
mathematics

Article

A New Three-Step Class of Iterative Methods for
Solving Nonlinear Systems

Raudys R. Capdevila 1,2, Alicia Cordero 1,* and and Juan R. Torregrosa 1

1 Institute for Multidisciplinary Mathematics, Universitat Politècnica de València, 46022 València, Spain;
raucapbr@doctor.upv.es (R.R.C.); jrtorre@mat.upv.es (J.R.T.)

2 Dpto. de Educación en Línea, Universidad San Francisco de Quito, Quito 170901, Ecuador
* Correspondence: acordero@mat.upv.es

Received: 22 November 2019; Accepted: 6 December 2019; Published: 11 December 2019 ����������
�������

Abstract: In this work, a new class of iterative methods for solving nonlinear equations is presented
and also its extension for nonlinear systems of equations. This family is developed by using a
scalar and matrix weight function procedure, respectively, getting sixth-order of convergence in
both cases. Several numerical examples are given to illustrate the efficiency and performance of the
proposed methods.
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1. Introduction

In this paper we consider the problem of finding a solution for F(x) = 0, where F : D ⊂ Rn →
Rn is a sufficiently differentiable multivariate function, when n > 1, defined on a convex set D.
The solution of this kind of multidimensional nonlinear problems is usually numerical, as it cannot be
solved analytically in most cases. In this sense, the role of iterative procedures capable of estimating
their solutions is critical.

Newton’s scheme is most employed iterative procedure for solving nonlinear problems (see [1]);
its iterative expression is

x(k+1) = x(k) − [F′(x(k))]−1F(x(k)), k = 0, 1, . . .

where F′(x(k)) denotes the Jacobian matrix of nonlinear function F evaluated on the iterate x(k).
While not in the same number as for scalar equations, in recent years many researchers have focused
their attention on this kind of problem. One initial approach is to modify the classical methods in order
to accelerate the convergence and also to reduce the amount of functional evaluations and operations
per iteration. In [2,3] good reviews can be found.

There have been different ways to approach this problem: In [4], a general procedure,
called pseudo-composition, was designed. It involved predictor–corrector methods with a high
order of convergence, with the corrector step coming from a Gaussian quadrature. Moreover, other
techniques have been used: Adomian decomposition [5–7], multipoint methods free from second
derivative [8,9], multidimensional Steffensen-type schemes [10–13], and even derivative-free methods
with memory [14–16].

Recently, the weight function technique has also been developed for designing iterative methods
for solving nonlinear systems (see, for example [17]). This procedure allows the order of convergence
of a method to be increased many times without increasing the number of functional evaluations.
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Among others, Sharma et al. in [18] designed a scheme with fourth-order of convergence by using
this procedure and, more recently, Artidiello et al. constructed in [19,20] several classes of high-order
schemes by means of matrix weight functions.

On the other hand, as most of the iterative methods for scalar equations are not directly extendable
to systems, it was necessary to find a new technique that makes it feasible. In [21,22], the authors
presented a general process able to transform any scalar iterative method to the multidimensional case.

In what follows, a few methods of sixth-order of convergence are revisited and used for
comparison with our proposed scheme. Different efficiency aspects are treated as well as the numerical
performance on several nonlinear problems.

In what follows, we list several existing sixth-order methods that will be used with the aim of
comparison. The first scheme (C61) is introduced in [7] by Cordero et al. and modified in [23] by the
same authors. Its iterative expression is

y(k) = x(k) − F′(x(k))
−1

F(x(k)),

z(k) = y(k) − F′(x(k))−1[ 2I − F′(y(k)) F′(x(k))−1]F(y(k)), (1)

x(k+1) = z(k) − F′(y(k))−1F(z(k)), k ≥ 0.

Let us notice that this scheme reaches sixth-order of convergence using a functional evaluation of
nonlinear function F at three different points and also its associate Jacobian matrix F′ is evaluated at
two different points per iteration.

The second method (C62), a modified Newton–Jarratt composition, was presented by
A. Cordero et al. in [24], and is expressed as

z(k) = x(k) − 2
3

F′(x(k))
−1

F(x(k)),

y(k) = x(k) − 1
2

[
3 F′(z(k))− F′(x(k))

]−1 [
3 F′(z(k)) + F′(x(k))

]
F′(x(k))−1 F(x(k)), (2)

x(k+1) = y(k) −
[
−1

2
F′(x(k)) +

3
2

F′(z(k))
]−1

F(y(k)), k ≥ 0.

This structure allows to reach the sixth-order of convergence by means of two evaluations of
nonlinear function F, and also two of F′, per iteration.

We also recall, as (XH6) the scheme introduced by X.Y. Xiao and H.W. Yin in [25] based on the
method presented by J.R. Sharma et al. in [18]

y(k) = x(k) − 2
3

F′(x(k))
−1

F(x(k)),

z(k) = y(k) − 1
2

[
−I +

9
4

F′(y(k))−1 F′(x(k)) +
3
4

F′(x(k))−1 F′(y(k))
]

F′(x(k))−1 F(x(k)), (3)

x(k+1) = z(k) − 1
2

[
3 F′(y(k))−1 − F′(x(k))−1

]
F(z(k)), k ≥ 0.

In this case, two functional evaluations of F and F′ are made, respectively, on points x(k) and y(k),
per iteration.

