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Cryptosporidium and Giardia are major causes of diarrhoeal disease in humans, 

worldwide and are major causes of protozoan waterborne diseases. Two DNA TaqMan PCR-

based Giardia and Cryptosporidium methods targeting a 74-bp sequence of the ß-giardin 

Giardia gene and a 151-bp sequence of the COWP Cryptosporidium gene, respectively, were 

used as models to compare two different LNA/DNA TaqMan probes, to improve the detection 

limit in a real-time PCR assay. The LNA probes were the most sensitive resulting in 0.96 to 

1.57 lower Ct values than a DNA Giardia TaqMan probe, and 0.56 to 2.21 lower than a DNA 

Cryptosporidium TaqMan probe. Evaluation of TaqMan Giardia and Cryptosporidium 

oligoprobes with LNA-substitutions resulted in real-time PCR curves with an earlier Ct values 

than conventional DNA TaqMan oligoprobes. In conclusion, the LNA probes could be useful 

for more sensitive detection limits. 
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The protozoan parasites Cryptosporidium and Giardia are major causes of diarrhoeal 

disease in humans, worldwide and have also been recognised as the predominant causes of 

protozoan waterborne diseases (Karanis et al., 2007).  

The human ID50 of 30 oocysts and 10 cysts reported for C. parvum (Dupont et al. 

1995) and G. lamblia (Rendtorff 1954), respectively, requires a very sensitive technique for 

their detection. A rapid detection of these pathogens is therefore of interest for public health 

control. In environmental samples with low amounts of target pathogens, there is a need for 

more sensitive probe technologies in order to detect very few target DNAs in the presence of 

large back-ground flora in often PCR inhibitory sample matrices (Malorny and Hoorfar 

2005).   

The real-time PCR (qPCR) using the TaqMan fluorogenic detection system is 

particularly adapted for the quantification of target sequences. This system use a molecular 

fluorescent probe specific to the PCR product to generate a fluorescent signal proportional to 

the initial amount of template DNA (Heid et al. 1996). The fractional cycle number at which 

the real-time fluorescence signal mirrors progression of the amplification reaction above the 

background noise level is used as an indicator of successful target amplification (Wilhelm et 

al. 2001). Most commonly, this is called  the threshold cycle (Ct) but the same value is 

described for use with the LightCycler™ (Roche Applied Science) where the fractional cycle 

is called the crossing point (Cp) (MacKay et al. 2007). Only a few studies have described a 

TaqMan quantitative PCR specific to Cryptosporidium (Higgins et al. 2001; McDonald et al. 

2002; Guy et al. 2003; Limor et al. 2002; Fontaine and Guillot 2002; Fontaine and Guillot 

2003; Keegan et al. 2003; Giovanni and LeChevallier 2005) and Giardia (Guy et al. 2003, 

Verweij et al. 2004; Bertrand et al. 2004). 
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The locked nucleic acid probes (LNAs) are modified nucleic acids in which the sugar 

has been conformationally locked, imparting unprecedented hybridization affinity towards 

DNA and RNA (Kumar et al. 1998). The introduction of LNA residues in oligonucleotides 

increases the thermal stability of the oligonucleotide (Koshkin et al. 1998; Obika et al. 1997). 

Introduction of one single LNA base into an oligonucleotide leads to an increase in T
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M of 2 to 

6ºC (Nitsche 2007).  Locked nucleic acids obey the Watson-Crick pairing rules, but have an 

increased specificity and high affinity to complementary DNA (Sanjay et al. 1998; Vester and 

Wengel 2004; Koshkin et al. 1998; Nolan et al. 2006). Due to such advantages, LNA or 

LNA/DNA mixmers (hereinafter called LNA) have been used for real-time PCR (Reynisson 

et al. 2006; Alonso et al. 2010) and fluorescent in situ hybridization (Silahtaroglu et al. 2003; 

Kubota et al. 2006). Thus, the purpose of the present study is the evaluation of the 

performance of LNA probes in a real-time PCR assay for quantification of Giardia and 

Cryptosporidium in sewage.  

