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Abstract. In 2012, Drazin introduced a class of outer generalized inverse in a ring R, the (b, c)-inverse of
a for a, b, c ∈ R and denoted by a‖(b,c). In this paper, rank equalities of AkA‖(B,C)

− A‖(B,C)Ak and (A∗)kA‖(B,C)
−

A‖(B,C)(A∗)k are obtained. As applications, we investigate equivalent conditions for the equalities (A∗)kA‖(B,C) =
A‖(B,C)(A∗)k and AkA‖(B,C) = A‖(B,C)Ak. As corollaries we obtain rank equalities related to the Moore-Penrose
inverse, the core inverse, and the Drazin inverse. The paper finishes with some rank equalities involving
different expressions containing A‖(B,C).

1. Introduction

There exist many generalized inverses of matrices in the literature, such as the group inverse, the Drazin
inverse, the Moore-Penrose inverse, the core inverse, the inverse along an element and the outer inverse
with prescribed range and null spaces. Many properties of such generalized inverses can be found in, for
example, [1, 2, 4, 7, 12–17, 23]. The (B,C)-inverse of a matrix A ∈ Cn×m (denoted by A‖(B,C) and it will be
defined in next section) is a strong generalization of such inverses.

For A ∈ Cn×n and k ≥ 1, several authors have investigated the rank of AkX −XAk, (A∗)kX −X(A∗)k, I ±X,
X ±X2, I −X2 and X −X3, where X is some generalized inverse of A (see [12, 20]). In this paper, we extend
these rank equalities to the (B,C)-inverse of A. The paper finishes studying the rank of A‖(B,C)

− A‖(D,E)

(which permits obtain when several generalized inverses coincide) and generalizing the Schur complement
to the (B,C)-inverse.

2. Preliminaries

The set of all m × n matrices over the complex field C will be denoted by Cm×n. Let A∗, R(A), N(A)
and rk(A) denote the conjugate transpose, column space, null space and rank of A ∈ Cm×n, respectively.
Moreover, I stands for the identity matrix of appropriate order.

2010 Mathematics Subject Classification. Primary 15A09; Secondary 15A03.
Keywords. Rank equality, Commutator, (B,C)-inverse.
Received: 04 January 2019; Accepted: 16 May 2019
Communicated by Dijana Mosić
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In [4, Definition 4.1], Benı́tez et al. extended the (B,C)-inverse from elements in a semigroup (see [8]) to
rectangular matrices as follows: let A ∈ Cm×n and B,C ∈ Cn×m, then the matrix A is said to be (B,C)-invertible,
if there exists a matrix Y ∈ Cn×m such that

YAB = B, CAY = C, R(Y) ⊆ R(B) and N(C) ⊆ N(Y). (1)

If such a matrix Y exists, then it is unique and denoted by A‖(B,C). Many existence criteria and properties of
the (B,C)-inverse can be found in, for example, [4, 6, 9–11, 18, 22, 24].

The (B,C)-inverse of A is a generalization of some well-known generalized inverses (see [8, p.1910]).
The Moore-Penrose inverse of A, denoted by A†, is the (A∗,A∗)-inverse of A. The inverse along D ∈ Cn×m of
A, denoted by A‖D, is the (D,D)-inverse of A. The group inverse of A, denoted by A#, is the (A,A)-inverse of
A. The Drazin inverse of A, denoded by AD, is the (Ak,Ak)-inverse of A, where k = ind(A), the index of A, is
the smallest nonnegative integer for which rk(Ak) = rk(Ak+1). By [19, Theorem 4.4], the (A,A∗)-inverse of A
coincides with the core inverse of A, denoted by A #©. Moreover, the following affirmations are equivalent:
(a) the core inverse of A exists, (b) the group inverse exists, (c) ind(A) ≤ 1.

Observe that from (1) one gets

R(A‖(B,C)) = R(B) and N(A‖(B,C)) = N(C) (2)

in case that A‖(B,C) exists.
The following lemmas will be used in the sequel.

Lemma 2.1. [4, Theorem 4.4] If A ∈ Cm×n and B,C ∈ Cn×m, then the following statements are equivalent:

(1) A‖(B,C) exists.

(2) rk (B) = rk (C) = rk (CAB).

In this case, A‖(B,C) = B(CAB)†C.

