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Abstract

We give several conditions in order that the absorption law for one sided (b, c)-inverses in
rings holds. Also, by using centralizers, we obtain the absorption law for the (b, c¢)-inverse
and the reverse order law of the (b, ¢)-inverse in rings. As applications, we obtain the related
results for the inverse along an element, Moore—Penrose inverse, Drazin inverse, group inverse
and core inverse.
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1 Introduction

Throughout this paper, R denotes a unital ring. The following notations aR = {ax | x € R},
Ra = {xa | x € R} and [a, b] = ab — ba will be used in the sequel for a, b € R. In [9,
Definition 1.3], Drazin introduced a new class of outer inverse in the setting of semigroups
or rings, namely, the (b, c)-inverse. Let a, b, ¢ € R, we say that a is (b, c)-invertible if exists
y € R such that

yebRyNyRc, yab=b and cay =c.
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If such y exists, then it is unique, denoted by /) and said to be the (b, ¢)-inverse of a. Many
existence criteria and properties of the (b, ¢)-inverse can be found in, for example, [3,4,9,10,
13,14,19,21-23]. In [10, Definition 1.2] and [14, Definition 2.1], the authors independently
introduced the one-sided (b, c)-inverses in rings. Let a, b, c € R. We call that x € R is a left
(b, ¢)-inverse of a if Rx C Rc and xab = b. We call that y € R is a right (b, c)-inverse of
aif yR € bR and cay = c.

In [16], Mary introduced a new type of generalized inverse, namely, the inverse along an
element. Let a, d € R. We say that a is invertible along d if there exists y € R such that

vad =d =day, yR=dR and Ry = Rd.

If such y exists, then it is unique and denoted by /. Many existence criteria and properties of
the inverse along an element can be found in, for example, [2,16,17,24-26]. By the definition
of the inverse along d, we have that ald is the (d, d)-inverse of a. The definitions of left and
right inverses along an element can be found in [24].

Anelement a € R is said to be Drazin invertible if there exists x € R such that ax = xa,
xax = x and a* = a**+'x for some nonnegative integer k. The element x above is unique if
it exists and denoted by a® [8]. The smallest positive integer k is called the Drazin index of
a, denoted by ind(a). If ind(a) = 1, then a is group invertible and the group inverse of a is
denoted by a®. Thus, a* satisfies a*aa® = a*, a*a = aa® and aa*a = a.

An involutory ring R means that R is a unital ring with involution, i.e., a ring with
unity 1, and a mapping a +— a* from R to R such that (¢*)* = a, (ab)* = b*a™ and
(a+b)* =a*+b* foralla,b € R.Leta,x € R.If axa = a, xax = x, (ax)* = ax and
(xa)* = xa, then x is called a Moore—Penrose inverse of a. If such an element x exists, then
it is unique and denoted by a. We call that x € R is an inner inverse of a if axa = a.

The notion of the core inverse for a complex matrix was introduced by Baksalary and
Trenkler [1]. In [20], Raki¢ et al. generalized the core inverse of a complex matrix to the case
of an element in R with involution. More precisely, let a, x € R, if axa = a, xR = aR and
Rx = Ra*, then x is called a core inverse of a. If such an element x exists, then it is unique
and denoted by a®. Also, in [20] the authors defined a related inner inverse in a ring with an
involution. If ¢ € R, then x € R is called a dual core inverse of a if axa = a, xR = a*R
and Rx = Ra. If such an element x exists, then it is unique and denoted by a . It is evident

that a € R?® if and only a* € Rg, and in this case, one has (a®)* = (a*)e.
#

If a € R are both Moore—Penrose invertible and group invertible and o' = a*, we call
that a is an EP element.
2 Absorption laws for the (b, c)-inverse
Leta, b € R be two invertible elements. It is well known that
a '+ ' =aYa+b)p". 2.1)

The equality (2.1) is known as the absorption law of invertible elements. In general, the
absorption law does not hold for generalized inverses, for example, [11,15]. In this section,
the absorption laws for one-sided (b, c)-inverses are obtained.