 

Materials and methods 

 Specificity testing  

To determine the specificity of qPCR for Giardia intestinalis and Cryptosporidium 

parvum, nucleic acids were recovered from the following organisms: genomic DNAs (gDNA) 

from C. felis, C. hominis and C. meleagridis, were obtained from the Cryptosporidium 

Reference Unit (Chalmers R., National Public Health Service Microbiology, Swansea, UK), 

gDNA from G. intestinalis ATCC 30888D (Portland 1 strain) and gDNA from 

Cryptosporidium parvum ATCC PRA-670 (Iowa strain) were obtained from the American 

Type Culture Collection, C. parvum oocysts (bovine, Iowa isolate) and G. lamblia (human, 

H3 isolate) cysts were purchased from BTF (North Ryde, Australia), G. muris (Roberts-
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Thompson isolate) was obtained from Waterborne (New Orleans, USA). DNA was isolated 

from Giardia and Cryptosporidium strains by the method below described. Specificity of the 

assay was also tested on DNAs obtained from three different bacterial cultures: Escherichia 

coli CECT 515, Pseudomonas aeruginosa ATCC 10145 and Vibrio parahaemolyticus CECT 

511. DNA was recovered and purified from bacteria by the Realpure genomic DNA 

extraction kit (Durviz, Valencia, Spain). The genomic DNAs were quantified using the 

Quant-iT
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TM dsDNA HS and BR Assay kits (Invitrogen), and fluorescence was determined 

using the Qubit Fluorometer (Invitrogen). 

 

DNA extraction  

The DNA was extracted from (oo)cysts using the QIAamp DNA minikit (Qiagen, 

Hilden, Germany). A freeze-thaw protocol (Nichols et al. 2003), which maximizes DNA 

extraction from oocysts and cysts was followed. Briefly, the (oo)cysts were suspended in 180 

µl of ATL lysis buffer (Qiagen), and subjected  to 15 freeze-thaw cycles (1 min in liquid 

nitrogen and 1 min at 65ºC per cycle), and 20 µl of proteinase K was added per tube. The 

tubes were incubated overnight at 56ºC. The manufacturer’s protocol was followed for 

purification of DNA through the column and the DNA was eluted from the columns in TE 

buffer.  

 

TaqMan PCR procedure  

Primers and probes for detection of Giardia  (P241 forward, reverse and DNA 

TaqMan probe) and Cryptosporidium (P702 forward, reverse and DNA TaqMan probe)  were 

adopted from a previously reported qPCR method (Guy et al. 2003), targeting a 74-bp 
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sequence of the β-giardin gene and a 151-bp region of the COWP gene, respectively. The 

sequence of DNA β-giardin probe (P241) was 

AAGTCCGCCGACAACATGTACCTAACGA and the sequence of DNA COWP probe 

(P702) was TGCCATACATTGTTGTCCTGACAAATTGAAT (Guy et al. 2003). 

Additionally, the sequences of LNA β-giardin probe (P241: CGccGACaaCATGTACcTA and 

LNA COWP probe (P702: TGccATAcATTGTTGTCcTGACAA) were designed by Sigma-

Aldrich (St. Louis, USA) from the DNA TaqMan  Giardia and Cryptosporidium above probe 

sequences, respectively. The lower letters in the LNA sequences represented the locked 

nucleotides. The DNA and LNA Giardia and Cryptosporidium TaqMan probes were 

oligonucleotides with a 5’-end reporter dye (FAM-6-carboxyfluorescein) and a 3’-end 

quencher dye (TAMRA-6-carboxy-N,N,N’,N’-tetramethylrhodamine). The effectiveness of 

BSA for the relief of PCR inhibitors during qPCR amplification was evaluated with the 

inclusion of nonacetylated BSA (fraction V; Sigma, St. Louis, Mo.) at different 

concentrations (400, 200, 50 and 20 ng/µl) in qPCR mixtures. To evaluate the efficiency of 

LNA TaqMan probes with the inclusion of BSA in the qPCR mixtures, three replicates were 

seeded with gDNA of Giardia and Cryptosporidium corresponding to 3.1x10
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5 and 3.3x106 fg, 

respectively. Thus, we tested the effect of BSA on the amplification efficiency and 

reproducibility of the real-time PCR. Optimization experiments were performed to determine 

the most suitable reaction conditions. Optimization of the probe concentrations in the qPCR 

reaction were done using 50 nmol/L, 100 nmol/L, 150 nmol/L and 200 nmol/L final probe 

concentrations. Three replicates for each concentration in one qPCR run were used. In the 

probe comparison trial, the same thermal settings and PCR set up as previously described 

were used. The DNA and LNA TaqMan probes at 50 nmol/L, 100 nmol/L, 150 nmol/L and 

200 nmol/L were run parallel at the same concentrations of Giardia and Cryptosporodium 

gDNA corresponding to 3.3x104 fg and 3.1x105 fg, respectively. Three replicates for each 
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probe concentration in one qPCR run were used. The TaqMan qPCR assays were performed 

in the LightCycler 2.0 real-time PCR system (Roche Diagnostics Ltd., Rotkreuz, Switzerland) 

and data were analysed with the LightCycler software version 4.1. The Giardia ß-giardin and 

