consistency by Kapur
and Musser [27]. The authors point that this proof method is, in general, un-
sound, but can be faithfully used with strongly complete proof systems, which
are those guaranteeing that, whenever a formula ϕ can be added as an axiom to
the proof system without introducing inconsistencies, then ϕ is also a theorem
of the system. The authors remark that first-order predicate calculus are not
strongly complete. Peano arithmetics is not strongly complete either, although
when restricted to formulas which are universally quantified equations is strongly
complete [27, page 126]. Kapur and Musser focus on many-sorted equational
proof systems consisting of a subset C of ground terms and a set of equations
E where equational logic is used as proof system. Their proof by consistency
method is used to prove equations (with implicit universal quantification) with
respect to the considered systems. Furthermore, additional requirements like
unambiguity are required on the considered systems (i.e., theories, see [27, The-
orem 9.2], for instance. Moreover, Kapur and Musser do not use satisfiability
to show consistency of the theory (although both notions are equivalent14). In-
stead, proof-theoretic (rewriting-based) methods are used to prove consistency.

9.10. Proving semantic properties by satisfiability vs. theorem proving

When proving semantic properties of a theory Th, the use of Corollary 47
may have interesting practical advantages. In principle, by Corollary 14, a
property ϕ of Th can be verified using theorem proving. However, this is not
always possible (see Example 2 regarding the failing attempts to prove (3) and
¬(3) as theorems of Teach). In particular, it is well-known that proving negative
statements ¬ϕ, where ϕ is a positive formula, is not possible if (as often happens)
Th is a Horn theory. For instance, although ¬(3) could not be proved (for Teach)
with Prover9, it is proved in Example 5 by using our results together with Mace4.

14A theory Th is called consistent if no formula ϕ and its negation ¬ϕ is provable [40, Page
72]. This is a proof-theoretic definition. The (equivalent) semantic version is: a theory is
consistent if it has a model [25, page 41]. Since theories consist of sentences, this is equivalent
to the satisfiability of each sentence of the theory.

33

Of course, although disproving positive properties ϕ by using our method is
feasible and useful (note that Nϕ = ∅ in this case), an attempt to directly prove
ϕ using Corollary 47 requires considering ϕ = ¬ϕ which would contain negative
literals, thus requiring a nonempty component N¬ϕ which can be difficult to
compute in many cases (in particular, for predicate symbols P with arguments
of sorts s with infinite sets TΣs of ground terms).

10. Conclusions and future work

We have presented a semantic approach to prove semantic properties of com-
putational systems described as a first-order theory Th. Semantic properties are
defined as first-order sentences ϕ which are satisfiable in the interpretation ITh
associated to the set of ground consequences of Th. We have proved that seman-
tic properties ϕ can be proved by finding an arbitrary modelA of Th∪H∪N∪{ϕ},
where the possibly empty theories H and N depend on ϕ only (Corollary 47). For
Horn theories Th, theorem proving can also be used to verify (positive) semantic
properties ϕ as theorems of Th (Corollary 14). Our approach is applicable in
well-known realms like relational and deductive databases, logic programming,
answer-set programming, and rewriting-based systems. Of course, the existence
of (finite or infinite, although finitely presented) models for a given theory is not
guaranteed. Much less for finitely presented models computed by using some
specific approach like linear algebra (as it is the case of AGES). Our (still short)
practical experience shows that the method can be competitive when compared
to other approaches (see the discussion at the end of Section 8.1). This obser-
vation encourages us to further investigate the deep reasons for this, by means
of theoretical and empirical studies.

Our work is also helpful to clarify the outcome of model generation tools
when used together with theorem provers15 in some applications: program anal-
ysis, solving queries, etc. Of course, the main purpose of these tools is theorem
proving and finding a countermodel of ϕ, i.e., a model of Th ∪ {¬ϕ}, actually
shows that ϕ is not a theorem of Th, i.e., Th ` ϕ does not hold (this is the main
use of such countermodel generation feature). Although concluding Th ` ¬ϕ
from such a countermodel would, in general, be wrong (but non-expert users
could be tempted to do it), our results show that, depending on the shape of ϕ,
the conclusion ITh |= ¬ϕ (which, following Clark, in most cases is the intended
meaning of ¬ϕ) could be faithfully affirmed, perhaps after adding sentences
reinforcing surjectivity, etc.

