ORIGINAL PAPER

Centralizer's applications to the (b, c)-inverses in rings

Sanzhang Xu¹ · Jianlong Chen² · Julio Benítez³ · Dingguo Wang⁴

Received: 2 February 2018 / Accepted: 28 August 2018 / Published online: 6 September 2018 © Springer-Verlag Italia S.r.l., part of Springer Nature 2018

Abstract

We give several conditions in order that the absorption law for one sided (b,c)-inverses in rings holds. Also, by using centralizers, we obtain the absorption law for the (b,c)-inverse and the reverse order law of the (b,c)-inverse in rings. As applications, we obtain the related results for the inverse along an element, Moore–Penrose inverse, Drazin inverse, group inverse and core inverse.

Keywords Centralizer \cdot (b, c)-inverse \cdot Absorption law \cdot Reverse order law

Mathematics Subject Classification 16W10 · 15A09

1 Introduction

Throughout this paper, R denotes a unital ring. The following notations $aR = \{ax \mid x \in R\}$, $Ra = \{xa \mid x \in R\}$ and [a, b] = ab - ba will be used in the sequel for $a, b \in R$. In [9, Definition 1.3], Drazin introduced a new class of outer inverse in the setting of semigroups or rings, namely, the (b, c)-inverse. Let $a, b, c \in R$, we say that a is (b, c)-invertible if exists $y \in R$ such that

$$y \in bRy \cap yRc$$
, $yab = b$ and $cay = c$.

Sanzhang Xu xusanzhang5222@126.com

> Jianlong Chen jlchen@seu.edu.cn

Julio Benítez jbenitez@mat.upv.es

Dingguo Wang dingguo95@126.com

- Faculty of Mathematics and Physics, Huaiyin Institute of Technology, Huai'an 223003, China
- School of Mathematics, Southeast University, Nanjing 210096, China
- Instituto de Matemática Multidisciplinar, Universitat Politècnica de València, 46022 Valencia, Spain
- School of Mathematical Sciences, Qufu Normal University, Qufu 273165, China

If such y exists, then it is unique, denoted by $a^{\parallel(b,c)}$, and said to be the (b,c)-inverse of a. Many existence criteria and properties of the (b,c)-inverse can be found in, for example, [3,4,9,10,13,14,19,21-23]. In [10, Definition 1.2] and [14, Definition 2.1], the authors independently introduced the one-sided (b,c)-inverses in rings. Let $a,b,c\in R$. We call that $x\in R$ is a *left* (b,c)-inverse of a if $Rx\subseteq Rc$ and xab=b. We call that $y\in R$ is a *right* (b,c)-inverse of a if $yR\subseteq bR$ and cay=c.

In [16], Mary introduced a new type of generalized inverse, namely, the inverse along an element. Let $a, d \in R$. We say that a is *invertible along* d if there exists $y \in R$ such that

$$yad = d = day$$
, $yR = dR$ and $Ry = Rd$.

If such y exists, then it is unique and denoted by $a^{\parallel d}$. Many existence criteria and properties of the inverse along an element can be found in, for example, [2,16,17,24-26]. By the definition of the inverse along d, we have that $a^{\parallel d}$ is the (d,d)-inverse of a. The definitions of left and right inverses along an element can be found in [24].

An element $a \in R$ is said to be *Drazin invertible* if there exists $x \in R$ such that ax = xa, xax = x and $a^k = a^{k+1}x$ for some nonnegative integer k. The element x above is unique if it exists and denoted by a^D [8]. The smallest positive integer k is called the *Drazin index* of a, denoted by a^D [8]. Then a is group invertible and the *group inverse* of a is denoted by $a^\#$. Thus, $a^\#$ satisfies $a^\#aa^\# = a^\#$, $a^\#a = aa^\#$ and $aa^\#a = a$.

An involutory ring R means that R is a unital ring with involution, i.e., a ring with unity 1, and a mapping $a \mapsto a^*$ from R to R such that $(a^*)^* = a$, $(ab)^* = b^*a^*$ and $(a+b)^* = a^* + b^*$, for all $a, b \in R$. Let $a, x \in R$. If axa = a, xax = x, $(ax)^* = ax$ and $(xa)^* = xa$, then x is called a *Moore–Penrose inverse* of a. If such an element x exists, then it is unique and denoted by a^{\dagger} . We call that $x \in R$ is an *inner inverse* of a if axa = a.

