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Abstract
We give several conditions in order that the absorption law for one sided (b, c)-inverses in
rings holds. Also, by using centralizers, we obtain the absorption law for the (b, c)-inverse
and the reverse order law of the (b, c)-inverse in rings. As applications, we obtain the related
results for the inverse along an element,Moore–Penrose inverse,Drazin inverse, group inverse
and core inverse.
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1 Introduction

Throughout this paper, R denotes a unital ring. The following notations aR = {ax | x ∈ R},
Ra = {xa | x ∈ R} and [a, b] = ab − ba will be used in the sequel for a, b ∈ R. In [9,
Definition 1.3], Drazin introduced a new class of outer inverse in the setting of semigroups
or rings, namely, the (b, c)-inverse. Let a, b, c ∈ R, we say that a is (b, c)-invertible if exists
y ∈ R such that

y ∈ bRy ∩ yRc, yab = b and cay = c.
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If such y exists, then it is unique, denoted bya‖(b,c), and said to be the (b, c)-inverse ofa.Many
existence criteria and properties of the (b, c)-inverse can be found in, for example, [3,4,9,10,
13,14,19,21–23]. In [10, Definition 1.2] and [14, Definition 2.1], the authors independently
introduced the one-sided (b, c)-inverses in rings. Let a, b, c ∈ R. We call that x ∈ R is a left
(b, c)-inverse of a if Rx ⊆ Rc and xab = b. We call that y ∈ R is a right (b, c)-inverse of
a if yR ⊆ bR and cay = c.

In [16], Mary introduced a new type of generalized inverse, namely, the inverse along an
element. Let a, d ∈ R. We say that a is invertible along d if there exists y ∈ R such that

yad = d = day, yR = dR and Ry = Rd.

If such y exists, then it is unique and denoted by a‖d .Many existence criteria and properties of
the inverse along an element can be found in, for example, [2,16,17,24–26]. By the definition
of the inverse along d , we have that a‖d is the (d, d)-inverse of a. The definitions of left and
right inverses along an element can be found in [24].

An element a ∈ R is said to be Drazin invertible if there exists x ∈ R such that ax = xa,
xax = x and ak = ak+1x for some nonnegative integer k. The element x above is unique if
it exists and denoted by aD [8]. The smallest positive integer k is called the Drazin index of
a, denoted by ind(a). If ind(a) = 1, then a is group invertible and the group inverse of a is
denoted by a#. Thus, a# satisfies a#aa# = a#, a#a = aa# and aa#a = a.

An involutory ring R means that R is a unital ring with involution, i.e., a ring with
unity 1, and a mapping a �→ a∗ from R to R such that (a∗)∗ = a, (ab)∗ = b∗a∗ and
(a + b)∗ = a∗ + b∗, for all a, b ∈ R. Let a, x ∈ R. If axa = a, xax = x , (ax)∗ = ax and
(xa)∗ = xa, then x is called aMoore–Penrose inverse of a. If such an element x exists, then
it is unique and denoted by a†. We call that x ∈ R is an inner inverse of a if axa = a.

The notion of the core inverse for a complex matrix was introduced by Baksalary and
Trenkler [1]. In [20], Rakić et al. generalized the core inverse of a complex matrix to the case
of an element in R with involution. More precisely, let a, x ∈ R, if axa = a, x R = aR and
Rx = Ra∗, then x is called a core inverse of a. If such an element x exists, then it is unique
and denoted by a #©. Also, in [20] the authors defined a related inner inverse in a ring with an
involution. If a ∈ R, then x ∈ R is called a dual core inverse of a if axa = a, x R = a∗R
and Rx = Ra. If such an element x exists, then it is unique and denoted by a #©. It is evident
that a ∈ R #© if and only a∗ ∈ R #©, and in this case, one has (a #©)∗ = (a∗) #©.

If a ∈ R are both Moore–Penrose invertible and group invertible and a† = a#, we call
that a is an EP element.

2 Absorption laws for the (b, c)-inverse

Let a, b ∈ R be two invertible elements. It is well known that

a−1 + b−1 = a−1(a + b)b−1. (2.1)

The equality (2.1) is known as the absorption law of invertible elements. In general, the
absorption law does not hold for generalized inverses, for example, [11,15]. In this section,
the absorption laws for one-sided (b, c)-inverses are obtained.

