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This paper deals with the randomized heat equation defined on a general bounded interval [L1, L2] and with non-

homogeneous boundary conditions. The solution is a stochastic process that can be related, via changes of variable, with the 
solution stochastic process of the random heat equation defined on [0, 1] with homogeneous boundary conditions. Results in 
the extant literature establish conditions under which the probability density function of the solution process to the random 
heat equation on [0, 1] with homogeneous boundary conditions can be approximated. Via the changes of variable and the 
Random Variable Transformation technique, we set mild conditions under which the probability density function of the 
solution process to the random heat equation on a general bounded interval [L1, L2] and with non-homogeneous boundary 
conditions can be approximated uniformly or pointwise. Furthermore, we provide sufficient conditions in order that the 
expectation and the variance of the solution stochastic process can be computed from the proposed approximations of the 
probability density function. Numerical examples are performed in the case that the initial condition process has a certain 
Karhunen-Loève expansion, being Gaussian and non-Gaussian. Copyright c© 2018 John Wiley & Sons, Ltd.

Keywords: Uncertainty quantification; Random heat equation; Karhunen-Loève expansion; Probability density

function; Numerical simulations

1. Introduction and motivation

It is well-known that the heat equation plays a key role to describe mathematically diffusion processes. Due to heterogeneity

and impurities in materials and errors in the temperature measurements, many authors have proposed to treat the diffusion

coefficient, initial and/or boundary conditions in the heat equation as random variables and/or stochastic processes rather than

deterministic constants and functions, respectively. This approach leads to stochastic and random heat equation formulation [1,

pp. 96–97]. In the former case, the stochastic heat differential equation is forced by an irregular stochastic process such as a

White Noise process [2, Ch. 4]. These kind of equations are typically written in terms of stochastic differentials and interpreted

as Itô or Stratonovich integrals. Special stochastic calculus is usually applied to obtain exact or approximate solutions to this

class of differential equations [2, 3, 4].

In [5], a new stochastic analysis for steady and transient one-dimensional heat conduction problem based on the homogenization

approach is proposed. Thermal conductivity is assumed to be a random field depending on a finite number random variables. Both

mean and variance of stochastic solutions are obtained analytically for the field consisting of independent identically distributed

random variables. In [6], the stochastic temperature field is analyzed by considering the annular disc to be multi-layered with
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spatially constant material properties and spatially constant but random heat transfer coefficients in each layer. A type of integral

transform method together with a perturbation technique are employed in order to obtain the analytical solutions for the statistics

(mean and variance) of the temperature. Another fruitful approach to deal with different formulations of the random heat equation

is the Mean Square Calculus [7, Ch. 4]. In [8], an analytic-numerical mean square solution of the random diffusion model in an

infinite medium is constructed by applying the random exponential Fourier integral transform. A complementary analysis, based

on random trigonometric Fourier integral transforms, to solve random partial differential heat problems with non-homogeneous

boundary value conditions has been presented in [9]. In these two latter contributions, reliable approximations for the mean and

the variance of the solution stochastic process are provided. Likewise asymptotic-preserving methods for random hyperbolic,

transport equations and radiative heat transfer equations with random inputs and diffusive scalings have been recently studied

using generalized polynomial chaos based stochastic Galerkin method [10, 11]. The probabilistic information to the solution

stochastic process of the random heat equation in all the aforementioned contributions focus on first statistical moments like

the mean and the variance functions. Nevertheless, a more ambitious target is to determine exact or reliable approximations

of the first probability density function of the solution stochastic process, since from it all one-dimensional statistical moments

can be obtained, if they exist. In particular, the mean and the variance can be straightforwardly derived via integration of the

first probability density function [7, Ch. 3]. In the context of random partial differential equations, some recent contributions

addressing this significant problem include, for example, [12, 13, 14, 15] (see also references therein). From a general standpoint,

this paper is aimed to contribute further the study of methods to determine rigorous approximations of the first probability density

function of random partial differential equations focusing on the random heat equation. It is important to point out that the

subsequent analysis is based upon our previous contribution [16].

In [16], we have studied the randomized heat equation on the spatial domain [0, 1] with homogeneous boundary conditions

and assuming that the diffusion coefficient is a positive random variable and that the initial condition is a stochastic process. In a

first step, the solution stochastic process of that stochastic problem was rigorously constructed using two different approaches,

namely, the Sample Calculus [7, Appendix I] and the Mean Square Calculus [7, Ch. 4]. The second, and main step, consisted of

constructing approximations of the probability density function of the solution by combining the Random Variable Transformation

technique and the Karhunen-Loève expansion. Several results providing sufficient conditions to guarantee the pointwise and

uniform convergence of these approximations were established. The aim of this contribution is to extend the study to the case

where boundary conditions are random variables and assuming that the problem is stated on an arbitrary interval, say [L1, L2].

Since this extension depends heavily on some results established in [16], for the sake of completeness down below we summarize

them.

2. Preliminaries

2.1. Preliminaries on the randomized heat equation on [0, 1] with homogeneous boundary conditions

Reference [16] provides the necessary results on the approximation of the probability density function of the randomized heat

equation on the spatial domain [0, 1] with homogeneous boundary conditions. The main goal of this contribution is to extend

these results to the randomized heat equation on a general interval [L1, L2] with random boundary conditions.

The heat equation on the spatial domain [0, 1] with homogeneous boundary conditions has the form
vt = β2vxx , 0 < x < 1, t > 0,

v(0, t) = v(1, t) = 0, t ≥ 0,

v(x, 0) = ψ(x), 0 ≤ x ≤ 1.

(1)

We consider (1) in a random setting. Let (Ω,F ,P) be a complete probability space, where Ω is the sample space, which consists

of outcomes that will be denoted by ω, F is a σ-algebra of events and P is the probability measure. The diffusion coefficient is

considered as a positive random variable β2(ω) and the initial condition is a stochastic process ψ = {ψ(x)(ω) : x ∈ [0, 1], ω ∈ Ω}
in the underlying probability space (Ω,F ,P). The solution becomes a stochastic process, expressed as the formal random series

v(x, t)(ω) =

∞∑
n=1

An(ω) e−n
2π2β2(ω)t sin(nπx), (2)

where the random Fourier coefficient

An(ω) = 2

∫ 1

0

ψ(y)(ω) sin(nπy) dy (3)

is understood as a Lebesgue integral for each ω ∈ Ω (this is sometimes referred to as SP integral, see [20, Def. A–1]). The

following result establishes in which sense and under which assumptions the stochastic process (2)–(3) is a rigorous solution to

the randomized PDE problem (1) [16, Th. 1.3].

Theorem 2.1 The following statements hold:

2



J. Calatayud, J.-C. Cortés, M. Jornet

i) a.s. (almost surely) solution: Suppose that ψ ∈ L2([0, 1]×Ω). Then the random series that defines (2)–(3) converges a.s.

for all x ∈ [0, 1] and t > 0. Moreover, vt(x, t)(ω) = β2(ω) vxx(x, t)(ω) a.s. for x ∈ (0, 1) and t > 0, where the derivatives

are understood in the classical sense; v(0, t)(ω) = v(1, t)(ω) = 0 a.s. for t ≥ 0; and v(x, 0)(ω) = ψ(x)(ω) a.s. for a.e.

(almost everywhere) x ∈ [0, 1].

ii) L2 solution: Suppose that ψ ∈ L2([0, 1]×Ω) and 0 < a ≤ β2(ω) ≤ b, a.e. ω ∈ Ω, for certain a, b ∈ R. Then the random

series that defines (2)–(3) converges in L2(Ω) for all x ∈ [0, 1] and t > 0. Moreover, vt(x, t)(ω) = β2(ω) vxx(x, t)(ω)

a.s. for x ∈ (0, 1) and t > 0, where the derivatives are understood in the mean square sense (see Subsection 2.2 later);

v(0, t)(ω) = v(1, t)(ω) = 0 a.s. for t ≥ 0; and v(x, 0)(ω) = ψ(x)(ω) a.s. for a.e. x ∈ [0, 1].

