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Abstract: The aim of this paper is to introduce new high order iterative methods for multiple roots of
the nonlinear scalar equation; this is a demanding task in the area of computational mathematics and
numerical analysis. Specifically, we present a new Chebyshev–Halley-type iteration function having
at least sixth-order convergence and eighth-order convergence for a particular value in the case of
multiple roots. With regard to computational cost, each member of our scheme needs four functional
evaluations each step. Therefore, the maximum efficiency index of our scheme is 1.6818 for α = 2,
which corresponds to an optimal method in the sense of Kung and Traub’s conjecture. We obtain
the theoretical convergence order by using Taylor developments. Finally, we consider some real-life
situations for establishing some numerical experiments to corroborate the theoretical results.

Keywords: nonlinear equations; multiple roots; Chebyshev–Halley-type; optimal iterative methods;
efficiency index

1. Introduction

One important field in the area of computational methods and numerical analysis is to find
approximations to the solutions of nonlinear equations of the form:

f (x) = 0, (1)

where f : D ⊂ C→ C is the analytic function in the enclosed region D, enclosing the required solution.
It is almost impossible to obtain the exact solution in an analytic way for such problems. Therefore,
we concentrate on obtaining approximations of the solution up to any specific degree of accuracy by
means of an iterative procedure, of course doing it also with the maximum efficiency. In [1], Kung and
Traub conjectured that a method without memory that uses n + 1 functional evaluations per iteration
can have at most convergence order p = 2n. If this bound is reached, the method is said to be optimal.

For solving nonlinear Equation (1) by means of iterations, we have the well-known
cubically-convergent family of Chebyshev–Halley methods [2], which is given by:

xn+1 = xn −
[

1 +
1
2

L f (xn)

1− αL f (xn)

]
f (xn)

f ′(xn)
, α ∈ R, (2)
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where L f (xn) =
f ′′(xn) f (xn)
{ f ′(xn)}2 . A great variety of iterative methods can be reported in particular cases.

For example, the classical Chebyshev’s method [1,3], Halley’s method [1,3], and the super-Halley
method [1,3] can be obtained if α = 0, α = 1

2 , and α = 1, respectively. Despite the third-order
convergence, the scheme (2) is considered less practical from a computational point of view because of
the computation of the second-order derivative.

For this reason, several variants of Chebyshev–Halley’s methods free from the second-order
derivative have been presented in [4–7]. It has been shown that these methods are comparable to
the classical third-order methods of the Chebyshev–Halley-type in their performance and can also
compete with Newton’s method. One family of these methods is given as follows:

yn = xn −
f (xn)

f ′(xn)
,

xn+1 = xn −
(

1 +
f (yn)

f (xn)− α f (yn)

)
f (xn)

f ′(xn)
, α ∈ R

(3)

We can easily obtain some well-known third-order methods proposed by Potra and Pták [4]
and Sharma [5] (the Newton-secant method (NSM)) for α = 0 and α = 1. In addition, we have
Ostrowski’s method [8] having optimal fourth-order convergence, which is also a special case for
α = 2. This family is important and interesting not only because of not using a second- or higher order
derivative. However, this scheme also converges at least cubically and has better results in comparison
to the existing ones. Moreover, we have several higher order modifications of the Chebyshev–Halley
methods available in the literature, and some of them can be seen in [9–12].

In this study, we focus on the case of the multiple roots of nonlinear equations. We have some
fourth-order optimal and non-optimal modifications or improvements of Newton’s iteration function
for multiple roots in the research articles [13–17]. Furthermore, we can find some higher order methods
for this case, but some of them do not reach maximum efficiency [18–23]; so, this topic is of interest in
the current literature.

We propose a new Chebyshev–Halley-type iteration function for multiple roots, which reaches a
high order of convergence. Specifically, we get a family of iterative methods with a free parameter α,
with sixth-order convergence. Therefore, the efficiency index is 61/4, and for α = 2, this index is 81/4,
which is the maximum value that one can get with four functional evaluations, reaching optimality in
the sense of Kung and Traub’s conjecture. Additionally, an extensive analysis of the convergence order
is presented in the main theorem.