The notion of the core inverse for a complex matrix was introduced by Baksalary and Trenkler [1]. In [20], Rakić et al. generalized the core inverse of a complex matrix to the case of an element in R with involution. More precisely, let $a, x \in R$, if axa = a, xR = aR and $Rx = Ra^*$, then x is called a *core inverse* of a. If such an element x exists, then it is unique and denoted by a^{\oplus} . Also, in [20] the authors defined a related inner inverse in a ring with an involution. If $a \in R$, then $x \in R$ is called a *dual core inverse* of a if $axa = a, xR = a^*R$ and Rx = Ra. If such an element x exists, then it is unique and denoted by a_{\oplus} . It is evident that $a \in R^{\oplus}$ if and only $a^* \in R_{\oplus}$, and in this case, one has $(a^{\oplus})^* = (a^*)_{\oplus}$.

If $a \in R$ are both Moore–Penrose invertible and group invertible and $a^{\dagger} = a^{\sharp}$, we call that a is an EP element.

2 Absorption laws for the (b, c)-inverse

Let $a, b \in R$ be two invertible elements. It is well known that

$$a^{-1} + b^{-1} = a^{-1}(a+b)b^{-1}.$$
 (2.1)

The equality (2.1) is known as the *absorption law* of invertible elements. In general, the absorption law does not hold for generalized inverses, for example, [11,15]. In this section, the absorption laws for one-sided (b,c)-inverses are obtained.

Lemma 2.1 *Let* $a, b, c, d \in R$. *Then*

(1) If $a_l^{\parallel(b,c)}$ is a left (b,c)-inverse of a and $d_r^{\parallel(b,c)}$ is a right (b,c)-inverse of d, then $a_l^{\parallel(b,c)}ad_r^{\parallel(b,c)}=d_r^{\parallel(b,c)}$ and $a_l^{\parallel(b,c)}dd_r^{\parallel(b,c)}=a_l^{\parallel(b,c)}$;

(2) If $a_r^{\parallel(b,c)}$ is a right (b,c)-inverse of a and $d_l^{\parallel(b,c)}$ is a left (b,c)-inverse of d, then $d_l^{\parallel(b,c)}da_r^{\parallel(b,c)}=a_r^{\parallel(b,c)}$ and $d_l^{\parallel(b,c)}aa_r^{\parallel(b,c)}=d_l^{\parallel(b,c)}$.

Proof (1) Let $x = a_l^{\parallel(b,c)}$ and $y = d_r^{\parallel(b,c)}$, then x = rc and y = bs for some $r, s \in R$. Thus, xay = xabs = bs = y by xab = b and xdy = rcdy = rc = x by cdy = c.

(2) Can be proved by changing the roles of a and d in (1).

By $a^{\parallel d}$ is the (d, d)-inverse of a, [26, Lemma 2.1] is a corollary of Lemma 2.1.

Theorem 2.2 *Let* a, b, c, $d \in R$. *Then*

- (1) If $a_l^{\parallel(b,c)}$ is a left (b,c)-inverse of a and $d_r^{\parallel(b,c)}$ is a right (b,c)-inverse of d, then $a_l^{\parallel(b,c)}+d_r^{\parallel(b,c)}=a_l^{\parallel(b,c)}(a+d)d_r^{\parallel(b,c)};$
- (2) If $a_r^{\parallel(b,c)}$ is a right (b,c)-inverse of a and $d_l^{\parallel(b,c)}$ is a left (b,c)-inverse of d, then $a_r^{\parallel(b,c)}+d_l^{\parallel(b,c)}=d_l^{\parallel(b,c)}(a+d)a_r^{\parallel(b,c)}$.

Proof (1) Let $x = a_l^{\parallel(b,c)}$ and $y = d_r^{\parallel(b,c)}$, then by Lemma 2.1, we have xay = y and xdy = x. Thus,

$$x(a+d)y = xay + xdy = x + y.$$

(2) Can be proved by changing the roles of a and d in (1).

By Theorem 2.2, we have the following corollary.