The main goal of [16] consisted of approximating the probability density function of the stochastic process v(x, t)(ω) given

in (2)–(3), for 0 < x < 1 and t > 0. For that purpose, the truncation

vN(x, t)(ω) =

N∑
n=1

An(ω) e−n
2π2β2(ω)t sin(nπx) (4)

was used. By applying the Random Variable Transformation technique, see [21, Lemma 4.12], the density of the truncation

vN(x, t)(ω) was computed and proved the following result [16, Th. 2.8], which provides conditions under which the density

function of the solution stochastic process v(x, t)(ω) from (2)–(3) can be approximated. Hereinafter, the notation fX stands

for the probability density function of the random variable X.

Theorem 2.2 Let {ψ(x) : 0 ≤ x ≤ 1} be a process in L2([0, 1]×Ω). Suppose that β2, A1 and (A2, . . . , AN) are independent

and absolutely continuous, for N ≥ 2. Suppose that the probability density function fA1 is Lipschitz on R. Assume that∑∞
n=m ‖e

−(n2−2)π2β2t‖L1(Ω) <∞, for certain m ∈ N. Then the density of vN(x, t)(ω),

fvN (x,t)(v) =

∫
RN
fA1

(
eπ

2β2t

sin(πx)

{
v −

N∑
n=2

ane−n
2π2β2t sin(nπx)

})
f(A2,...,AN )(a2, . . . , aN)fβ2 (β2)

eπ
2β2t

sin(πx)
da2 · · · daN dβ2, (5)

converges in L∞(R) to a density of the random variable v(x, t)(ω) given in (2)–(3), for 0 < x < 1 and t > 0.

Moreover, from the proofs in [16, Th. 2.7, Th. 2.8], one has the following rate of convergence for {fvN (x,t)(v)}∞N=1 under the

assumptions of Theorem 2.2:

|fvN (x,t)(v)− fv(x,t)(v)| ≤
2‖ψ‖L2([0,1]×Ω)L

sin2(πx)

∞∑
n=N+1

‖e−(n2−2)π2β2t‖L1(Ω), (6)

where L is the Lipschitz constant of fA1 .

Another result that could have been added to [16] is presented in what follows. It substitutes the Lipschitz hypothesis by the

weaker assumption of a.e. continuity and essential boundedness. The hypothesis
∑∞

n=m ‖e
−(n2−2)π2β2t‖L1(Ω) <∞ is substituted

by E[eπ
2β2t ] <∞. Then one proves pointwise convergence of the sequence (5), so the uniform convergence on R and the rate

of convergence (6) are lost.

Remark 2.3 Let X and Y be two independent random variables. If X is absolutely continuous, then X + Y is absolutely

continuous. Indeed, for any Borel set A, by the convolution formula [17, p. 266] we have P(X + Y ∈ A) =
∫
R P(X ∈ A−

y)PY (dy), where PY = P ◦ Y −1 is the law of Y . If A is null, then A− y is null, so P(X ∈ A− y) = 0. Thus, if A is null, then

P(X + Y ∈ A) = 0. By the Radon-Nikodym Theorem [18, Ch. 14], X + Y has a density.

Theorem 2.4 Let {ψ(x) : 0 ≤ x ≤ 1} be a process in L2([0, 1]×Ω). Suppose that β2, A1 and (A2, . . . , AN) are independent and

absolutely continuous, for N ≥ 2. Suppose that the probability density function fA1 is a.e. continuous on R and ‖fA1‖L∞(R) <∞.

Assume that E[eπ
2β2t ] <∞. Then the density of vN(x, t)(ω) given by (5),

fvN (x,t)(v) =

∫
RN
fA1

(
eπ

2β2t

sin(πx)

{
v −

N∑
n=2

ane−n
2π2β2t sin(nπx)

})
f(A2,...,AN )(a2, . . . , aN)fβ2 (β2)

eπ
2β2t

sin(πx)
da2 · · · daN dβ2,

converges pointwise to a density of the random variable v(x, t)(ω) given in (2)–(3), for all 0 < x < 1 and t > 0.

Proof. Fix 0 < x < 1, t > 0 and v ∈ R. From (5), notice that

fvN (x,t)(v) = E
[
fA1

(
eπ

2β2t

sin(πx)

{
v −

N∑
n=2

Ane−n
2π2β2t sin(nπx)

})
eπ

2β2t

sin(πx)

]
.
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Define the random variables

ZN(ω) :=
eπ

2β2(ω)t

sin(πx)

{
v −

N∑
n=2

An(ω)e−n
2π2β2(ω)t sin(nπx)

}
, Y (ω) :=

eπ
2β2(ω)t

sin(πx)
.

By Theorem 2.1 i), we know that

lim
N→∞

ZN(ω) =
eπ

2β2(ω)t

sin(πx)

{
v −

∞∑
n=2

An(ω)e−n
2π2β2(ω)t sin(nπx)

}
=: Z(ω),

for a.e. ω ∈ Ω.

By Remark 2.3, Z is absolutely continuous. Thus, since fA1 is a.e. continuous, the probability that Z belongs to the discontinuity

set of fA1 is 0. By the Continuous Mapping Theorem [19, p. 7, Th. 2.3],

lim
N→∞

fA1 (ZN(ω))Y (ω) = fA1 (Z(ω))Y (ω),

for a.e. ω ∈ Ω. Moreover, |fA1 (ZN(ω))Y (ω)| ≤ ‖fA1‖L∞(Ω)|Y (ω)|, being Y ∈ L1(Ω) by the assumption E[eπ
2β2t ] <∞. By the

Dominated Convergence Theorem [22, result 11.32, p. 321],

lim
N→∞

fvN (x,t)(v) = E[fA1 (Z)Y ] =: gx,t(v).

To conclude, we need to show that gx,t is a density of the random variable v(x, t)(ω) given by (2)–(3). This is done

in a similar way to the last part of the proof of Theorem 2.4 in [16]. We know that, for each 0 < x < 1 and t > 0,

vN(x, t)(ω)→ v(x, t)(ω) as N →∞ a.s., which implies convergence in law: FvN (x,t)(v)→ Fv(x,t)(v) as N →∞, for all v ∈ R
which is a point of continuity of Fv(x,t). Here, F refers to the distribution function. Since fvN (x,t) is the density of vN(x, t),

FvN (x,t)(v) = FvN (x,t)(v0) +
∫ v
v0
fvN (x,t)(w) dw . If v and v0 are points of continuity of Fv(x,t), taking limits when N →∞ we get

Fv(x,t)(v) = Fv(x,t)(v0) +
∫ v
v0
gx,t(w) dw . This is justified by the Dominated Convergence Theorem, as

|fvN (x,t)(w)| ≤ E[|fA1 (ZN)||Y |] ≤ ‖fA1‖L∞(R)E[Y ] ∈ L1([v0, v ], dw). (7)

As the points of discontinuity of Fv(x,t) are countable and Fv(x,t) is right-continuous, we obtain Fv(x,t)(v) = Fv(x,t)(v0) +∫ v
v0
gx,t(w) dw , for all v0 and v in R. Thus, gx,t = fv(x,t) is a density for v(x, t), as wanted.

2

Our main objective will be to extend both Theorem 2.2 and the new Theorem 2.4 to the solution of the randomized heat

equation on an interval [L1, L2] with random boundary conditions.

2.2. Preliminaries on the L1(Ω) and L2(Ω) calculus

In this section, we summarize the main results related to the so-called Lp(Ω) random calculus that will be required throughout

our subsequent development. To read an exposition on L2(Ω) calculus, see [7, Ch. 4] and [21, Ch. 5]. In [24] the authors

combined L2(Ω) and L4(Ω) calculus, usually termed mean square and mean fourth random calculus, to solve random differential

equations.