We recall that ξ ∈ C is a multiple root of the equation f (x) = 0, if it is verified that:

f (ξ) = 0, f ′(ξ) = 0, · · · , f (m−1)(ξ) = 0 and f (m)(ξ) 6= 0,

the positive integer (m ≥ 1) being the multiplicity of the root.
We deal with iterative methods in which the multiplicity must be known in advance, because

this value, m, is used in the iterative expression. However, we point out that these methods also work
when one uses an estimation of the multiplicity, as was proposed in the classical study carried out
in [24].

Finally, we consider some real-life situations that start from some given conditions to investigate
and some standard academic test problems for numerical experiments. Our iteration functions here
are found to be more comparable and effective than the existing methods for multiple roots in terms
of residual errors and errors among two consecutive iterations, and also, we obtain a more stable
computational order of convergence. That is, the proposed methods are competitive.
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2. Construction of the Higher Order Scheme

In this section, we present the new Chebyshev–Halley-type methods for multiple roots of
nonlinear equations, for the first time. In order to construct the new scheme, we consider the
following scheme:

yn = xn −m
f (xn)

f ′(xn)
,

zn = xn −m
(

1 +
η

1− αη

)
f (xn)

f ′(xn)
,

xn+1 = zn − H(η, τ)
f (xn)

f ′(xn)
,

(4)

where the function:

H(η, τ) =
ητ
(

β− (α− 2)2η2(η + 1) + τ3 + τ2)
(η + 1)(τ + 1)

with:

η =

(
f (yn)

f (xn)

) 1
m ,

τ =

(
f (zn)

f (yn)

) 1
m ,

β = m
(
(α(α + 2) + 9)η3 + η2(α(α + 3)− 6τ − 3) + η(α + 8τ + 1) + 2τ + 1

)
,

where α ∈ R is a free disposable variable. For m = 1, we can easily obtain the scheme (3) from the first
two steps of the scheme (4).

In Theorem 1, we illustrate that the constructed scheme attains at least sixth-order convergence
and for α = 2, it goes to eighth-order without using any extra functional evaluation. It is interesting to
observe that H(η, τ) plays a significant role in the construction of the presented scheme (for details,
please see Theorem 1).

Theorem 1. Let us consider x = ξ to be a multiple zero with multiplicity m ≥ 1 of an analytic function f : C→
C in the region containing the multiple zero ξ of f (x). Then, the present scheme (4) attains at least sixth-order
convergence for each α, but for a particular value of α = 2, it reaches the optimal eighth-order convergence.

Proof. We expand the functions f (xn) and f ′(xn) about x = ξ with the help of a Taylor’s series
expansion, which leads us to:

f (xn) =
f (m)(ξ)

m!
em

n

(
1 + c1en + c2e2

n + c3e3
n + c4e4

n + c5e5
n + c6e6

n + c7e7
n + c8e8

n + O(e9
n)

)
, (5)

and:

f ′(xn) =
f m(ξ)

m!
em−1

n

(
m + (m + 1)c1en + (m + 2)c2e2

n + (m + 3)c3e3
n + (m + 4)c4e4

n + (m + 5)c5e5
n

+ (m + 6)c6e6
n + (m + 7)c7e7

n + (m + 8)c8e8
n + O(e9

n)

)
,

(6)

respectively, where ck = m!
(m−1+k)!

f m−1+k(ξ)
f m(ξ)

, k = 2, 3, 4 . . . , 8 and en = xn − ξ is the error in the

nth iteration.
Inserting the above expressions (5) and (6) into the first substep of scheme (4) yields:

yn − ξ =
c1

m
e2

n +
5

∑
i=0

φiei+3
n + O(e9

n), (7)
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where φi = φi(m, c1, c2, . . . , c8) are given in terms of m, c2, c3, . . . , c8, for example φ0 = 1
m2

(
2mc2 − (m +

1)c2
1
)

and φ1 = 1
m3

[
3m2c3 + (m + 1)2c3

1 −m(3m + 4)c1c2

]
, etc.

