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Abstract page 
The medical imaging applications are interesting due to the lack of intervention 

needed, as it is generally a non-invasive method. They let us have an idea of the interior 

of the bodies without worrying about issues such as infections, recovering time, etc. 

Lately with the increase in power of computers, more and more automatic or 

semiautomatic segmentation methods have become popular as they simplify the task 

of the radiologist and help doctors take decisions with value added images. 

In this thesis we selected the kidneys as the organ to work with. We selected the K-

means method, an automatic algorithm based on clusterization of the samples. There 

were studied 3 volumes, the datasets, from 2 different patients. While the result of the 

segmentations are not optimal, we can observe the influence in the clusterization of the 

amount of clusters arbitrary selected and the number of iterations (replicates) used. All 

the analytic work was carried on Matlab R2018a. 

The results showed that there is variable number of clusters where the 3 main parts 

of interest are segmented optimally depending on the volume. For a bigger volume we 

will need a higher number of clusters. Also we saw that a low amount of clusters can 

lead to a deficient discretization of the different tissues and a high amount can lead to 

an over segmentation where samples pertaining to the same cluster are split across 

several clusters.  

Regarding to the number of replicates, it was observed that low iterations can lead 

to segmentations not consistent and thus, it cannot be ensured an optimal output. An 

amount of 5 replicates/iterations was found to be a secure value to obtain consistent 

clusterizations. 
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1. Introduction 

1.1. Medical introduction 

Location 

The kidneys are one of the best-known organs in the body. They are two bean-shaped 

structures located in left and east side of the spinal cord, between T12 and L3 vertebras, 

on the back of the abdominal cavity, they lie at a slightly oblique angle. The liver causes 

certain asymmetry forcing the right kidney to a lower position and a smaller size than 

the left one. This one is placed below the diaphragm and posterior to the spleen while 

the right kidney is located also below the diaphragm but behind the liver. The adrenal 

glands are located on top of each kidney. Two layers of fat surround each kidney, the 

perirenal and pararenal fat. 

 

Figure 1. Kidney location. Source: https://macscience.wordpress.com/level-3-biology/homeostasis/ 

Internal structure 

The parenchyma is divided into two main parts. The external is the renal cortex and 

the internal is the medulla. They are organised in lobules from 8 to 18, where the cortex 

surrounds the medulla. The functional unit, the nephron is placed along the 2 parts. It is 

here were the blood filtration is done. The outer part of the nephron is the renal 

corpuscle which is located in the cortex area, followed by the renal tubule in the medulla 

till the several calyx that collect the urine generated. The calyces lead to the pelvis, the 

3rd main part of the kidney to segment [1]. 

 

Figure 2. Kidney internal structure. Source: https://macscience.wordpress.com/level-3-biology/homeostasis/ 
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To summarise, in the kidney we will look for the 3 main structures: cortex, the outer 

area; medulla, the middle area with triangular shape; the pelvis, the inner and closer to 

the dorsal spine part. 

1.2 Contrast-Enhanced MRI (CE-MRI) 
Magnetic Resonance Imaging (MRI) is a non-invasive imaging method that allow us 

to analyse the anatomy of interest without need of surgical intervention. It uses 

magnetic fields, magnetic field gradients and radio waves to compose an anatomical 

image. It does not use X-ray nor ionization to produce the image. This technique is less 

dangerous than computerized tomography (CT) or Positron Emission Tomography 

techniques (PET), due to non-exposition of the body to radiation. 

Making a direct comparison to CT, MRI has a lower resolution, it takes longer to do a 

scan and the sound is louder. However, as we have already said MRI is not using 

radiation so it is safer for the patient. 

The process simplified is to excite with radio frequency energy a certain atom 

element under an external magnetic field, after a small period those excited atoms emit 

the energy as radio frequency and we are able to locate those atoms with the magnetic 

field gradients. Generally the atom excited is hydrogen, massively present in water and 

fat, and that is the reason why in this type of images we will observe those structures 

with high content of these atoms/molecules.  

Here takes relevance the contrast enhanced methods. They allow us to increase the 

signal produced in the tissue of interest where the agent, Gadolinium, will arrive. This is 

possible because the agent used shortens the T1 constant of the tissue, which is the 

base of the CE-MRI method. Another use of the contrast agent in this case is to track the 

way it follows inside the patient specifically inside the kidney to be able to differentiate 

the voxels belonging to one of the 3 parts of the kidney mentioned in the last paragraph 

of the previous section. It could be used as well as parameter to analyse the perfusion. 