With a similar proof to [24, Lemma 3.14], we have the following two results:

Proposition 2.5 Let X = {X(t)(ω) : t ∈ I, ω ∈ Ω} and Y = {Y (t)(ω) : t ∈ I, ω ∈ Ω} be two stochastic processes. Suppose

that they are continuous at t0 ∈ I in the L2(Ω) sense. Then XY = {X(t)(ω)Y (t)(ω) : t ∈ I, ω ∈ Ω} is continuous at t0 in the

L1(Ω) sense.

Proposition 2.6 Let X = {X(t)(ω) : t ∈ I, ω ∈ Ω} and Y = {Y (t)(ω) : t ∈ I, ω ∈ Ω} be two stochastic processes. Suppose

that they are differentiable at t0 ∈ I in the L2(Ω) sense. Then XY = {X(t)(ω)Y (t)(ω) : t ∈ I, ω ∈ Ω} is differentiable at t0 in

the L1(Ω) sense, with (XY )′(t0) = X ′(t0)Y (t0) + X(t0)Y ′(t0).

Another useful result is the following, see [7, p. 97]:

Proposition 2.7 Let {Xn}∞n=1 be a sequence of random variables that converges in L1(Ω) to the random variable X. Then

limn→∞ E[Xn] = E[X]. As a consequence, if X = {X(t)(ω) : t ∈ I, ω ∈ ω} is a stochastic process that is differentiable in the

L1(Ω) sense at t0 ∈ I, then there exists d
dt
E[X(t0)] = E[X ′(t0)].

A similar result but in terms of continuity holds:

Proposition 2.8 If X = {X(t)(ω) : t ∈ I, ω ∈ ω} is a stochastic process that is continuous in the L1(Ω) sense at t0 ∈ I, then

E[X(t)] is continuous at t0. On the other hand, if X is continuous in the L2(Ω) sense at t0 ∈ I, then ‖X(t)‖L2(Ω) is continuous

at t0.

4
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3. Solution stochastic process to the randomized heat equation with non-homogeneous
boundary conditions

Consider the general form of the heat equation,
ut = α2uxx , L1 < x < L2, t > 0,

u(L1, t) = A, u(L2, t) = B, t ≥ 0,

u(x, 0) = φ(x), L1 ≤ x ≤ L2.

(8)

This is a generalization of the PDE problem (1) studied in [16]. Given a complete probability space (Ω,F ,P), we will consider

the diffusion coefficient α2(ω) and the boundary conditions A(ω) and B(ω) as random variables, and the initial condition as a

stochastic process φ = {φ(x)(ω) : x ∈ [L1, L2], ω ∈ Ω} in the underlying probability space. The solution u can be expressed as

u(x, t)(ω) = v

(
x − L1

L2 − L1
, t

)
(ω) +

x − L1

L2 − L1
B(ω) +

L2 − x
L2 − L1

A(ω), (9)

where x ∈ [L1, L2] and t ≥ 0, and v(y, t)(ω) is the solution stochastic process of (1) given by (2)–(3) with random diffusion

coefficient

β2(ω) =
α2(ω)

(L2 − L1)2
(10)

and random initial condition

ψ(y)(ω) = ϕ(L1 + y(L2 − L1))(ω), ϕ(x)(ω) = φ(x)(ω)− x − L1

L2 − L1
B(ω)− L2 − x

L2 − L1
A(ω), (11)

for y ∈ [0, 1]. We want to study in which sense the stochastic process u(x, t)(ω) given by (9) is a rigorous solution to the

randomized heat equation (8). Next Theorem 3.1 generalizes Theorem 2.1. Moreover, uniqueness is proved, which is a novelty

compared with [16].

Theorem 3.1 The following statements hold:

i) a.s. solution: Suppose that φ ∈ L2([L1, L2]×Ω) and A,B ∈ L2(Ω). Then ut(x, t)(ω) = α2(ω) uxx(x, t)(ω) a.s. for x ∈
(L1, L2) and t > 0, where the derivatives are understood in the classical sense; u(L1, t)(ω) = A(ω) and u(L2, t)(ω) = B(ω)

a.s. for t ≥ 0; and u(x, 0)(ω) = φ(x)(ω) a.s. for a.e. x ∈ [L1, L2]. Moreover, the process u(x, t)(ω) satisfying these

conditions is unique.

ii) L2 solution: Suppose that φ ∈ L2([L1, L2]×Ω), A,B ∈ L2(Ω) and 0 < a ≤ α2(ω) ≤ b, a.e. ω ∈ Ω, for certain a, b ∈ R.

Then ut(x, t)(ω) = α2(ω) uxx(x, t)(ω) a.s. for x ∈ (L1, L2) and t > 0, where the derivatives are understood in the

mean square sense; u(L1, t)(ω) = A(ω) and u(L2, t)(ω) = B(ω) a.s. for t ≥ 0; and u(x, 0)(ω) = φ(x)(ω) a.s. for a.e.

x ∈ [L1, L2]. Moreover, the process u(x, t)(ω) satisfying these conditions is unique.

Proof. We prove both statements:
i) a.s. solution: By (11) and the triangular inequality,

‖ψ‖L2([0,1]×Ω) =

(
E
[∫ 1

0
ψ(y)2 dy

]) 1
2

=

(
E
[∫ 1

0
ϕ(L1 + y(L2 − L1))2 dy

]) 1
2

=
1

√
L2 − L1

(
E
[∫ L2

L1

ϕ(x)2 dx

]) 1
2

=
1

√
L2 − L1

‖ϕ‖L2([L1,L2]×Ω) ≤
1

√
L2 − L1

(
‖φ‖L2([L1,L2]×Ω) +

x − L1

L2 − L1
‖B‖L2([L1,L2]×Ω) +

L2 − x
L2 − L1

‖A‖L2([L1,L2]×Ω)

)
=

1
√
L2 − L1

‖φ‖L2([L1,L2]×Ω) +
x − L1

L2 − L1
‖B‖L2(Ω) +

L2 − x
L2 − L1

‖A‖L2(Ω) <∞. (12)

Then ψ ∈ L2([0, 1]×Ω). By Theorem 2.1, vt(x, t)(ω) = β2(ω) vxx(x, t)(ω) a.s. for x ∈ (0, 1) and t > 0, where the derivatives

are understood in the classical sense; v(0, t)(ω) = v(1, t)(ω) = 0 a.s. for t ≥ 0; and v(x, 0)(ω) = ψ(x)(ω) a.s. for a.e. x ∈ [0, 1].

Then u is an almost sure solution. Uniqueness follows from the so-called energy method [23, pp. 30–31] applied to each sample

path.

ii) L2 solution: the result follows as a consequence of Theorem 2.1. To show uniqueness, we try to adapt the energy method

[23, pp. 30–31] to this setting. We prove the following: if u is C2,1((L1, L2)× (0,∞)) in the sense of L2(Ω), with continuous

partial derivatives on [L1, L2]× [0,∞) in the sense of L2(Ω), ut = α2uxx on (L1, L2)× (0,∞), u(L1, t) = u(L2, t) = 0 a.s. on

[0,∞) and u(x, 0) = 0 a.s. at a.e. x ∈ [L1, L2], then u(x, t) = 0 a.s. for all x ∈ [L1, L2] and t ≥ 0. From this fact, uniqueness

will follow.