The fourth class of iterative methods is of Jarrat-type (B6) and was introduced by R. Behl et al.
in [26] as

y(k) = x(k) − 2
3

F′(x(k))
−1

F(x(k)),

z(k) = x(k) −
[
−a1 I + a2 (F′(y(k))−1 F′(x(k)))2

]
F′(x(k))−1 F(x(k)), (4)

x(k+1) = z(k) −
[

b2 F′(x(k)) + b3 F′(y(k))
]−1 [

F′(x(k)) + b1 F′(y(k))
]

F′(x(k))−1 F(z(k)), k ≥ 0,
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where a2 = 3
8 , a1 = 1− a2 = 5

8 , b2 = b1 − b3 + 1 = − 1
2 (3b1 + 1), b3 = 1

2 (5b1 + 3) and b1 is a free
parameter. This is a parametric family of iterative schemes that reaches order of convergence six with
two functional evaluations of F and two of F′ per iteration.

Let us introduce now some concepts that will be used throughout the manuscript. They are
related with such important aspects of iterative methods as convergence, order, efficiency and those
related with the technique used in the proof of the main result.

Let {x(k)}k≥0 be a sequence in Rn which converges to ξ, then the convergence is said to be of
order p with p ≥ 1 if there exist M > 0 (0 < M < 1 if p = 1 ) and k0 such that

‖x(k+1) − ξ‖ ≤ M‖x(k) − ξ‖p, ∀k ≥ k0,

or
‖e(k+1)‖ ≤ M‖e(k)‖p, ∀k ≥ k0, where e(k) = x(k) − ξ.

Moreover, with ξ ∈ Rn such that F(ξ) = 0 and supposing that x(k−1), x(k), x(k+1) are three
consecutive iterations close to ξ, then the order of convergence can be estimated in practice by the
computational order of convergence ρ that can be calculated by using the expression

p ≈ ρ =
ln(‖x(k+1) − x(k)‖/‖x(k) − x(k−1)‖)

ln(‖x(k) − x(k−1)‖/‖x(k−1) − x(k−2)‖)
. (5)

Let F : D ⊆ Rn → Rn be a sufficiently Fréchet differentiable function in D, for any ξ + h ∈ Rn in
a neighborhood of ξ, the solution of the system F(x) = 0. By applying a Taylor development around ξ

and assuming that F′(ξ) is not singular (see [24] for further information), we have

F(ξ + h) = F′(ξ)

[
h +

p−1

∑
q=2

Cqhq

]
+ O(hp), (6)

being Cq = (1/q!)[F′(ξ)]−1F(q)(ξ) and q = 2, 3, . . .. Let us remark that Cqhq ∈ Rn as F(q)(ξ) ∈
L(Rn × · · · ×Rn, Rn) and [F′(ξ)]−1 ∈ L(Rn). Therefore,

F′(ξ + h) = F′(ξ)
[

I +
p−1

∑
q=2

qCqhq−1
]
+ O(hp−1), (7)

where I is the identity matrix and qCqhq−1 ∈ L(Rn).
The proposed class of iterative method and its analysis of convergence are presented in Section 2.

Moreover, two particular subclasses of this family, both depending on a real parameter, are shown.
In Section 3, their efficiency is calculated and compared with those of some existing classes or schemes
with the same order of convergence. Finally, their numerical performance is checked in Section 4 on
several multidimensional problems and some conclusions are stated in Section 5.

2. Design and Convergence Analysis of the Proposed Class

Let F : D ⊆ Rn → Rn be a real sufficiently Fréchet differentiable function and H : Rn×n → Rn×n

be a matrix weight function whose variable is t(k) = I − [F′(x(k))]−1[x(k), y(k); F]. Let us notice that the
divided difference operator of F on Rn, [·, ·; F] : Ω×Ω ⊂ Rn ×Rn −→ L(Rn) is defined in [27] as

[x, y; F](x− y) = F(x)− F(y), for any x, y ∈ Ω.

Then, we propose the three step iterative method
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y(k) = x(k) − F′(x(k))−1F(x(k)),

z(k) = y(k) − H(t(k))F′(x(k))−1F(y(k)), (8)

x(k+1) = z(k) − H(t(k))F′(x(k))−1F(z(k)), k ≥ 0.

In order to properly describe the Taylor development of the matrix weight function, we recall
the denotation defined by Artidiello et al. in [19]: Let X = Rn×n denote the Banach space of real
square matrices of size n × n, then the function H : X → X can be defined such that the Fréchet
derivative satisfies

(a) H′(u)(v) = H1uv, where H′ : X → L(X) and H1 ∈ R,
(b) H′′(u, v)(v) = H2uvw, where H′′ : X× X → L(X) and H2 ∈ R.

Let us also remark that, when k tends to infinity, then the variable t(k) tends to the identity matrix
I. So, there exist real H1 and H2 such that H can be expanded around I as

H(t(k)) = H(I) + H1(t(k) − I) +
1
2

H2(t(k) − I)2 + O((t(k) − I)3).

Therefore, the following results state the conditions that assure the sixth-order of convergence of
Class (8) and present its error equation.

Theorem 1. Let us consider a sufficiently Fréchet differentiable function F : D ⊆ Rn → Rn in an open
neighborhood D of ξ ∈ Rn satisfying F(ξ) = 0 and H : Rn×n → Rn×n, a sufficiently Fréchet differentiable
matrix function. Let us also assume that F′(x) is non-singular at ξ, and x(0) is an initial value close enough to
ξ. Then, the sequence {x(k)}k≥0, obtained from Class (8), converges to ξ with order six if H0 = I, H1 = 2 and
‖H2‖ < ∞, where H0 = H(0) and I are the identity matrix, its error equation being

e(k+1) = 1
4
[
(H2

2 − 22H2 + 120)C5
2 + (−24 + 2H2)C2

2C3C2 + (−20 + 2H2)C3C3
2 + 4C2

3C2
]

e(k)
6
+ O(e(k)

7
),

where Cq = 1
q! [F

′(ξ)]−1F(q)(ξ), q = 2, 3, . . . and e(k) = x(k) − ξ.