 

Figure 3. FF01, Vol1, slice 15, frame 15. 
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2. State of the art 

2.1. Segmentation methods 
There can be distinguished three main groups of segmentation techniques depending 

on the level of preparation required by a person. 

1. Manual segmentation: Generally performed by a radiologist. It is usually the 

most precise method but it is also the longest to obtain as the person has to 

select one by one each of the voxels belonging to each part of the kidney [2]. 

2. Semiautomatic. 

a. Thresholding: computationally not demanding method. After selecting a 

specific brightness value, pixel with higher or lower intensity are set to an 

arbitrary value. [3] 

b. Region-based techniques: regions with maximum homogeneity are 

localized. [4, 5] 

c. Level-set model: focused on detecting object boundaries through speed 

function for curve evolution. [6, 7] 

3. Automatic: 

a. Gaussian mixture model: based in probabilistic parameters. [8] 

b. Fuzzy set: which takes the advantage of the variation within the segments 

of the objects. It combines the most probable (located near each other 

and/or similar in the intensity values) regions into one segment. [9] 

c. Graph-cuts: uses energy minimization, maxflow mincut theorem. [10] 
d. K-means: groups the pixels/voxels of an image across an arbitrary number 

of clusters based on the similarities in the variables. [11, 12] 

e. Surface deformation [13]. 

f. Neural networks [14]. 

2.2. K-means 
This method analyses a 2D matrix where each row is the sample and each column is 

the variable, in this case the time frames. This method uses the variables that separates 

better the samples and tries to group them selecting random centroids and calculating, 

usually, the Euclidean distance to the centroid so the samples are linked to the closest 

one. After this, the mean is recalculated and again the samples are associated to the 

closest. This process is computed in each iteration. The last iteration should keep the 

centroids in the same place and thereby the samples stay in the same group.  
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3. Methods 
The datasets analysed come from 2 patients, each of them have been explored 2 

times with one week of difference between measurements for the same patient. They 

will be used to test the performance of the K-means segmentation method versus a 

manual segmentation provided by a doctor. 

For obtaining the results it has been used 3 self-made scripts: 

3.1. ROI selection 
The goal of the first script is selecting a narrowed volume where the kidneys are 

contained to be able to perform the K-means segmentation of the two kidneys together 

or each kidney per separate. The input of the ROI_Selection5_VOL1 function are the 

directory of the .nii files and the file containing the ROI itself. As output, we can get up 

to 8 variables: 

- w1: 2D matrix containing the raw intensity of each voxel (as rows) from the firs 

kidney along the number of frames captured (each column) 

- c1: vector featuring the index of the voxels of the ROI of the first kidney. 

- Z1: 2D matrix containing the standardized intensity of each voxel (as rows) from the 

firs kidney along the number of frames captured (each column) 

- w2: 2D matrix containing the raw intensity of each voxel (as rows) from the second 

kidney along the number of frames captured (each column) 

- c2: vector featuring the index of the voxels of the ROI of the second kidney. 

- Z2: 2D matrix containing the standardized intensity of each voxel (as rows) from the 

second kidney along the number of frames captured (each column) 

- w12: 2D matrix containing the raw intensity of each voxel (as rows) from both 

kidneys along the number of frames captured (each column) 

- Z12: 2D matrix containing the standardized intensity of each voxel (as rows) from 

both kidneys along the number of frames captured (each column) 

The performance of the code has been optimized using the latest functions 

introduced in matlab such as the command niftiread, from 2017b version. 

3.2. K-means segmentation 
The goal of the second script is to perform a segmentation using the k-means function 

with the choice by the user of performing it in a single volume, containing the data from 

both kidneys or otherwise running the method for each kidney separately. Either way 

the output will be a single volume containing the clustered data from both kidneys. With 

a little tweak, the user could be able to obtain each kidney volume per separate, but for 

this research is convenient a single volume. 

The performance of the code has been optimized using the latest functions 

introduced in matlab such as the command volumeViewer, from 2017a version, or K-

mean function introduced before 2006a version. 
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3.3. Dice analysis 
For obtaining the Dice coefficient, we will compare the manual segmentation with 

each of the clustered volumes. The manual segmentation is given in two volumes, one 

for each kidney, unlike the clustered data. The goal of the script is to perform the 

comparison of volumes containing both kidneys from the manual data, placed in one 

single volume, with the clustered data, included in a single volume too. The formula 

implemented is the one given below: 

𝐷𝑆𝐶 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

TP: true positive, voxels included in both volumes. Correct voxels 

FP: false positive, voxels from the automatic clusterization not present in the manual 

segmentation. Wrong voxels 

FN: false negative, voxel from the manual segmentation not present in the automatic 

clusterization. Missing voxels.  