Let I(t) =
∫ L2

L1
E[u(x, t)2] dx . Fixed t ≥ 0, as a consequence of the continuity of u(·, t) in the L2(Ω) sense and Proposition

2.8, the real map x ∈ [L1, L2] 7→ E[u(x, t)2] is continuous and I(t) is well-defined. Fixed x , as u(x, ·) is differentiable in the

L2(Ω) sense, by Proposition 2.6 and Proposition 2.7 we have ∂
∂t
E[u(x, t)2] = E[ ∂

∂t
(u(x, t)2)] = 2E[u(x, t)ut(x, t)], where

5
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the partial derivative ∂
∂t

inside the expectation operator must be understood on the L1(Ω) sense. Then, using Cauchy-

Schwarz inequality, | ∂
∂t
E[u(x, t)2]| ≤ 2E[|u(x, t)||ut(x, t)|] ≤ 2‖u(x, t)‖L2(Ω)‖ut(x, t)‖L2(Ω). As both u(x, t) and ut(x, t) are

continuous on [L1, L2]× [0,∞) in the L2(Ω) sense, by Proposition 2.8 both ‖u(x, t)‖L2(Ω) and ‖ut(x, t)‖L2(Ω) are continuous on

[L1, L2]× [0,∞) in the classical sense. Fix t0 > 0 and δ > 0 small. Then there is a constant C > 0 such that ‖u(x, t)‖L2(Ω) ≤ C
and ‖ut(x, t)‖L2(Ω) ≤ C for all x ∈ [L1, L2] and t ∈ [t0 − δ, t0 + δ], by continuity in the classical sense. Thus, | ∂

∂t
E[u(x, t)2]| ≤

2C2 ∈ L1([L1, L2], dx), for all x ∈ [L1, L2] and t ∈ [t0 − δ, t0 + δ]. This permits differentiating under the Lebesgue integral sign

at t0 [25, Th. 10.39]:

I ′(t0) =
∂

∂t

(∫ L2

L1

E
[
u(x, t)2

]
dx

) ∣∣∣∣
t=t0

=

∫ L2

L1

∂

∂t

(
E
[
u(x, t)2

]) ∣∣
t=t0

dx = 2

∫ L2

L1

E[u(x, t0)ut(x, t0)] dx.

Now we use the arbitrariness of t0 and the fact that u solves the heat equation:

I ′(t) = 2

∫ L2

L1

E[u(x, t)ut(x, t)] dx = 2

∫ L2

L1

E[α2u(x, t)uxx(x, t)] dx.

As u(·, t) and ux(·, t) are differentiable in the L2(Ω) sense, by Proposition 2.6 the product u(·, t)ux(·, t) is differentiable in L1(Ω),

with derivative (u(x, t)ux(x, t))x = u(x, t)uxx(x, t) + ux(x, t)2. Since α2 is bounded above, α2u(·, t)ux(·, t) is differentiable in

the L1(Ω) sense, having derivative (α2u(x, t)ux(x, t))x = α2u(x, t)uxx(x, t) + α2ux(x, t)2. Thereby,

I ′(t) = 2

∫ L2

L1

E[(α2u(x, t)ux(x, t))x ] dx − 2

∫ L2

L1

E[α2ux(x, t)2] dx.

By Proposition 2.7, Barrow’s rule and the boundary conditions, the first integral is 0:∫ L2

L1

E[(α2u(x, t)ux(x, t))x ]dx =

∫ L2

L1

∂

∂x
E[α2u(x, t)ux(x, t)] dx = E[α2u(L2, t)ux(L2, t)]− E[α2u(L1, t)ux(L1, t)] = 0.

Barrow’s rule is justified as follows: we have, by previous computations,

∂xE[α2u(x, t)ux(x, t)] = E[(α2u(x, t)ux(x, t))x ] = E[α2u(x, t)uxx(x, t)] + E[α2ux(x, t)2].

By Proposition 2.5 and the boundedness of α2, both α2u(·, t)uxx(·, t) and α2ux(·, t)2 are continuous in the L1(Ω) sense. So by

Proposition 2.8, both E[α2u(·, t)uxx(·, t)] and E[α2ux(·, t)2] are continuous. Then ∂xE[α2u(·, t)ux(·, t)] is continuous on [L1, L2]

and Barrow’s rule is applicable.

It follows I ′(t) = −2
∫ L2

L1
E[α2ux(x, t)2] dx ≤ 0. This tells us that I(t) is decreasing on [0,∞), which implies I(t) ≤ I(0) =∫ L2

L1
E[u(x, 0)2] dx = 0. Hence, I(t) = 0. As E[u(·, t)2] is continuous, because u(·, t) is continuous in the L2(Ω) sense and

Proposition 2.8, we derive that E[u(x, t)2] = 0 for all x ∈ [L1, L2] and t ≥ 0. Then u(x, t) = 0 a.s., for every x ∈ [L1, L2] and

t ≥ 0. This concludes the proof.

2

4. Approximation of the probability density function of the solution stochastic process

The main goal of this paper is to approximate the probability density function of the solution stochastic process u(x, t)(ω)

given by (9), which solves the random heat equation (8). We will use Theorem 2.2, Theorem 2.4 and the Random Variable

Transformation technique [21, Lemma 4.12].

Assume that v(y, t)(ω), A(ω) and B(ω) are absolutely continuous and independent random variables. Applying the Random

Variable Transformation technique,

f x−L1
L2−L1

B
(b) = fB

(
L2 − L1

x − L1
b

)
L2 − L1

x − L1
, f L2−x

L2−L1
A

(a) = fA

(
L2 − L1

L2 − x
a

)
L2 − L1

L2 − x
. (13)

It is well-known, see [17, p. 267], [26, p. 372], that the probability density function of a sum of two independent and absolutely

continuous random variables is given by the convolution of their probability density functions. Thereby, from (13),

fu(x,t)(u) =

∫
R

∫
R
f
v
(
x−L1
L2−L1

,t
)(u − b − a)f x−L1

L2−L1
B

(b)f L2−x
L2−L1

A
(a) da db

=

∫
R

∫
R
f
v
(
x−L1
L2−L1

,t
)(u − b − a)fB

(
L2 − L1

x − L1
b

)
L2 − L1

x − L1
fA

(
L2 − L1

L2 − x
a

)
L2 − L1

L2 − x
da db.
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Define a new truncation from (9)

uN(x, t)(ω) = vN

(
x − L1

L2 − L1
, t

)
(ω) +

x − L1

L2 − L1
B(ω) +

L2 − x
L2 − L1

A(ω), (14)

where x ∈ [L1, L2] and t ≥ 0 and vN is the truncation (4). If vN(y, t)(ω), A(ω) and B(ω) are absolutely continuous and

independent random variables,

fuN (x,t)(u) =

∫
R

∫
R
f
vN

(
x−L1
L2−L1

,t
)(u − b − a)f x−L1

L2−L1
B

(b)f L2−x
L2−L1

A
(a) da db

=

∫
R

∫
R
f
vN

(
x−L1
L2−L1

,t
)(u − b − a)fB

(
L2 − L1

x − L1
b

)
L2 − L1

x − L1
fA

(
L2 − L1

L2 − x
a

)
L2 − L1

L2 − x
da db. (15)

Intuitively, we should be able to set conditions under which limN→∞ fuN (x,t)(u) = fu(x,t)(u), as an application of Theorem 2.2

or of Theorem 2.4. This fact is formalized in the following two theorems.

Theorem 4.1 Let the random initial condition {φ(x) : L1 ≤ x ≤ L2} be a process in L2([L1, L2]×Ω). Let the random boundary

conditions A and B belong to L2(Ω). Suppose that α2, A1, (A2, . . . , AN), A and B are independent and absolutely continuous,

for N ≥ 2 (recall that An is defined in (3) as the random Fourier coefficient of ψ, where ψ is defined from φ in relation (11)).

Suppose that the probability density function fA1 is Lipschitz on R. Assume that
∑∞

n=m ‖e
−(n2−2)π2α2t/(L2−L1)2‖L1(Ω) <∞, for

certain m ∈ N. Then the sequence

fuN (x,t)(u) =

∫
R

∫
R
f
vN

(
x−L1
L2−L1

,t
)(u − b − a)fB

(
L2 − L1

x − L1
b

)
L2 − L1

x − L1
fA

(
L2 − L1

L2 − x
a

)
L2 − L1

L2 − x
da db,

where fvN is the density defined by (5), converges in L∞(R) to the density fu(x,t)(u) of the solution stochastic process u(x, t)(ω)

to the randomized heat equation (8), for L1 < x < L2 and t > 0.

Proof. Since φ ∈ L2([L1, L2]×Ω) and by (12), ψ ∈ L2([0, 1]×Ω). By hypothesis, we also have that β2 = α2/(L2 − L1)2, A1 and

(A2, . . . , AN) are independent and absolutely continuous, for N ≥ 2, and
∑∞

n=m ‖e
−(n2−2)π2β2t‖L1(Ω) <∞. Thus, the hypotheses

of Theorem 2.2 hold.