Corollary 2.3 *Let* $a, b, c, d \in R$. *Then*

- (1) If a is (b,c)-invertible and d is (b,c)-invertible, then $a^{\parallel(b,c)}+d^{\parallel(b,c)}=a^{\parallel(b,c)}(a+d)d^{\parallel(b,c)}$:
- (2) [26, Proposition 2.2] If $a_r^{\parallel d}$ is a right inverse along d of a and $b_l^{\parallel d}$ is a left inverse along d of b, then $a_r^{\parallel d} + b_l^{\parallel d} = b_l^{\parallel d} (a+b) a_r^{\parallel d}$;
- (3) [26, Corollary 2.3] If a is invertible along d and b is invertible along d, then $a^{\parallel d} + b^{\parallel d} = a^{\parallel d}(a+b)b^{\parallel d}$.

Let $a, b, c, d \in R$. If a and d are both (b, c)-invertible, then the absorption law for the (b, c)-inverse holds by Corollary 2.3. A natural question: if a is (b, c)-invertible and d is (u, v)-invertible for some $u, v \in R$, does the absorption law for $a^{\parallel (b, c)}$ and $d^{\parallel (u, v)}$ holds? That is, does the relation

$$a^{\parallel(b,c)} + d^{\parallel(u,v)} = a^{\parallel(b,c)}(a+d)d^{\parallel(u,v)}$$
(2.2)

hold for arbitrary $b, c, u, v \in R$?

Example 2.4 Let $\mathbb{C}^{2\times 2}$ denotes the set of all 2×2 complex matrices over the complex field \mathbb{C} . The involution in $\mathbb{C}^{2\times 2}$ is the conjugate transposition. Consider $a=\begin{bmatrix}1&0\\1&0\end{bmatrix}, d=\begin{bmatrix}0&0\\1&1\end{bmatrix},$ $b=c=\begin{bmatrix}1&1\\0&0\end{bmatrix}$ and $u=v=\begin{bmatrix}1&1\\1&1\end{bmatrix}$. Note that $a^{\parallel(b,c)}=a^{\dagger}=\begin{bmatrix}\frac{1}{2}&\frac{1}{2}\\0&0\end{bmatrix}$ and $d^{\parallel(u,v)}=d^{\parallel u}=\begin{bmatrix}\frac{1}{2}&\frac{1}{2}\\\frac{1}{2}&\frac{1}{2}\\\frac{1}{2}&\frac{1}{2}\end{bmatrix}$. It is easily to check that the relation in (2.2) does not hold in general. In fact, $a^{\parallel(b,c)}+d^{\parallel(u,v)}=\begin{bmatrix}1&1\\\frac{1}{2}&\frac{1}{2}\end{bmatrix}\neq\begin{bmatrix}1&1\\0&0\end{bmatrix}=a^{\parallel(b,c)}(a+d)d^{\parallel(u,v)}.$

Let σ be a map from R to R. If $\sigma(ab) = \sigma(a)b$ for all $a, b \in R$, we call that σ is a *left centralizer* [12]. If $\sigma(ab) = a\sigma(b)$ for all $a, b \in R$, we call that σ is a *right centralizer* [12]. We call that σ is a *centralizer* if it is both a left and a right centralizer, that is, σ is a mapping that satisfies $\sigma(ab) = \sigma(a)b = a\sigma(b)$ for all $a, b \in R$. It is well-known that if σ is a bijective centralizer, then so is σ^{-1} . The tool of centralizers is useful in the theory of generalized inverses, for example, [26,27]. This tool is also useful in Hopf algebra, for example, [5].

Before investigate the absorption law for $a^{\parallel(b,c)}$ and $d^{\parallel(u,v)}$ by using centralizers, the following two lemmas are necessary.

Lemma 2.5 [21, Proposition 3.3] Let $a, b, c \in R$. If a is (b, c)-invertible, then b and c are regular.

Lemma 2.6 [4, Remark 2.2(i)] Let $a, d, u, v \in R$. If bR = uR and Rc = Rv, then a is (b, c)-invertible if and only if a is (u, v)-invertible. In this case, we have $a^{\parallel (b,c)} = a^{\parallel (u,v)}$.