Lemma2.1 Leta,b,c,d € R. Then

(1) Ifal”(b’c) is a left (b, c)-inverse of a and d,”(b’c) is a right (b, c)-inverse of d, then

GOl _ e g e g b _ b,

@ Springer



Centralizer's applications to the (b, ¢)-inverses in rings 1741

2) Ifa”(h ) s a right (b, ¢)-inverse of a and le(b’C) is a left (b, c)-inverse of d, then
le(b C)da,U(b’C) _ arH(b’c) and dl‘l(b'c)aa,‘,‘(b’c) _ dl‘l(b’c).

Proof (1)Letx = a[”(b’c) and y = d/® then x = rc and y = bs for some r, s € R. Thus,
xay = xabs = bs = y by xab = b and xdy = rcdy =rc = x by cdy = c.
(2) Can be proved by changing the roles of @ and d in (1). ]

By al is the (d, d)-inverse of a, [26, Lemma 2.1] is a corollary of Lemma 2.1.

Theorem 2.2 Leta,b,c,d € R. Then

() Ifa)" is aleft b, ¢)-inverse of a and d)* is a right (b, c)-inverse of d, then a)* +
dH(b,C) lH(b,C) (a+ d)d,”(b'c);

2) Ifa”(h Disa right (b, c)-inverse of a and dl”(h’c) is aleft (b, c)-inverse of d, then al| .0
le(b ) _ dl\l(b,c)(a + d)all(b'c).

Proof (1) Let x = alH(b’c) and y = !9 then by Lemma 2.1, we have xay = y and
xdy = x. Thus,

x(a+d)y =xay +xdy =x+y.
(2) Can be proved by changing the roles of a and d in (1). O

By Theorem 2.2, we have the following corollary.

Corollary 2.3 Leta, b, c,d € R. Then

(1) If a is (b, c)-invertible and d is (b, c)-invertible, then al®-0) 4 gl.o) = 4l®b.0) (g 4
d)d®-o),
(2) [26, Proposition 2.2] Ifa I s a right inverse along d of a and blHd is a left inverse along

d of b, then a}® + b)* = b (a + b)a)*;
(3) [26, Corollary 2.3] Ifa is mvemble along d and b is invertible along d, then all¢ 4+ b4 =

al(a + )bl

Leta,b,c,d € R. If a and d are both (b, c)-invertible, then the absorption law for the
(b, c)-inverse holds by Corollary 2.3. A natural question: if a is (b, ¢)-invertible and d is
(u, v)-invertible for some u, v € R, does the absorption law for al®9) and gl@.v) holds?
That is, does the relation

al®0 o glitv) — all(h,C)(a + d)dH(”’v) (2.2)
hold for arbitrary b, ¢, u, v € R?

Example 2.4 Let C>*2 denotes the set of all 2 x 2 complex matrices over the complex field

C. The involution in C2*? is the conjugate transposition. Consider a = |: } 8], d= |:(1) (1)],

11 . N Ll
— ) = ltbye) — 1 — | 2 2 l(u,v) —
[ ]andu—v—[ll].Notethata =a —[Oo}andd =

4l —

1

11
71 :| It is easily to check that the relation in (2.2) does not hold in general. In fact,
22

11
all®:o 4 gl — |: | li| + |:(l) (1)] :all(b,c)(a —i—d)dH(”’v).
2

@ Springer



1742 S. Xuetal.

Let o be a map from R to R. If 6 (ab) = o(a)b for all a, b € R, we call that o is a left
centralizer [12]. If o (ab) = ao (b) for all a,b € R, we call that o is a right centralizer
[12]. We call that o is a centralizer if it is both a left and a right centralizer, that is, o is a
mapping that satisfies o (ab) = o(a)b = ao(b) for all a, b € R. It is well-known that if
o is a bijective centralizer, then so is o ~!. The tool of centralizers is useful in the theory
of generalized inverses, for example, [26,27]. This tool is also useful in Hopf algebra, for
example, [5].