Proof. By using the Taylor expansion series of the nonlinear function and its corresponding Jacobian
matrix around ξ we get,

F(x(k)) = F′(ξ)[e(k) +
6

∑
j=2

Cie(k)
i
] + O(e(k)

7
),

F′(x(k)) = F′(ξ)[I +
6

∑
j=2

iCie(k)
i−1

] + O(e(k)
6
).

Moreover, the expansion of the inverse of the Jacobian matrix can be expressed as

[F′(x(k))]−1 = [I +
6

∑
j=2

Xje(k)
j−1

][F′(ξ)]−1 + O(e(k)
6
), (9)
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where

X2 = −2C2,

X3 = −3C3 + 4C2
2 ,

X4 = −4C4 + 6C2C3 + 6C3C2 − 8C3
2 ,

X5 = −5C5 + 8C2C4 − 12C2
2C3 + 9C2

3 + 8C4C2 − 12C2C3C2 + 16C4
2 − 12C3C2

2 ,

X6 = −32C5
2 + 24C3

2C3 − 18C2C2
3 − 16C2

2C4 + 12C3C4 + 10C2C5 − 6C6

+24C2
2C3C2 + 18C2

3C2 − 16C2C4C2 + 10C5C2 + 24C2C3C2
2 − 16C4C2

2

+24C3C3
2 + 12C4C3 − 18C3C2C3.

Then,

[F′(x(k))]−1F(x(k)) = e(k) − C2e(k)
2
+ 2(C2

2 − C3)e(k)
3
+ (4C2C3 + 3C3C2 − 4C3

2 − 3C4)e(k)
4

+(−4C5 + 6C2C4 − 8C2
2C3 + 6C2

3 + 4C4C2 − 6C2C3C2 + 8C4
2 − 6C3C2

2)e
(k)5

+(−16C5
2 + 16C3

2C3 − 12C2C2
3 − 12C2

2C4 + 9C3C4 + 8C2C5 − 5C6

+12C2
2C3C2 − 9C2

3C2 − 8C2C4C2 + 5C5C2 + 12C2C3C2
2 − 8C4C2

2

+12C3C3
2 + 8C4C3 − 12C3C2C3)e(k)

6
+ O(e(k)

7
).

So,

y(k) − ξ = C2e(k)
2
− 2(C2

2 − C3)e(k)
3
− (4C2C3 + 3C3C2 − 4C3

2 − 3C4)e(k)
4

−(−4C5 + 6C2C4 − 8C2
2C3 + 6C2

3 + 4C4C2 − 6C2C3C2 + 8C4
2 − 6C3C2

2)e
(k)5

−(−16C5
2 + 16C3

2C3 − 12C2C2
3 − 12C2

2C4 + 9C3C4 + 8C2C5 − 5C6 + 12C2
2C3C2 − 9C2

3C2

−8C2C4C2 + 5C5C2 + 12C2C3C2
2 − 8C4C2

2 + 12C3C3
2 + 8C4C3 − 12C3C2C3)e(k)

6
+ O(e(k)

7
),

(y(k) − ξ)2 = C2
2e(k)

4
+ (−4C3

2 + 2C2C3 + 2C3C2)e(k)
5
+ (12C4

2 − 11C2
2C3 + 4C2

3 + 3C2C4

−4C2C3C2 + 3C4C2 − 7C3C2
2)e(k)

6
+ O(e(k)

7
),

(y(k) − ξ)3 = C2
3e(k)

6
+ O(e(k)

7
)

and therefore,

F(y(k)) = F′(ξ)[(y(k) − ξ) + C2(y(k) − ξ)2] + O((y(k) − ξ)3)

= F′(ξ)[C2e(k)
2
+ 2(C3 − C2

2)e
(k)3

+ (3C4 + 5C3
2 − 3C3C2 − 4C2C3)e(k)

4

+(4C5 − 6C2C4 + 10C2
2C3 − 6C2

3 − 4C4C2 + 8C2C3C2 − 12C4
2 + 6C3C2

2)e
(k)5

+(28C2
5 − 27C2

3C3 + 16C2C3
2 + 15C2

2C4 − 9C3C4 − 8C2C5 + 5C6 − 16C2
2C3C2

+9C3
2C2 + 11C2C4C2 − 5C5C2 − 18C2C3C2

2 + 8C4C2
2 − 12C3C2

3 − 8C4C3 + 12C3C2C3)e(k)
6
] + O(e(k)

7
).

(10)

Knowing the definition of the variable of weight function H, it can be expanded as

t(k) = I − [F′(x(k))]−1[x(k), y(k); F]

= C2e(k) + (−3C3
2 + 2C3)e(k)

2
+ (8C3

2 − 6C2C3 + 2C4 − 4C3C2)e(k)
3

+(−20C4
2 + 16C2

2C3 − 8C2
3 − 4C2C4 + 11C2C3C2 − 2C4C2 + 10C3C2

2 − 3C2C4)e(k)
4
+ O(e(k)

5
).

Then, using the Taylor expansion of H,

H(t(k)) = H0 + H1(t(k) − I) + H2(t(k) − I)
2
+ O((t(k) − I)

3
) (11)
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fixing H0 = I, H1 = 2 and with the help of Equations (9) and (10) we obtain

H(t(k))[F′(x(k))]−1F(y(k)) = C2e(k)
2
+ (−2C2

2 + 2C3)e(k)
3
+

(
−C3

2 +
H2

2
C3

2 − 4C2C3 + 3C4 − 2C3C2

)
e(k)

4

+
(
(28− 5H2)C4

2 + (−2 + H2)C2
2C3 + (−4 + H2)C2C3C2 − 4C2

3 − 6C2C4 + 4C5

−4C4C2 + (−6 + H2)C3C2
2

)
e(k)

5
+
(
−6C3C4 − 8C2C5 + 5C6 + 52C2

2C3C2

−13C3
2C2 − 10C5C2 + 52C2C3C2

2 + 4C4C2
2 + C3C2

3 − 8C4C3

+(105− 10H2)C2
3C3 + (−3 + H2)C2C4C2 − 9C2

2C3C2 H2 + 2C3
2C2 H2 − 9C2C3C2

2

+C4C2
2 H2 − 9C3C2

2 H2 + (20 + H2)C3C2C3 + (−3 +
3H2

2
)C2

2C4

+(−40 + 2H2)C2C3
2 + (−154 + 31H2)C2

5
)

e(k)
6
+ O(e(k)

7
).