Theorem 2.7 Let $\sigma, \tau: R \to R$ be two bijective centralizers and let $a, b, c, d, u, v \in R$ with $b = \sigma(u)$ and $c = \tau(v)$. If $a^{\parallel(b,c)}$ and $d^{\parallel(u,v)}$ exist, then $a^{\parallel(b,c)} + d^{\parallel(u,v)} = a^{\parallel(b,c)}(a+d)d^{\parallel(u,v)}$.

Proof Since $\sigma: R \to R$ is a bijective centralizers, thus

$$b = \sigma(u) = \sigma(u1) = u\sigma(1);$$

 $u = \sigma^{-1}(b) = \sigma^{-1}(b1) = b\sigma^{-1}(1).$

That is bR = uR. The condition Rc = Rv can be proved in a similar way. Then, $a^{\parallel(b,c)} = a^{\parallel(u,v)}$ by Lemma 2.6. Therefore, we have $a^{\parallel(b,c)} + d^{\parallel(u,v)} = a^{\parallel(b,c)}(a+d)d^{\parallel(u,v)}$ by Corollary 2.3.

Let R have an involution and $a \in R$. By [9], we have that a is Moore–Penrose invertible if and only if a is (a^*, a^*) -invertible, a is Drazin invertible if and only if there exists $k \in \mathbb{N}$ such that a is (a^k, a^k) -invertible and a is group invertible if and only if a is (a, a)-invertible. By [20, Theorem 4.4], we have that the (a, a^*) -inverse coincides with the core inverse of a and the (a^*, a) -inverse coincides with the dual core inverse of a. By [16, Lemma 3], we have that a is invertible along a if and only if a is (a, a)-invertible. As applications of Theorem 2.7, we have the following corollary. The item (1) in the following corollary can be found in [26, Theorem 2.6]. The items (2), (3) and (4) in the following corollary can be found in [26, Corollary 2.8].

Corollary 2.8 Let $\sigma, \tau : R \to R$ be two bijective centralizers and let $a, b, d_1, d_2 \in R$. Then

- (1) If $a^{\|d_1\|}$ and $b^{\|d_2\|}$ exist with $d_1 = \sigma(d_2)$, then $a^{\|d_1\|} + b^{\|d_2\|} = a^{\|d_1\|} (a+b) b^{\|d_2\|}$;
- (2) If $a^{\#}$ and $b^{\#}$ exist with $a = \sigma(b)$, then $a^{\#} + b^{\#} = a^{\#}(a + b)b^{\#}$;
- (3) If a^D and b^D exist with $a^n = \sigma(b^m)$, where $\operatorname{ind}(a) = n$ and $\operatorname{ind}(b) = m$, then $a^D + b^D = a^D(a+b)b^D$:
- (4) If a^{\dagger} and b^{\dagger} exist with $a^* = \sigma(b^*)$, then $a^{\dagger} + b^{\dagger} = a^{\dagger}(a+b)b^{\dagger}$;
- (5) If a^{\oplus} and b^{\oplus} exist with $a = \sigma(b)$ and $a^* = \tau(b^*)$, then $a^{\oplus} + b^{\oplus} = a^{\oplus}(a+b)b^{\oplus}$;
- (6) If a_{\oplus} and b_{\oplus} exist with $a^* = \sigma(b^*)$ and $a = \tau(b)$, then $a_{\oplus} + b_{\oplus} = a_{\oplus}(a+b)b_{\oplus}$.

Recall that if an element in a ring is invertible and Hermite, we call such an element a positive element. Let R be a unitary ring with an involution and consider $a \in R$ and two positive element $m, n \in R$. Then by [2, Theorem 3.2], we have a is weighted Moore–Penrose invertible relative m and n if and only if a is invertible along $n^{-1}a^*m$. Furthermore, in this case, $a^{\|n^{-1}a^*m\|} = a_{m,n}^{\dagger}$. Thus, by Corollary 2.8(1), we can obtain an absorption law of the weighted Moore–Penrose inverse.

3 Reverse order laws for the (b, c)-inverse

Let $a, b \in R$ be two invertible elements. It is well known that

$$(ab)^{-1} = b^{-1}a^{-1}. (3.1)$$

The equality (3.1) is known as the *reverse order law* of invertible elements. In general, the reverse order law does not hold for generalized inverses, for example, [6,7,18,25]. The following two lemmas will be useful in the sequel.