Using the Taylor series expansion and the expression (7), we have:

f (yn) = f (m)(ξ)e2m
n

[( c1
m
) m

m!
+

(2mc2 − (m + 1)c2
1)
( c1

m
)m en

m!c1
+
( c1

m

)1+m 1
2m!c3

1

{
(3 + 3m + 3m2 + m3)c4

1

− 2m(2 + 3m + 2m2)c2
1c2 + 4(m− 1)m2c2

2 + 6m2c1c3
}

e2
n +

5

∑
i=0

φ̄iei+3
n + O(e9

n)

]
.

(8)

We obtain the following expression by using (5) and (8):

η =
c1en

m
+

2mc2 − (m + 2)c2
1

m2 e2
n + θ0e3

n + θ1e4
n + θ2e5

n + O(e6
n), (9)

where θ0 =
(2m2+7m+7)c3

1+6m2c3−2m(3m+7)c1c2
2m3 , θ1 = − 1

6m4

[
12m2(2m + 5)c1c3 + 12m2((m + 3)c2

2 −

2mc4)− 6m(4m2 + 16m + 17)c2
1c2 + (6m3 + 29m2 + 51m + 34)c4

1

]
and θ2 =

1
24m5

[
12m2(10m2 + 43m +

49)c2
1c3− 24m3((5m+ 17)c2c3− 5mc5)+ 12m2

(
(10m2 + 47m+ 53)c2

2− 2m(5m+ 13)c4

)
c1− 4m(30m3 +

163m2 + 306m + 209)c3
1c2 + (24m4 + 146m3 + 355m2 + 418m + 209)c5

1

]
.

With the help of Expressions (5)–(9), we obtain:

zn − ξ = −
(α− 2)c2

1
m2 e3

n +
4

∑
i=0

ψiei+4
n + O(e9

n), (10)

where ψi = ψi(α, m, c1, c2, . . . , c8) are given in terms of α, m, c2, c3, . . . , c8 with the first two coefficients

explicitly written as ψ0 = − 1
2m3

[(
2α2− 10α + (7− 4α)m + 11

)
c3

1 + 2m(4α− 7)c1c2

]
and ψ1 = 1

6m4

[(
−

6α3 + 42α2− 96α+(29− 18α)m2 + 6(3α2− 14α+ 14)m+ 67
)
c4

1 + 12m2(5− 3α)c1c3 + 12m2(3− 2α)c2
2 +

12m
(
− 3α2 + 14α + (5α− 8)m− 14

)
c2

1c2

]
.

By using the Taylor series expansion and (10), we have:

f (zn) = f (m)(ξ)e3m
n


(
− (α−2)c2

1
m2

)m

m!
+

5

∑
i=1

ψ̄iei
n + O(e6

n)

 . (11)

From Expressions (8) and (11), we further have:

τ =− (α− 2)c1

m
en +

((
− 2α2 + 8α + (2α− 3)m− 7

)
c2

1 + 2m(3− 2α)c2
)

2m2 e2
n + γ1e3

n + γ2e4
n + O(e5

n), (12)

where γ1 = 1
3m3

[(
− 3α3 + 18α2 − 30α + (4− 3α)m2 + 3(2α2 − 7α + 5)m + 11

)
c3

1 + 3m2(4− 3α)c3 +

3m(−4α2 + 14α + 3αm− 4m− 10)c1c2

]
and γ2 = 1

24m4

[
24m2(− 6α2 + 20α + (4α− 5)m− 14

)
c1c3 +

12m2((−8α2 + 24α + 4αm− 5m− 13)c2
2 + 2m(5− 4α)c4

)
− 12m

(
12α3 − 66α2 + 100α + 2(4α− 5)m2 +

(−20α2 + 64α− 41)m− 33
)
c2

1c2 +
(
− 24α4 + 192α3 − 492α2 + 392α + 6(4α− 5)m3 + (−72α2 + 232α−

151)m2 + 6(12α3 − 66α2 + 100α− 33)m + 19
)
c4

1

]
.