Lemma 2.2. [20, Theorem 2.2] Let A ∈ Cm×n , B ∈ Cm×k , C ∈ Cl×n, D ∈ Cl×k, and

C =
[

C1 C2

]
, B =

[
B1
B2

]
, A =

[
A1 0
0 A2

]
.

If

R(B1) ⊆ R(A1), R(C∗1) ⊆ R(A∗1), R(B2) ⊆ R(A2), R(C∗2) ⊆ R(A∗2),

then

rk
(
D − C1A†1B1 − C2A†2B2

)
= rk

A1 0 B1
0 A2 B2

C1 C2 D

 − rk(A1) − rk(A2). (3)

In addition, we shall also use the following several basic rank formulas in the sequel. Equalities (1) and
(2) in the following lemma can be found in [20, Lemma 1.5].

Lemma 2.3. If A,B ∈ Cn×n, then

(1) rk(A − ABA) = rk(A) + rk(I − BA) − n.

(2) rk(I − A2) = rk(I + A) + rk(I − A) − n.

(3) rk(A∗A2
− A∗A) = rk(A) + rk(I − A) − n.

(4) rk(A∗A2 + A∗A) = rk(A) + rk(I + A) − n.
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Proof. (3) Since[
I 0

−A∗A I

] [
I A

A∗A A∗A

] [
I −A
0 I

]
=

[
I 0
0 A∗A − A∗A2

]
and [

I −(A†)∗

0 I

] [
I A

A∗A A∗A

] [
I 0
−I I

]
=

[
I − A 0

0 A∗A

]
,

we have rk(A∗A2
− A∗A) + n = rk(A∗A) + rk(I − A). In addition, it is known (and simple to prove) that

rk(A) = rk(A∗A) holds. Therefore, the proof of (3) is finished. To prove (4) it is enough to change A by −A
in (3).

3. Main results

Let A ∈ Cn×n be of rank r and let T,S be subspaces of Cn with dim T ≤ r and dim T + dim S = n. In [2,
Theorem 14, Chapter 2] it was characterized when exists a matrix X ∈ Cn×n such that X is an outer inverse
of A, R(X) = T, andN(X) = S. These conditions force to the uniqueness of such X (when X exists) and X is
denoted A(2)

T,S. Assume that A(2)
T,S exists. In [12, Theorem 2.3], Liu proved the following rank equality

rk
(
AkA(2)

T,S − A(2)
T,SAk

)
= rk

[
AG
GAk

]
+ rk

[
AkG | GA

]
− 2 rk(AG).

where G ∈ Cn×n satisfies R(G) = T,N(G) = S and k ≥ 1.
In [4, Theorem 7.1], Benı́tez et al. showed that A(2)

R(D),N(E) = A‖(D,E) when A ∈ Cn×m, D,E ∈ Cm×n and A‖(D,E)

exists. According this, we can consider when

rk
(
AA‖(B,C)

− A‖(B,C)A
)

= rk
[

AB
CA

]
+ rk [AB | CA] − rk(AB) − rk(CA) (4)

holds for B,C ∈ Cn×n. The following example shows that (4) does not hold in general.

Example 3.1. Consider the following matrices

A =

1 0 1
0 1 0
0 0 0

 , B =

1 1 0
0 1 0
0 0 0

 , C =

1 1 0
0 1 0
1 0 0

 .
By using [4, Theorem 4.4], it is easy to prove that A‖(B,C) exists and

A‖(B,C) =

1 0 0
0 1 0
0 0 0

 .
Moreover, one has that rk

[
AB

CA

]
= 3, rk [AB | CA] = 3, rk(AB) = 2, rk(CA) = 2, and rk

(
AA‖(B,C)

− A‖(B,C)A
)

= 1.

Next two lemmas will be useful in the sequel.

Lemma 3.2. [21, Theorem 2.19] Let A ∈ Cm×n, P2 = P ∈ Cm×m and Q2 = Q ∈ Cn×n. The difference PA − AQ
satisfies the following rank equality

rk(PA − AQ) = rk
[

Q
PA

]
+ rk [AQ | P] − rk(P) − rk(Q).
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Lemma 3.3. If A ∈ Cm×n, B ∈ Cm×k and C ∈ Ck×n, then

(1) rk [A | B] = rk(B) if and only if R(A) ⊆ R(B).

(2) rk
[

A

C

]
= rk(C) if and only ifN(C) ⊆ N(A).