3.4. Parameters of interest 
As k-means has a random initialization we will run 3 times the k-means script in order 

to confirm the importance of different values such as the number of clusters and of 

different number of replicates. The replicates is a parameter from the k-means function 

that sets the number of times the clusterization is made, with different initialization data 

each time as it is a random method. 

The replicates provides us a more consistent clusterization because the initialization 

of the centroids has a big impact in the output. The number of runs using the same 

parameters will help us see the impact of the initialization because our goal is to create 

an optimized algorithm which output will be consistent every time it is executed, as it 

will give more confidence about the clusterization. 

 

4. Results 

4.1. Patient FF01 - Vol_1 
First of all the result of the segmentation in 3 and 4 clusters will be shown with the 

purpose of justifying the lack of need of calculation of the Dice coefficient. 

It is true that, in figure 4, it can be slightly recognized the shape of the kidney but we 

cannot see any good segmentation of the 3 structures of the kidney itself. Therefore, it 

does not make sense to perform a run to get the Dice Coefficient. 
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Segmentation in 3 and 4 clusters 

 

Figure 4. K-Mean segmentation in 3 clusters of FF01 
Vol_1 

 

Figure 5. K-Mean segmentation in 4 clusters of FF01 
Vol_1 

Now we will start with the analysis of the influence in the segmentation of the 

number of clusters and the number of replicates in the K-means method. 

Segmentation in 5 clusters 

The first segmentation obtained with some sensible and consistent results was using 

5 clusters for the K-means 

 

Figure 6. K-Mean segmentation in 5 clusters of FF01 
Vol_1 

In this case it is easily distinguished 

the medulla and cortex, but the pelvis is 

not so well segmented as it is included 

in the same cluster as the external 

surrounding tissue of the kidney. 

As it is shown in figures 8, 10 and 12 

the 3D volumes are confirming the 

previous statement. It is also noticeable 

the presence of voxels, in figures 6 and 

7, odd to the medulla in the same 

cluster.   
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Medulla 

 

Figure 7. Medulla cluster, XY slice 15th 

 

 

Figure 8. Medulla cluster, isosurface volume

Cortex 

 

Figure 9. Cortex cluster, XY slice 15th 

 

Figure 10. Cortex cluster, isosurface volume 

Here it can be seen that in the upper left corner of the figure 6 it is included a big 

section of tissue alien to the cortex. This is a symptom of the need of a larger amount of 

clusters for the segmentation. In addition, there are some independent voxels spread 

all around the volume similar to the medulla cortex. 
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Pelvis 

 

Figure 11. Pelvis cluster, XY slice 15th 

 

Figure 12. Pelvis cluster, isosurface volume 

As previously anticipated, the pelvis cluster shows the worst result among the 3 

kidney clusters with a total of 5 clusters for the segmentation. 

Dice Coefficient 

FF01_VOL1_Rx={pelvis cortex medulla} 

Number of 
Replicates 

1(run 1/run 2 
/run 3) 

2(run 1/run 2 
/run 3) 

3(run 1/run 2 
/run 3) 

5(run 1/run 2 
/run 3) 

Cortex 0.4912/ 
0.5462/ 
0.4946 

0.4916/ 
0.4935/ 
0.5460 

0.4935/ 
0.5463/ 
0.4916 

0.4934/ 
0.4917/ 
0.4916 

Medulla 0.6276/ 
0.4501/ 
0.6288 

0.6276/ 
0.6282/ 
0.4502 

0.6282/ 
0.4501/ 
0.6276 

0.6283/ 
0.6275/ 
0.6276 

Pelvis 0.1864/ 
0.1864/ 
0.1862 

0.1864/ 
0.1864/ 
0.2349 

0.1863/ 
0.2355/ 
0.1864 

0.1865/ 
0.1864/ 
0.1864 

Table 1. Dice coefficient analysis: FF01_VOL1_Manual vs K-means segmentation in 5 clusters 

We observe an anomaly in the second run with a number of replicates equal to 2, in 

this case a cluster including both medulla and cortex was obtained as an output (figure 

13). 
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Figure 13. Cortex and medulla in the same cluster. FF01_Vol1, 5 clusters, 1 replicate, second run 

Again, in the execution with 2 replicates a deficient clusterization is observed. 

 

Figure 14. Cortex and medulla in the same cluster. FF01_Vol1, 5 clusters, 2 replicates, third run 

Same as this two ambiguous clusterization appear in the second run with 3 replicates, 

as it can be observed in the figure 15. 