By using Expressions (9) and (12), we obtain:

H(η, τ) = −
(α− 2)c2

1
m2 e2

n + λ1e3
n + λ2e4

n + O(e5
n) (13)
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where λ1 = c1
2m3

[
c2

1
(
−2α2 + 8α + (4α− 7)m− 7

)
+ 2(7 − 4α)c2m

]
and λ2 = 1

6m3

[
c4

1
(
− 6α3 +

36α2 − 66α + (29 − 18α)m2 + 3(6α2 − 22α + 17)m + 34
)
+ 12(5 − 3α)c3c1m2 + 12(3 − 2α)c2

2m2 +

6c2c2
1m
(
−6α2 + 22α + 2(5α− 8)m− 17

) ]
.

Now, we use the expressions (5)–(13) in the last substep of Scheme (4), and we get:

en+1 =
3

∑
i=1

Liei+5
n + O(e9

n), (14)

where L1 =
(α−2)2c3

1
m6

[
c2

1
(
α2 − α + m2 −

(
α2 + 4α− 17

)
m− 3

)
− 2c2(m − 1)m

]
, L2 = (α − 2)c2

1
[
−

12c2c2
1m
{

10α3 − 24α2 − 39α + (16α− 27)m2 − (10α3 + 27α2 − 262α + 301)m + 91
}
+ 12c3c1m2(−4α +

(4α − 7)m + 8) + 12c2
2m2(−12α + 4(3α − 5)m + 21) + c4

1
{
− 24α4 + 168α3 − 156α2 − 662α + (52α −

88)m3 − (60α3 + 162α2 − 1616α + 1885)m2 + 2(18α4 − 12α3 − 711α2 + 2539α− 2089)m + 979
}]

and

L3 = c1
24m8

[
− 24c2c3c1m3((42α2 − 146α + 125)m − 6(7α2 − 26α + 24)

)
− 24c3

2m3( − 24α2 + 84α +

(24α2 − 80α + 66)m− 73
)
+ 12c3c3

1m2{2(15α4 − 63α3 − 5α2 + 290α− 296) + (54α2 − 190α + 165)m2 +

(−30α4 − 28α3 + 968α2 − 2432α + 1697)m
}
+ 12c2

1m2
{

c2
2

(
80α4 − 304α3 − 226α2 + 1920α + 2(81α2 −

277α + 234)m2 + (−80α4 − 112α3 + 2712α2 − 6410α + 4209)m − 1787
)
− 4(α − 2)c4m(−3α + (3α −

5)m + 6)
}
− 2c2c4

1m
{
− 3(96α5 − 804α4 + 1504α3 + 2676α2 − 10612α + 8283) + 4(177α2 − 611α +

521)m3 − 3(220α4 + 280α3 − 7556α2 + 18400α− 12463)m2 + 4(108α5 − 234α4 − 4302α3 + 22902α2 −
38593α + 20488)m

}
+ c6

1

{
48α6 − 480α5 + 996α4 + 5472α3 − 29810α2 + 50792α + (276α2 − 956α +

818)m4 + (−360α4 − 448α3 + 12434α2 − 30518α + 20837)m3 + (432α5 − 1236α4 − 16044α3 + 92306α2 −
161292α + 88497)m2 + (−168α6 + 888α5 + 5352α4 − 55580α3 + 173290α2 − 224554α + 97939)m −
29771

}]
.

It is noteworthy that we reached at least sixth-order convergence for all α. In addition, we can
easily obtain L1 = L2 = 0 by using α = 2.