Proof. (1) follows from the equality rk [A | B] = rk(A) + rk(B) − dim (R(A) ∩ R(B)).
(2) follows from (1) andN(X)⊥ = R(X∗) valid for any matrix X.

Rank equality of the commutator AkA‖(B,C)
− A‖(B,C)Ak will be considered in the following theorem.

Theorem 3.4. Let A,B,C ∈ Cn×n. If A‖(B,C) exists, then for any k ≥ 1, we have

(1) rk
(
AkA‖(B,C)

− A‖(B,C)Ak
)

= rk
[

C

CAk

]
+ rk

[
AkB | B

]
− 2 rk(B).

(2) The following statements are equivalent:

(a) AkA‖(B,C) = A‖(B,C)Ak.

(b) rk
[
AkB | B

]
= rk(B) and rk

[
C

CAk

]
= rk(C).

(c) R(AkB) ⊆ R(B) andN(C) ⊆ N(CAk).

Proof. (1) Let X = A‖(B,C). Since X is an outer inverse of A, we have that both AX and XA are idempotents.
Note that AkX − XAk can be written as −(XAAk−1

− Ak−1AX). Thus, by Lemma 3.2, we have

rk(AkX − XAk) = rk
[

AX
XAk

]
+ rk

[
AkX | XA

]
− rk(AX) − rk(XA).

Since XAB = B and R(X) = R(B),

rk(B) = rk(XAB) ≤ rk(AB) = rk(AXAB) ≤ rk(AX) ≤ rk(X) = rk(B). (5)

Similarly, the conditions CAX = C andN(X) = N(C) imply

rk(C) = rk(CAX) ≤ rk(CA) = rk(CAXA) ≤ rk(XA) ≤ rk(X) = rk(C). (6)

From (5) and (6), we have

rk(AB) = rk(AX) = rk(CA) = rk(XA) = rk(B) = rk(C).

By Lemma 2.1, we have X = B(CAB)†C. Now, R(AkB) = R(AkXAB) ⊆ R(AkX) = R(AkB(CAB)†C) ⊆ R(AkB),
therefore, R(AkB) = R(AkX). Also we have R(XA) = R(B(CAB)†CA) ⊆ R(B) = R(XAB) ⊆ R(XA), so
R(XA) = R(B). Therefore,

rk
[
AkX | XA

]
= dim

(
R(AkX) + R(XA)

)
= dim

(
R(AkB) + R(B)

)
= rk

[
AkB | B

]
.

In addition, N(AX) ⊆ N(CAX) = N(C) ⊆ N(AB(CAB)†C) = N(AX) and N(CAk) ⊆ N(B(CAB)†CAk) =
N(XAk) ⊆ N(CAXAk) = N(CAk) imply

rk
[

AX
XAk

]
= rk

[
(AX)∗ | (XAk)∗

]
= dim

(
R[(AX)∗] + R[(XAk)∗]

)
= dim

(
N(AX)⊥ +N(XAk)⊥

)
= dim

(
N(C)⊥ +N(CAk)⊥

)
= rk

[
C

CAk

]
.
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The proof of (1) is finished.
(2) (a)⇔(b). By (1) and using rk(B) = rk(C) one has

rk(AkA‖(B,C)
− A‖(B,C)Ak) =

(
rk

[
C

CAk

]
− rk(C)

)
+

(
rk

[
AkB | B

]
− rk(B)

)
.

The proof of (a)⇔(b) follows by this last equality and having in mind that rk
[

C

CAk

]
− rk(C) and rk

[
AkB | B

]
−

rk(B) are always nonnegative.

(b)⇔(c) Since rk
[

C

CAk

]
= rk

[
CAk

C

]
, it is obvious by Lemma 3.3.

As a trivial corollary it is obtained an equivalent condition for AA‖(B,C) = A‖(B,C)A. When B = C and in
rings, the same equivalence was given in [3, Theorem 7.3].

Since the Moore-Penrose inverse of A coincides with the (A∗,A∗)-inverse of A ([15, Theorem 11]), by
letting B = C = A∗ in Theorem 3.4, the following corollary is obtained.

Corollary 3.5. [20, Theorem 2.8] Let A ∈ Cn×n. For any k ≥ 1, we have

(1) rk
(
AkA† − A†Ak

)
= rk

[
A∗

Ak

]
+ rk[Ak

| A∗] − 2 rk(A).