Before investigate the absorption law for all®¢) and 4!®¥) by using centralizers, the
following two lemmas are necessary.

Lemma 2.5 [21, Proposition 3.3] Let a, b, c € R. If a is (b, c)-invertible, then b and c are
regular.

Lemma 2.6 [4, Remark 2.2(i)] Let a,d,u,v € R. [fbR = uR and Rc = Rv, then a is
(b, ¢)-invertible if and only if a is (u, v)-invertible. In this case, we have allt-0) = gliw.v),

Theorem 2.7 Let 0,7 : R — R be two bijective centralizers and let a,b,c,d,u,v € R
withb = o (u) and ¢ = ©(v). Ifa”(h*c) and dVV) exist, then al®:©) 4 glw.v) = gll®.0) 4 4
d)d@-v),

Proof Since o : R — R is a bijective centralizers, thus

b=ocW) =0cl) =uo(l);
u=o"Yb) =c" 1) = bo" (D).

That is bR = uR. The condition Rc = Rv can be proved in a similar way. Then, - =
al®v) by Lemma 2.6. Therefore, we have al® + gl = 4.9 4 g)al®v) by
Corollary 2.3. O

Let R have an involution and @ € R. By [9], we have that a is Moore—Penrose invertible if
and only if a is (a*, a*)-invertible, a is Drazin invertible if and only if there exists k € N such
that a is (a¥, a*)-invertible and a is group invertible if and only if a is (a, a)-invertible. By
[20, Theorem 4.4], we have that the (a, a*)-inverse coincides with the core inverse of a and
the (a*, a)-inverse coincides with the dual core inverse of a. By [16, Lemma 3], we have that
a is invertible along d if and only if a is (d, d)-invertible. As applications of Theorem 2.7,
we have the following corollary. The item (1) in the following corollary can be found in [26,
Theorem 2.6]. The items (2), (3) and (4) in the following corollary can be found in [26,
Corollary 2.8].

Corollary 2.8 Let o, v : R — R be two bijective centralizers and let a, b, dy, d> € R. Then

(D) Ifa”d1 and b2 exist with d; = o (d»), then al®t + bl = gl (g + pypldz;

(2) Ifa® and b* exist with a = o (b), then a® + b* = a® (a + b)b*;

(3) IfaP and bP existwitha" = o (b™), whereind(a) = n andind(b) = m, then a®? +bP =
aP(a + b)bP;

@) Ifa® and b" exist with a* = o (b*), then a’ + b" = a¥(a + b)bT;

(5) If a® and b® exist with a = o (b) and a* = t(b*), then a® + b® = a®(a + b)b®;

(6) If ag and bg, exist with a* = o (b*) and a = t©(b), then ag + bg = ag(a + b)bg,.

Recall that if an element in a ring is invertible and Hermite, we call such an element a
positive element. Let R be a unitary ring with an involution and consider a € R and two
positive element m, n € R. Then by [2, Theorem 3.2], we have a is weighted Moore—Penrose
invertible relative to m and n if and only if @ is invertible along n~'a*m. Furthermore, in
this case, gln~latm — az,y,,. Thus, by Corollary 2.8(1), we can obtain an absorption law of
the weighted Moore—Penrose inverse.
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3 Reverse order laws for the (b, ¢)-inverse

Let a, b € R be two invertible elements. It is well known that
(ab)y ' =b"ta"". (3.1)

The equality (3.1) is known as the reverse order law of invertible elements. In general,
the reverse order law does not hold for generalized inverses, for example, [6,7,18,25]. The
following two lemmas will be useful in the sequel.

Lemma 3.1 [9, Theorem 2.1 (ii) and Proposition 6.1] Let a,b,c € R. Then y € R is the
(b, ¢)-inverse of a if and only if yay =y, YR = bR and Ry = Rc.