Now, by adopting α = 2 in Expression (14), we obtain:

en+1 =
A0
(
12c3c1m3 − 12c2c2

1m(3m2 + 30m− 1) + 12c2
2m2(2m− 1) + c4

1(10m3 + 183m2 + 650m− 3)
)

24m8 e8
n + O(e9

n), (15)

where A0 = (c3
1(m + 1) − 2c1c2m). The above Expression (15) demonstrates that our proposed

Scheme (4) reaches eighth-order convergence for α = 2 by using only four functional evaluations
per full iteration. Hence, it is an optimal scheme for a particular value of α = 2 according to the
Kung–Traub conjecture, completing the proof.

3. Numerical Experiments

In this section, we illustrate the efficiency and convergence behavior of our iteration functions
for particular values α = 0, α = 1, α = 1.9, and α = 2 in Expression (4), called OM1, OM2, OM3,
and OM4, respectively. In this regards, we choose five real problems having multiple and simple zeros.
The details are outlined in the examples (1)–(3).

For better comparison of our iterative methods, we consider several existing methods of order six
and the optimal order eight. Firstly, we compare our methods with the two-point family of sixth-order
methods proposed by Geum et al. in [18], and out of them, we pick Case 4c, which is mentioned
as follows:

yn = xn −m
f (xn)

f ′(xn)
, m > 1,

xn+1 = yn −
[

m + a1un

1 + b1un + b2un2 ×
1

1 + c1sn

]
f (yn)

f ′(yn)
,

(16)

where:
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a1 =
2m
(
4m4 − 16m3 + 31m2 − 30m + 13

)
(m− 1) (4m2 − 8m + 7)

, b1 =
4
(
2m2 − 4m + 3

)
(m− 1) (4m2 − 8m + 7)

,

b2 = −4m2 − 8m + 3
4m2 − 8m + 7

, c1 = 2(m− 1),

un =

(
f (yn)

f (xn)

) 1
m , sn =

(
f ′(yn)

f ′(xn)

) 1
m− 1 ,

called GM1.
In addition, we also compare them with one more non-optimal family of sixth-order iteration

functions given by the same authors of [19], and out of them, we choose Case 5YD, which is given by:

yn = xn −m
f (xn)

f ′(xn)
, m ≥ 1,

wn = xn −m
[
(un − 2) (2un − 1)
(un − 1) (5un − 2)

]
f (xn)

f ′(xn)
,

xn+1 = xn −m
[

(un − 2) (2un − 1)
(5un − 2) (un + vn − 1)

]
f (xn)

f ′(xn)
,

(17)

where un =
(

f (yn)
f (xn)

) 1
m and vn =

(
f (wn)
f (xn)

) 1
m , and this method is denoted as GM2.

Moreover, we compare our methods with the optimal eighth-order iterative methods proposed
by Zafar et al. [21]. We choose the following two schemes out of them:

yn = xn −m
f (xn)

f ′(xn)
,

wn = yn −mun
(
6u3

n − u2
n + 2un + 1

) f (xn)

f ′(xn)
,

xn+1 = wn −munvn(1 + 2un)(1 + vn)

(
2wn + 1

A2P0

)
f (xn)

f ′(xn)

(18)

and:

yn = xn −m
f (xn)

f ′(xn)
,

wn = yn −mun

(
1− 5u2

n + 8u3
n

1− 2un

)
f (xn)

f ′(xn)
,

xn+1 = wn −munvn(1 + 2un)(1 + vn)

(
3wn + 1

A2P0(1 + wn)

)
f (xn)

f ′(xn)
,

(19)

where un =
(

f (yn)
f (xn)

) 1
m , vn =

(
f (wn)
f (yn)

) 1
m , wn =

(
f (wn)
f (xn)

) 1
m , and these iterative methods are denoted in

our tables as ZM1 and ZM2, respectively.
Finally, we demonstrate their comparison with another optimal eighth-order iteration function

given by Behl et al. [22]. However, we consider the following the best schemes (which was claimed
by them):

yn = xn −m
f (xn)

f ′(xn)
,

zn = yn −m
f (xn)

f ′(xn)
hn(1 + 2hn),

xn+1 = zn + m
f (xn)

f ′(xn)

tnhn

1− tn

[
− 1− 2hn − h2

n + 4h3
n − 2kn

] (20)