The two main practical results presented in this paper (Corollaries 14 and
47) are the basis of the tool infChecker, which is able to prove restricted semantic
properties of CTRSs (see Section 8.1). The results obtained by this tool are very
encouraging: the tool won the first international competition of infeasibility

15for instance, Prover9/Mace4, but also Alt-Ergo (https://alt-ergo.ocamlpro.com/),
PDL-tableau (http://www.cs.man.ac.uk/~schmidt/pdl-tableau/) and Princess (http://www.
philipp.ruemmer.org/princess.shtml).

34

tools as part of the 2019 Confluence Competition (CoCo). The application
of our techniques to other computational systems (databases, cryptographic
protocols, logic and answer set programming) is therefore promising, and we
plan to explore their performance in the future.

We also plan to develop a fully general implementation of our results as
an extension of the tool AGES, which already provides the necessary ability to
generate finite and infinite models of many-sorted first-order theories. It is, how-
ever, unable to deal with the automatic generation of theories H and N which
could be required to verify a given semantic property ϕ, or compute refutation
witnesses. This is a subject for future work. Also, our research suggests that
further investigation on the generation of models for many-sorted theories that
combines the use of finite and infinite domains is necessary. For instance, [35]
explains how to generate such models by interpreting the sort, function, and
predicate symbols by using linear algebra techniques. This is implememented
in AGES. Domains are defined as the solutions of matrix inequalities, possibly
restricted to an underlying set of values (e.g., Z); thus, finite and infinite do-
mains can be obtained as particular cases of the same technique. Since piecewise
definitions are allowed, we could eventually provide fully detailed descriptions
of functions and predicates by just adding more pieces to the interpretations.
However, such a flexibility is expensive. In contrast, Mace4 is based on a differ-
ent principle (similar to [28]) and it is really fast, but only finite domains can
be generated. This is a problem, for instance, when using Proposition 46 to
guarantee surjectivity of homomorphisms hs : TΣs → As. Even though As is
finite, we still need to be able to interpret Nat as N, which is not possible with
Mace4. For this reason, Example 48 (where the computed structures A have
finite domains for the ‘proper’ sorts N and LN, and only Nat is interpreted as an
infinite set N) could not be handled with Mace4, or with similar tools that are
able to deal with sorts (e.g., SEM [64] or the work in [53]) but which generate
finite domains only.

Acknowledgements. I thank the anonymous referees for their comments and
suggestions, leading to many improvements in the paper.

References

[1] T. Aoto. Disproving Confluence of Term Rewriting Systems by Interpretation
and Ordering. In Proc. of FroCoS’13, LNCS 8152:311-326, 2013.

[2] G.S. Boolos, J.P. Burgess, and R.C. Jeffrey. Computability and Logic, fourth
edition. Cambridge University Press, 2002.

[3] R. Bruni and J. Meseguer. Semantic foundations for generalized rewrite theories.
Theoretical Computer Science 351(1):386-414, 2006.

[4] J.-M. Cadiou. On Semantic Issues in the Relational Model of Data. In Proc. of
MFCS’76, LNCS 45:23-38, 1976

[5] C.L. Chang and R.C. Lee. Symbolic Logic and Mechanical Theorem Proving.
Academic Press, 1973.

35

[6] K.L. Clark. Negation as failure. In Logic and Data Bases, pages 293-322, 1978.

[7] K.L. Clark. Predicate Logic as a Computational Formalism. PhD. Thesis, Re-
search Monograph 79/59 TOC, Department of Computing, Imperial College of
Science, and Technology, University of London, December 1979.

[8] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Tal-
cott. All About Maude – A High-Performance Logical Framework. LNCS 4350,
Springer-Verlag, 2007.

[9] M. Clavel, M. Palomino, and A. Riesco. Introducing the ITP Tool: a Tutorial.
Journal of Universal Computer Science 12(11):1618-1650, 2006.

[10] E.F. Codd. A Relational Model of Data for Large Shared Data Banks. Commu-
nications of the ACM 13(6):377-387, 1970.

[11] A. Colmerauer, H. Kanqui, P. Roussel, and R. Pasero. Un Systeme de Commu-
nication Homme-Machine en Francais. Rapport de recherche CRI 72-18, Groupe
de rechereche en Intelligence Artificielle, U.E.R. de Luminy, Université d’Aix-
Marseille, 1973.