Lemma 2.1 Let a, b, c, d ∈ R. Then

(1) If a‖(b,c)
l is a left (b, c)-inverse of a and d‖(b,c)

r is a right (b, c)-inverse of d, then

a‖(b,c)
l ad‖(b,c)

r = d‖(b,c)
r and a‖(b,c)

l dd‖(b,c)
r = a‖(b,c)

l ;
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(2) If a‖(b,c)
r is a right (b, c)-inverse of a and d‖(b,c)

l is a left (b, c)-inverse of d, then

d‖(b,c)
l da‖(b,c)

r = a‖(b,c)
r and d‖(b,c)

l aa‖(b,c)
r = d‖(b,c)

l .

Proof (1) Let x = a‖(b,c)
l and y = d‖(b,c)

r , then x = rc and y = bs for some r , s ∈ R. Thus,
xay = xabs = bs = y by xab = b and xdy = rcdy = rc = x by cdy = c.

(2) Can be proved by changing the roles of a and d in (1). 
�
By a‖d is the (d, d)-inverse of a, [26, Lemma 2.1] is a corollary of Lemma 2.1.

Theorem 2.2 Let a, b, c, d ∈ R. Then

(1) If a‖(b,c)
l is a left (b, c)-inverse of a and d‖(b,c)

r is a right (b, c)-inverse of d, then a‖(b,c)
l +

d‖(b,c)
r = a‖(b,c)

l (a + d)d‖(b,c)
r ;

(2) If a‖(b,c)
r is a right (b, c)-inverse of a and d‖(b,c)

l is a left (b, c)-inverse of d, then a‖(b,c)
r +

d‖(b,c)
l = d‖(b,c)

l (a + d)a‖(b,c)
r .

Proof (1) Let x = a‖(b,c)
l and y = d‖(b,c)

r , then by Lemma 2.1, we have xay = y and
xdy = x . Thus,

x(a + d)y = xay + xdy = x + y.

(2) Can be proved by changing the roles of a and d in (1). 
�
By Theorem 2.2, we have the following corollary.

Corollary 2.3 Let a, b, c, d ∈ R. Then

(1) If a is (b, c)-invertible and d is (b, c)-invertible, then a‖(b,c) + d‖(b,c) = a‖(b,c)(a +
d)d‖(b,c);

(2) [26, Proposition 2.2] If a‖d
r is a right inverse along d of a and b‖d

l is a left inverse along

d of b, then a‖d
r + b‖d

l = b‖d
l (a + b)a‖d

r ;
(3) [26, Corollary 2.3] If a is invertible along d and b is invertible along d, then a‖d +b‖d =

a‖d(a + b)b‖d .

Let a, b, c, d ∈ R. If a and d are both (b, c)-invertible, then the absorption law for the
(b, c)-inverse holds by Corollary 2.3. A natural question: if a is (b, c)-invertible and d is
(u, v)-invertible for some u, v ∈ R, does the absorption law for a‖(b,c) and d‖(u,v) holds?
That is, does the relation

a‖(b,c) + d‖(u,v) = a‖(b,c)(a + d)d‖(u,v) (2.2)

hold for arbitrary b, c, u, v ∈ R?

Example 2.4 Let C2×2 denotes the set of all 2 × 2 complex matrices over the complex field

C. The involution in C2×2 is the conjugate transposition. Consider a =
[
1 0
1 0

]
, d =

[
0 0
1 1

]
,

b = c =
[
1 1
0 0

]
and u = v =

[
1 1
1 1

]
. Note that a‖(b,c) = a† =

[ 1
2

1
2

0 0

]
and d‖(u,v) =

d‖u =
[ 1

2
1
2

1
2

1
2

]
. It is easily to check that the relation in (2.2) does not hold in general. In fact,

a‖(b,c) + d‖(u,v) =
[
1 1
1
2

1
2

]
�=

[
1 1
0 0

]
= a‖(b,c)(a + d)d‖(u,v).
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Let σ be a map from R to R. If σ(ab) = σ(a)b for all a, b ∈ R, we call that σ is a left
centralizer [12]. If σ(ab) = aσ(b) for all a, b ∈ R, we call that σ is a right centralizer
[12]. We call that σ is a centralizer if it is both a left and a right centralizer, that is, σ is a
mapping that satisfies σ(ab) = σ(a)b = aσ(b) for all a, b ∈ R. It is well-known that if
σ is a bijective centralizer, then so is σ−1. The tool of centralizers is useful in the theory
of generalized inverses, for example, [26,27]. This tool is also useful in Hopf algebra, for
example, [5].