Then, the error at the second step is

z(k) − ξ =

((
5− H2

2

)
C3

2 − C3C2

)
e(k)

4

+
(
(−36 + 5H2)C4

2 + (10− H2)(C2
2C3 + C2C3C2)− 2C2

3 + (12− H2)C3C2
2

)
e(k)

5

+
(
(20− 2H2)C2

3C2 − 3C3C4 + 5C5C2 + (170− 31H2)C5
2

+ (22− 2H2)C2
3C2 + (24− 2H2)C3C2C3 +

(
15− 3H2

2

)
C2

2C4 + (4− H2)C4C2
2

+ (−65 + 9H2)C3C3
2 + (11− H2)C2C4C2 − 64C2C3C2

2 − 64C2
2C3C2

+9H2C2C3C2
2 + 9H2C2

2C3C2 + (−69 + 10H2)C3
2C3

)
e(k)

6
+ O(e(k)

7
),

and therefore

F(z(k)) = F′(ξ)[(z(k) − ξ)] + O((z(k) − ξ)2)

= F′(ξ)
[((

5− H2

2

)
C3

2 − C3C2

)
e(k)

4

+
(
(−36 + 5H2)C4

2 + (10− H2)(C2
2C3 + C2C3C2)− 2C2

3 + (12− H2)C3C2
2

)
e(k)

5

+((20− 2H2)C2
3C2 − 3C3C4 + 5C5C2 + (170− 31H2)C5

2 + (22− 2H2)C2
3C2 (12)

+(24− 2H2)C3C2C3 +

(
15− 3H2

2

)
C2

2C4 + (4− H2)C4C2
2

+ (−65 + 9H2)C3C3
2 + (11− H2)C2C4C2 − 64C2C3C2

2 − 64C2
2C3C2

+9H2C2C3C2
2 + 9H2C2

2C3C2 + (−69 + 10H2)C3
2C3)e(k)

6
)
]
+ O(e(k)

7
).

Finally, with Equations (9), (11) and (12) we get

H(t(k))[F′(x(k))]−1F(z(k)) =

((
5− H2

2

)
C3

2 − C3C2

)
e(k)

4

+
(
(−36 + 5H2)C4

2 + (10− H2)(C2
2C3 + C2C3C2)− 2C2

3 + (12− H2)C3C2
2

)
e(k)

5

+
1
4

(
−12C3C4 + 20C5C2 + (80− 8H2)C2C2

3 + (84− 8H2)C2
3C2

+ (44− 4H2)C2C4C2 + (96− 8H2)C3C2C3 + (16− 4H2)C4C2
2

+ (60− 6H2)C2
2C4 + (−256 + 36H2)C2C3C2

2 + (−232 + 34H2)C2
2C3C2

+ (−240 + 34H2)C3C3
2 + (−276 + 40H2)C3

2C3

+
(
−H2

2 − 102H2 + 560
)

C5
2

)
e(k)

6
+ O(e(k)

7
)
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and the resulting error equation is

e(k+1) = 1
4
[
(H2

2 − 22H2 + 120)C5
2 + (−24 + 2H2)C2

2C3C2 + (−20 + 2H2)C3C3
2 + 4C2

3C2
]

e(k)
6
+ O(e(k)

7
)

and the proof is complete.

Theorem 1 provides the convergence conditions for the proposed Class (8) of the iterative methods.
However, there are several ways to define matrix weight function H satisfying those conditions.
Each defined weight function generates different iterative schemes or classes.

Family 1 The weight function defined by

H1(t) = I + 2t +
1
2

αt2 (13)

where α ∈ R satisfies the convergence conditions of Theorem 1. A new parametric family of
sixth-order methods is then obtained as

y(k) = x(k) − [F′(x(k))]−1F(x(k)),

z(k) = y(k) −
[

I + 2t(k) +
1
2

αt(k)
2
]
[F′(x(k))]−1F(y(k)), (14)

x(k+1) = z(k) −
[

I + 2t(k) +
1
2

αt(k)
2
]
[F′(x(k))]−1F(z(k)), k ≥ 0.

where t(k) = I − [F′(x(k))]−1[x(k), y(k); F]. This family is denoted by PSH61.
Family 2 The weight function defined by

H2(t) = I + 2(I + αt)−1t (15)

also satisfies the convergence conditions of Theorem 1. Then, a new class of sixth-order
methods depending on a free parameter α is obtained

y(k) = x(k) − [F′(x(k))]−1F(x(k)),

z(k) = y(k) −
[

I + 2(I + αt(k))−1t(k)
]
[F′(x(k))]−1F(y(k)), (16)

x(k+1) = z(k) −
[

I + 2(I + αt(k))−1t(k)
]
[F′(x(k))]−1F(z(k)), k ≥ 0.

being again t(k) = I − [F′(x(k))]−1[x(k), y(k); F]. We denote in what follows this class as
PSH62.

Let us also remark that both subclasses use three functional evaluations of F, one evaluation of
the Jacobian matrix F′ and one evaluation of the divided difference [·, ·; F] in order to reach sixth-order
of convergence.