Cryptosporidium COWP sequences were amplied in a 20-µl reaction mixture containing 4 µl 

of LightCycler TaqMan master (Roche Diagnostics). The concentrations of primers and 

fluorescent probes, after optimization of the PCR conditions, were 600 nmol/L and 200 

nmol/L (DNA or LNA TaqMan probe), respectively. BSA was used in Giardia and 

Cryptosporidium qPCRs to final concentrations of 20 ng/µl and 200 ng/µl, respectively. The 

concentration of BSA included in the Roche LightCycler TaqMan master mixture is 

unknown. The Giardia qPCR cycling conditions consisted of 10 min of incubation at 95ºC 

followed by 50 cycles of alternating temperatures of 95ºC for 10 s, 58ºC for 8 s and 72ºC for 

3 s. The Cryptosporidium qPCR cycling conditions consisted of 10 min of incubation at 95ºC 

followed by 50 cycles of alternating temperatures of 95ºC for 10 s, 66ºC for 8 s and 72ºC for 

6 s. A no-template control was included in every assay, and no cycle threshold (Ct) values 

were consistently obtained after 50 cycles of PCR. The standard curves were constructed from 

gDNA from G. intestinalis. DNA concentrations serially diluted from 6.6 ng to 66 fg and 

from gDNA from C. parvum DNA concentrations serially diluted from 0.62 ng to 62 fg, 

respectively. From the slope of the standard curve, the amplification efficiency (E) was 

estimated by the formula E=(10
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-1/slope)-1. A reaction with 100% efficiency generated a slope 

of -3.32. (Ibekwe and Grieve, 2003). One PCR with triplicates was used for this experiment. 

 

Field evaluation of LNA TaqMan probes for the detection of Giardia and Cryptosporidium  

A total of 14 raw sewage samples were obtained from three wastewater treatment 

plants (WWTPs), WWTP1 (capacity: 290,000 inhabitant equivalents), WWTP2 (capacity: 
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1,277,900 inhabitant equivalents) and WWTP3 (capacity: 249,000 inhabitant equivalents) 

between October 2007 and March 2008. Duplicate samples (100 ml) were concentrated by 

centrifugation at 2,000 g for 10 min at room temperature. Giardia cysts and Cryptosporidium 

oocysts in pellets were isolated by immunomagnetic separation (IMS), using the Dynal GC-

Combo system (Dynal, A.S., Oslo, Norway) according to the manufacturer´s instructions. The 

duplicate concentrates were used for detection of Giardia and Cryptosporidium using 

immunofluorescence microscopy (IF) and qPCR, respectively.  

The identification and enumeration of (oo)cysts was carried out by 

immunofluorescence assay using the commercial kit Crypto/Giardia IF test (Cellabs, 

Brookvale, Australia), according to the manufacturer’s instructions. The slides were 

systematically examined by using epifluorescence microscopy (Olympus BX50; Olympus, 

Tokyo, Japan) at 600X magnification. Giardia cysts and Cryptosporidium oocysts were 

identified by fluorescence characteristics, size, and shape and then enumerated. 

Cryptosporidium oocysts and Giardia cysts were used directly in DNA extraction without 

oocyst and cyst detachment by adding 180 µl of the ATL buffer from the QIAamp DNA 

minikit (Qiagen GmbH, Hilden, Germany), as recommended Jiang et al. (2005). The DNA 

was extracted with the QIAamp DNA minikit after oocyst and cyst isolation by IMS. The 

suspension was subjected to 15 freeze-thaw cycles (1 min in liquid nitrogen and 1 min at 65ºC 

per cycle). DNA was extracted from the oocysts and cysts with the QIAamp DNA minikit and 

the manufacturer-recommended procedures. Successful qPCR amplification and 

contamination of qPCR were monitored by use of one positive DNA control (DNA of 

Cryptosporidium parvum for LNA/DNA COWP P702 probes and DNA of Giardia 

intestinalis for LNA/DNA β-giardin P241 probes) and one negative DNA control.  
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The specificity of LNA TaqMan probes was investigated using the newly designed 

LNA TaqMan probes. A BLAST search showed that the sequences of LNA P241 TaqMan 

probe matched exactly and only with β-giardin gene sequences of G. intestinalis assemblage 

A. Furthermore, it was found that the LNA P241 probe had one mistmatch with G. intestinalis 

assemblages F and C, and two mismatches with G. intestinalis assemblages B, H and E, and 

G. muris. In the second step, the specificity of the primers and probes was tested against G. 

intestinalis genotypes A and B, G. muris, Cryptosporidium species and a set of two strains of 

bacteria which are common water-borne organisms. The gDNA from Cryptosporidium and 

bacteria species was not amplified in the Giardia TaqMan LNA qPCR. The P241 primer 

LNA probe set detected G. intestinalis and G. muris (Table 1). 