 

Figure 15. Cortex and medulla in the same cluster. FF01_Vol1, 5 clusters, 2 replicates, third run 

After all the executions, it can be observed an apparently better segmentation of the 

medulla than the cortex. However, the cluster where the pelvis is included contains a 
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higher amount of voxels not related with the real pelvis area. An interesting event is that 

when the cortex and medulla are in the same cluster, the cortex is better segmented. 

 

Segmentation in 6 clusters 

After watching the results from the k-means segmentation using 5 clusters we will try 

to analyse the performance using 6 clusters. In order to provide a general view of the 

output obtained with this parameters, the clusterization with 5 replicates will be used 

as example. 

In a raw stage of the clusterization, as 

shown in figure 16, it cannot be observed a 

big difference between using 5 and 6 

clusters. Next, following the procedure 

from last section, the dice coefficients will 

be obtained and compared with the 5 

clusters results. 

 

 

Medulla 

 

Figure 17. Medulla. FF01_Vol1, 6 clusters, 5 replicates 

Figure 16. K-Mean segmentation in 6 clusters of FF01 
Vol_1 
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Cortex 

 

Figure 18. Cortex. FF01_Vol1, 6 clusters, 5 replicates. 

Pelvis 

 

Figure 19. Pelvis. FF01_Vol1, 6 clusters, 5 replicates. 

Dice Coefficient 

FF01_VOL1_C6_Rx={pelvis cortex medulla} 

Number of 
Replicates 

1(run 1/run 2 
/run 3) 

2(run 1/run 2 
/run 3) 

3(run 1/run 2 
/run 3) 

5(run 1/run 2 
/run 3) 

Cortex 0.5026/ 
0.5053/ 
0.5026 

0.5074/ 
0.5026/ 
0.5078 

0.5053/ 
0.5024/ 
0.5022 

0.5056/ 
0.5074/ 
0.5021 

Medulla 0.6440/ 
0.6450/ 
0.6438 

0.6455/ 
0.6438/ 
0.6460 

0.6449/ 
0.6441/ 
0.6444 

0.6450/ 
0.6455/ 
0.6440 

Pelvis 0.2232/ 
0.2227/ 
0.2232 

0.2227/ 
0.2232/ 
0.2223 

0.2227/ 
0.2234/ 
0.2234 

0.2233/ 
0.2226/ 
0.2232 

Table 2. Dice coefficient analysis: FF01_VOL1_Manual vs K-means segmentation in 6 clusters 
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With 6 clusters and this particular volume, the influence of the number of replicates 

cannot be noticed. Either way, the dice coefficients are improved in comparison with 

the clusterization of this same volume in 5 clusters. 

 

4.2. Patient FF01 - Vol_2 
The second volume correspond to a second scan, with a week of difference from the 

first scan, contained in the Volume 1. In this case the amount of voxels is bigger. This 

will impact the number of clusters needed to get a sensible segmentation. 

Segmentation in 4 and 6 clusters 

 

   

Figure 20. Clusterization of FF01_Vol_2 in 4 clusters (left) and 6 clusters (right) 

In both case it can be observed that the cortex area is clustered with the area 

containing the spleen. This is the reason why there is no dice coefficient calculated with 

this number of cluster. In addition, this supports the statement that for a larger amount 

of voxels, a larger number of cluster is needed. The parameters used in this two 

examples where a number of replicates equal to 5, as it has been proved in the first 

experience that the results obtained with this amount of replicates only depends on the 

number of clusters and not on the number of random initializations.  

Segmentation in 8 clusters 

A sensible number of clusters can be identified from 8 cluster and higher. In the next 

step the 3 main clustered parts will be shown. 
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Figure 21. K-Mean segmentation in 8 clusters of FF01 Vol_2 

 

Medulla 

 

Figure 22. Medulla. FF01_Vol2, 8 clusters, 5 replicates 
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Cortex 

 

Figure 23. Cortex. FF01_Vol2, 8 clusters, 5 replicates 

 

Pelvis 

 

Figure 24. Pelvis. FF01_Vol2, 8 clusters, 5 replicates 
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Dice Coefficient 

FF01_VOL2_C8_Rx ={pelvis cortex medulla} 

Number of 
Replicates 

1(run 1/run 2 
/run 3) 

2(run 1/run 2 
/run 3) 

3(run 1/run 2 
/run 3) 

5(run 1/run 2 
/run 3) 