Mathematics 2019, 7, 339 7 of 12

and:

yn = xn −m
f (xn)

f ′(xn)
,

zn = yn −m
f (xn)

f ′(xn)
hn(1 + 2hn),

xn+1 = zn −m
f (xn)

f ′(xn)

tnhn

1− tn

[1 + 9h2
n + 2kn + hn(6 + 8kn)

1 + 4hn

]
,

(21)

with hn =
(

f (yn)
f (xn)

) 1
m , kn =

(
f (zn)
f (xn)

) 1
m tn =

(
f (zn)
f (yn)

) 1
m , which are denoted BM1 and BM2, respectively.

In order to compare these schemes, we perform a numerical experience, and in Tables 1 and 2,
we display the difference between two consecutive iterations |xn+1 − xn|, the residual error in the
corresponding function | f (xn)|, and the computational order of convergence (ρ) (we used the formula
given by Cordero and Torregrosa [25]:

ρ ≈ ln(| xk+1 − xk | / | xk − xk−1 |)
ln(| xk − xk−1 | / | xk−1 − xk−2 |)

(22)

We make our calculations with several significant digits (a minimum of 3000 significant digits) to
minimize the round-off error. Moreover, the computational order of convergence is provided up to
five significant digits. Finally, we display the initial guess and approximated zeros up to 25 significant
digits in the corresponding example where an exact solution is not available.

All computations have been performed using the programming package Mathematica 11 with
multiple precision arithmetic. Further, the meaning of a(±b) is shorthand for a × 10(±b) in the
numerical results.

Example 1. Population growth problem:
The law of population growth is defined as follows:

dN(t)
dt

= γN(t) + η,

where N(t) = the population at time t, η = the fixed/constant immigration rate, and γ = the fixed/constant birth
rate of the population. We can easily obtain the following solution of the above differential equation:

N(t) = N0eγt +
η

γ
(eγt−1),

where N0 is the initial population.
For a particular case study, the problem is given as follows: Suppose a certain population contains 1,000,000

individuals initially, that 300,000 individuals immigrate into the community in the first year, and that 1,365,000
individuals are present at the end of one year. Find the birth rate (γ) of this population.

To determine the birth rate, we must solve the equation:

f1(x) = 1365− 1000ex − 300
x

(ex − 1). (23)

wherein x = γ and our desired zero of the above function f1 is 0.05504622451335177827483421. The reason
for considering the simple zero problem is to confirm that our methods also work for simple zeros. We choose the
starting point as x0 = 0.5.
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Example 2. The van der Waals equation of state:(
P +

a1n2

V2

)
(V − na2) = nRT,

explains the behavior of a real gas by introducing in the ideal gas equations two parameters, a1 and a2, specific
for each gas. The determination of the volume V of the gas in terms of the remaining parameters requires the
solution of a nonlinear equation in V,

PV3 − (na2P + nRT)V2 + a1n2V − a1a2n2 = 0.

Given the constants a1 and a2 of a particular gas, one can find values for n, P, and T, such that this
equation has three simple roots. By using the particular values, we obtain the following nonlinear function:

f2(x) = x3 − 5.22x2 + 9.0825x− 5.2675. (24)

which has three zeros; out of them, one is the multiple zero α = 1.75 of multiplicity two, and the other is the
simple zero α = 1.72. Our desired root is α = 1.75, and we chose x0 = 1.8 as the initial guess.

Example 3. Eigenvalue problem:
For this, we choose the following 8× 8 matrix:

A =



−12 −12 36 −12 0 0 12 8
148 129 −397 147 −12 6 −109 −74
72 62 −186 66 −8 4 −54 −36
−32 −24 88 −36 0 0 24 16
20 13 −45 19 8 6 −13 −10

120 98 −330 134 −8 24 −90 −60
−132 −109 333 −115 12 −6 105 66

0 0 0 0 0 0 0 4


.