Since α2, A1, (A2, . . . , AN), A and B are independent, from (2) we derive that v(y, t), A and B are independent. Indeed,

from the independence of β2 = α2/(L2 − L1)2, A1, (A2, . . . , AN), A and B, one has independence of (β2, A1, . . . , AN), A

and B. Fixed 0 < y < 1 and t > 0, the random variable vN(y, t)(ω) can be written as g(β2(ω), A1(ω), . . . , AN(ω)), for a

Borel measurable map g : Rn+1 → R. Then vN(y, t), A and B are independent. By Theorem 2.1 i), vN(y, t)→ v(y, t) a.s. as

N →∞. Then (vN(y, t), A, B)→ (v(y, t), A, B) a.s. as N →∞. Denote by ϕ̂ the characteristic function. By Lévy’s Continuity

Theorem [28, Ch. 18] and the independence, for v, a, b ∈ R, we have ϕ̂(v(y,t),A,B)(v, a, b) = limN→∞ ϕ̂(vN (y,t),A,B)(v, a, b) =

limN→∞ ϕ̂vN (y,t)(v)ϕ̂A(a)ϕ̂B(b) = ϕ̂v(y,t)(v)ϕ̂A(a)ϕ̂B(b). By [27, Th. 2.1], v(y, t), A and B are independent. As a consequence,

fuN (x,t)(u) =

∫
R

∫
R
f
vN

(
x−L1
L2−L1

,t
)(u − b − a)fB

(
L2 − L1

x − L1
b

)
L2 − L1

x − L1
fA

(
L2 − L1

L2 − x
a

)
L2 − L1

L2 − x
da db

and

fu(x,t)(u) =

∫
R

∫
R
f
v
(
x−L1
L2−L1

,t
)(u − b − a)fB

(
L2 − L1

x − L1
b

)
L2 − L1

x − L1
fA

(
L2 − L1

L2 − x
a

)
L2 − L1

L2 − x
da db.

We have the following estimates:

|fu(x,t)(u)− fuN (x,t)(u)| =

∣∣∣∣ ∫
R

∫
R
f
v
(
x−L1
L2−L1

,t
)(u − b − a)fB

(
L2 − L1

x − L1
b

)
L2 − L1

x − L1
fA

(
L2 − L1

L2 − x
a

)
L2 − L1

L2 − x
da db

−
∫
R

∫
R
f
vN

(
x−L1
L2−L1

,t
)(u − b − a)fB

(
L2 − L1

x − L1
b

)
L2 − L1

x − L1
fA

(
L2 − L1

L2 − x
a

)
L2 − L1

L2 − x
da db

∣∣∣∣
≤ (L2 − L1)2

(x − L1)(L2 − x)

∫
R

∫
R
fB

(
L2 − L1

x − L1
b

)
fA

(
L2 − L1

L2 − x
a

) ∣∣∣∣fv( x−L1
L2−L1

,t
)(u − b − a)− f

vN

(
x−L1
L2−L1

,t
)(u − b − a)

∣∣∣∣ da db.

By (6), ∣∣∣∣fv( x−L1
L2−L1

,t
)(u − b − a)− f

vN

(
x−L1
L2−L1

,t
)(u − b − a)

∣∣∣∣ ≤ 2‖ψ‖L2([0,1]×Ω)L

sin2
(
π x−L1
L2−L1

) ∞∑
n=N+1

‖e−(n2−2)π2α2t/(L2−L1)2

‖L1(Ω),
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where L is the Lipschitz constant of fA1 . Then,

|fuN (x,t)(u)− fu(x,t)(u)|

≤
(L2 − L1)2

(x − L1)(L2 − x)

2‖ψ‖L2([0,1]×Ω)L

sin2
(
π x−L1
L2−L1

)
 ∞∑
n=N+1

‖e−(n2−2)π2α2t/(L2−L1)2‖L1(Ω)

∫
R

∫
R
fB

(
L2 − L1

x − L1
b

)
fA

(
L2 − L1

L2 − x
a

)
da db

=
(L2 − L1)2

(x − L1)(L2 − x)

2‖ψ‖L2([0,1]×Ω)L

sin2
(
π x−L1
L2−L1

)
 ∞∑
n=N+1

‖e−(n2−2)π2α2t/(L2−L1)2‖L1(Ω)

(∫
R
fB

(
L2 − L1

x − L1
b

)
db

)(∫
R
fA

(
L2 − L1

L2 − x
a

)
da

)

= ‖fA‖L1(R)‖fB‖L1(R)

2‖ψ‖L2([0,1]×Ω)L

sin2
(
π x−L1
L2−L1

) ∞∑
n=N+1

‖e−(n2−2)π2α2t/(L2−L1)2‖L1(Ω). (16)

As
∑∞

n=m ‖e
−(n2−2)π2α2t/(L2−L1)2‖L1(Ω) <∞, we conclude that limN→∞ fuN (x,t)(u) = fu(x,t)(u) in L∞(R), with convergence rate

given by (16).

2

Theorem 4.2 Let the random initial condition {φ(x) : L1 ≤ x ≤ L2} be a process in L2([L1, L2]×Ω). Let the random boundary

conditions A and B belong to L2(Ω). Suppose that α2, A1, (A2, . . . , AN), A and B are independent and absolutely continuous, for

N ≥ 2 (recall that An is defined in (3) as the random Fourier coefficient of ψ, where ψ is defined from φ in relation (11)). Suppose

that the probability density function fA1 is a.e. continuous on R and ‖fA1‖L∞(R) <∞. Assume that E[eπ
2α2t/(L2−L1)2

] <∞. Then

the sequence

fuN (x,t)(u) =

∫
R

∫
R
f
vN

(
x−L1
L2−L1

,t
)(u − b − a)fB

(
L2 − L1

x − L1
b

)
L2 − L1

x − L1
fA

(
L2 − L1

L2 − x
a

)
L2 − L1

L2 − x
da db,

where fvN is the density defined by (5), converges pointwise to the density fu(x,t)(u) of the solution stochastic process u(x, t)(ω)

to the randomized heat equation (8), for L1 < x < L2 and t > 0.

Proof. From φ ∈ L2([L1, L2]×Ω) and (12), it follows ψ ∈ L2([0, 1]×Ω). By hypothesis, we also have that β2 = α2/(L2 − L1)2,

A1 and (A2, . . . , AN) are independent and absolutely continuous, for N ≥ 2, and E[eπ
2β2t ] <∞. Thereby, the hypotheses of

Theorem 2.4 are fulfilled.

Since α2, A1, (A2, . . . , AN), A and B are independent, as we did in the proof of Theorem 4.1 we deduce that vN(y, t), A and

B are independent, and that v(y, t), A and B are independent. Hence,

fuN (x,t)(u) =

∫
R

∫
R
f
vN

(
x−L1
L2−L1

,t
)(u − b − a)fB

(
L2 − L1

x − L1
b

)
L2 − L1

x − L1
fA

(
L2 − L1

L2 − x
a

)
L2 − L1

L2 − x
da db

and

fu(x,t)(u) =

∫
R

∫
R
f
v
(
x−L1
L2−L1

,t
)(u − b − a)fB

(
L2 − L1

x − L1
b

)
L2 − L1

x − L1
fA

(
L2 − L1

L2 − x
a

)
L2 − L1

L2 − x
da db.