Cortex 0.4609/ 
0.4600/ 
0.4883 

0.5392/ 
0.5393/ 
0.4883 

0.5394/ 
0.4883/ 
0.5391 

0.5391/ 
0.5392/ 
0.5394 

Medulla 0.6007/ 
0.6024/ 
0.5922 

0.6223/ 
0.6226/ 
0.5921 

0.6224/ 
0.5921/ 
0.6222 

0.6224/ 
0.6225/ 
0.6226 

Pelvis 0.2799/ 
0.2763/ 
0.2822 

0.2688/ 
0.2684/ 
0.2820 

0.2674/ 
0.2823/ 
0.2683 

0.2675/ 
0.2688/ 
0.2681 

Table 3. Dice coefficient analysis: FF01_VOL2_Manual vs K-means segmentation in 8 clusters 

  

With only 1 replicate in the first run, it is not able to 

deliver a proper clusterization within 100 iterations of 

the K-means. In the output, figure 25 we observe that 

the cortex is clustered within the area related to the 

spleen. A red arrow indicates the junction of the cortex 

and the spleen in these figures. 

 

 

 

 

In the second run, with only 1 replicate, we observe 

the same issue. This will compromise the value of the 

dice coefficient, as it can be observed in table 3. 

 

 

 

 

 

 

Figure 25. FF01_Vol_2, 8 clusters, 1 
Replicate 

Figure 26. FF01_Vol_2, 8 clusters, 1 
Replicate 
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In the 3rd run with 2 replicates we encounter the 

same error as produced with only one replicate. In this 

case the 2 iterations of the K-means is not enough to 

give a good clusterization as output. In addition, with 2 

replicates we observe that the dice coefficient is not 

consistent among the 3 runs (table 3) 

 

 

 

 

The error appears again with 3 replicates in the 2nd 

run, and so the clusterization is not properly done. Dice 

coefficient not consistent. 

 

 

 

 

 

It also happens in the 3rd run with 3 replicates, but in 

this case the result of the clusterization is consistent 

with the performance of the run without failures in a K-

mean iteration. Here it can be seen the relevance of 

having a higher amount of replicates/iterations. 

Figure 27. FF01_Vol_2, 8 clusters, 2 
Replicates 

Figure 28. FF01_Vol_2, 8 clusters, 3 
Replicates 

Figure 29. FF01_Vol_2, 8 clusters, 3 
Replicates 
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 a)    b) 

c) 

Figure 30. a) FF01_Vol_2, 8 clusters, 5 Replicates, 1st run. b) 
FF01_Vol_2, 8 clusters, 5 Replicates, 2nd run. c) k-means iteration 

failure. d) FF01_Vol_2, 8 clusters, 5 Replicates, 3rd run. 

As well as the error in the 3rd run with 3 

replicates we can observe that despite the fact that 

there is failure in the 1st iteration, the dice 

coefficient is consistent with the best clustered 

results. This phenomenon was spotted in all the 

runs with 5 replicates.  

d) 

 

Segmentation in 9 clusters 

As well as with the Volume 1, the number of clusters will be increased in order to 

compare the accuracy of the segmentation and the influence of the number of clusters. 

Following with the procedure from previous experiences, the parameters set to 

illustrate the example of the 3 main parts of the kidney will be 9 clusters and 5 replicates. 

The overall clusterization is shown in figure 33. 
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Figure 31. K-Means segmentation in 9 clusters of FF01 Vol_2. 

 

Medulla 

 

Figure 32. Medulla. FF01_Vol2, 9 clusters, 5 replicates 
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Cortex 

 

Figure 33. Cortex. FF01_Vol2, 9 clusters, 5 replicates. 

 

Pelvis 

 

Figure 34. Pelvis. FF01_Vol2, 9 clusters, 5 replicates. 
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Dice Coefficient 

FF01_VOL2_C9_Rx={pelvis cortex medulla} 

Number of 
Replicates 

1(run 1/run 2 
/run 3) 

2(run 1/run 2 
/run 3) 

3(run 1/run 2 
/run 3) 

5(run 1/run 2 
/run 3) 

Cortex 0.5310/ 
0.4809/ 
0.5322 

0.5338/ 
0.5340/ 
0.5323 

0.4940/ 
0.5323/ 
0.5341 

0.5322/ 
0.5403/ 
0.5334 

Medulla 0.6208/ 
0.5953/ 
0.6278 

0.6284/ 
0.6292/ 
0.6281 

0.5985/ 
0.6280/ 
0.5985 

0.6280/ 
0.6254/ 
0.6217 

Pelvis 0.2915/ 
0.2974/ 
0.2810 

0.2806/ 
0.2784/ 
0.2815 

0.2953/ 
0.2815/ 
0.2773 

0.2814/ 
0.2797/ 
0.2903 

Table 4. Dice coefficient analysis: FF01_VOL2_Manual vs K-means segmentation in 9 clusters. 