(2) The following statements are equivalent:

(a) AkA† = A†Ak.

(b) rk(A) = rk
[
(Ak)∗A | A

]
= rk

[
AkA∗ | A∗

]
.

(c) R(AkA∗) ⊆ R(A∗) andN(A∗) ⊆ N(A∗Ak).

Proof. (1) Since R(Ak) = R(Ak−1AA†A) = R(AkA∗(A†)∗) ⊆ R(AkA∗) ⊆ R(Ak) we get

rk
[
AkA∗ | A∗

]
= dim

(
R(AkA∗) + R(A∗)

)
= dim

(
R(Ak) + R(A∗)

)
= rk

[
Ak
| A∗

]
.

By using this last equality for B = A∗, we have

rk
[

A∗

A∗Ak

]
= rk[A | (A∗)kA] = rk[B∗ | BkB∗] = rk[B∗ | Bk] = rk

[
B

(B∗)k

]
= rk

[
A∗

Ak

]
,

and the proof of (1) is finished.
(2) Let B = C = A∗ in item (2) of Theorem 3.4.

In particular, by letting k = 1 in Corollary 3.5 we obtain the following corollary.

Corollary 3.6. Let A ∈ Cn×n. Then

(1) [20, Theorem 2.1] rk(AA† − A†A) = 2 rk[A | A∗] − 2 rk(A).

(2) The following statements are equivalent:

(a) AA† = A†A, that is, A is an EP matrix.

(b) rk[A | A∗] = rk(A).

(c) R(A∗) ⊆ R(A).

(d) R(A) ⊆ R(A∗).

(e) R(A) = R(A∗).

Definition 3.7. [5, Definition 1.2] Let A ∈ Cn×n. We call that A is co-EP if AA† − A†A is nonsingular.
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By Corollary 3.6 and Definition 3.7, we have the following corollary.

Corollary 3.8. Let A ∈ Cn×n. Then A is co-EP if and only if n = 2 rk[A | A∗] − 2 rk(A).

According to [19, Theorem 4.4] (i), an equivalent condition for A ∈ Cn×n to be core invertible is that A is
(A,A∗)-invertible, and in this case, A #© = A‖(A,A∗). Also, it is known that a matrix A ∈ Cn×n is core invertible
if and only if the index of A is less or equal than 1 (see [1]).

Corollary 3.9. Let A ∈ Cn×n be core invertible. For any k ≥ 1, we have

(1) rk(AkA #©
− A #©Ak) = rk

[
A∗

Ak

]
+ rk[Ak+1

| A] − 2 rk(A).

(2) The following statements are equivalent:

(a) AkA #© = A #©Ak.

(b) rk
[

A∗

Ak

]
= rk(A∗).

(c) N(A∗) ⊆ N(Ak).

Proof. It follows from Lemma 3.3, and Theorem 3.4.

Lemma 3.10. Let A,B1,B2,C1,C2 ∈ Cn×n. If R(B1) ⊆ R(B2) and R(C∗1) ⊆ R(C∗2), then

rk

A 0 C1
0 0 C2

B1 B2 0

 = rk(A) + rk(B2) + rk(C2).

Proof. Since R(B1) ⊆ R(B2), there exists X ∈ Cn×n such that B1 = B2X. Since R(C∗1) ⊆ R(C∗2), there exists
Y ∈ Cn×n such that C1 = YC2. The equalityI Y 0

0 I 0
0 0 I


A 0 0
0 C2 0
0 0 B2


 I 0 0
0 I 0
X 0 I

 =

A C1 0
0 C2 0

B1 0 B2


finishes the proof of this lemma.

In [20], Tian gave rank equalities of the commutator A∗A†−A†A∗, in [12], Liu investigated rank equalities
of the commutator A∗A(2)

T,S − A(2)
T,SA∗. We will extend these equalities to the (B,C)-inverse of A, i.e., we will

study the rank of (A∗)kA‖(B,C)
− A‖(B,C)(A∗)k in the following theorem, where k ≥ 1.

Theorem 3.11. Let A,B,C ∈ Cn×n. If A‖(B,C) exists, then for any k ≥ 1, we have

(1) rk
[
(A∗)kA‖(B,C)

− A‖(B,C)(A∗)k
]

= rk

C
[
(A∗)kA − A(A∗)k

]
B 0 C(A∗)k

0 0 C
(A∗)kB B 0

 − 2 rk(B).