Lemma 3.1 [9, Theorem 2.1 (ii) and Proposition 6.1] Let $a, b, c \in R$. Then $y \in R$ is the (b, c)-inverse of a if and only if yay = y, yR = bR and Ry = Rc.

Lemma 3.2 [10, Theorem 2.1] Let $a, b, c \in R$. If a is both left and right (b, c)-invertible, then the left (b, c)-inverse of a and the right (b, c)-inverse of a are unique. Moreover, the left (b, c)-inverse of a coincides with the right (b, c)-inverse of a.

Theorem 3.3 Let $a, b, c, d \in R$ such that $a^{\parallel(b,c)}$ and $d^{\parallel(b,c)}$ exist. If $a^{\parallel(b,c)}a = aa^{\parallel(b,c)}$, then z(ad)z = z, zR = bR and $Rz \subseteq Rc$, where $z = d^{\parallel(b,c)}a^{\parallel(b,c)}$. In particular, ad is left (b,c)-invertible and z is a left (b,c)-inverse of ad.

Proof Let $x = a^{\parallel(b,c)}$ and $y = d^{\parallel(b,c)}$, then $x \in xRc$ and ydb = b. Then $x \in xRc$ implies $z \in Rc$, that is $Rz \subseteq Rc$. From Lemma 2.1, we can get yax = y. Then zadb = yxadb = yaxdb = ydb = b by xa = ax. Since $d^{\parallel(b,c)}$ exists, then yR = bR by Lemma 3.1 and b is regular by Lemma 2.5. If b^- is an inner inverse of b, then

$$y = bs = bb^-bs = bb^-y$$
 for some $s \in R$. (3.2)

Then by yax = y, ax = xa and (3.2), we have

$$z(ad)z = yx(ad)yx = yaxdyx = ydyx = yx = z;$$

$$z = yx = bb^{-}yx \in bR;$$

$$b = ydb = yaxdb = yxadb \in zR.$$

Thus, we have z(ad)z = z and zR = bR. The conditions $Rz \subseteq Rc$ and zadb = b imply that ad is left (b, c)-invertible and z is a left (b, c)-inverse of ad.

The following Theorem 3.4 is the corresponding result of Theorem 3.3.

Theorem 3.4 Let $a, b, c, d \in R$ such that $a^{\parallel(b,c)}$ and $d^{\parallel(b,c)}$ exist. If $d^{\parallel(b,c)}d = dd^{\parallel(b,c)}$, then z(ad)z = z, $zR \subseteq bR$ and Rz = Rc, where $z = d^{\parallel(b,c)}a^{\parallel(b,c)}$. In particular, ad is right (b,c)-invertible and z is a right (b,c)-inverse of ad.

Theorem 3.5 Let $a, b, c, d \in R$ such that $a^{\parallel(b,c)}$ and $d^{\parallel(b,c)}$ exist. If $a^{\parallel(b,c)}a = aa^{\parallel(b,c)}$ and $d^{\parallel(b,c)}d = dd^{\parallel(b,c)}$, then ad is (b,c)-invertible and

$$(ad)^{\parallel (b,c)} = d^{\parallel (b,c)} a^{\parallel (b,c)}.$$

Proof It is easy to check that $(ad)^{\parallel(b,c)} = d^{\parallel(b,c)}a^{\parallel(b,c)}$ by Lemma 3.2, Theorems 3.3 and 3.4.

Lemma 3.6 Let $a,b,c \in R$, $\sigma:R \to R$ be a right centralizer and $\tau:R \to R$ be a left centralizer with $ab = \sigma(ba)$ and $ca = \tau(ac)$. If $a^{\parallel(b,c)}$ exists, then $a^{\parallel(b,c)}a = aa^{\parallel(b,c)}$.