3. Computational Efficiency

In order to analyze the efficiency of an iterative method, there are two key aspects: The number of
functional evaluations and the number of operations (products–quotients), both per iteration. So, our
aim is to compare the performance of the proposed (PSH61 and PSH62) and known methods (C61, C62,
XH6 and B6, described in the Introduction). To get this aim, we use the multidimensional extension
of efficiency index I = p1/d defined by Ostrowski in [28] and the computational efficiency index
CI = p1/(d+op) defined in [29]. In the latter, p is the convergence order, d is the amount of evaluations
made per iteration and op is the amount of products–quotients made per iteration.
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In order to calculate the efficiency index I we recall that the number of functional evaluations of
one F, F′ and first order divided difference [·, ·; F] at each iteration is n, n2 and n(n− 1), respectively.
The comparison of efficiency indices for the different methods is shown in Table 1. Let us remark that,
despite some of them using more than one Jacobian matrix per iteration or use divided differences
operator, the efficiency index I, taking into account only the number of functional evaluations, is the
same in all cases. So, it is necessary to calculate their corresponding computational efficiency index CI.
In this way, the computational effort per iteration should be taken into account in order to decide on
the efficiency of the different iterative schemes.

Table 1. Efficiency index of the examined methods.

Method n.F n.F′ n.[·, ·; F] FE I

PSH61 3 1 1 2n2 + 2n 6
1

2n2+2n

PSH62 3 1 1 2n2 + 2n 6
1

2n2+2n

C61 3 2 0 2n2 + 3n 6
1

2n2+3n

C62 2 2 0 2n2 + 2n 6
1

2n2+2n

XH6 2 2 0 2n2 + 2n 6
1

2n2+2n

B6 2 2 0 2n2 + 2n 6
1

2n2+2n

In the case of the calculation of the computational efficiency index CI, we take into account that
the amount of products–quotients needed to solve a linear system by means of Gaussian elimination is
1
3 n3 + n2 − 1

3 n where n is the system size. If required, the solution uses LU decomposition of m linear
systems with the same matrix of coefficients, then 1

3 n3 + m n2 − 1
3 n products–quotients are necessary;

moreover, n2 products are made in the case of matrix–vector multiplication and for calculation of a first
order divided differences operator n2 quotients are needed. The notation LS( F′(x) ) and LS(Others)
define the number of linear systems to be solved with the same F′(x) matrix of coefficients and with
other coefficient matrices, respectively. The comparison of computational efficiency indices of the
examined methods is shown in Table 2.

Table 2. Computational efficiency index of the examined methods.

Method FE LS(F′(x)) LS(Others) M× V CI

PSH61{α 6=0} 2n2 + 2n 7 0 4 6
1

1
3 n3+13n2+ 5

3 n

PSH61{α=0} 2n2 + 2n 5 0 2 6
1

1
3 n3+5n2+ 2

3 n

PSH62{α 6=0} 2n2 + 2n 5 4 2 6
1

2
3 n3+11n2− 2

3 n

PSH62{α=0} 2n2 + 2n 5 0 2 6
1

1
3 n3+5n2+ 2

3 n

C61 2n2 + 3n 3 1 1 6
1

2
3 n3+7n2+ 7

3 n

C62 2n2 + 2n 1 3 2 6
1

2
3 n3+8n2+ 4

3 n

XH6 2n2 + 2n 3 2 2 6
1

2
3 n3+9n2+ 4

3 n

B6 2n2 + 2n 2 4 3 6
1

n3+11n2+n

These indices obviously depend on the size of the nonlinear system to be solved, but some
preliminary conclusions can be stated, such as that the third-degree coefficients describing the sum of
operations and functional evaluations make a big difference: Some of them (including special cases of
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our proposed methods) have
1
3

as the director coefficient; meanwhile, others have
2
3

or even the unity
as the director coefficient, making the computational cost for big-sized systems much higher.

Figures 1 and 2 show the computational efficiency index for the examined methods and systems
of size from 2 to 20 with weight functions H1 and H2, respectively, in the cases of the proposed schemes.
In Figure 1a,b, the parameter α is not null, and in Figure 1c,d it is equal to zero. Let us notice that the
behavior of the CI for the weight functions H1 and H2 is the same when α = 0 and it is better than
those of the comparison methods. This performance is explained for the dominating term 1

3 n3 in the
computational cost calculation; it is due to the existence of only one type of linear systems to be solved
per iteration with the matrix of coefficients F′(x).

(a) α 6= 0, 2 ≤ n ≤ 10 (b) α 6= 0, 10 < n ≤ 20

(c) α = 0, 2 ≤ n ≤ 10 (d) α = 0, 10 < n ≤ 20

Figure 1. Computationale f f iciencyindexCI indices for PSH61 and comparison methods.

(a) α 6= 0, 2 ≤ n ≤ 10 (b) α 6= 0, 10 < n ≤ 20

Figure 2. Cont.
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(c) α = 0, 2 ≤ n ≤ 10 (d) α = 0, 10 < n ≤ 20

Figure 2. CI indices for PSH62 and comparison methods.

Let us also remark that, even when α 6= 0, our methods are competitive with the existing ones,
especially in systems with size higher than 10, where the differences among the indices of all the
methods are not significant (see Figures 1b and 2b).

4. Numerical Results

In this section, we compare the numerical performance of the proposed methods PSH61 described
in Expression (14) with α = 0, α = 5.5 and α = 10, PSH62 (see Equation (16)) for the same values of
the parameter α and existing schemes C61, described in Equation (1); C62 is expressed in Equation (2),
XH6 appears in Equation (3) and the B6 scheme is expressed in Equation (4), with b1 = 3.