Lemma 3.2 [10, Theorem 2.1] Let a, b, ¢ € R. If a is both left and right (b, c)-invertible,
then the left (b, c)-inverse of a and the right (b, c)-inverse of a are unique. Moreover, the
left (b, c)-inverse of a coincides with the right (b, c)-inverse of a.

Theorem 3.3 Leta,b,c,d € R such that a'®9 and d®-©) exist. Ifa”(b’c)a = aqll®:9,
then z(ad)z = z, zR = bR and Rz C Rc, where 7 = dl®.0gl®.0) particular, ad is left
(b, ¢)-invertible and z is a left (b, c)-inverse of ad.

Proof Let x = al®® and y = d!®9, then x € xRc and ydb = b. Then x € x Rc implies
7z € Rc, thatis Rz € Rc. From Lemma 2.1, we can get yax = y. Then zadb = yxadb =
yaxdb = ydb = b by xa = ax. Since dl®-9) exists, then yR = bR by Lemma 3.1 and b is
regular by Lemma 2.5. If b~ is an inner inverse of b, then

y=bs =bb bs =bb"y forsomes € R. (3.2)
Then by yax = y, ax = xa and (3.2), we have
z(ad)z = yx(ad)yx = yaxdyx = ydyx = yx = z;
Zz=yx =bb"yx € bR;
b = ydb = yaxdb = yxadb € zR.
Thus, we have z(ad)z = z and zR = bR. The conditions Rz C Rc and zadb = b imply
that ad is left (b, c)-invertible and z is a left (b, c)-inverse of ad. m}

The following Theorem 3.4 is the corresponding result of Theorem 3.3.

Theorem 3.4 Let a,b,c,d € R such that al®-9 and d1®-©) exist. Ifd”(b*“)d = dd®.0),
then z(ad)z = z, zR C bR and Rz = Rc, where z = dI0:941®.0) particular, ad is
right (b, c¢)-invertible and z is a right (b, c)-inverse of ad.

Theorem 3.5 Leta, b, c,d € R such that a'®9 and d1®-© exist. Ifa”(b*c)a = aal® gqnd
d1-9g = a9 then ad is (b, c)-invertible and

(ad) B.e) — gllb0) 4 llbye)

Proof 1t is easy to check that (ad)?¢) = dl®-9)gl?.©) by Lemma 3.2, Theorems 3.3 and
3.4. O

Lemma3.6 Leta,b,c € R, 0 : R — R be a right centralizer and Tt : R — R be a left
centralizer with ab = o (ba) and ca = t(ac). Ifa”(b’c) exists, then al®9q = gaqll-0),
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Proof Since a!l® exists, ¢ : R — R is a right centralizer and t : R — R is a left
centralizer, we have

ab = o (ba) = o (a'®aba) = a"*ac (ba) = a9 a?bp, (3.3)
ca = t(ac) = t(acaa'®y = t(ac)aa'®® = ca?al®©. (3.4)

Thus, by al®©) exists and by Lemma 3.1, we can get all®®R = bR and Ra®©) = Rc.
Then a!l®9) = br = sc for some r, s € R. Post-multiplying by r on (3.3) gives

aa®9 = abr = a'®9a2br = a9 ¢24100) (3.5)
Pre-multiplying by s on (3.4) gives

200 1) — lI.) 2 4l (Bc) (3.6)

a =sca = sca’a
Therefore, we have that al®-9q = qal®-© by (3.5) and (3.6). ]
As applications of Lemma 3.6, we have the following corollary.

Corollary 3.7 [26, Lemma 3.1] Let a,d € R and let ¢ : R — R be a bijective centralizer
with ad = o (da). If aV? exists, then a'?a = aal?.

Theorem3.8 Let a,b,c € R, 0 : R — R be a right centralizer and T : R — R be a
left centralizer with ab = o (ba) and ca = t(ac). Ifa”(h*c) and d"0-9) exist, then ad is
(b, c)-invertible and

(ad)I 00 = gl®.0) 4 b.0).