[12] M. Dauchet and S. Tison. The Theory of Ground Rewrite Systems is Decidable.
In Proc. of LICS ’90, pages 242-248, IEEE Press, 1990

[13] N. Dershowitz, S. Kaplan, and D. Plaisted. Rewrite, rewrite, rewrite, rewrite,
rewrite, . . . Theoretical Computer Science 83:71-96, 1991.

[14] M.H. van Emden and R.A. Kowalski. The semantics of Predicate Logic as a
Programming Language. Journal of the ACM 23(4):733-742, 1976.

[15] J. Endrullis and D. Hendriks. Lazy productivity via termination. Theoretical
Computer Science 412:3203-3225, 2011.

[16] R. Fagin. Functional Dependencies in a Relational Database and Propositional
Logic. IBM Journal of Research and Development 21(6):543-544, 1977

[17] J.P. Gallagher and M. Rosendahl. Approximating Term Rewriting Systems: A
Horn Clause Specification and Its Implementation. In Proc. of LPAR 2008, LNCS
5330:682-696, 2008.

[18] M. Gelfond. Answer Sets. In Handbook of Knowledge Representation, pages 285-
316, Elsevier, 2008.

[19] M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming.
In Proc. of ICLP/SLP’88, volume 2, pages 1070-1080, The MIT Press, 1988.

[20] J. Goguen and J. Meseguer. Models and Equality for Logical Programming. In
Proc. of TAPSOFT’87, LNCS 250:1-22, Springer-Verlag, 1987.

[21] J. Goubault-Larrecq. Finite Models for Formal Security Proofs. Journal of Com-
puter Security 18(6):1247-1299, 2010.

[22] C.C. Green and B. Raphael. The use of theorem-proving techniques in question-
answering systems. In Proc. of the 1968 ACM National Conference, pages 169-181,
1968.

36

[23] R. Gutiérrez and S. Lucas. Automatic Generation of Logical Models with AGES.
In Proc. of CADE 2019, LNCS 11716:287-299, 2019. Tool page: http://zenon.

dsic.upv.es/ages/.

[24] R. Gutiérrez and S. Lucas. infChecker, a tool for checking infeasibility. In
Proc. of IWC 2019, pages 38-42, 2019. Tool page: http://zenon.dsic.upv.es/

infChecker/

[25] W. Hodges. Model Theory. Cambridge University Press, 1993.

[26] J. Jürjens and T. Weber. Finite Models In FOL-Based Crypto-Protocol Verifica-
tion. In Revised Selected Papers from ARSPA-WITS 2009, LNCS 5511:155-172,
2009.

[27] D. Kapur and D.R. Musser. Proof by Consistency. Artificial Intelligence 31:125-
157, 1987.

[28] S. Kim and H. Zhang. ModGen: Theorem Proving by Model Generation. In
Proc. of AAAI’94, pages 162-167, AAAI Press/MIT Press, 1994.

[29] A. Lisitsa. Finite Models vs. Tree Automata in Safety Verification. In Proc. of
RTA 2012, LIPIcs 15:225–239, 2012.

[30] A. Lisitsa. Finite Reasons For Safety. Parameterized Verification By Finite Model
Finding. Journal of Automated Reasoning 51:431-451, 2013.

[31] G. Lowe. Breaking and Fixing the Needham-Schroeder Public Key Protoco lUsing
FDR. In Proc. of TACAS’96, LNCS 1055:147-166, 1996.

[32] S. Lucas. Context-Sensitive Rewriting Strategies. Information and Computation
178(1):293–343, 2002.

[33] S. Lucas. Analysis of Rewriting-Based Systems as First-Order Theories. In Re-
vised Selected papers from LOPSTR 2017, LNCS 10855:180-197, 2018.

[34] S. Lucas. Proving Program Properties as First-Order Satisfiability. In Revised
Selected papers from LOPSTR 2018, LNCS 11408:3-21, 2019.

[35] S. Lucas and R. Gutiérrez. Automatic Synthesis of Logical Models for Order-
Sorted First-Order Theories. Journal of Automated Reasoning 60(4):465–501,
2018.

[36] S. Lucas and R. Gutiérrez. Use of logical models for proving infeasibility in term
rewriting. Information Processing Letters, 136:90-95, 2018.

[37] S. Lucas, C. Marché, and J. Meseguer. Operational termination of conditional
term rewriting systems. Information Processing Letters 95:446–453, 2005.

[38] Z. Manna. Properties of programs and the First-Order Predicate Calculus. Jour-
nal of the ACM 16(2):244-255, 1969.