A BLAST search showed that the sequences of LNA P702 TaqMan probe matched 

exactly with COWP gene sequences of Cryptosporidium parvum, C. hominis. C. wrairi and 

C. meleagridis. Furthermore, it was found that the LNA P702 probe had six mismatches with 

C. felis. The specificity was confirmed after the TaqMan LNA qPCR test was applied on 

DNA from various Cryptosporidium species. The test detected C. parvum , C. hominis  and C. 

meleagridis but did not cross-react with C. felis (Table 1).  

When comparing the LNA and DNA TaqMan probes, all PCRs were run in parallel 

and with the probes at the same gDNA concentrations. The primers concentration was 600 

nmol l-1. Optimal concentrations of TaqMan probes were determined by comparison of the Ct 

values for several concentrations (50 nmol/L, 100 nmol/L, 150 nmol/L and 200 nmol/L). 

Optimal probe concentrations were determined in triplicate (Table 2). The LNA β-giardin 

P241 and the LNA β-COWP P702 probes (FAM-Tamra) were the most sensitive for each 

probe concentration, resulting in 0.39 (50 nmol/L) to 1.37 (200 nmol/L) lower Ct values than 
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a DNA β-giardin P241 probe, and 0.63 (200 nmol/L) to 1.37 (50 nmol/L) lower than a DNA 

COWP P702 probe (Table 2). The Ct values observed for P241 LNA and P702 LNA probes 

concentration 200 nmol/L were 29.52 

1 

2 

+ 0.04 and 26.69 + 0.04, respectively.  We thus selected 

the 200 nmol/L concentration for each probe used in this study. In the second step, we 

compared the Ct values observed for five G. intestinalis gDNA concentrations ranging from 

6.6 ng to 66 fg and six C. parvum gDNA concentrations ranging from 0.62 ng to 62 fg, 

respectively. The fluorescence plateau from the LNA probes was higher that with the DNA 

probes (data not shown). Likewise, the LNA probes showed a lower Ct value than DNA 

probes at all gDNA concentrations tested (Table 3). The LNA probes were the most sensitive 

resulting in 0.96 to 1.57 lower Ct values than a P241 DNA Giardia probe, and 0.56 to 2.21 

lower than a P702 DNA Cryptosporidium probe. The PCR efficiency was satisfactory with 

both LNA and DNA probes. 
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Tenfold standard dilutions of Giardia and Cryptosporidium gDNA were prepared 

corresponding to 6.2 x 105 to 62 fg and 6.6 x 106 to 66 fg, respectively. Standard curves were 

generated by plotting Ct values as a function of the logarithm of known Giardia intestinalis 

and Cryptosporidium parvum gDNA concentrations. The Ct values of each dilution amplified 

in triplicate by TaqMan PCR were plotted as a function of the logarithm of the starting 

quantity of gDNA. Application of the real time PCR assays with LNA β-giardin probe P241 

and LNA COWP probe P702 yielded a linear relationship between the cycle threshold and the 

log of the starting concentration. All data points recorded are within the dynamic range 

defined by the standard curve. All replicates were within 0.5 Ct of each other. The Ct values 

of the real time PCR assays with LNA β-giardin probe P241 ranged from 25.53 (3,200 cysts) 

to 39.22 (0.32 cyst). The results showed that the LNA probe was able to detect down to 1 cyst 

per reaction. When no cyst was added to the reaction tube, no Ct value was achieved. The 

slope of the curve was -3.46 with a squared correlation coefficient (r2) of 0.989 (Fig. 1). PCR 
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amplification efficiency was then estimated to be 96.2 %. Thus, a detection limit of 0.32 G. 

lamblia cyst per reaction corresponding to 3.2 cysts in 100 µl purified suspension was 

reached. The Ct values of the real time PCR assays with LNA COWP probe P702 ranged 

from 21.66 (165,000 oocysts) to 40.31 (1,65 cyst). When no oocyst was added to the reaction 

tube, no Ct value was achieved. The slope of the curve was -3.81 with a squared correlation 

coefficient (r
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2) of 0.995 (Fig. 2). PCR amplification efficiency was then estimated to be 

83.3%. Thus, a detection limit of 1.65 C. parvum oocyst per reaction corresponding to 16.5 

oocysts in 100 µl purified suspension was reached.  