Before investigate the absorption law for a‖(b,c) and d‖(u,v) by using centralizers, the
following two lemmas are necessary.

Lemma 2.5 [21, Proposition 3.3] Let a, b, c ∈ R. If a is (b, c)-invertible, then b and c are
regular.

Lemma 2.6 [4, Remark 2.2(i)] Let a, d, u, v ∈ R. If bR = uR and Rc = Rv, then a is
(b, c)-invertible if and only if a is (u, v)-invertible. In this case, we have a‖(b,c) = a‖(u,v).

Theorem 2.7 Let σ, τ : R → R be two bijective centralizers and let a, b, c, d, u, v ∈ R
with b = σ(u) and c = τ(v). If a‖(b,c) and d‖(u,v) exist, then a‖(b,c) + d‖(u,v) = a‖(b,c)(a +
d)d‖(u,v).

Proof Since σ : R → R is a bijective centralizers, thus

b = σ(u) = σ(u1) = uσ(1);
u = σ−1(b) = σ−1(b1) = bσ−1(1).

That is bR = uR. The condition Rc = Rv can be proved in a similar way. Then, a‖(b,c) =
a‖(u,v) by Lemma 2.6. Therefore, we have a‖(b,c) + d‖(u,v) = a‖(b,c)(a + d)d‖(u,v) by
Corollary 2.3. 
�

Let R have an involution and a ∈ R. By [9], we have that a is Moore–Penrose invertible if
and only if a is (a∗, a∗)-invertible, a is Drazin invertible if and only if there exists k ∈ N such
that a is (ak, ak)-invertible and a is group invertible if and only if a is (a, a)-invertible. By
[20, Theorem 4.4], we have that the (a, a∗)-inverse coincides with the core inverse of a and
the (a∗, a)-inverse coincides with the dual core inverse of a. By [16, Lemma 3], we have that
a is invertible along d if and only if a is (d, d)-invertible. As applications of Theorem 2.7,
we have the following corollary. The item (1) in the following corollary can be found in [26,
Theorem 2.6]. The items (2), (3) and (4) in the following corollary can be found in [26,
Corollary 2.8].

Corollary 2.8 Let σ, τ : R → R be two bijective centralizers and let a, b, d1, d2 ∈ R. Then

(1) If a‖d1 and b‖d2 exist with d1 = σ(d2), then a‖d1 + b‖d2 = a‖d1(a + b)b‖d2 ;
(2) If a# and b# exist with a = σ(b), then a# + b# = a#(a + b)b#;
(3) If aD and bD exist with an = σ(bm),where ind(a) = n and ind(b) = m, then aD+bD =

aD(a + b)bD;
(4) If a† and b† exist with a∗ = σ(b∗), then a† + b† = a†(a + b)b†;
(5) If a #© and b #© exist with a = σ(b) and a∗ = τ(b∗), then a #© + b #© = a #©(a + b)b #©;
(6) If a #© and b #© exist with a∗ = σ(b∗) and a = τ(b), then a #© + b #© = a #©(a + b)b #©.

Recall that if an element in a ring is invertible and Hermite, we call such an element a
positive element. Let R be a unitary ring with an involution and consider a ∈ R and two
positive elementm, n ∈ R. Then by [2, Theorem 3.2], we have a is weightedMoore–Penrose
invertible relative to m and n if and only if a is invertible along n−1a∗m. Furthermore, in
this case, a‖n−1a∗m = a†m,n . Thus, by Corollary 2.8(1), we can obtain an absorption law of
the weighted Moore–Penrose inverse.
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3 Reverse order laws for the (b, c)-inverse

Let a, b ∈ R be two invertible elements. It is well known that

(ab)−1 = b−1a−1. (3.1)

The equality (3.1) is known as the reverse order law of invertible elements. In general,
the reverse order law does not hold for generalized inverses, for example, [6,7,18,25]. The
following two lemmas will be useful in the sequel.

Lemma 3.1 [9, Theorem 2.1 (ii) and Proposition 6.1] Let a, b, c ∈ R. Then y ∈ R is the
(b, c)-inverse of a if and only if yay = y, yR = bR and Ry = Rc.

Lemma 3.2 [10, Theorem 2.1] Let a, b, c ∈ R. If a is both left and right (b, c)-invertible,
then the left (b, c)-inverse of a and the right (b, c)-inverse of a are unique. Moreover, the
left (b, c)-inverse of a coincides with the right (b, c)-inverse of a.