To get this aim we use the Matlab computer algebra system, with 2000 digits of mantissa in
variable precision arithmetics, to make the comparative numerical experiments. Moreover, the stopping
criterion used is ‖x(k+1) − x(k)‖ < 10−200 or ‖F(x(k+1))‖ < 10−200. The initial values employed and
the searched solutions are symbolized as x(0) and ξ, respectively. When the iterative expression of the
method involves the evaluation of a divided difference operator, it is calculated by using the first-order
estimation of the Jacobian matrix whose elements are (see [27])

[a, b; F]ij =
Fi(a1, ..., aj−1, aj, bj+1, ..., bm)− Fi(a1, ..., aj−1, bj, bj+1, ..., bm)

aj − bj
, 1 ≤ i, j ≤ n.

where Fi and i = 1, 2, . . . , n are the coordinate functions of F.
For each nonlinear function, one table will be displayed with the results of the numerical

experiments. The given information is organized as follows: k is the number of iteration needed
to converge to the solution (’nc’ appears in the table if the method does not converge), the value of the
stopping residuals is ‖x(k+1) − x(k)‖ or ‖F(x(k+1))‖ at the last step (’-’ if there is no convergence) and
the approximated computational order of convergence is ρ (if the value of ρ for the last iterations is
not stable, then ’-’ appears in the table). In this way, it can be checked if the convergence has reached
the root (‖F(x(k+1))‖ < 10−200 is achieved), if it is only a very slow convergence with no significant
difference between the two last iterations (‖x(k+1) − x(k)‖ < 10−200 but ‖F(x(k+1))‖ > 10−200), or both
criteria are satisfied.

The test systems used are defined by the following nonlinear functions:

Example 1. The first nonlinear system, whose solution is ξ = (0.0, 0.0)T , is described by function

F1(x1, x2) = (sin(x1) + x2 sin(x1), x1 − x2).

Our test is made by using as initial estimation x(0) = (0.8, 0.8)T and the results appear in Table 3.
In Table 3, it can be observed that, except for method C62, all the compared schemes converge to

the solution in four iterations, with null (for the fixed precision of the machine at 2000 digits) or almost
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null residual ‖F(x(k+1))‖. Moreover, the computational approximation order of convergence agrees in
all cases with the theoretical one.

Example 2. The following nonlinear function describes a system with solution ξ ≈ (2.4914, 0.2427, 1.6535)T ,

F3(x1, x2, x3) = (x2
1 + x2

2 + x2
3 − 9, x1x2x3 − 1, x1 + x2 − x2

3).

We test all the new and existing methods with this system with the initial estimation x(0) = (2.0, 0.5, 1.0)T

and the results are provided in Table 4.

Table 3. Numerical results of the examined methods for F1(x1, x2) and x(0) = (0.8, 0.8)T .

Method k ‖x(k+1)− x(k)‖ ‖F(x(k+1))‖ ρ

PSH61{α=0.0} 4 5.7517× 10−60 0.0 5.9906
PSH61{α=5.5} 4 2.0238× 10−64 0.0 5.9962
PSH61{α=10} 4 2.9651× 10−78 0.0 6.0264
PSH62{α=0.0} 4 5.7517× 10−60 0.0 5.9906
PSH62{α=5.5} 4 1.0081× 10−46 3.6422× 10−275 5.9701
PSH62{α=10} 4 6.6149× 10−43 6.8963× 10−252 5.9523

C61 4 1.5912× 10−73 0.0 5.9973
C62 10 6.3065× 10−72 0.0 5.9975
XH6 4 8.6943× 10−66 0.0 5.9953
B6 4 5.0674× 10−80 0.0 6.0030

Table 4. Numerical results of the examined methods for F3(x1, x2, x3) and x(0) = (2.0, 0.5, 1.0)T .

Method k ‖x(k+1)− x(k)‖ ‖F(x(k+1))‖ ρ

PSH61{α=0.0} 5 1.1553× 10−91 0.0 -
PSH61{α=5.5} 5 1.3862× 10−138 0.0 -
PSH61{α=10} 5 3.1738× 10−101 0.0 -
PSH62{α=0.0} 5 1.1553× 10−91 0.0 -
PSH62{α=5.5} 6 6.4700× 10−85 0.0 -
PSH62{α=10} 6 2.7383× 10−132 0.0 -

C61 4 5.5171× 10−38 7.1730× 10−225 6.0424
C62 4 2.1522× 10−93 0.0 6.0006
XH6 4 6.1878× 10−50 5.5325× 10−297 5.9482
B6 4 5.1979× 10−168 0.0 6.0365

In this example, the proposed methods take at least one more iteration to converge to the solution
(see Table 4). However, the precision of the results are the same or even better than those of the known
methods, as ‖F(x(k+1))‖ is null in all new cases.

Example 3. Now, we test the methods with the nonlinear system described by

F4(x1, x2, x3, x4) = (x1x2 + x4(x1 + x2), x1x3 + x4(x1 + x3), x2x3 + x4(x2 + x3), x1x2 + x1x3 + x2x3− 1),

using as the initial guess x(0) = (2.5, 2.5, 2.5, 2.5)T . The searched root is ξ ≈
(0.5774, 0.5774, 0.5774, −0.2887)T and we can find the residuals, the number of iterations needed to
converge and the estimated order of convergence in Table 5.

A similar performance can be observed in Table 5 where the effective stopping criterium is that
involving the evaluation of the nonlinear function and the residual is null most times. However, the
number of iterations needed does not improve on the number provided for most of known methods.
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Example 4. Finally we test the proposed and existing methods with a nonlinear system of variable size. It is
described as

xi − cos
(

2 xi −
4

∑
j=1

xj

)
= 0, i = 1, 2, . . . , n,

with n = 20 and starting with the estimation x(0) = (0.75, . . . , 0.75)T . In this case, the solution is ξ ≈
(0.5149, . . . , 0.5149)T and the obtained results can be found at Table 6.

