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Abstract. Large-scale fabrication of targets for laser-driven acceleration of ion beams is a 
prerequisite to establish suitable applications, and to keep up with the challenge of increasing 
repetition rate of currently available high-power lasers. Here we present manufacturing and test 
results of large arrays of solid targets for TNSA laser-driven ion acceleration. By applying 
micro-electro-mechanical-system (MEMS) based methods allowing for parallel processing of 
thousands of targets on a single Si wafer, sub-micrometric, thin-layer metallic membranes were 
fabricated by combining photolithography, physical and chemical vapor deposition, selective 
etching, and Si micromachining. These structures were characterized by using optical and 
atomic force microscopy. Their performance for the production of laser-driven proton beams 
was tested on a purpose-made table-top Ti:Sapphire laser system running at 3 TW peak power 
with a contrast over ASE of 108. We have performed several test series achieving maximum 
proton energy values around 2 MeV. 

1.  Introduction 

In the next years a series of high power laser installations will be available worldwide with the ability 
of operating at repetition rates (1÷10 Hz) never before experienced. This working regime will require 
thousands of consumable targets per day to sustain experimental campaigns, so that it is extremely 
relevant to develop methods allowing for mass production and characterization of targets with high 
versatility for the different experimental needs [1]. In addition to production, target positioning, 
alignment, and refreshment are of the same importance for the proper target design of a given 
application. Targets for high-power laser experiments are of different densities ranging from gaseous 
to solid state, including foams and cryogenic materials. Here, we restrict our attention to solid state 
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targets for laser-driven proton acceleration through Target Normal Sheath Acceleration (TNSA) [2] 
which is the prevailing mechanism in the experiments conducted so far. Targets used for TNSA laser 
irradiation have been typically thin foils of metallic or dielectric materials with thicknesses up to tens 
of microns [3]. More recently, the improvement in laser contrast over ASE, and the advancement in 
material science technologies, allowed for exploring sub-micrometric thicknesses, with promising 
results with respect to the maximum proton energies.   In this work, we made use of MEMS based 
manufacturing to fabricate thin membranes of conductive materials integrated in a Si wafer. These 
were used as targets for TNSA laser irradiation with a purpose-made 3 TW laser system. MEMS 
processing such as pattern transfer, material deposition and selective etching make it possible to 
achieve simple (2D) or complex (3D) target configurations, allowing for parallel manufacturing of 
thousands of targets with high reproducibility of specimen belonging to the same wafer, and between 
wafers of the same batch. For these reasons, and due to their availability on industrial scale developed 
by the semiconductor industry, they appear especially adequate for the technological developments 
expected within the field of high-power lasers.  

2.  Target fabrication and characterization. 

A schematic of the process flow applied to obtain a single membrane is shown in Fig.1 joint with an 
example of the pattern transferred onto a standard p-type <100> silicon wafer, double side polished, 
with a thickness of 525 µm. The principal steps are: photolithography on wafer front side, followed by 
back side metallization, and metal etching. For some samples, we also added a back side 
photolithography used to reduce the metallic pattern corresponding to the window opened on the front 
wafer side.  

 

Figure 1. Schematic of the process flow for the fabrication of an individual membrane. In the centre 
an example of a 4 inch wafer with embedded membranes.  