(2) If R
[
(A∗)kB

]
⊆ R(B) and R(AkC∗) ⊆ R(C∗), then

rk
[
(A∗)kA‖(B,C)

− A‖(B,C)(A∗)k
]

= rk
[
C[(A∗)kA − A(A∗)k]B

]
.

Proof. (1) By Lemma 2.1, we have A‖(B,C) = B(CAB)†C. Hence

(A∗)kA‖(B,C)
− A‖(B,C)(A∗)k = (A∗)kB(CAB)†C − B(CAB)†C(A∗)k

= −C1A†1B1 − C2A†2B2,
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where C1 = −(A∗)kB, A1 = A2 = CAB, B1 = C, C2 = B, and B2 = C(A∗)k.
We claim that

R(B1) ⊆ R(A1), R(C∗1) ⊆ R(A∗1), R(B2) ⊆ R(A2), R(C∗2) ⊆ R(A∗2).

Two useful equalities to prove this claim are B(CAB)†CAB = B and CAB(CAB)†C = C. In fact, applying
A‖(B,C) = B(CAB)†C and the definition of the (B,C)-inverse we obtain, B(CAB)†CAB = A‖(B,C)AB = B and
CAB(CAB)†C = CAA‖(B,C) = C. Now, we have

R(B1) = R(C) = R
(
CAB(CAB)†C

)
= R(A1A†1C) ⊆ R(A1).

From

N(A1) ⊆ N(C1A†1A1) = N
(
(A∗)kB(CAB)†CAB

)
= N

(
(A∗)kB

)
= N(C1),

we get R(C∗1) ⊆ R(A∗1). Also we have

R(B2) = R
(
C(A∗)k

)
= R

(
CAB(CAB)†C(A∗)k

)
= R

(
A2A†2B2

)
⊆ R(A2).

From

N(A2) ⊆ N
(
C2A†2A2

)
= N

(
B(CAB)†CAB

)
= N(B) = N(C2),

we deduce R(C∗2) ⊆ R(A∗2).
Applying equality (3) of Lemma 2.2, we have

rk
[
(A∗)kA‖(B,C)

− A‖(B,C)(A∗)k
]

= rk
[
C1A†1B1 + C2A†2B2

]
= rk

A1 0 B1
0 A2 B2

C1 C2 0

 − rk(A1) − rk(A2)

= rk

 CAB 0 C
0 CAB C(A∗)k

−(A∗)kB B 0

 − 2 rk(CAB).

Now we apply block Gaussian elimination.

rk

 CAB 0 C
0 CAB C(A∗)k

−(A∗)kB B 0

 (a)
= rk

 0 0 C
−C(A∗)kAB CAB C(A∗)k

−(A∗)kB B 0


= rk

 0 0 C
C(A∗)kAB CAB C(A∗)k

(A∗)kB B 0


(b)
= rk


0 0 C

C
[
(A∗)kA − A(A∗)k

]
B 0 C(A∗)k

(A∗)kB B 0


= rk

C
[
(A∗)kA − A(A∗)k

]
B 0 C(A∗)k

0 0 C
(A∗)kB B 0

 ,
where the non evident steps are

(a) 1st column is replaced by 1st column − 3rd column ∗ AB.
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(b) 2nd row is replaced by 2nd row − CA ∗ 3rd row.

By Lemma 2.1, we have rk(B) = rk(CAB). Thus, (1) is obtained.
(2) Assume that R

[
(A∗)kB

]
⊆ R(B), R

[
AkC∗

]
⊆ R(C∗). By Lemma 3.10, we have

rk

C
[
(A∗)kA − A(A∗)k

]
B 0 C(A∗)k

0 0 C
(A∗)kB B 0

 = rk
[
C[(A∗)kA − A(A∗)k]B

]
+ rk(B) + rk(C). (7)

The proof of (2) follows by (1), Lemma 2.1, and (7).

Since A† = A‖(A∗,A∗), Theorem 3.11 implies next corollary.

Corollary 3.12. If A ∈ Cn×n and k ≥ 1, then

rk
[
(A∗)kA† − A†(A∗)k

]
= rk

[
(A∗)k+1AA∗ − A∗A(A∗)k+1

]
.