By Theorem 2.4,

lim
N→∞

f
vN

(
x−L1
L2−L1

,t
)(u − b − a)fB

(
L2 − L1

x − L1
b

)
L2 − L1

x − L1
fA

(
L2 − L1

L2 − x
a

)
L2 − L1

L2 − x

= f
v
(
x−L1
L2−L1

,t
)(u − b − a)fB

(
L2 − L1

x − L1
b

)
L2 − L1

x − L1
fA

(
L2 − L1

L2 − x
a

)
L2 − L1

L2 − x
,

for every u, a, b ∈ R, L1 < x < L2 and t > 0. By (7),∣∣∣∣fvN( x−L1
L2−L1

,t
)(u − b − a)fB

(
L2 − L1

x − L1
b

)
L2 − L1

x − L1
fA

(
L2 − L1

L2 − x
a

)
L2 − L1

L2 − x

∣∣∣∣
≤ ‖fA1‖L∞(R)

E[eπ
2β2t ]

sin
(
π x−L1
L2−L1

) (L2 − L1)2

(x − L1)(L2 − x)
fB

(
L2 − L1

x − L1
b

)
fA

(
L2 − L1

L2 − x
a

)
∈ L1(R2, da db),

so by the Dominated Convergence Theorem, limN→∞ fuN (x,t)(u) = fu(x,t)(u) follows.

2

Theorem 4.1 and Theorem 4.2 may be adapted to the case in which A and B are deterministic. By applying the Random

Variable Transformation technique in (9) and (14),

fu(x,t)(u) = f
v
(
x−L1
L2−L1

,t
)(u − x − L1

L2 − L1
B − L2 − x

L2 − L1
A

)

8
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and

fuN (x,t)(u) = f
vN

(
x−L1
L2−L1

,t
)(u − x − L1

L2 − L1
B − L2 − x

L2 − L1
A

)
. (17)

One arrives at the following two theorems, which are proved similarly but easier than Theorem 4.1 and Theorem 4.2, respectively.

Theorem 4.3 Let the random initial condition {φ(x) : L1 ≤ x ≤ L2} be a process in L2([L1, L2]×Ω). Suppose that α2, A1

and (A2, . . . , AN) are independent and absolutely continuous, for N ≥ 2 (recall that An is defined in (3) as the random Fourier

coefficient of ψ, where is defined from φ in relation (11)). Suppose that the probability density function fA1 is Lipschitz on R
and that

∑∞
n=m ‖e

−(n2−2)π2α2t/(L2−L1)2‖L1(Ω) <∞, for certain m ∈ N. Then the sequence defined by (17) where fvN is the density

defined by (5), converges in L∞(R) to the density fu(x,t)(u) of the solution stochastic process u(x, t)(ω) to the randomized heat

equation (8) with deterministic boundary conditions A and B, for L1 < x < L2 and t > 0.

Theorem 4.4 Let the random initial condition {φ(x) : L1 ≤ x ≤ L2} be a process in L2([L1, L2]×Ω). Suppose that α2, A1

and (A2, . . . , AN) are independent and absolutely continuous, for N ≥ 2 (recall that An is defined in (3) as the random Fourier

coefficient of ψ, where ψ is defined from φ in relation (11)). Suppose that the probability density function fA1 is a.e. continuous

on R and ‖fA1‖L∞(R) <∞. Assume that E[eπ
2α2t/(L2−L1)2

] <∞. Then the sequence defined by (17) where fvN is the density

defined by (5), converges pointwise to the density fu(x,t)(u) of the solution stochastic process u(x, t)(ω) to the randomized heat

equation (8) with deterministic boundary conditions A and B, for L1 < x < L2 and t > 0.

5. Approximation of the expectation and variance of the solution stochastic process

By Theorem 2.1 ii), if ψ ∈ L2([0, 1]×Ω) (this holds if φ ∈ L2([L1, L2]×Ω) and A,B ∈ L2(Ω), by (12)) and 0 < a ≤ β2(ω) ≤ b
a.s., then vN(y, t)→ v(y, t) in L2(Ω) as N →∞.

In fact, looking at the proof of [16, Th. 1.3], we can be more precise: in that proof, it was shown that ‖An‖L2(Ω) ≤ C, for all

n. If we assume that β2 and An are independent, for each n, and that
∑∞

n=1 ‖e
−n2π2β2t‖L2(Ω) <∞, then

∞∑
n=1

‖Ane−n
2π2β2t sin(nπy)‖L2(Ω) ≤

∞∑
n=1

‖An‖L2(Ω)‖e
−n2π2β2t‖L2(Ω) ≤ C

∞∑
n=1

‖e−n2π2β2t‖L2(Ω) <∞,

which implies that vN(y, t)→ v(y, t) in L2(Ω) as N →∞. By (9) and (14), this is equivalent to uN(x, t)→ u(x, t) in L2(Ω) as

N →∞.

We already know that, if vN(y, t)(ω), A(ω) and B(ω) are absolutely continuous and independent random variables, then

uN(x, t)(ω) has a density function fuN (x,t)(u) given by (15). On the other hand, if A and B are deterministic, assuming that

vN(y, t)(ω) is absolutely continuous one has that uN(x, t)(ω) has a density function fuN (x,t)(u) expressed by (17). Thus,

E[uN(x, t)] =

∫
R
u fuN (x,t)(u) du (18)

and

V[uN(x, t)] =

∫
R
u2 fuN (x,t)(u) du − (E[uN(x, t)])2

. (19)

We summarize these ideas in the following theorem and remark, where the random or deterministic nature of the parameters

A and B is distinguished, respectively, for the sake of completeness in the statement of our findings:

Theorem 5.1 If φ ∈ L2([L1, L2]×Ω), A,B ∈ L2(Ω), α2, (A1, . . . , AN), A, B are absolutely continuous and independent, and∑∞
n=1 ‖e

−n2π2α2t/(L2−L1)2‖L2(Ω) <∞, then u(x, t) ∈ L2(Ω),

E[uN(x, t)] =

∫
R
u fuN (x,t)(u) du

N→∞−→ E[u(x, t)], V[uN(x, t)] =

∫
R
u2 fuN (x,t)(u) du − (E[uN(x, t)])2 N→∞−→ V[u(x, t)],

for each L1 < x < L2 and t > 0.

Remark 5.2 Theorem 5.1 holds in the case that A and B are deterministic values.

6. Applications

The first question that arises is to which random diffusion coefficients, random boundary conditions and random initial conditions

our results can be applied.

9
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We begin by studying hypothesis
∞∑
n=m

‖e−(n2−2)π2α2t/(L2−L1)2

‖L1(Ω) <∞, (20)

for t > 0. It is clear that if α2 is bounded below, meaning that α2(ω) ≥ a > 0 for a.e. ω ∈ Ω, then (20) holds. This covers all

cases in practice, as we may truncate α2, [29]. Notice, however, that the condition α2(ω) ≥ a > 0 is not necessary to have (20).

For example, if α2 ∼ Uniform(0, b), b > 0, then we know that its moment generating function is given by

E[eλα
2

] =
eλb − 1

λb
, (21)

therefore

∞∑
n=m

‖e−(n2−2)π2α2t/(L2−L1)2

‖L1(Ω) =

∞∑
n=m

e−(n2−2)π2bt/(L2−L1)2 − 1

−(n2 − 2)π2bt/(L2 − L1)2
≤

∞∑
n=m

1

(n2 − 2)π2bt/(L2 − L1)2
<∞.

Another distribution for which (20) holds, this time not upper-bounded, is α2 ∼ Gamma(r, s), being r > 1/2 the shape and

s > 0 the rate. Its moment generating function is given by E[eλα
2
] = 1/

(
1− λ

s

)r
, for λ < s. Then

∞∑
n=m

‖e−(n2−2)π2α2t/(L2−L1)2

‖L1(Ω) =

∞∑
n=m

1

[(1 + (n2 − 2)π2t/(s(L2 − L1)2)]r
<∞. (22)

Notice that, if 0 < r ≤ 1/2, then
∑∞

n=m ‖e
−(n2−2)π2α2t/(L2−L1)2‖L1(Ω) =∞. This shows that hypothesis (20) might not hold.

Concerning hypothesis

E[eπ
2α2t/(L2−L1)2

] <∞, (23)

for t > 0, just take any distribution with finite moment generating function for t > 0. For instance, Uniform(0, b) with moment

generating function (21), Normal(µ, σ2) with moment generating function at λ given by eµλ+1/2σ2λ2
, etc.