As first step Si wafers (Fig.1-a) were wet oxidized to grow either a 100 nm (at 950°C) or 400 nm thick 
(at 1100°C) SiO2 layer, Fig. 1-b. This was followed by the deposition of a 180 nm thick low pressure 
chemical vapour deposition (LPCVD) layer of Si3N4 (Fig.1-c) on front side of the wafer corresponding 
to the laser entry side of the target. In the subsequent step, a 1.2 µm thick layer of the (positive) 
photoresist HIPR 6512 (Fig1-d) was spun on the same wafer side and exposed to UV light (using a 
Canon PLA600 mask aligner) through a photomask to define the area and the spatial distribution of 
the target membranes (Fig.1-e-f). Thereafter, etching of exposed Si3N4/SiO2 layers was achieved by a 
dry process using a mixture of Ar/CHF3/CHF4 (in the Applied Material Precision 5000 Mark II P5 
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system). The remaining photoresist was stripped in a TePla 300-E plasma system (Technics Plasma, 
USA). Then, we processed the rear wafer side. First, the desired thickness of the membrane material 
(Fig.1-g), either Al or a tri-layer composed by Ti-Ni-Au, was sputtered using the Kenosistec KSH800 
or the Material Research Corporation 903 equipment, employed respectively for aluminium and gold 
based metallization. Nickel and titanium, or a chromium layer, is standardly used to improve the 
intrinsic poor attachment of gold over SiO2. Following back-side metallization, a 2 µm thick layer of 
photoresist AZ 6512 was spin-coated and exposed to UV light (not represented) using a Canon 
PLA600 mask aligner through a photomask allowing for patterning of the rear side of targets. The 
pattern is finally shaped by either wet etching of Al or of Ti-Ni-Au. The last step of the whole process 
is bulk Si micromachining (Fig.1-h) on the front wafer side necessary to open windows for the laser-
interaction with the membranes. This is achieved by anisotropic etching in 40% KOH at 80°C during 
about 10 hours. The process relies on the fact that KOH has different etching rates on silicon crystal 
planes: it is fastest for (100) and (110) planes and lowest for (111) resulting in the characteristic “V” 
shaped 3D structures like truncated pyramids. Si micromachining is spontaneously stopped by the 
underlying buried oxide. To protect the metalized rear wafer side during Si micromachining a uniform 
layer of wax was deposited and baked during 1 h at 100°C. The wax dissolves easily in toluene and 
can be removed just before target delivery. Finally, for some samples we etched the underlying SiO2 
(Fig.1-i) by dip HF. Thin film thickness measurements were realized by using the Nanospec AFT 200 
by Nanometrics for at least 5 different locations of each processed wafer; the final result is the average 
of these points. Optical microscopy characterization of membranes was accomplished by using the 
optical microscope by LEICA model DMLM.  Analysis of surface roughness has been done with the 
atomic force microscopy by Veeco IV dimension, and scanning for each sample an area of 1 µm×1 
µm. Aluminium membranes were fabricated having three thicknesses: 0.25 µm, 0.65 µm and 1 µm 
whereas in the case of gold based ones, we considered only two, 70 nm and 100 nm, which were both 
adhered over 20 nm titanium and 30 nm of nickel. For some cases, membranes were used tethered on 
the SiO2, or the oxide layer was removed by dip HF. Each wafer located a total of 640 thin-layer 
membranes, out of which 384 have a surface area of 1 mm2, and the remaining, of 0.5 mm2. It is clear 
that the smaller the surface area, the greater will be the number of available targets for each wafer and 
consequently the lower will be the cost of each consumable membrane. Also, the robustness of 
submicrometric material layers is higher for reduced surfaces. However, this should be considered 
alongside the requirements for laser alignment and focusing, a part that for damage propagation at 
higher laser intensity than considered here. For this reason, we chose to fabricate two different area 
membranes and to analyse the implications on laser focusing which will be discussed in the following 
section. In general, it is important to remark that this is not ideal from the fabrication point of view 
because the etching time differs according to the structure size. For example, in our case we need to 
apply a supplementary etching time in order to complete Si micromachining of 0.25 mm2 membranes, 
while keeping the others protected from the extra etching time which, at already opened windows, 
would result in breakage of metallic membranes. For each wafer, the fabrication yield was calculated 
as the difference between the numbers of intact membranes out of all target cells (Fig.2 (a) and (b)), 
resulting in an average of about 0.6 for all the productions (30 wafers). Normally, target fabrication is 
achieved in a place different from the laser installation and safe target transport should be also 
accounted as a further step of target production. We observed that keeping the wax layer on the 
metallized side and storing the wafers between the protective plastics which are thermally adhered for 
wafer dicing allow for a comfortable and safe target transport. Release of individual target cells could 
be finally realized at the laser installation.  In this way, membranes fabricated according to the strategy 
presented are delivered in a format which is easy to manipulate inside the interaction chamber and 
adaptable to different experimental setups and needs, making it possible moreover to try several 
experimental conditions (thickness, material composition, local surface treatment) at once. 
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Figure 2. Back (a) and front (b) side of an individual target cell loading 16 membranes. Compressive 
stress shown by membranes following fabrication (c) and (d), and its release to tensile stress after 
annealing (e) and (f). 