  

With only one replicate we encounter that in the 2nd 

run the segmentation is deficient, and again the cortex 

is in the same cluster than the spleen. It is also 

noticeable by the dice coefficient in table 4.  

 

 

 

 

 

In the execution of the 2nd run with 2 replicates we 

observe that despite having a failure in the 2nd iteration 

of K-means, the clusterization is consistent with the 

best ones. 

 

Figure 35. FF01_Vol_2, 9 clusters, 1 
Replicate 

Figure 36. FF01_Vol_2, 9 clusters, 1 
Replicate 
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In the 1st run with 5 replicates there were 2 

iterations failures but the results were still 

consistent (Table 4). 

 

 

 

 

 

The output of the 2nd run using 5 replicates gave 

proper results even though there was a failure in 

the 2nd iteration. 

 

 

 

 

 

After all the analysis of the dice coefficients we observe that in this particular case 

the performance between 8 and 9 clusters is similar compared with the manual 

segmentation. Other interesting result is the 1st run with 3 replicates which is consistent 

in the medulla but not in the cortex, it has been highlighted, in red colour, in table 4. 

 

  

Figure 37. FF01_Vol_2, 9 clusters, 5 Replicates 

Figure 38. FF01_Vol_2, 9 clusters, 5 Replicates 
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4.3. Patient FF02 - Vol_1 
Now the volume scanned of the second patient will be analysed and segmented 

following the method already used with the previous datasets. First of all the 

clusterization in 3 and 5 groups will be shown to remind that, in this case, we need a 

higher number of cluster to get sensible results. 

Segmentation in 3 and 5 clusters 

3 Clusters 

 

Figure 39. K-Mean segmentation in 3 clusters of FF02 Vol_1 

In cluster number 1, which contains the medulla, is also including voxels from the 

liver. In cluster number 2 it can be seen that the spleen is included in the same cluster 

than the cortex. Finally, the cluster number 3 shows that as well as in previous 

segmentations, the pelvis cluster includes a lot more voxels not related to it. 
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5 Clusters 

 

Figure 40. K-Mean segmentation in 5 clusters of FF02_Vol_1 

In this case with 5 clusters, the liver and medulla are separately clustered but the 

spleen is still included in the same cluster as the cortex. Coming up next, the number of 

clusters will be increased to 6 and it could be observed that with that number, the spleen 

is also segmented separately. 

Segmentation in 6 clusters 

After some quick tests, a number of clusters set to 6 was the starting point of 

obtaining sensible results as is can be observed in figure 41. In addition, the different 

clusters containing the medulla, cortex and pelvis will be shown. 

 

Figure 41. K-Mean segmentation in 6 clusters of FF02_Vol_1. 
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Medulla 

 

 

Figure 42. Medulla. FF02_Vol1, 6 clusters, 5 replicates. 

 

Cortex 

 

 

Figure 43. Cortex. FF02_Vol1, 6 clusters, 5 replicates. 
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Pelvis 

 

 

Figure 44. Pelvis. FF02_Vol1, 6 clusters, 5 replicates. 

 

Dice Coefficient 

FF01_VOL2_C6_Rx={pelvis cortex medulla} 

Number of 
Replicates 

1(run 1/run 2 
/run 3) 
 

2(run 1/run 2 
/run 3) 
 

3(run 1/run 2 
/run 3) 
 

5(run 1/run 2 
/run 3) 
 

Cortex 0.5111/ 
0.5110/ 
0.5111 

0.5111/ 
0.5111/ 
0.5111 

0.5111/ 
0.5110/ 
0.5111 

0.5111/ 
0.5111/ 
0.5111 

Medulla 0.2302/ 
0.2310/ 
0.2303 

0.2302/ 
0.2302/ 
0.2302 

0.2315/ 
0.2312/ 
0.2302 

0.2315/ 
0.2302/ 
0.2312 

Pelvis 0.1943/ 
0.1945/ 
0.1943 

0.1943/ 
0.1943/ 
0.1943 

0.1945/ 
0.1945/ 
0.1943 

0.1945/ 
0.1943/ 
0.1945 

Table 5. Dice coefficient analysis: FF02_VOL1_Manual vs K-means segmentation in 6 clusters.  
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In the first run with 3 replicates there is a failure in the 

3rd iteration of the K-means. However, this does not affect 

the result of the clusterization and based on the Dice 

Coefficient from table 5, the segmentation is consistent. 