The gamma distribution may be used to highlight the fact that, fixed t > 0, hypotheses (20) and (23) are independent.

Suppose that α2 ∼ Gamma(r, s), being r > 0 the shape and s > 0 the rate. Then (20) is accomplished if and only if r > 1/2

and s > 0 (see (22)), whereas (23) fulfills if and only if r > 0 and π2t/(L2 − L1)2 < s.

The most difficult step is to compute fA1 and f(A2,...,AN ) in (5). We are going to see that the density function of

An(ω) = 2
∫ 1

0
ψ(y)(ω) sin(nπy) dy can be computed when the initial condition process φ has a certain expression concerning the

Karhunen-Loève expansion [21, Th. 5.28]. Take ψ defined in (11). As ∈ L2([0, 1]×Ω), for each fixed ω ∈ Ω the real function

ψ(·)(ω) belongs to L2([0, 1]). We can expand ψ(·)(ω) as a Fourier series on [0, 1] with the orthonormal basis {
√

2 sin(jπy)}∞j=1.

Hence,

ψ(y)(ω) =

∞∑
j=1

cj(ω)
√

2 sin(jπy), (24)

where the series is taken in L2([0, 1]) for each ω ∈ Ω, and where cj(ω) are the random variables corresponding to the Fourier

coefficients of ψ(·)(ω). This expression (24) corresponds to the Karhunen-Loève expansion of the process ψ. We will restrict to

processes for which the random Fourier coefficients {cj}∞j=1 are independent and absolutely continuous random variables. Thus,

we write

ψ(y)(ω) =

∞∑
j=1

√
νj
√

2 sin(jπy)ξj(ω), (25)

where the series converges in L2([0, 1]×Ω), {νj}∞j=1 are nonnegative real numbers satisfying
∑∞

j=1 νj <∞ and {ξj}∞j=1 are

absolutely continuous random variables with zero expectation, unit variance and independent (cj(ω) =
√
νjξj(ω), so that

ξj standardizes cj(ω)). Notice that the sum is well-defined in L2([0, 1]×Ω), because for two indexes N > M we have, by

Pythagoras’s Theorem in L2([0, 1]×Ω),∥∥∥∥∥
N∑

j=M+1

√
νj
√

2 sin(jπx) ξj

∥∥∥∥∥
2

L2([0,1]×Ω)

=

N∑
j=M+1

νj ‖
√

2 sin(jπx)‖2
L2([0,1])‖ξj‖

2
L2(Ω) =

N∑
j=M+1

νj
N,M→∞−→ 0. (26)

We can compute explicitly the random Fourier coefficients An:

An(ω) = 2

∫ 1

0

ψ(y)(ω) sin(nπy) dy = 2

∞∑
j=1

√
νj
√

2

∫ 1

0

sin(jπy) sin(nπy) dy ξj(ω) =
√

2
√
νn ξn(ω). (27)

The key fact in this computation is that the eigenfunctions of the Sturm-Liouville problem associated to (1) are precisely

{
√

2 sin(jπy)}∞j=1. From (27) and our assumptions on {ξj}∞j=1, we derive that A1, A2, . . . are independent and absolutely continuous

random variables. Using the Random Variable Transformation technique,

fAn(a) =
1√
2νn

fξn

(
a√
2νn

)
.
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If fξ1 is Lipschitz (respectively a.e. continuous and essentially bounded) on R, then fA1 is Lipschitz (respectively a.e. continuous

and essentially bounded) on R too, and all the hypotheses of Theorem 4.1 (respectively Theorem 4.2) are fulfilled.

The Lipschitz condition on R is satisfied by the probability density function of some named distributions:

• Normal(µ, σ2), µ ∈ R and σ2 > 0.

• Beta(a, b), a, b ≥ 2.

• Gamma(a, b), a ≥ 2 and b > 0.

In general, any density with bounded derivative on R satisfies the Lipschitz condition on R, by the Mean Value Theorem.

By contrast, some non-Lipschitz density functions are the uniform distribution, the exponential distribution, etc. or any other

density with a jump discontinuity at some point of R. However, non-Lipschitz density functions may be regularized at the point

of discontinuity so that the Lipschitz assumption is fulfilled and, moreover, the probabilistic behavior of the regularized density

function is the same in practice as the original non-Lipschitz density.

The a.e. continuity and essential boundedness is satisfied by the probability density function of more distributions:

• Normal(µ, σ2), µ ∈ R and σ2 > 0.

• Beta(a, b), a, b ≥ 1.

• Uniform(a, b), a < b.

• Gamma(a, b), a ≥ 1 and b > 0. In particular, Exponential(λ), λ > 0.

• Truncated normal distribution.

We will do examples for initial conditions φ such that the corresponding ψ is written as (25), being ξ1, ξ2, . . . independent

and absolutely continuous random variables, with zero expectation and unit variance, fξ1 Lipschitz on R and
∑∞

j=1 νj <∞. In

the examples, we will combine A and B deterministic and absolutely continuous random variables, with being a Gaussian and

non-Gaussian process. Hence, all the examples suppose an improvement of [16].

The densities fuN (x,t)(u) that approximate fu(x,t)(u) will be computed numerically in an (almost) exact manner, using the

software Mathematica R©, concretely, its built-in function NIntegrate. In this way, we will be able to study the exact difference

between two consecutive orders of truncation N and N + 1.

Example 6.1 (The process is Gaussian, the boundary conditions A and B are deterministic) Let

ψ(y)(ω) =

∞∑
j=1

√
2

πj
sin(jπy)ξj(ω)

be a standard Brownian bridge on [0, 1], see [21, Example 5.30], being ξ1, ξ2, . . . independent and Normal(0, 1) random variables.

By (11), φ is a Brownian bridge on [L1, L2] that takes the values A and B at the boundary. We choose L1 = 0 and L2 = 6,

A = −3 and B = 3. The diffusion coefficient is α2 ∼ Uniform(1, 2). Theorem 4.3 applies in this case.

In Figure 1, three plots of the path described by φ(x) for three different outcomes ω are shown.
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1

2

3

ϕ(x)

1 2 3 4 5 6
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-2

-1

1

2

3

ϕ(x)

1 2 3 4 5 6
x

-3

-2

-1

1

2

3

ϕ(x)

Figure 1. Paths of the initial condition φ(x) for three different outcomes ω. Example 6.1.

In Figure 2, we approximate the probability density function of the solution stochastic process u(x, t)(ω) at x = 5 and

t = 0.2, using (17), for N = 1, 2, 3, 4. Convergence seems to be achieved for N = 3 and N = 4. In Table 1, the infinity norm of

the difference of two consecutive orders of approximation N and N + 1, for N = 1, 2, 3, is computed. We can see that the errors

decrease to 0 as N grows, which agrees with our theoretical findings. In Table 2, using Theorem 5.1 together with Remark 5.2,

the expectation and variance of u(x, t)(ω) have been approximated, for different orders of truncation.

Example 6.2 (The process is non-Gaussian, the boundary conditions A and B are deterministic) Let

ψ(y)(ω) =

∞∑
j=1

√
2

j
3
2
√

1 + log j
sin(jπy)ξj(ω),

11
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Figure 2. Approximation (17) for N = 1, 2, 3, 4 at (x, t) = (5, 0.2). Example 6.1.

N ‖fuN (5,0.2) − fuN+1(5,0.2)‖L∞(R)

1 0.330855

2 0.0622449

3 0.00820879

Table 1. Difference of two consecutive orders of approximation N and N + 1 given by (17), for N = 1, 2, 3. Example 6.1.

N 1 2 3 4

E[uN(5, 0.2)] 2 2 2 2

V[uN(5, 0.2)] 0.0429981 0.0628341 0.0681679 0.0689422

Table 2. Approximations of E[u(5, 0.2)] and V[u(5, 0.2)] for N = 1, 2, 3, 4 constructed by (18) and (19), respectively, being

fuN (x,t) given by (17). Example 6.1.

where ξ1, ξ2, . . . are independent and identically distributed random variables with density function

fξ1 (ξ) =

√
2

π(1 + ξ4)
, −∞ < ξ <∞.