To assess the repeatability of TaqMan PCR assay alone, tenfold serial dilutions of G. 

lamblia cysts and C. parvum oocysts were amplified on three separate occasions under 

identical conditions. For each concentration, the mean values were associated with a 

coefficient of variation. The coefficients of variation of the real time PCR assays with LNA β-

giardin probe P241 obtained for the study of repeatability of TaqMan PCR ranged from 0.58 

(1,600 cysts) to a maximum of 1.56 (1.59 cysts). The coefficients of variation of the real time 

PCR assays with LNA COWP probe P702 obtained for the study of repeatability of TaqMan 

PCR ranged from 0.59 (82,500 oocysts) to a maximum of 3.01 ( 8.25 oocysts). 

The β-giardin and COWP qPCR assays greatly depended on the BSA concentration 

(Table 4). Addition of 20 ng/µl of BSA to the qPCR LNA β-giardin mixture enhances lightly 

the amplification of Giardia gDNA (Ct 25.83). However, the use of BSA at the final 

concentration of 400 ng/µl was detrimental to the reaction (Ct 27.53). We observed that the 

addition of BSA to the TaqMan LNA COWP qPCR mixture, decreased Ct values from 23.40 

(20 ng/µl of BSA) to 21.15 (400 ng/µl of BSA) (Table 4). 

The sensitivity of the DNA and LNA probes were compared with sewage samples. To 

this end the influent from wastewater treatment plants were examined in parallel with 
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TaqMan DNA and LNA probes, and the real-time PCR assay. Fourteen influent samples were 

Giardia positive using the primer-LNA probe set P241 and the primer-DNA probe set P241. 

The P241 LNA probe showed a lower Ct value than the P241 DNA probe at all influent 

samples analysed (table 5). Except for one sample the Cts for Giardia positive samples were 

above cycle 35 (table 4). The fourteen sewage samples analyzed with the IFA procedure were 

positive for Giardia and contained between 38 and 145 cysts 100 ml
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-1 (Table 5). 

No Cryptosporidium was detected in the analysed samples as determined by qPCR. Of 

the fourteen sewage samples analyzed for the presence of Cryptosporidium oocysts by IFA, 7 

(50%) were positive. 

To detect the presence of inhibitors, four and three sewage samples were spiked with 

60,000 cysts of G. lamblia and 40,000 oocysts of C. parvum, respectively. G. lamblia DNA 

was detected using DNA and LNA P241 probes (table 6), and C. parvum DNA and LNA 

P702 probes (Table 7) in the qPCR assays. The Ct values of LNA probes were compared to 

those of DNA probes obtained from the same sample. We observed that LNA probes showed 

a lower Ct value than the DNA probes at all influent samples analysed (tables 6 and 7). 

 

Discussion 

The specificity testing showed that qPCR amplification of a region of the giardin gene 

distinguished Giardia spp. from other microorganisms. The fluorescence plateau from the 

gDNA of G. lamblia was higher that the gDNA of G. muris (data not shown). 

It was previously shown that the ß-giardin primer-probe LNA P241 sets do not detect 

DNA from several bacterial isolates as well as from two isolates of Cryptosporidium parvum 

(Guy et al., 2003). Currently, eight Cryptosporidium spp. have been reported in humans: C. 
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hominis, C. parvum, C. meleagridis, C. felis, C. canis, C. muris, C. suis, and Cryptosporidium 

cervine genotype (Xiao and Cama 2006).  Of these species/genotypes found in humans, the 

probe LNA P702 hybridized with C. hominis, C. parvum and C. meleagridis but did not 

cross-react with C. felis. Sequence mismatches reduce the efficiency of DNA amplification in 

the 5’ exonuclease assay by reducing the efficiency of extension of the mismatched base 

pair(s) by the Taq enzyme (Guy et al. 2004). Smith et al. (2002) concluded that mismatches in 

the probe region have the greatest effect on real-time PCR and that an increased number of 

mistmatches led to lowered real-time PCR efficiency. However, the real-time PCR-based 

assays developed in our study were not totally specific for G. lamblia and, Cryptosporidium 

hominis and C. parvum species, respectively.  
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To our knowledge, this the first comparison of LNA versus standard DNA Taqman 

probes for protozoan detection. Real-time PCR reactions are characterized by an increase in 

fluorescence emission due to probe degradation by DNA polymerase in each elongation step 

during PCR cycling. The higher the starting copy number of the nucleic acid target, the earlier 

the fluorescence will reach the predetermined threshold and the smaller will be Ct (Fontaine 

and Guillot 2002).  Evaluation of TaqMan Giardia and Cryptosporidium oligoprobes with 