Theorem 3.3 Let a, b, c, d ∈ R such that a‖(b,c) and d‖(b,c) exist. If a‖(b,c)a = aa‖(b,c),
then z(ad)z = z, zR = bR and Rz ⊆ Rc, where z = d‖(b,c)a‖(b,c). In particular, ad is left
(b, c)-invertible and z is a left (b, c)-inverse of ad.

Proof Let x = a‖(b,c) and y = d‖(b,c), then x ∈ x Rc and ydb = b. Then x ∈ x Rc implies
z ∈ Rc, that is Rz ⊆ Rc. From Lemma 2.1, we can get yax = y. Then zadb = yxadb =
yaxdb = ydb = b by xa = ax . Since d‖(b,c) exists, then yR = bR by Lemma 3.1 and b is
regular by Lemma 2.5. If b− is an inner inverse of b, then

y = bs = bb−bs = bb−y for some s ∈ R. (3.2)

Then by yax = y, ax = xa and (3.2), we have

z(ad)z = yx(ad)yx = yaxdyx = ydyx = yx = z;
z = yx = bb−yx ∈ bR;
b = ydb = yaxdb = yxadb ∈ zR.

Thus, we have z(ad)z = z and zR = bR. The conditions Rz ⊆ Rc and zadb = b imply
that ad is left (b, c)-invertible and z is a left (b, c)-inverse of ad . 
�

The following Theorem 3.4 is the corresponding result of Theorem 3.3.

Theorem 3.4 Let a, b, c, d ∈ R such that a‖(b,c) and d‖(b,c) exist. If d‖(b,c)d = dd‖(b,c),
then z(ad)z = z, zR ⊆ bR and Rz = Rc, where z = d‖(b,c)a‖(b,c). In particular, ad is
right (b, c)-invertible and z is a right (b, c)-inverse of ad.

Theorem 3.5 Let a, b, c, d ∈ R such that a‖(b,c) and d‖(b,c) exist. If a‖(b,c)a = aa‖(b,c) and
d‖(b,c)d = dd‖(b,c), then ad is (b, c)-invertible and

(ad)‖(b,c) = d‖(b,c)a‖(b,c).

Proof It is easy to check that (ad)‖(b,c) = d‖(b,c)a‖(b,c) by Lemma 3.2, Theorems 3.3 and
3.4. 
�
Lemma 3.6 Let a, b, c ∈ R, σ : R → R be a right centralizer and τ : R → R be a left
centralizer with ab = σ(ba) and ca = τ(ac). If a‖(b,c) exists, then a‖(b,c)a = aa‖(b,c).
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Proof Since a‖(b,c) exists, σ : R → R is a right centralizer and τ : R → R is a left
centralizer, we have

ab = σ(ba) = σ(a‖(b,c)aba) = a‖(b,c)aσ(ba) = a‖(b,c)a2b, (3.3)

ca = τ(ac) = τ(acaa‖(b,c)) = τ(ac)aa‖(b,c) = ca2a‖(b,c). (3.4)

Thus, by a‖(b,c) exists and by Lemma 3.1, we can get a‖(b,c)R = bR and Ra‖(b,c) = Rc.
Then a‖(b,c) = br = sc for some r , s ∈ R. Post-multiplying by r on (3.3) gives

aa‖(b,c) = abr = a‖(b,c)a2br = a‖(b,c)a2a‖(b,c). (3.5)

Pre-multiplying by s on (3.4) gives

a‖(b,c)a = sca = sca2a‖(b,c) = a‖(b,c)a2a‖(b,c). (3.6)

Therefore, we have that a‖(b,c)a = aa‖(b,c) by (3.5) and (3.6). 
�
As applications of Lemma 3.6, we have the following corollary.

Corollary 3.7 [26, Lemma 3.1] Let a, d ∈ R and let σ : R → R be a bijective centralizer
with ad = σ(da). If a‖d exists, then a‖da = aa‖d .

Theorem 3.8 Let a, b, c ∈ R, σ : R → R be a right centralizer and τ : R → R be a
left centralizer with ab = σ(ba) and ca = τ(ac). If a‖(b,c) and d‖(b,c) exist, then ad is
(b, c)-invertible and

(ad)‖(b,c) = d‖(b,c)a‖(b,c).