It is common to find that after fabrication, membranes exhibit compressive stress which is 
characterized by the presence of worm-like folding of the surface such as that in Fig. 2(c)-(d).The 
emergence of stress in membranes has been subject of much research in the field of CMOS 
technologies for the role they have in the correct functioning of many semiconductor based devices, 
and several methods for stress compensation have been proposed [5], [6]. In our case, surface folding 
could lead to difficulties for laser focusing and alignment, as well as for shot-to-shot reproducibility as 
we will discuss in the next section. For this reason, it is preferable to have membranes in a state of 
tensile stress causing material elongation so that their surfaces appear flat such that of Fig. 2(e)-(f). To 
achieve release of compressive stress into tensile one, we applied a short annealing at 400°C during 90 
sec. which was found effective both for aluminium and gold based membranes. This could be done at 
the end of the fabrication right before using targets. We could observe that for free-standing 
membranes, i.e., that obtained after SiO2 etching, compressive stress spontaneously releases after dip 
HF process. Thereafter, we characterized the membranes’ surface roughness by using AFM which 
results are shown in Fig. 3. The picture shows the nanostructured character of the deposited film also 
referred as “cauliflower morphology” due to the fact that larger grains are formed by the aggregation 
of smaller ones. Grains size changes with film thickness.  

Surface roughness is important for focus determination through the back reflection of visible laser 
light (speckle). In fact, in order to apply this method, as explained in [7], it is necessary that surface 
roughness be in the range of the laser wavelength. For all analysed samples we are far from reaching 
this value. For the thickest ones, which are expected to be also the roughest ones, we could only 
measure an average roughness of about 100 nm whereas for all remaining cases it stays in the range of 
a few nanometers. For this reason, in order to determine the focus position through the speckle we 
glued on top of each target cell a slice of aluminium foil allowing for clear visualization of the 
interference pattern. However, in order to account for the effects of inaccurate focus determination we 
mapped proton energy within a distance of ±100 µm from the focus estimated initially.  
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Figure 3.  Roughness characterization of an aluminium membrane 1 µm thick through AFM.  
 

3.  Proton acceleration experiments 
All experiments were conducted at a 3 TW/55 fs table-top laser system having 165 mJ pulse energy 
behind the compressor. It can operate both in single shot mode and up to 100 Hz repetition rate. The 
system is based on chirped pulsed amplification (CPA) and it has been developed specifically for 
laser-proton acceleration by one of the partners [4]. Following compression, laser pulses are injected 
into the interaction chamber kept at a pressure of about 10-2 mbar which is sufficient to prevent laser 
filamentation and deceleration of protons before reaching particle detectors. Laser pulses are then 
focused on the target by a f/3 gold coated off-axis parabolic mirror (OAP) at an incidence angle of 30°. 
A 632 nm He:Ne laser is coupled into the same optical path of the principal Ti:Sa beam and used to 
control the target positioning in transverse direction. Characterization of accelerated particles was 
achieved by means of CR-39 plates placed at 100 cm distance behind the target, and a time-of-flight 
(TOF) detector based on a fast plastic scintillator located at a distance of 237 cm from the target. Both 
detectors were calibrated with standard particle beams at the National Accelerator Centre (CNA) at 
Seville.  Proton acceleration experiments were performed in single shot modality. Individual target 
alignment and focusing has been done for the first membrane of each target cell used. All data were 
taken with 1 mm2 membranes. For a series of shots within the same target cell we assumed that the 
focus does not vary from one membrane to the subsequent ones and thus maintained a reference 
position. In order to study the dependency of the proton energies on the longitudinal position we 
moved away from the established focus in steps of ±50 µm. Thereafter, we obtained the maximum 
proton energy for aluminum and gold bases membranes of different thicknesses for both free-standing 
and SiO2 tethered membranes. For each thickness, the maximum proton energy is calculated averaging 
over the highest values of energy measured in the focus position. The values obtained are coherent 
with previous results showing that with high contrast (>108) thinner targets are better energy 
converters [8]–[13]. An example of obtained results is shown in Fig. 4(a) for gold based membranes. 
This is the typical energy distribution around the focus position obtained for each analyzed thickness, 
independently from the material used. Although for many specimens a parabolic shape around the zero 
position has been observed, the corresponding energy variations within ±50 µm account for only 10% 
of the value measured in the exact focus. This is interesting in view of the development of applications 
requiring high rate repetition operability. In fact, whereas at low frequency it is possible to perform 
even single target alignment, at high frequency this possibility is lost so that it is important that off-
focus energy values suffer only slight variations. For both aluminum and gold based membranes, we 
could observe that data from free-standing and SiO2 tethered membranes differ by 5-10% (Fig. 4(b)). 
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Figure 4. (a) Maximum proton energy distribution around focus position. (b) Comparison between 
maximum proton energy obtained with free-standing and SiO2 tethered membranes.  