Proof Since $a^{\parallel(b,c)}$ exists, $\sigma:R\to R$ is a right centralizer and $\tau:R\to R$ is a left centralizer, we have

$$ab = \sigma(ba) = \sigma(a^{\parallel(b,c)}aba) = a^{\parallel(b,c)}a\sigma(ba) = a^{\parallel(b,c)}a^2b,$$
 (3.3)

$$ca = \tau(ac) = \tau(acaa^{\parallel(b,c)}) = \tau(ac)aa^{\parallel(b,c)} = ca^2a^{\parallel(b,c)}.$$
 (3.4)

Thus, by $a^{\parallel(b,c)}$ exists and by Lemma 3.1, we can get $a^{\parallel(b,c)}R = bR$ and $Ra^{\parallel(b,c)} = Rc$. Then $a^{\parallel(b,c)} = br = sc$ for some $r, s \in R$. Post-multiplying by r on (3.3) gives

$$aa^{\parallel(b,c)} = abr = a^{\parallel(b,c)}a^2br = a^{\parallel(b,c)}a^2a^{\parallel(b,c)}.$$
 (3.5)

Pre-multiplying by s on (3.4) gives

$$a^{\parallel(b,c)}a = sca = sca^2 a^{\parallel(b,c)} = a^{\parallel(b,c)} a^2 a^{\parallel(b,c)}.$$
 (3.6)

П

Therefore, we have that $a^{\parallel(b,c)}a = aa^{\parallel(b,c)}$ by (3.5) and (3.6).

As applications of Lemma 3.6, we have the following corollary.

Corollary 3.7 [26, Lemma 3.1] Let $a, d \in R$ and let $\sigma : R \to R$ be a bijective centralizer with $ad = \sigma(da)$. If $a^{\parallel d}$ exists, then $a^{\parallel d}a = aa^{\parallel d}$.

Theorem 3.8 Let $a,b,c \in R$, $\sigma:R \to R$ be a right centralizer and $\tau:R \to R$ be a left centralizer with $ab = \sigma(ba)$ and $ca = \tau(ac)$. If $a^{\parallel(b,c)}$ and $d^{\parallel(b,c)}$ exist, then ad is (b,c)-invertible and

$$(ad)^{\parallel (b,c)} = d^{\parallel (b,c)} a^{\parallel (b,c)}.$$

Proof Let $x = a^{\parallel(b,c)}$ and $y = d^{\parallel(b,c)}$, then ax = xa by Lemma 3.6. Thus, by Theorem 3.3, we have z(ad)z = z, zR = bR and $Rz \subseteq Rc$, where $z = d^{\parallel(b,c)}a^{\parallel(b,c)}$. Since

$$c = cax = \tau(ac)x = \tau(a)cx = \tau(a)(cdy)x = \tau(a)cdz \in Rz$$

Thus, Rz = Rc. The proof is completed by Lemma 3.1.

If we let $\sigma = \tau = I$ in Theorem 3.8, then we can get the following corollary.

Corollary 3.9 [6, Corollary 2.5] Let $a, b, c, d \in R$ and ab = ba and ca = ac. If $a^{\parallel (b,c)}$ and $d^{\parallel (b,c)}$ exist, then ad is (b,c)-invertible and

$$(ad)^{\parallel (b,c)} = d^{\parallel (b,c)} a^{\parallel (b,c)}.$$

If we let b = c = d in Theorem 3.8, then we can get the following corollary.

Corollary 3.10 [26, Theorem 3.2] Let $a, b, d \in R$ and let $\sigma : R \to R$ be a bijective centralizer with $ad = \sigma(da)$. If $a^{\parallel d}$ and $b^{\parallel d}$ exist, then ab is invertible along d and

$$(ab)^{\|d} = b^{\|d}a^{\|d}.$$

Lemma 3.11 [6, Theorem 2.3] Let $a, b, c \in R$ such that $a^{\parallel(b,c)}$ and $d^{\parallel(b,c)}$ exist. Then ad is (b,c)-invertible and $(ad)^{\parallel(b,c)} = d^{\parallel(b,c)}a^{\parallel(b,c)}$ if and only if $d^{\parallel(b,c)}a^{\parallel(b,c)}$ adb = b and $cadd^{\parallel(b,c)}a^{\parallel(b,c)} = c$ both hold.