Proof Letx = a!l®® and y = d!*9 then ax = xa by Lemma 3.6. Thus, by Theorem 3.3,
we have z(ad)z = z, zR = bR and Rz C Rc, where z = -0 gll.c) Since

c=cax = t(ac)x = t(a)cx = 1t(a)(cdy)x = t(a)cdz € Rz,
Thus, Rz = Rc. The proof is completed by Lemma 3.1. O

If we let 0 = v = I in Theorem 3.8, then we can get the following corollary.

Corollary 3.9 [6, Corollary 2.5] Let a, b, c¢,d € R and ab = ba and ca = ac. Ifa”(b’c) and
AN oxist, then ad is (b, c¢)-invertible and

(ad) B.e) — glle) 4 llhye)

If we let b = ¢ = d in Theorem 3.8, then we can get the following corollary.

Corollary 3.10 [26, Theorem3.2] Leta, b, d € Randleto : R — R be abijective centralizer
with ad = o (da). If a"® and b'? exist, then ab is invertible along d and

(ab)”d = pld ld.

Lemma 3.11 [6, Theorem 2.3] Let a, b, ¢ € R such that a'®9 and d®-©) exist. Then ad
is (b, ¢)-invertible and (ad)!®-©) = gll®.0)4l®.0) if and only ifd”(h’c)a“(h*c)adb = b and
cadd b9l ®-©) = ¢ poth hold.

Theorem3.12 Let a,b,c € R and let 0,7 : R — R be two bijective centralizers with
db = o (bd) and ca = t(ac). If a'®) and A9 exist, then ad is (b, c)-invertible and

(ad)|®©) = g0 4l b.0)

@ Springer



Centralizer's applications to the (b, ¢)-inverses in rings 1745

Proof Let x = a9 and y = d!®©). We have that b and ¢ are regular by Lemma 2.5. Let
b~ and c¢” be an inner inverse of b and c, respectively. Then

db = o(bd) = o(bb” bd) = bb~ o (bd) = bb™ db, 3.7
ca = t(ac) = t(acc” ¢) = t(ac)c” ¢ = cac™ c. (3.8)
Let z = yx. Then by (3.7), (3.8), xab = b and cdy = c, we have
z(ad)b = yxadb = yxa(bb~db) = y(xab)b~db = ybb~db = ydb = b;

clad)z = cadyx = (cac” c)dyx = cac™ (cdy)x = cac”cx = cax = c.
Thus, ad is (b, ¢)-invertible and (ad)!?®©) = by Lemma 3.11. ]

Corollary 3.13 [6, Corollary 2.5] Leta, b, c,d € R and db = bd and ca = ac. Ifa”(b*c) and
AP0 exist, then ad is (b, ¢)-invertible and

(ad)|®©) = g0l b.0)

Ifo : R — Risabijective centralizer, then b = o (b)o~1(1). In fact, observe that o (b) =
o(b-1) = bo(l). In addition, if we let w = o ~1(1), then 1 = o(w) = o (w - 1) = wo (1)
and 1 = o(1-w) = o(1)w, which imply that o (1) is invertible and oD '=w=0c"! (1).
From o (b) = bo (1) we getb = o(b)o (1)~ = o (b)o~1(1). The above facts will be used
in the next theorem.

Theorem3.14 Let a,b,d € R and let o, T : R — R be two bijective centralizers. Then
a9 exists if and only if al@®)7©) exists. In this case,

2160 — l@®). 7).

Proof (=). From the existence of the (b, ¢)-inverse of a, we have

o(b) =0o(bl) =bo(1) € bR;
t(c) = t(lc) = 1t(1)c € Rc. (3.9

From b = o (b)o~!(1) and ¢ = ="' (1)t (c), we have bR C o (b)R and Rc C Rt (c), thus
by (3.9), we have bR = o (b)R and Rc = Rt(c). Thus, al@®).1©) exigts and all®-9) =
all@®).7(©) by Lemma 2.6.

(«). Since o' and ™! are bijective centralizers, we can get the equivalence by the
manner in the first part of the proof of this theorem. O
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