Proof Let x = a‖(b,c) and y = d‖(b,c), then ax = xa by Lemma 3.6. Thus, by Theorem 3.3,
we have z(ad)z = z, zR = bR and Rz ⊆ Rc, where z = d‖(b,c)a‖(b,c). Since

c = cax = τ(ac)x = τ(a)cx = τ(a)(cdy)x = τ(a)cdz ∈ Rz,

Thus, Rz = Rc. The proof is completed by Lemma 3.1. 
�
If we let σ = τ = I in Theorem 3.8, then we can get the following corollary.

Corollary 3.9 [6, Corollary 2.5] Let a, b, c, d ∈ R and ab = ba and ca = ac. If a‖(b,c) and
d‖(b,c) exist, then ad is (b, c)-invertible and

(ad)‖(b,c) = d‖(b,c)a‖(b,c).

If we let b = c = d in Theorem 3.8, then we can get the following corollary.

Corollary 3.10 [26,Theorem3.2]Let a, b, d ∈ R and letσ : R → R beabijective centralizer
with ad = σ(da). If a‖d and b‖d exist, then ab is invertible along d and

(ab)‖d = b‖da‖d .

Lemma 3.11 [6, Theorem 2.3] Let a, b, c ∈ R such that a‖(b,c) and d‖(b,c) exist. Then ad
is (b, c)-invertible and (ad)‖(b,c) = d‖(b,c)a‖(b,c) if and only if d‖(b,c)a‖(b,c)adb = b and
cadd‖(b,c)a‖(b,c) = c both hold.

Theorem 3.12 Let a, b, c ∈ R and let σ, τ : R → R be two bijective centralizers with
db = σ(bd) and ca = τ(ac). If a‖(b,c) and d‖(b,c) exist, then ad is (b, c)-invertible and

(ad)‖(b,c) = d‖(b,c)a‖(b,c).
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Proof Let x = a‖(b,c) and y = d‖(b,c). We have that b and c are regular by Lemma 2.5. Let
b− and c− be an inner inverse of b and c, respectively. Then

db = σ(bd) = σ(bb−bd) = bb−σ(bd) = bb−db, (3.7)

ca = τ(ac) = τ(acc−c) = τ(ac)c−c = cac−c. (3.8)

Let z = yx . Then by (3.7), (3.8), xab = b and cdy = c, we have

z(ad)b = yxadb = yxa(bb−db) = y(xab)b−db = ybb−db = ydb = b;
c(ad)z = cadyx = (cac−c)dyx = cac−(cdy)x = cac−cx = cax = c.

Thus, ad is (b, c)-invertible and (ad)‖(b,c) = z by Lemma 3.11. 
�
Corollary 3.13 [6, Corollary 2.5] Let a, b, c, d ∈ R and db = bd and ca = ac. If a‖(b,c) and
d‖(b,c) exist, then ad is (b, c)-invertible and

(ad)‖(b,c) = d‖(b,c)a‖(b,c).

If σ : R → R is a bijective centralizer, then b = σ(b)σ−1(1). In fact, observe that σ(b) =
σ(b · 1) = bσ(1). In addition, if we let w = σ−1(1), then 1 = σ(w) = σ(w · 1) = wσ(1)
and 1 = σ(1 · w) = σ(1)w, which imply that σ(1) is invertible and σ(1)−1 = w = σ−1(1).
From σ(b) = bσ(1) we get b = σ(b)σ (1)−1 = σ(b)σ−1(1). The above facts will be used
in the next theorem.

Theorem 3.14 Let a, b, d ∈ R and let σ, τ : R → R be two bijective centralizers. Then
a‖(b,c) exists if and only if a‖(σ (b),τ (c)) exists. In this case,

a‖(b,c) = a‖(σ (b),τ (c)).

Proof (⇒). From the existence of the (b, c)-inverse of a, we have

σ(b) = σ(b1) = bσ(1) ∈ bR;
τ(c) = τ(1c) = τ(1)c ∈ Rc. (3.9)

From b = σ(b)σ−1(1) and c = τ−1(1)τ (c), we have bR ⊆ σ(b)R and Rc ⊆ Rτ(c), thus
by (3.9), we have bR = σ(b)R and Rc = Rτ(c). Thus, a‖(σ (b),τ (c)) exists and a‖(b,c) =
a‖(σ (b),τ (c)) by Lemma 2.6.

(⇐). Since σ−1 and τ−1 are bijective centralizers, we can get the equivalence by the
manner in the first part of the proof of this theorem. 
�
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