 

 

 

 

 

With 3 replicates in the 2nd run the failure happens 

again in the 3rd iteration. Once again, this does not affect 

the proper result of the clusterization as it can be 

observed in table 4. 

 

 

 

 

 

 

  

 

Figure 45. FF02_Vol_1, 6 clusters, 3 
Replicates 

Figure 47. FF02_Vol_1, 6 clusters, 3 
Replicates 

Figure 46. FF02_Vol_1, 6 clusters, 5 
Replicates 
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In all of the 3 runs of with 5 replicates, up to 2 failures in the same execution can be 

spotted. Despite this, the coefficient reports that the clusterization has been done as it 

would have been without having these failures (Table 4). 

  

Figure 48. FF02_Vol_1, 6 clusters, 5 
Replicates 

Figure 49. FF02_Vol_1, 6 clusters, 5 
Replicates 
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Segmentation in 7 clusters 

The final analysis carried on this thesis will be the segmentation in 7 clusters of the 

first volume from the second patient. Once again, to illustrate as an example of the 3 

main parts of interest, 5 replicates will be used. 

 

Figure 50. K-Mean segmentation in 7 clusters of FF02_Vol_1. 

 

Medulla 

 

 

Figure 51. Medulla. FF02_Vol1, 7 clusters, 5 replicates. 
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Cortex 

 

Figure 52. Cortex. FF02_Vol1, 7 clusters, 5 replicates. 

Pelvis 

 

Figure 53. Pelvis. FF02_Vol1, 7 clusters, 5 replicates. 

Dice Coefficient 

FF01_VOL2_C7_Rx={pelvis cortex medulla} 

Number of 
Replicates 

1(run 1/run 2 
/run 3) 

2(run 1/run 2 
/run 3) 

3(run 1/run 2 
/run 3) 

5(run 1/run 2 
/run 3) 

Cortex 0.4973/ 
0.4965/ 
0.4939 

0.4966/ 
0.4968/ 
0.4973 

0.4968/ 
0.4968/ 
0.4965 

0.4967/ 
0.4968/ 
0.4966 

Medulla 0.3740/ 
0.3754/ 
0.2229 

0.3756/ 
0.3740/ 
0.3740 

0.3745/ 
0.3753/ 
0.3755 

0.3745/ 
0.3750/ 
0.3755 

Pelvis 0.2066/ 
0.2073/ 
0.1963 

0.2070/ 
0.2067/ 
0.2066 

0.2066/ 
0.2072/ 
0.2073/ 

0.2066/ 
0.2073/ 
0.2073 

Table 6. Dice coefficient analysis: FF02_VOL1_Manual vs K-means segmentation in 7 clusters. 
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At the 1st run with 2 replicates there was a failure in 

the 1st iteration. However the result of the 

clusterization shows that it was done properly, 

consistent Dice Coefficient (table 6) 

 

 

 

 

 

 

In the 3rd run with 2 clusters the event happens 

again, and as well as the 1st run, the Dice Coefficient is 

consistent with the best clusterization possible.  

 

 

 

 

 

 

Once again, the failure spotted in the 1st run with 3 

replicates does not affect the result of the 

clusterization. 

 

 

 

Figure 54. FF02_Vol_1, 7 clusters, 2 
Replicates 

Figure 55. FF02_Vol_1, 7 clusters, 2 
Replicates 

Figure 56. FF02_Vol_1, 7 clusters, 3 
Replicates 
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In the 2nd run we can observe the same event. 

 

 

 

 

 

 

 

 

As well as the 2 previous executions, the 3rd run with 

3 replicates is properly done but with failure. Indicate 

that all of the executions are clustered consistently with 

the best segmentation possible. 

 

 

 

 

Failure in the 1st run with 5 replicates. 

 

 

 

 

Figure 57. FF02_Vol_1, 7 clusters, 3 
Replicates 

Figure 59. FF02_Vol_1, 7 clusters, 3 
Replicates 

Figure 58. FF02_Vol_1, 7 clusters, 5 
Replicates 
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2nd run with 5 replicates. 

 

 

 

 

 

 

 

3rd run with 5 replicates. 

In the 3 runs with 5 clusters, the segmentation is 

consistent with the best reachable with 7 clusters. 

 

 

 

 

Comparing the dice coefficient between the segmentation with 6 and 7 clusters it can 

be seen an improvement in the medulla cluster, that is also worse clustered than the 

cortex. Another detail is the consistence of the segmentation along all the experiments, 

so we cannot see the influence of the number of replicates. The exception can be the 

3rd run with a low Dice Coefficient for the medulla and a slightly lower value for the 

cortex cluster, both highlighted in red in table 6.  