LNA-substitutions resulted in real-time PCR curves with an earlier Ct values than 

conventional DNA TaqMan oligoprobes. This may have been caused by their slightly 

decreased length, resulting in an enhanced level of quenching due to the changed proximity of 

reporter and quencher and thus an improved signal to noise ratio (Mackay et al. 2007). The 

superiority of LNA over the DNA TaqMan probe could also be explained by its higher Tm but 

at the same time it emphasizes the possibilities which shorter probe sequences with increased 

Tm can offer, such as LNA, minor groove binders (Fontaine and Guillot 2003) and peptide 

nucleic acid (Reynisson et al. 2006). This is an advantage since long probes perform relatively 

poorly compared to short probes (Fontaine and Guillot 2003).  
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Inhibitory components frequently found in biological samples can result in a 

significant reduction in the sensitivity and kinetics of qPCR (Nolan et al. 2006).  BSA has had 

widespread use for relieving the effects of PCR inhibitors during the PCR step (Jiang et al. 

2005; Guy et al. 2003; Kreader 1996). Jiang et al. (2005) demonstrated that the effect of PCR 

inhibitors could be relieved significantly by the addition of 400 ng/µl of BSA to the PCR 

mixture in the detection of Cryptosporidium. Guy et al. (2003) demonstrated that the addition 

of BSA (final concentration, 20 ng/µl) to the Giardia PCR mixture removed the inhibitory 

effect of substances with the potential to inhibit PCRs. Capillary based systems from Roche 

(LightCycler range) require the addition of BSA into the reaction buffer to prevent binding of 

reaction components and nucleic acid to the glass (Nolan et al. 2006).  The β-giardin and 

COWP qPCR assays greatly depended on the BSA concentration. 

In our experiments, the total concentrations of cysts detected with IFA (from 3.8 x 102 

to 1.4 x 103 cysts/L) agreed with the concentrations observed in published studies (Caccio et 

al. 2003; Bertrand et al. 2004). For the fourteen sewage samples, all positive with the IFA 

procedure and all produced amplification curves with the Giardia TaqMan PCR DNA and 

LNA assays. Except for one sample the Cts for Giardia positive samples were above cycle 35 

(table 4). Above cycle 35 the variability will be greater and quantification may be unreliable 

(Nolan et al. 2006). Bertrand et al. (2004) observed G. lamblia cysts concentrations with the 

IFA procedure always higher than the concentrations obtained with the TaqMan PCR assay. 

No Cryptosporidium was detected in the analysed samples as determined by qPCR. Lack of 

detection of Cryptosporidium, as determined by qPCR in sewage samples has been reported 

by Guy et al. (2003), suggesting that oocysts were either absent or present at very low levels. 

The difference was attributable to increased probe affinity for the target sequence. Although 

we were unable to detect any DNA corresponding to Cryptosporidium in unspiked collected 
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samples, the method developed may be useful to assess the presence of these pathogenic 

protozoa in water and wastewater. 

In summary, the most appropriate primer TaqMan Probe combination is the one that 

gives the lowest Ct and the highest normalized fluorescence. The results presented here 

demonstrated that the introduction of LNA nucleotides into DNA TaqMan probes is useful for 

improving the efficiency of hybridization with rRNA targets. Two probe LNA sequences, 

LNA β-giardin and LNA COWP, evaluated in this study showed signal enhancements after 

substituting four LNA bases for DNA bases.  
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TTable 1. Specificity of β-giardin and COWP LNA probes for detection of Giardia and 

Cryptosporidium in qPCR 

1 

2 

_3 

4 

5 

6 

_7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

   ________________________________________________________________________ 

        q PCR Result a 

     DNA source                                              ____________________________________ 

       β-giardin P241  COWP P702 

   ________________________________________________________________________ 

    G. lamblia H3     +    - 

   G. lamblia (ATCC 30888 D)b   +    - 

   G. muris (Roberts-Thompson)   +    - 

   C. parvum (ATCCC PARA-67 D)c   -    + 

   C. parvum (Cp 3)     -    + 

   C. hominis (12599)     -    + 

   C. meleagridis (8716)     -    + 

   C. felis (13866)     -    - 

   E. coli (CECT 529)     -    - 

   P. aeruginosa (ATCC 10145)   -    - 

   V. parahaemolyticus (CECT 511)                             -                                              - 

   ______________________________________________________________________________________________________________ 

  a+, detected; -, not detected. 

   bPortland 1 isolate.  