Having in mind that if A ∈ Cn×n is core invertible, then A #© = A‖(A,A∗), Theorem 3.11 implies next result.

Corollary 3.13. Let A ∈ Cn×n be core invertible and k ≥ 1. We have

(1) rk
[
(A∗)kA #©

− A #©(A∗)k
]

= rk

A
∗
(
(A∗)kA − A(A∗)k

)
A 0 (A∗)k+1

0 0 A∗

(A∗)kA A 0

 − 2 rk(A).

(2) If R
[
(A∗)kA

]
⊆ R(A), then

rk
[
(A∗)kA #©

− A #©(A∗)k
]

= rk
[
A∗((A∗)kA − A(A∗)k)A

]
.

In [12, Section 3], Liu presented some rank equalities of matrix expressions involving powers of the
generalized inverse A(2)

T,S of a matrix. We will extend this study to the (B,C)-inverse of a matrix.

Theorem 3.14. Let A,B,C ∈ Cn×n. If A‖(B,C) exists, then

(1) rk(I ± A‖(B,C)) = rk(CAB ± CB) − rk(B) + n.

(2) rk
(
A‖(B,C)

± (A‖(B,C))2
)

= rk(CAB ± CB).

In particular, A‖(B,C) =
(
A‖(B,C)

)2
if and only if CAB = CB.

Proof. (1) By Lemma 2.1, we obtain rk(I − A‖(B,C)) = rk(I − B(CAB)†C). We claim that R(C) ⊆ R(CAB) and
R(B∗) ⊆ R((CAB)∗). Indeed, since R(CAB) ⊆ R(C) and Lemma 2.1 (ii) we get R(CAB) = R(C), and also
N(B) ⊆ N(CAB) and Lemma 2.1 (ii) imply N(B) = N(CAB), which leads to R(B∗) = R((CAB)∗). Thus,
applying equation (3) in Lemma 2.2, we have

rk
(
I − B(CAB)†C

)
= rk

CAB 0 C
0 0 0
B 0 I

 − rk(CAB) = rk
[
CAB C

B I

]
− rk(CAB).

The evident equality[
I −C
0 I

] [
CAB C

B I

] [
I 0
−B I

]
=

[
CAB − CB 0

0 I

]
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proves

rk
[
CAB C

B I

]
= rk(CAB − CB) + n,

which together with Lemma 2.1 (2) finishes the proof of rk(I − A‖(B,C)) = rk(CAB − CB) − rk(B) + n.
Lemma 2.1 and the existence of A‖(B,C) lead to the existence of (−A)‖(B,C) and (−A)‖(B,C) = −A‖(B,C). Apply

what has been proved for −A instead of A to get rk(I + A‖(B,C)) = rk(CAB + CB) − rk(B) + n.
(2) Replacing A by A‖(B,C) and B by I in the equality (1) of Lemma 2.3 leads to rk

(
A‖(B,C)

− (A‖(B,C))2
)

=

rk
(
A‖(B,C)

)
+rk

(
I − A‖(B,C)

)
−n. Observe that (2) implies rk(A‖(B,C)) = rk(B). Use (1) to get rk

(
A‖(B,C)

− (A‖(B,C))2
)

=

rk(CAB − CB). Replace A by −A in this last equality to obtain rk
(
A‖(B,C) + (A‖(B,C))2

)
= rk(CAB + CB).

Setting B = C = A∗ for a given A ∈ Cn×n in Theorem 3.14 leads to

rk(I ± A†) = rk(AA∗A ± A2) − rk(A) + n, rk(A† ± (A†)2) = rk(AA∗A ± A2).

Notice that these equalities where given in [20, Theorem 6.15] and in [20, Theorem 6.16].
If the index of A ∈ Cn×n is k, then it is evident that rk(A2k+1

± A2k) = rk(Ak+1
± Ak). Setting B = C = Ak in

Theorem 3.14 we get

rk(I ± AD) = rk(A2k+1
± A2k) − rk(Ak) + n = rk(Ak+1

± Ak) − rk(Ak) + n

and
rk

(
AD
± (AD)2

)
= rk(A2k+1

± A2k) = rk(Ak+1
± Ak).

These equalities were given in [20, Theorem 13.1] and [20, Theorem 13.6].

Corollary 3.15. If A ∈ Cn×n is core invertible, then

(1) rk(I ± A #©) = rk(I ± A).