It is easy to check that this is indeed a density function, with zero expectation and unit variance. Thereby, is a non-Gaussian

stochastic process on [0, 1] (if it were Gaussian, then ξ1, ξ2, . . . would be normally distributed, see [21, Th. 5.28]). The sum

defining ψ is well-defined in L2([0, 1]×Ω), because
∑∞

j=1 1/(j3(1 + log j)) <∞ (see (26)). By (11), we can simulate the

sample paths of φ(x) on [L1, L2]. The data chosen are L1 = −8, L2 = 2π + 1, A = −1 and B = 2. The distribution for α2 is

Uniform(1, 2). Theorem 4.3 guarantees the convergence of the approximating sequence (17).

In Figure 3, three plots of the path described by φ(x) for three different outcomes ω are presented.
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Figure 3. Paths of the initial condition φ(x) for three different outcomes ω. Example 6.2.

In Figure 4, we approximate the probability density function of the solution stochastic process u(x, t)(ω) at x = 1 and

t = 0.1, using (17), for N = 1, 2, 3, 4. In order to assess convergence analytically, in Table 3, the maximum of the difference of

two consecutive orders of approximation N and N + 1 given by (17), for N = 1, 2, 3, is computed. The errors decrease to 0 as

N grows, which goes in the direction of our theoretical results. In Table 4, the expectation and variance of u(x, t)(ω) have been

approximated, using Theorem 5.1 and Remark 5.2 together with expressions (18) and (19), respectively.
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Figure 4. Approximation (17) for N = 1, 2, 3, 4 at (x, t) = (1, 0.1). Example 6.2.

N ‖fuN (1,0.1) − fuN+1(1,0.1)‖L∞(R)

1 0.00631990

2 0.00214919

3 0.00128318

Table 3. Difference of two consecutive orders of approximation N and N + 1 given by (17), for N = 1, 2, 3. Example 6.2.

N 1 2 3 4

E[uN(1, 0.1)] 1.54545 1.54497 1.54495 1.54494

V[uN(1, 0.1)] 1.51182 1.55304 1.56661 1.57496

Table 4. Approximations of E[u(1, 0.1)] and V[u(1, 0.1)] for N = 1, 2, 3, 4 constructed by (18) and (19), respectively, being

fuN (x,t) given by (17). Example 6.2.

Example 6.3 (The process is Gaussian, the boundary conditions A and B are random) Let

ψ(y)(ω) =

∞∑
j=1

√
2

πj
sin(jπy)ξj(ω)

be a standard Brownian bridge on [0, 1], as in Example 6.1. The data chosen are L1 = 0, L2 = 6 and α2 ∼ Uniform(1, 2), as in

Example 6.1, but now the boundary conditions A and B are random: A follows a triangular distribution with ends −5 and −2

and mode −3, whereas B is an exponentially distributed random variable with mean 2 and truncated to [3, 5]. The modes of A

and B coincide with the deterministic boundary conditions in Example 6.1, so similar results for the density function could occur.

In Figure 5, three plots of the path described by φ(x) for three different outcomes ω are presented.
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Figure 5. Paths of the initial condition φ(x) for three different outcomes ω. Example 6.3.

In Figure 6, we approximate the probability density function of the solution stochastic process u(x, t)(ω) at x = 5 and t = 0.2,

using (15), for N = 1, 2, 3, 4. Compare the plots with those of Example 6.1, where the boundary conditions were deterministic

with constant value the mode of A and B. In Table 5, the errors are analyzed. In Table 6, both E[u(x, t)] and V[u(x, t)] are

approximated, according to Theorem 5.1.
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Figure 6. Approximation (15) for N = 1, 2, 3, 4 at (x, t) = (5, 0.2). Example 6.3.

N ‖fuN (5,0.2) − fuN+1(5,0.2)‖L∞(R)

1 0.0390501

2 0.00870084

3 0.00119532

Table 5. Difference of two consecutive orders of approximation N and N + 1 given by (15), for N = 1, 2, 3. Example 6.3.

N 1 2 3 4

E[uN(5, 0.2)] 2.64115 2.64115 2.64115 2.64115

V[uN(5, 0.2)] 0.274152 0.293988 0.299323 0.300101

Table 6. Approximations of E[u(5, 0.2)] and V[u(5, 0.2)] for N = 1, 2, 3, 4 constructed by (18) and (19), respectively, being

fuN (x,t) given by (15). Example 6.3.

Example 6.4 (The process is non-Gaussian, the boundary conditions A and B are random) Let

ψ(y)(ω) =

∞∑
j=1

√
2

j
3
2
√

1 + log j
sin(jπy)ξj(ω),

be the same process as in Example 6.2. The interval where the heat equation is defined has endpoints L1 = −8 and L2 = 2π + 1,

and α2 ∼ Uniform(1, 2), as in Example 6.2. But now the boundary conditions A and B are random (with no constant values

for the modes of A and B): A ∼ Uniform(−1.5,−0.5) and B ∼ Normal(2, 1). Notice that E[A] and E[B] are the deterministic

boundary conditions of Example 6.2, so the approximated density functions may resemble those from Example 6.2.

In Figure 7, three plots of the path described by φ(x) for three different outcomes ω are presented.
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Figure 7. Paths of the initial condition φ(x) for three different outcomes ω. Example 6.4.

In Figure 8, we approximate the probability density function of the solution stochastic process u(x, t)(ω) at x = 1 and t = 0.1,

using (15), for N = 1, 2, 3, 4. These plots are very similar to those from Example 6.2. This occurs because the expectation of our

random boundary conditions A and B is equal to the deterministic boundary conditions of Example 6.2. In Table 7, we present

the errors between two consecutive orders of approximation. The expectation and variance of the solution process u(x, t)(ω)

have been approximated in Table 8, based on Theorem 5.1.
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Figure 8. Approximation (15) for N = 1, 2, 3, 4 at (x, t) = (1, 0.1). Example 6.4.

N ‖fuN (1,0.1) − fuN+1(1,0.1)‖L∞(R)

1 0.00303628

2 0.00111420

3 0.000685738

Table 7. Difference of two consecutive orders of approximation N and N + 1 given by (15), for N = 1, 2, 3. Example 6.4.

N 1 2 3 4

E[uN(1, 0.1)] 0.766541 0.766546 0.766548 0.766545

V[uN(1, 0.1)] 1.86628 1.90366 1.91720 1.92552

Table 8. Approximations of E[u(1, 0.1)] and V[u(1, 0.1)] for N = 1, 2, 3, 4 constructed by (18) and (19), respectively, being

fuN (x,t) given by (15). Example 6.4.

7. Conclusions

In this paper we have determined approximations of the probability density function of the solution stochastic process to the

randomized heat equation defined on a general bounded interval [L1, L2] with non-homogeneous boundary conditions. We have

reviewed results in the extant literature that establish conditions under which the probability density of the solution process to the

random heat equation defined on [0, 1] with homogeneous boundary conditions can be approximated. By relating the solutions of

the heat equation with homogeneous and non-homogeneous boundary conditions, and using the Random Variable Transformation

technique, we have been able to set hypotheses on the random diffusion coefficient, on the random boundary conditions and on

the initial condition process, so that the probability density function of the solution can be approximated uniformly or pointwise

(Theorem 4.1, Theorem 4.2, Theorem 4.3 and Theorem 4.4). We have obtained results on the approximation of the expectation

and variance of the solution (Theorem 5.1 and Remark 5.2).

Our theoretical findings have been applied to particular random heat equation problems on [L1, L2] with non-homogeneous

boundary conditions. We have dealt with random diffusion coefficients, with deterministic and random boundary conditions, and

with initial condition processes having a certain Karhunen-Loève expansion, which may be Gaussian or may not. It has been

evinced numerically that the convergence to the density function of the solution is achieved quickly.
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