[39] W. McCune Prover9 and Mace4. http://www.cs.unm.edu/~mccune/prover9/,
2005–2010.

37

[40] E. Mendelson. Introduction to Mathematical Logic. Fourth edition. Chapman &
Hall, 1997.

[41] J. Meseguer. Membership algebra as a logical framework for equational specifi-
cation. In Proc. of WADT’97, LNCS 1376:18–61, Springer-Verlag, 1998.

[42] J. Meseguer. Conditional rewriting logic as a unified model of concurrency. The-
oretical Computer Science 96:73-155, 1992

[43] A. Middeldorp. Approximating Dependency Graphs Using Tree Automata Tech-
niques. In Proc. of IJCAR’01, LNAI 2083:593–610, 2001.

[44] A. Middeldorp, J. Nagele, and K. Shintani. Confluence Competition 2019. In
Proc. of TACAS 2019, 25 Years of TACAS: TOOLympics, LNCS 11429:25-40,
2019.

[45] R.C. Moore. Logic and Representation. Cambridge University Press, 1995.

[46] J.M. Nicolas and H. Gallaire. Data Base Theory vs. Interpretation. In Logic and
Data Bases, pages 33-54, Plenum Press, New York, 1978

[47] E. Ohlebusch. Advanced Topics in Term Rewriting. Springer-Verlag, Apr. 2002.

[48] R. Ramakrishnan and J.D. Ullman. A survey of deductive database systems.
Journal of Logic Programming 23(2):125-149, 1995.

[49] F. Rapp and A. Middeldorp. Automating the First-Order Theory of Rewriting
for Left-Linear Right-Ground Rewrite Systems. In Proc. of FSCD’16, LIPIcs 52,
Article No. 36; pp. 36:1-36:12, 2016.

[50] R. Reiter. On Closed World Data Bases. In Logic and Data Bases, pages 119–140,
Plenum Press, 1978.

[51] R. Reiter. Equality and Domain Closure In First-Order Databases. Journal of
the ACM 27(2):235-249, 1980.

[52] R. Reiter. Towards a Logical Reconstruction of Relational Database Theory. In
On conceptual moddeling: perspectives from artificial intelligence, databases, and
programming languages, pages 191-238, 1984.

[53] G. Reger, M. Suda, and A. Voronkov. Finding Finite Models in Multi-sorted
First-Order Logic. In Proc. of SAT 2016, LNCS 9710:323-341, 2016.

[54] J.A. Robinson. A Machine-Oriented Logic Based on the ResolutionPrinciple.
Journal of the ACM 12(1):23-41, 1965.

[55] M. Schmidt-Schauss. Computational Aspects Of An Order-Sorted Logic With
Term Declarations. PhD Thesis, Fachbereich Informatik der Universität Kaiser-
slautern, April 1988.

[56] P. Selinger. Models for an Adversary-Centric Protocol Logic. In Proc. of
LACPV’01, Electronic Notes in Theoretical Computer Science 55:69-87, 2001.

[57] Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mercury,
an efficient purely declarative logic programming language. Journal of Logic
Programming 29(1–3):17-64, 1996.

38

[58] T. Sternagel and A. Middeldorp. Infeasible Conditional Critical Pairs. In Proc.
of IWC’15, pages 13–18, 2014.

[59] C. Sternagel and T. Sternagel. Certifying Confluence Of Almost Orthogonal
CTRSs Via Exact Tree Automata Completion. In Proc. of FSCD’16, LIPIcs 52,
Article No. 85; pp. 85:1–85:16, 2016.

[60] C. Sternagel and A. Yamada. Reachability Analysis for Termination and Con-
fluence of Rewriting. In Proc. of TACAS 2019, part I, LNCS 11427:262-278,
2019.

[61] R. Thomason. Logic and Artificial Intelligence. Stanford Encyclopedia of Phi-
losophy, 110 pages, 2018. https://plato.stanford.edu/archives/win2018/

entries/logic-ai/

[62] R. Treinen. The first-order theory of linear one-step rewriting is undecidable.
Theoretical Computer Science 208:179-190, 1998.

[63] H. Wang. Logic of many-sorted theories. Journal of Symbolic Logic 17(2):105-116,
1952.

[64] J. Zhang and H. Zhang. Generating Models by SEM (System Description). In
Proc. of CADE’96, LNCS 1104:308-312, 1996.

39