Theorem 3.12 Let $a, b, c \in R$ and let $\sigma, \tau : R \to R$ be two bijective centralizers with $db = \sigma(bd)$ and $ca = \tau(ac)$. If $a^{\parallel(b,c)}$ and $d^{\parallel(b,c)}$ exist, then ad is (b,c)-invertible and

$$(ad)^{\parallel (b,c)} = d^{\parallel (b,c)} a^{\parallel (b,c)}.$$

Proof Let $x = a^{\parallel (b,c)}$ and $y = d^{\parallel (b,c)}$. We have that b and c are regular by Lemma 2.5. Let b^- and c^- be an inner inverse of b and c, respectively. Then

$$db = \sigma(bd) = \sigma(bb^-bd) = bb^-\sigma(bd) = bb^-db, \tag{3.7}$$

$$ca = \tau(ac) = \tau(acc^{-}c) = \tau(ac)c^{-}c = cac^{-}c.$$
 (3.8)

Let z = yx. Then by (3.7), (3.8), xab = b and cdy = c, we have

$$z(ad)b = yxadb = yxa(bb^-db) = y(xab)b^-db = ybb^-db = ydb = b;$$

 $c(ad)z = cadyx = (cac^-c)dyx = cac^-(cdy)x = cac^-cx = cax = c.$

Thus, ad is (b, c)-invertible and $(ad)^{\parallel (b,c)} = z$ by Lemma 3.11.

Corollary 3.13 [6, Corollary 2.5] Let $a, b, c, d \in R$ and db = bd and ca = ac. If $a^{\parallel (b,c)}$ and $d^{\parallel (b,c)}$ exist, then ad is (b,c)-invertible and

$$(ad)^{\parallel (b,c)} = d^{\parallel (b,c)} a^{\parallel (b,c)}.$$

If $\sigma: R \to R$ is a bijective centralizer, then $b = \sigma(b)\sigma^{-1}(1)$. In fact, observe that $\sigma(b) = \sigma(b \cdot 1) = b\sigma(1)$. In addition, if we let $w = \sigma^{-1}(1)$, then $1 = \sigma(w) = \sigma(w \cdot 1) = w\sigma(1)$ and $1 = \sigma(1 \cdot w) = \sigma(1)w$, which imply that $\sigma(1)$ is invertible and $\sigma(1)^{-1} = w = \sigma^{-1}(1)$. From $\sigma(b) = b\sigma(1)$ we get $b = \sigma(b)\sigma(1)^{-1} = \sigma(b)\sigma^{-1}(1)$. The above facts will be used in the next theorem.

Theorem 3.14 Let $a, b, d \in R$ and let $\sigma, \tau : R \to R$ be two bijective centralizers. Then $a^{\parallel(b,c)}$ exists if and only if $a^{\parallel(\sigma(b),\tau(c))}$ exists. In this case,

$$a^{\|(b,c)} = a^{\|(\sigma(b),\tau(c))\|}.$$

Proof (\Rightarrow) . From the existence of the (b, c)-inverse of a, we have

$$\sigma(b) = \sigma(b1) = b\sigma(1) \in bR;$$

$$\tau(c) = \tau(1c) = \tau(1)c \in Rc.$$
(3.9)

From $b = \sigma(b)\sigma^{-1}(1)$ and $c = \tau^{-1}(1)\tau(c)$, we have $bR \subseteq \sigma(b)R$ and $Rc \subseteq R\tau(c)$, thus by (3.9), we have $bR = \sigma(b)R$ and $Rc = R\tau(c)$. Thus, $a^{\parallel(\sigma(b),\tau(c))}$ exists and $a^{\parallel(b,c)} = a^{\parallel(\sigma(b),\tau(c))}$ by Lemma 2.6.

 (\Leftarrow) . Since σ^{-1} and τ^{-1} are bijective centralizers, we can get the equivalence by the manner in the first part of the proof of this theorem.

Acknowledgements This research is supported by the National Natural Science Foundation of China (no. 11771076 and no. 11871301). The first author is grateful to China Scholarship Council for giving him a scholarship for his further study in Universitat Politècnica de València, Spain.