The higher energy with pure Au may be intuitive because the membrane with oxide layer is 
significantly thicker. In addition, in our set-up, the laser pulse interacts first with the metallic, and then 
with the semiconductive layer which could prevent the effective propagation of the electric sheath 
inside the target. However, these findings deserve a deeper analysis with less parameter variability and 
a better contrast over ASE. The only observation we can affirm at present is that under current 
working conditions, the presence of the SiO2 behind the metallic membrane is not especially relevant, 
while avoiding the dip HF etching of this layer can in general improve the yield of fabrication.  

 
Figure 5. Comparison between shock propagation in (a) double side photolithography membranes and 
(b) all-metalized rear side membranes. (c) Astigmatism in tracks left by laser shots off-focus. 

Another interesting remark arose from the post-shot target analysis between membranes belonging to 
target cells with photolithography also on the back wafer side (see Fig. 5 (a)) and bottom (Fig. 5 
(b)).Although we could observe, as represented in Fig. 5 (b), that membranes after shots look more 
damaged when they belong to a double-side photolithography target cell. This phenomenon should be 
investigated at higher laser intensity, because it is well-known that target damage and “fratricide” are 
not an issue below 1 J. It is also interesting to observe that being completely destroyed after 
interaction, these membranes do not show tracks of the off-focus alignment chosen in some case to 
study proton energy dependence, which are on the other side appreciable on membranes of Fig. 5 (a). 
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The progressive off-focus introduced alters the shape of the hole left by laser which becomes more 
elliptical and tends to have a bigger area than in the case of membranes shot in the focus position. In 
general, laser damage propagates over an area which is two orders of magnitude bigger (Fig. 5 (c)) 
than the laser-spot area estimated to be ≈ 5.0×11.5 µm2 (FWHM). The size of damage propagation is 
significant with respect to mask design because it limits from below the opening area available for 
laser interaction. This has also consequences for the array density one can consider which becomes 
relevant for high repetition rate operability.  
Finally, we compared data obtained from MEMS based membranes with data recorded from plain 
foils of the same thickness and material (aluminum) from benchmark experiments conducted with the 
same laser system [4]. According to our results, the use of MEMS membranes improves the proton 
acceleration performance of a 30% (in case of 0.65 µm thick targets) and of a 9.8% (in case of 1 µm 
thick targets) [14]. Here too, further studies with higher statistics will be necessary to corroborate 
these findings. 
 
 
 
4. Conclusions 
 
We have presented the fabrication of submicrometric, conductive, thin-layer membranes embedded in 
a Si wafer according to a MEMS based manufacturing approach. This combines standard 
photolithography, material layer deposition, selective etching and bulk Si micromachining. 
Photolithography is used to rapidly pattern the Si surface in such a way to define windows on the front 
wafer side having the same area of metallic membranes deposited on the rear wafer side. Finally, Si 
micromachining allows for opening windows on the front side thus making membranes, either free-
standing or tethered on a nanometric SiO2 layer, accessible for laser interaction. Gold, and aluminum, 
based membranes were fabricated with variable thicknesses below 1 µm and were used as targets for 
laser-driven proton acceleration through the TNSA mechanism showing better efficiency in energy 
conversion compared to standard foil targets used for benchmark experiments at the same laser 
installation.  
MEMS based manufacturing offers many advantages for target fabrication as compared to different 
methods which mainly rely on manual and individual target arrangements. Among these, the 
reproducibility of the fabrication thanks to parallel processing, the controllability of membrane 
thickness and composition over a wide range of options, and the possibility of target manufacturing 
over large area substrates by using conventional microfabrication facilities. Indeed, the degree of 
target complexity, for example, through the introduction of 3D surface modification could be 
straightforwardly considered. All these elements would foster the cheap fabrication of simple and even 
complex targets useful for high-power, high repetition rate lasers experiments and would contribute to 
the development of applications based on ultra-intense laser-plasma interactions.    
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