Table 5. Numerical results of the examined methods for F4(x1, x2, x3, x4) and x(0) = (2.5, 2.5, 2.5, 2.5)T .

Method k ‖x(k+1)− x(k)‖ ‖F(x(k+1))‖ ρ

PSH61{α=0.0} 5 1.7213× 10−82 0.0 5.8841
PSH61{α=5.5} 5 6.2032× 10−101 0.0 6.0319
PSH61{α=10} 5 5.9604× 10−139 0.0 7.0104
PSH62{α=0.0} 5 1.7213× 10−82 0.0 5.8841
PSH62{α=5.5} 5 2.4280× 10−56 0.0 5.4681
PSH62{α=10} 5 2.2166× 10−50 0.0 5.2317

C61 4 2.8009× 10−167 0.0 6.1732
C62 4 6.0097× 10−36 9.3590× 10−222 6.7740
XH6 5 1.0184× 10−173 0.0 6.1665
B6 4 9.0970× 10−198 0.0 5.6982

Table 6. Numerical results of proposed methods for F5(x1, x2, . . . , xn), n = 20 and x(0) =

(0.75, . . . , 0.75)T .

Method k ‖x(k+1)− x(k)‖ ‖F(x(k+1))‖ ρ

PSH61{α=0.0} 4 1.8871× 10−184 0.0 6.0
PSH61{α=5.5} 4 1.1531× 10−189 0.0 6.0
PSH61{α=10} 4 2.8662× 10−195 0.0 6.0
PSH62{α=0.0} 4 1.8871× 10−184 0.0 6.0
PSH62{α=5.5} 4 2.0650× 10−171 0.0 6.0
PSH62{α=10} 4 4.6908× 10−165 0.0 6.0

C61 3 9.2604× 10−39 7.5226× 10−233 5.7540
C62 4 9.7326× 10−195 0.0 6.0
XH6 4 2.4997× 10−191 0.0 6.0
B6 6 5.7210× 10−197 0.0 6.0

When the systems are large, as in the case of F5(x1, x2, . . . , xn), where n = 20, our schemes
provide excellent results, equalling or improving the performance of existing procedures, see Table 6.
The number of iterations needed to satisfy one of the stopping criteria and the residuals obtained show
a very competitive performance. Moreover, the theoretical order of convergence is estimated with
full precision.

5. Conclusions

In this work, we have proposed an efficient class of iterative schemes, with two specific subfamilies
with very good performance. We have also compared them with other existing methods of the same
order, with good results. The choice of parameters for the different proposed subfamilies does not
pursue a specific objective but the dependence of the convergence on the selection of parameter α is
considered for further studies. Being similar, the numerical experiments show slightly better behavior
for PS6H1 than for PS6H2, in comparison with the existing procedures.

Author Contributions: Formal analysis, A.C.; Investigation, R.R.C. and J.R.T.; Software, R.R.C.; Writing—original
draft, R.R.C.; Writing—review and editing, A.C. and J.R.T. These authors contributed equally to this work.



Mathematics 2019, 7, 1221 13 of 14

Funding: This research has been partially supported by both Generalitat Valenciana and Ministerio de
Ciencia, Investigación y Universidades, under grants PROMETEO/2016/089 and PGC2018-095896-B-C22
(MCIU/AEI/FEDER, UE), respectively.

Acknowledgments: The authors would like to thank the anonymous reviewers for their comments and
suggestions that have improved the final version of this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Traub, J.F. Iterative Methods for the Solution of Equations; Prentice Hall: New York, NY, USA, 1964.
2. Cordero, A.; Torregrosa, J.R.; Vassileva, M.P. Design, Analysis, and Applications of Iterative Methods for

Solving Nonlinear Systems. In Nonlinear Systems—Design, Analysis, Estimation and Control; InTech: London,
UK, 2016. [CrossRef]

3. Amat, S.; Busquier, S. Advances in Iterative Methods for Nonlinear Equations; SEMA SIMAI Springer Series:
New York, NY, USA, 2016.

4. Cordero, A.; Torregrosa, J.R.; Vassileva, M.P. Pseudo-composition: A technique to design predictor-corrector
methods for systems of nonlinear equations. Appl. Math. Comput. 2012, 218, 11496–11508.

5. Babolian, E.; Biazar, J.; Vahidi, A.R. Solution of a system of nonlinear equations by Adomian decomposition
method. Appl. Math. Comput. 2004, 150, 847–854. [CrossRef]

6. Darvishi, M.T.; Barati, A. Super cubic itertive methods to solve systems of nonlinear equations.
Appl. Math. Comput. 2007, 188, 1678–1685.

7. Cordero, A.; Martínez, E.; Torregrosa, J.R. Iterative methods of order four and five for systems of nonlinear
equations. J. Comput. Appl. Math. 2009, 231, 541–551. [CrossRef]

8. Hernández, M.A. Second-derivative-free variant of the Chebyshev method for nonlinear equations. J. Opt.
Theory Appl. 2000, 104, 501–515. [CrossRef]

9. Hueso, J.L.; Martínez, E.; Torregrosa, J.R. Third and fourth order iterative methods free from second derivative
for nonlinear systems. Appl. Math. Comput. 2009, 211, 190–197. [CrossRef]

10. Soleymani, F.; Sharifi, M.; Shateyi, S.; Haghani, F.K. A class of Steffensen-type iterative methods for nonlinear
systems. J. Appl. Math. 2014, 2014, 705375. [CrossRef]