The corresponding characteristic polynomial of this matrix is as follows:

f3(x) = (x− 4)3(x + 4)(x− 8)(x− 20)(x− 12)(x + 12).

The above function has one multiple zero at α = 4 of multiplicity three. In addition, we consider x0 = 2.7
as the starting point.

Example 4. Let us consider the following polynomial equation:

f4(z) =
(
(x− 1)3 − 1

)50
. (25)

The desired zero of the above function f4 is α = 2 with multiplicity of order 50, and we choose initial guess
x0 = 2.1 for this problem.
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Table 1. Comparison on the basis of the difference between two consecutive iterations |xn+1 − xn| for the functions f1– f4.

f n OM1 OM2 OM3 OM4 GM1 GM2 ZM1 ZM2 BM1 BM2

f1

1 2.3 (−3) 8.4 (−4) 9.3 (−5) 3.5 (−5) * 3.6 (−5) 1.6 (−4) 2.3 (−4) 7.6 (−5) 3.7 (−5)
2 2.0 (−16) 9.0 (−20) 8.8 (−28) 2.0 (−37) * 1.4 (−29) 4.2 (−31) 8.9 (−30) 2.6 (−34) 5.0 (−37)
3 9.7 (−95) 1.3 (−115) 6.4 (−166) 2.5 (−295) * 5.4 (−173) 1.0 (−243) 5.5 (−233) 5.4 (−270) 5.7 (−292)
ρ 5.9997 6.0000 6.0001 8.0000 * 6.0000 8.0000 8.0000 8.0000 8.0000

f2

1 1.3 (−3) 8.2 (−4) 4.0 (−3) 3.5 (−4) 9.5 (−4) 3.9 (−4) 3.9 (−4) 4.1 (−3) 2.7 (−4) 2.6 (−4)
2 2.5 (−10) 4.2 (−12) 6.4 (−16) 8.7 (−18) 2.7 (−11) 1.0 (−14) 5.2 (−17) 9.8 (−17) 1.1 (−18) 1.4 (−19)
3 2.0 (−50) 8.7 (−62) 6.5 (−87) 1.5 (−126) 2.0 (−56) 3.9 (−78) 5.9 (−120) 1.2 (−117) 6.3 (−134) 1.0 (−141)
ρ 5.9757 5.9928 6.0214 7.9963 5.9836 5.9975 7.9945 7.9941 7.9971 8.0026

f3

1 9.1 (−5) 3.6 (−5) 8.0 (−6) 6.0 (−6) 8.5 (−5) 4.8 (−5) 4.9 (−6) 5.2 (−6) 2.0 (−6) 1.8 (−6)
2 1.8 (−28) 1.4 (−31) 9.8 (−38) 2.0 (−47) 1.0 (−28) 5.0 (−31) 6.0 (−48) 1.0 (−47) 1.5 (−51) 2.8 (−52)
3 1.2 (−170) 4.4 (−190) 3.3 (−229) 2.5 (−379) 3.1 (−172) 5.8 (−187) 2.7 (−383) 2.3 (−381) 1.4 (−412) 1.3 (−418)
ρ 6.0000 6.0000 6.0000 8.0000 6.0000 6.0000 8.0000 8.0000 8.0000 8.0000

f4

1 2.4 (−5) 7.1 (−6) 4.2 (−7) 1.4 (−7) 1.8 (−5) 2.0 (−7) 4.8 (−7) 6.5 (−7) 1.9 (−7) 6.3 (−8)
2 1.5 (−26) 1.7 (−30) 3.9 (−40) 6.7 (−54) 1.1 (−26) 1.8 (−41) 5.7 (−49) 8.4 (−48) 8.0 (−53) 4.2 (−57)
3 7.5 (−154) 3.2 (−178) 2.6 (−438) 1.7 (−424) 6.6 (−154) 1.0 (−245) 2.2 (−384) 6.6 (−375) 9.6 (−416) 5.9 (−169)
ρ 6.0000 6.0000 6.0000 8.0000 6.0000 6.0000 8.0000 8.0000 8.0000 2.2745