References

- Baksalary, O.M., Trenkler, G.: Core inverse of matrices. Linear Multilinear Algebra 58(6), 681–697 (2010)
- Benítez, J., Boasso, E.: The inverse along an element in rings with an involution, Banach algebras and C*-algebras. Linear Multilinear Algebra 65(2), 284–299 (2017)
- 3. Benítez, J., Boasso, E., Jin, H.W.: On one-sided (*B*, *C*)-inverses of arbitrary matrices. Electron. J. Linear Algebra **32**, 391–422 (2017)
- Boasso, E., Kantún-Montiel, G.: The (b, c)-inverses in rings and in the Banach context. Mediterr. J. Math. 14, 112 (2017)

 Chen, Q.G., Wang, D.G.: A class of coquasitriangular Hopf group algebras. Comm. Algebra 44(1), 310–335 (2016)

- Chen, J.L., Ke, Y.Y., Mosić, D.: The reverse order law of the (b, c)-inverse in semigroups. Acta Math. Hung. 151(1), 181–198 (2017)
- 7. Deng, C.Y.: Reverse order law for the group inverses. J. Math. Anal. Appl. 382(2), 663-671 (2011)
- 8. Drazin, M.P.: Pseudo-inverses in associative rings and semigroups. Am. Math. Mon. 65, 506–514 (1958)
- 9. Drazin, M.P.: A class of outer generalized inverses. Linear Algebra Appl. 436, 1909–1923 (2012)
- 10. Drazin, M.P.: Left and right generalized inverses. Linear Algebra Appl. 510, 64–78 (2016)
- Jin, H.W., Benítez, J.: The absorption laws for the generalized inverses in rings. Electron. J. Linear Algebra 30, 827–842 (2015)
- 12. Johnson, B.E.: An introduction to the theory of centralizers. Proc. Lond. Math. Soc. 14, 299-320 (1964)
- 13. Ke, Y.Y., Cvetković-Ilić, D.S., Chen, J.L., Višnjić, J.: New results on (b,c)-inverses. Linear Multilinear Algebra 66(3), 447–458 (2018)
- 14. Ke Y.Y., Višnjić J., Chen J.L.: One sided (*b*, *c*)-inverse in rings (2016). arXiv:1607.06230v1
- Liu, X.J., Jin, H.W., Cvetković-Ilić, D.S.: The absorption laws for the generalized inverses. Appl. Math. Comput. 219, 2053–2059 (2012)
- 16. Mary, X.: On generalized inverse and Green's relations. Linear Algebra Appl. 434, 1836–1844 (2011)
- Mary, X., Patrício, P.: Generalized inverses modulo H in semigroups and rings. Linear Multilinear Algebra 61(8), 1130–1135 (2013)
- Mosić, D., Cvetković-Ilić, D.S.: Reverse order law for the Moore-Penrose inverse in C*-algebras. Electron.
 J. Linear Algebra 22, 92–111 (2011)
- Rakić, D.S.: A note on Rao and Mitra's constrained inverse and Drazin's (b, c)-inverse. Linear Algebra Appl. 523, 102–108 (2017)
- Rakić, D.S., Dinčić, N.Č., Djordjević, D.S.: Group, Moore–Penrose, core and dual core inverse in rings with involution. Linear Algebra Appl. 463, 115–133 (2014)
- Wang, L., Castro-González, N., Chen, J.L.: Characterizations of outer generalized inverses. Can. Math. Bull. 60(4), 861–871 (2017)
- 22. Wei, Y.M.: A characterization and representation of the generalized inverse $A_{T,S}^{(2)}$ and its applications. Linear Algebra Appl. **280**, 87–96 (1998)
- Xu, S.Z., Benítez, J.: Existence criteria and expressions of the (b, c)-inverse in rings and its applications. Mediterr. J. Math. 15, 14 (2018)
- Zhu, H.H., Chen, J.L., Patrício, P.: Further results on the inverse along an element in semigroups and rings. Linear Multilinear Algebra 64(3), 393–403 (2016)
- Zhu, H.H., Chen, J.L., Patrício, P.: Reverse order law for the inverse along an element. Linear Multilinear Algebra 65, 166–177 (2017)
- Zhu, H.H., Chen, J.L., Patrício, P., Mary, X.: Centralizer's applications to the inverse along an element. Appl. Math. Comput. 315, 27–33 (2017)
- Zhu, H.H., Zhang, X.X., Chen, J.L.: Centralizers and their applications to generalized inverses. Linear Algebra Appl. 458, 291–300 (2014)