Figure 61. FF02_Vol_1, 7 clusters, 5 
Replicates 

Figure 60. FF02_Vol_1, 7 clusters, 5 
Replicates 
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5. Conclusions 

5.1. Problems and struggles 

Manual segmentation FF02_VOL1 

The storage orientation of the data from the patient was not the typical that can be 

found in a medical environment. However, for the purpose of the thesis it did not have 

any influence in the clusterization. Despite having the patient 1 manual segmentation 

volumes in the same orientation that the clustered data, the masks from the volume 1 

of the second patient was set following the standard orientation. At the time of 

calculating the Dice Coefficient, I noticed that the values were around 0.05, far away 

from what could be sensible even for a rough clusterization. To fix it, I had to take the 

original volume and apply the following corrections as can be seen in figures 62, 63 and 

64. 

 

Figure 62. Original FF02_VOL1_Manual volume orientation. 

The first step was to rotate -90º clockwise the axial plane or Z-axis. The result of this 

action is shown in figure 61. 
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Figure 63. Volume after rotation along Z-axis. 

The second step was to apply a mirror effect along the X-axis to the volume so it will 

have the same coordinates system than the patient dataset (figure 64). 

 

Figure 64. Volume after mirroring along X-axis. 
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5.2. Influence of the number of clusters 
After all the executions using K-means we can observe a big improvement from 6 to 

7 clusters in the volume belonging to the second patient. The Dice Coefficient is 

increased from 0.231 to 0.375; this is a 60% of improvement. It is true that those 

clusterization are far from being valid and we can extract that a larger number of clusters 

will provide a better segmentation until a certain number of cluster where we would 

observe an oversegmentation. 

In the case of the volume number 1 belonging to patient number 1 the improvement 

in the dice coefficient is also noticeable but not as high as the case just analysed in the 

previous paragraph; from 0.628 to 0.645 it is about a 3% improvement in the medulla. 

The cortex is hardly improved too, from 0.492 to 0.505, another 3%. 

For the volume number 2 of the same patient, the improvement is similar due to the 

similarities of both datasets, despite the fact that we need 8 or 9 cluster. This can be 

explained because a larger volume needs a larger number of clusters as it will include a 

higher number of different tissues in the ROI. Alternatively, the size of them could be 

different and in case of being bigger, a higher amount of different tissues can be 

recognised, as if we were zooming in the volume, ‘increasing’ the resolution in an 

indirect form. The values in this case vary from 0.622 to 0.625, about 0.5% for the 

medulla, and from 0.539 decreases to 0.535, about 0.7%. 

To summarise, this results show the importance of the number of clusters and its 

impact to the segmentation accuracy. The goal of future rehearsal should be finding the 

optimal number of clusters with the exact same data since a low amount leads to an 

under segmentation that includes several voxels not belonging to the tissue of interest. 

On the other hand, if the amount of cluster is too large, we can suffer from 

overclusterization and have the tissue of interest split along different clusters. A 

parameter of interest from K-means will be the ‘distance’, minimizing the intracluster 

and maximizing the intercluster one. 

5.3. Influence of the number of replicates 
Focusing on the dataset volume 1 belonging to patient 1 (table 1) we can observe in 

the execution with 5 clusters that the only configuration of the parameters were 

consistent Dice Coefficients can be seen is with the highest number of replicates, 5. With 

6 cluster, no difference along the Dice Coefficient calculation (table 2) was noticed. In 

the second volume (table 3 and table 4) the same event happens as in table 1. Only the 

Dice Coefficients obtained with 5 replicates are consistent. Finally, in the last dataset 

(table 5 and table 6) only one experience differs from the rest of the data, the case with 

only one replicates. 

To conclude, a desirable value of 5 replicates will be the minimum amount to work 

with. In case that the K-means computation is high resources demanding, 3 replicates 

could be enough to have proper results.  
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5.4. Alternative approaches 
During the development of the thesis, some interesting parameters about the 

intensity were found and could lead to a preprocessing of the data to help the K-means 

with the clusterization. First of all a lot of noise in the signal was spotted in form of 

frequent spikes and a not smooth plot. 

 

Figure 65. Example of voxel 1321 in FF01_VOL1, variable Z12 

Once smoothed, we could use the difference in intensity between a couple of time 

frames, for example 5 frames. With this simple operation we could be able to maximize 

the fast spikes produced by the arrival of the contrast bolus. This will link all the voxels 

whose intensity is not variable along time, independently of the absolute value of its 

intensity. 
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