   c Iowa isolate. 
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Table 2. Mean Ct values for different concentrations of β-giardin and COWP LNA probes for 

detection of Giardia and Cryptosporidium in qPCR 

1 

2 

3 

4 

5 

6 

7 

__________________________________________________________________________ 

                                            β-giardin P241 probesa                 COWP P702 probesb

   Probe concentration  ______________________           ______________________ 

           LNA        DNA                 LNA     DNA 

__________________________________________________________________________ 

8       50 nmol/L      32.88 + 0.32 33.27 + 0.32           28.70 + 0.61    30.07 + 0.01 

9     100 nmol/L   30.67 + 0.03 31.70 + 0.32           27.69 + 0.14    28.82 + 0.26 

10     150 nmol/L   29.80 + 0.10 30.99 + 0.29           27.53 + 0.09    28.29 + 0.11 

11 

12 

13 

14 

    200 nmol/L   29.52 + 0.04 30.89 + 0.23           26.69 + 0.04    27.25 + 0.37 

___________________________________________________________________________ 

aMean +  standard deviation of three replicates seeded with 3.1 x 104 fg of G. lamblia DNA. 

bMean + standard deviation of three replicates seeded with 3.3 x 105 fg of C. parvum DNA.  
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Table 3. Comparison of LNA and DNA probe chemistries, all labelled with FAM-

TAMRA in a real-time PCR assay in LigthCycler 2.0 on a serially diluted DNA from 

Giardia duodenalis and Cryptosporidium parvum 

1 

2 

3 

4 

5 

6 

7 

8 

______________________________________________________________________ 

                                     P241 probes                            P702 probes 

   DNA (fg)a  _______________________     DNA (fg)b     ______________________ 

       LNA(Ctc)      DNA (Ct)        LNA (Ct)    DNA (Ct)  

______________________________________________________________________ 

        ---            ---             ---        66 x 105      21.56 + 0.06    23.77 + 0.27    9 

    62 x 104        25.53 + 0.07    27.04 + 0.15       66 x 104      25.48 + 0.08    27.26 + 0.03   10 

    62 x 103        29.03 + 0.08    20.24 + 0.07       66 x 103      30.14 + 0.17    31.05 + 0.14    11 

    62 x 102        32.45 + 0.03    33.41 + 0.02       66 x 102      33.41 + 0.09    33.97 + 0.21       12 

    62 x 10          36.13 + 0.56    37.11 + 0.55       66 x 10        37.58 + 0.24    38.61 + 0.27          13 

        62              39.22 + 1.14    40.79 + 0.61           66            40.31 + 0.12    41.94 + 0.80   14 

15 

16 

17 

18 

19 

Efficiency (%)           96.2                 93.1                                   83.3                  88.7          

______________________________________________________________________  

agDNA from G. intestinalis. DNA concentrations serially diluted from 6.6 ng to 66 fg. 

bgDNA from C. parvum DNA concentrations serially diluted from 0.62 ng to 62 fg. 

cCt, Cycle threshold. 
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  Table 4. Effect of BSA concentration on the β-giardin and  1 

2 

3 

COWP LNA qPCR assays  

________________________________________________ 

4 

5 

6 

7 
8 

                                              Mean Ct value +  SD 

   BSA concentration  ________________________              

          (ng/µl)    LNA P241a      LNA P702b  

________________________________________________ 
 

20    25.83 + 0.26      23.40 + 0.51  9 

10            50    25.45 + 0.10      22.17 + 0.12  

11           200    26.55 + 0.28      21.87 + 0.23  

          400    27.53 + 0.08      21.15 + 0.09  12 

13 _________________________________________________  

aMean +  standard deviation of three replicates seeded with  14 

15 3.1 x 105 fg of G. lamblia DNA. 

bMean + standard deviation of three replicates seeded with  16 

17 3.3 x 106 fg of C. parvum DNA.  
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Table 5. Comparison of LNA and DNA qPCR assays for detection of Giardia and 

 Cryptosporidium in 100-ml sewage samples 

____________________________________________________________________ 

                                           P241 probes Ctc    P702 probes Ct 

   Samplea   IFb cysts ______________   IF oocysts _______________ 

     LNA         DNA       LNA        DNA  

_____________________________________________________________________ 

        C1       90   36.79         37.85    0    No Ct        No Ct  

        C2     151   35.31         37.31    2    No Ct        No Ct  

        C3     104   36.57         39.05    3    No Ct        No Ct  

        C4     109   35.04         37.57    0    No Ct        No Ct  

        C5     145   35.44         37.24    1    No Ct        No Ct  

        C6     133   34.87         36.59    0    No Ct        No Ct  

        C7     120   35.74         37.72    0    No Ct        No Ct  

        P1       78   35.35         37.42    5    No Ct        No Ct  

        P2       78   36.14         38.73    3    No Ct        No Ct  

        P3       38   38.69         41.01    0    No Ct        No Ct  

        P4       83   37.31         39.65    0    No Ct        No Ct  

        P5     128   35.31         37.02    0    No Ct        No Ct  

        P6       61   37.61         38.96    1    No Ct        No Ct  

       Q1             70   37.36         38.53    3    No Ct        No Ct  

______________________________________________________________________  

aC, WWTP1; P, WWTP2; Q, WWTP3 

bIF, Enumeration of cysts/oocysts was carried out by immunofluorescence microscopy 