* means that the corresponding method does not work.
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Table 2. Comparison on the basis of residual errors | f (xn)| for the functions f1– f4.

f n OM1 OM2 OM3 OM4 GM1 GM2 ZM1 ZM2 BM1 BM2

f1

1 2.7 1.0 1.1 (−1) 4.2 (−2) * 4.4 (−2) 1.9 (−1) 2.7 (−1) 9.2 (−2) 4.4 (−2)
2 2.4 (−13) 1.1 (−16) 1.1 (−24) 2.4 (−34) * 1.7 (−26) 5.1 (−28) 1.1 (−26) 3.2 (−31) 6.0 (−34)
3 1.2 (−91) 1.6 (−112) 7.8 (−163) 3.0 (−292) * 5.4 (−173) 1.2 (−240) 6.7 (−230) 6.5 (−267) 7.0 (−289)

f2

1 5.0 (−8) 2.1 (−8) 4.8 (−9) 3.6 (−9) 2.8 (−8) 4.6 (−9) 4.6 (−9) 5.1 (−9) 2.3 (−9) 2.0 (−9)
2 1.8 (−21) 5.3 (−25) 1.2 (−32) 2.3 (−36) 2.2 (−23) 3.2 (−30) 8.0 (−35) 2.9 (−34) 3.4 (−38) 5.9 (−40)
3 1.2 (−101) 2.2 (−124) 1.3 (−174) 6.9 (−254) 1.2 (−113) 4.6 (−157) 1.1 (−240) 4.3 (−236) 1.2 (−268) 3.1 (−284)

f3

1 4.9 (−8) 3.1 (−9) 3.1 (−11) 1.4 (−11) 4.1 (−8) 7.4 (−9) 7.8 (−12) 9.1 (−12) 5.2 (−13) 3.6 (−13)
2 3.9 (−79) 1.8 (−88) 6.1 (−107) 4.9 (−136) 7.1 (−80) 8.0 (−87) 1.4 (−137) 6.9 (−137) 2.1 (−148) 1.5 (−150)
3 1.0 (−505) 5.6 (−564) 2.4 (−681) 1.1 (−1131) 1.9 (−510) 1.2 (−554) 1.3 (−1143) 7.5 (−1138) 1.9 (−1231) 1.3 (−1249)

f4

1 1.2 (−207) 2.7 (−234) 1.1 (−295) 3.3 (−319) 3.5 (−214) 1.0 (−311) 6.6 (−293) 2.3 (−286) 1.8 (−313) 6.2 (−337)
2 1.9 (−1268) 2.6 (−1465) 3.8 (−1947) 1.6 (−2635) 1.9 (−1274) 9.8 (−2014) 3.4 (−2389) 9.4 (−2331) 9.8 (−2582) 1.1 (−2795)
3 4.2 (−7633) 2.3 (−8851) 7.5 (−11856) 6.1 (−21166) 6.0 (−7636) 7.3 (−12226) 1.6 (−19159) 7.1 (−18686) 8.8 (−20728) 3.4 (−8388)
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4. Conclusions

We presented an eighth-order modification of the Chebyshev–Halley-type iteration scheme having
optimal convergence to obtain the multiple solutions of the scalar equation. The proposed scheme is
optimal in the sense of the classical Kung–Traub conjecture. Thus, the efficiency index of the present
methods is E = 4

√
8 ≈ 1.682, which is better than the classical Newton’s method E = 2

√
2 ≈ 1.414.

Finally, the numerical experience corroborates the theoretical results about the convergence order,
and moreover, it can be concluded that our proposed methods are highly efficient and competitive.
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