11. Singh, A. An efficient fifth-order Steffensen-type method for solving systems of nonlinear equations. Int. J.
Comput. Sci. Math. 2018, 9, 501–514. [CrossRef]

12. Sharma, J.R.; Arora, H. Efficient derivative-free numerical methods for solving systems of nonlinear equations.
Comput. Appl. Math. 2016, 35, 269–284. [CrossRef]

13. Cordero, A.; Jordán, C.; Sanabria, E.; Torregrosa, J.R. A new Class of iterative Processes for Solving Nonlinear
Systems by using One Divided Differences Operator. Mathematics 2019, 7, 776. [CrossRef]

14. Narang, M.; Bhatia, S.; Alshomrani, A.S.; Kanwar, V. General efficient class of Steffensen type methods with
memory for solving systems of nonlinear equations. J. Comput. Appl. Math. 2019, 352, 23–39. [CrossRef]

15. Candela, V.; Peris, R. A class of third order iterative Kurchatov–Steffensen (derivative free) methods for
solving nonlinear equations. Appl. Math. Comput. 2019, 350, 93–104. [CrossRef]

16. Cordero, A.; Maimó, J.G.; Torregrosa, J.R.; Vassileva, M.P. Iterative Methods with Memory for Solving Systems
of Nonlinear Equations Using a Second Order Approximation. Mathematics 2019, 7, 1069. [CrossRef]

17. Li, J.; Huang, P.; Su, J.; Chen, Z. A linear, stabilized, nonspatial iterative, partitioned time stepping method for
the nonlinear Navier-Stokes/Navier-Stokes interaction model. Bound. Value Probl. 2019, 2019, 115. [CrossRef]

18. Sharma, J.R.; Guha, R.K.; Sharma, R. An efficient fourth-order weighted-Newton method for systems of
nonlinear equations. Numer. Algorithms 2013, 62, 307–323. [CrossRef]

19. Artidiello, S.; Cordero, A.; Torregrosa, J.R.; Vassileva, M.P. Multidimensional generalization of iterative
methods for solving nonlinear problems by means of weight-function procedure. Appl. Math. Comput. 2015,
268, 1064–1071. [CrossRef]

20. Artidiello, S.; Cordero, A.; Torregrosa, J.R.; Vassileva, M.P. Design and multidimensional extension of iterative
methods for solving nonlinear problems. Appl. Math. Comput. 2017, 293, 194–203. [CrossRef]

21. Abad, M.; Cordero, A.; Torregrosa, J.R. A family of seventh-order schemes for solving nonlinear systems.
Bulletin Mathématique (Societe des Sciences Mathematiques de Roumanie) 2014, 57, 133–145.

http://dx.doi.org/10.5772/64106, 2016
http://dx.doi.org/10.1016/S0096-3003(03)00313-8
http://dx.doi.org/10.1016/j.cam.2009.04.015
http://dx.doi.org/10.1023/A:1004618223538
http://dx.doi.org/10.1016/j.amc.2009.01.039
http://dx.doi.org/10.1155/2014/705375
http://dx.doi.org/10.1504/IJCSM.2018.095502
http://dx.doi.org/10.1007/s40314-014-0193-0
http://dx.doi.org/10.3390/math7090776
http://dx.doi.org/10.1016/j.cam.2018.10.048
http://dx.doi.org/10.1016/j.amc.2018.12.042
http://dx.doi.org/10.3390/math7111069
http://dx.doi.org/10.1186/s13661-019-1220-2
http://dx.doi.org/10.1007/s11075-012-9585-7
http://dx.doi.org/10.1016/j.amc.2015.07.024
http://dx.doi.org/10.1016/j.amc.2016.08.034


Mathematics 2019, 7, 1221 14 of 14

22. Cordero, A.; García-Maimó, J.; Torregrosa, J.R.; Vassileva M.P. Solving nonlinear problems by Ostrowski-Chun
type parametric families. J. Math. Chem. 2015, 53, 430–449. [CrossRef]

23. Cordero, A.; Hueso, J.L.; Martínez, E.; Torregrosa, J. R. Increasing the convergence order of an iterative
method for nonlinear systems. Appl. Math. Lett. 2012, 25, 2369–2374. [CrossRef]

24. Cordero, A.; Hueso, J.L.; Martínez, E.; Torregrosa, J.R. A modified Newton-Jarrat composition.
Numer. Algorithms 2010, 55, 87–99. [CrossRef]

25. Xiao, X.Y.; Yin, H.W. Increasing the order of convergence for iterative methods to solve nonlinear systems.
Calcolo 2016, 53, 285–300. [CrossRef]

26. Behl, R.; Sarría, Í.; González, R.; Magreñán, Á. A. Highly efficient family of iterative methods for solving
nonlinear models. J. Comput. Appl. Math. 2019, 346, 110–132. [CrossRef]

27. Ortega, J.M.; Rheinbolt, W.C. Iterative Solutions of Nonlinears Equations in Several Variables; Academic Press:
New York, NY, USA, 1970.

28. Ostrowski, A.M. Solution of Equations and System of Equations; Prentice Hall: Englewood Cliffs, NJ, USA, 1964.
29. Cordero, A.; Torregrosa, J.R. On interpolation variants of Newton’s method for functions of several variables.

J. Comput. Appl. Math. 2010, 234, 34–43. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s10910-014-0432-z
http://dx.doi.org/10.1016/j.aml.2012.07.005
http://dx.doi.org/10.1007/s11075-009-9359-z
http://dx.doi.org/10.1007/s10092-015-0149-9
http://dx.doi.org/10.1016/j.cam.2018.06.042
http://dx.doi.org/10.1016/j.cam.2009.12.002
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Design and Convergence Analysis of the Proposed Class
	Computational Efficiency
	Numerical Results
	Conclusions
	References