cCt, Cycle threshold



Table 6. Mean Ct values for four WWTP samples (sample 1, sample 2, sample 3 and sample 4) seeded with 60,000 cysts of G. lamblia for  1 

2 

3 

4 

5 

6 

7 
8 

detection of Giardia with  β-giardin P241 probesa  

_________________________________________________________________________________________________________________ 

                                                Sample 1                            Sample 2                                   Sample 3                                  Sample 4 

        Sample    ______________________   ______________________    ______________________   _______________________ 

         LNA        DNA          LNA         DNA           LNA           DNA          LNA               DNA 

_________________________________________________________________________________________________________________ 
 

9          undiluted 27.92 + 0.13  29.71 + 0.01   27.48 + 0.17   29.29 + 0.12     29.71 + 0.25    32.07 + 0.10   28.66 + 0.41   30.85 + 0.45 

10         dil 1:5  29.48 + 0.10  32.51 + 0.05   29.71 + 0.00   32.24 + 0.22     31.65 + 0.49    33.99 + 0.23   31.34 + 0.12   33.65 + 0.54 

11 

12 

        dil 1:10  30.01 + 0.55  32.94 + 0.66   30.12 + 0.45   32.56 + 0.66     32.31 + 0.20    35.01 + 0.23   31.65 + 0.25   34.64 + 0.42 

_________________________________________________________________________________________________________________  

a Mean +  standard deviation of two replicates DNA undiluted and,  dilutions 1:5  and 1:10. 13 
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                                                Sample 1                            Sample 2                                   Sample 3                                

Table 7. Mean Ct values for three WWTP samples (WWTP1, WWTP2 and WWTP3) seeded with 40,000  

oocysts of C. parvum for detection of Cryptosporidium with  COWP P702 probes*  

________________________________________________________________________________________ 

        Sample    ______________________   ______________________    ______________________    

         LNA        DNA          LNA         DNA          LNA               DNA 

_________________________________________________________________________________________ 
 
         undiluted 29.26 + 0.29 31.87 + 0.67   30.36 + 0.21   32.44 + 0.39      29.68 + 0.35   32.48 + 0.32   

        dil 1:5  32.56 + 0.19 34.42 + 0.52   32.22 + 0.18   34.09 + 0.54      31.75 + 0.19   34.21 + 0.18   

        dil 1:10  33.71 + 0.34 35.07 + 0.49   33.74 + 0.03   35.43 + 0.70      33.31 + 0.24   35.18 + 0.39  

_________________________________________________________________________________________  

*Mean +  standard deviation of two replicates DNA undiluted and,  dilutions 1:5  and 1:10. 13 
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Fig. 1. Amplification plot and standard curve  of  β-giardin LNA TaqMan PCR assay with 

tenfold dilutions of G. intestinalis DNA ranging from 6.2x105  to 62 fg by using the 

LightCycler 2.0 The number of PCR cycles is indicated on the x axis. Ct values determined 

for individual standards were as follows: 6.2x105 fg, 25.53; 6.2x104 fg, 29.03; 6.2x103 fg, 

32.45; 6.2x102 fg, 36.13; and  62 fg, 39.22. The horizontal red line indicates the threshold. 

 

 

Fig. 2. Amplification plot and standard curve  of  COWP LNA TaqMan PCR assay with 

tenfold dilutions of C. parvum DNA ranging from 6.6x106  to 66 fg by using the LightCycler 

2.0 The number of PCR cycles is indicated on the x axis. Ct values determined for individual 

standards were as follows: 6.6x106 fg, 21.66; 6.6x105 fg, 25.48; 6.6x104 fg, 30.14; 6.6x103 fg, 

33.41; 6.6x102 fg, 37.58; and  66 fg, 40.31. The horizontal red line (black?) indicates the 

threshold. 
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Fig. 2 1 
2 
3 

 
 

    

 

4 
5 

6 

7 

8 

9 

 

 

 

 

 

 30
Y =-3.809x+ 47.87
R2 = 0.995 
Efficiency: 1.833
 