(2) rk(A #©
± (A #©)2) = rk(A∗A2

± A∗A).

In particular, A #© = (A #©)2 if and only if A∗A2 = A∗A.

Proof. Firstly, recall A #© = A‖(A,A∗).
(1) By using Theorem 3.14 and the equality (3) in Lemma 2.3, we get rk(I − A #©) = rk(A∗A2

− A∗A) −
rk(A) + n = rk(I − A). Replacing A by −A in what has been proved we get rk(I + A #©) = rk(I + A).

(2) Set B = A and C = A∗ in item (2) of Theorem 3.14.

Theorem 3.16. Let A ∈ Cn×n. If exists A‖(B,C), then

(1) rk
(
I − (A‖(B,C))2

)
= rk(CAB + CB) + rk(CAB − CB) − 2 rk(B) + n.

(2) rk
(
A‖(B,C)

− (A‖(B,C))3
)

= rk(CAB + CB) + rk(CAB − CB) − rk(B).

In particular, A‖(B,C) =
(
A‖(B,C)

)3
if and only if rk(CAB + CB) + rk(CAB − CB) = rk(B).

Proof. (1) Apply the equality (2) of Lemma 2.3 and item (1) of Theorem 3.14.
(2) By item (1) of Lemma 2.3 we have rk(A−A3) = rk(A) + rk(I−A2)− n, and now, by item (2) of Lemma

2.3, rk(A − A3) = rk(A) + rk(I + A) + rk(I − A) − 2n. Replace A by A‖(B,C) in this last equality, use item (1) of
Theorem 3.14, and item (2) of Lemma 2.1 to get

rk(A‖(B,C)
− (A‖(B,C))3)
= rk(B) + [rk(CAB + CB) − rk(B) + n] + [rk(CAB − CB) − rk(B) + n] − 2n
= rk(CAB + CB) + rk(CAB − CB) − rk(B).

The proof is finished.
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Setting B = C = A∗ in Theorem 3.16 leads to

rk
(
I − (A†)2

)
= rk(AA∗A + A2) + rk(AA∗A − A2) − 2 rk(A) + n

and
rk

(
A† − (A†)3

)
= rk(AA∗A + A2) + rk(AA∗A − A2) − rk(A).

These equalities were given in [20, Theorem 6.15] and in [20, Theorem 6.17].
Let k be the index of A ∈ Cn×n. By setting B = C = Ak in Theorem 3.16 and using rk(A2k+1

± A2k) =
rk(Ak+1

± Ak) we obtain

rk
(
I − (AD)2

)
= rk(Ak+1 + Ak) + rk(Ak+1

− Ak) − 2 rk(Ak) + n

and
rk

(
AD
− (AD)3

)
= rk(Ak+1 + Ak) + rk(Ak+1

− Ak) − rk(Ak).

These rank equalities were given in [20, Theorem 13.1] and [20, Theorem 13.7].

Corollary 3.17. If A ∈ Cn×n is core invertible, then

(1) rk
(
I − (A #©)2

)
= rk(I − A2).

(2) rk(A #©
− (A #©)3) = rk(A − A3).

In particular, A #© = (A #©)3 if and only if A = A3.

Proof. Apply Theorem 3.16 and the equalities (2), (3), and (4) of Lemma 2.3 to get

rk
(
I − (A #©)2

)
= rk(A∗A2 + A∗A) + rk(A∗A2

− A∗A) − 2 rk(A) + n

= rk(I + A) + rk(I − A) − n = rk(I − A2).

and

rk
(
A #©
− (A #©)3

)
= rk(A∗A2 + A∗A) + rk(A∗A2

− A∗A) − rk(A)

= rk(A) + rk(I + A) − n + rk(A) + rk(I − A) − n − rk(A)
= rk(I + A) + rk(I − A) + rk(A) − 2n

= rk(I − A2) + rk(A) − n.

Finally, item (1) of Lemma 2.3 implies rk(A − A3) = rk(I − A2) + rk(A) − n. The proof of the corollary is
finished.

Next result concerns to the rank of A‖(B,C)
− A‖(D,E) obtaining as corollary several characterizations for

the equality of several generalized inverses of A.

Theorem 3.18. If A ∈ Cn×m and B,C,D,E ∈ Cm×n are such that A‖(B,C) and A‖(D,E) exist, then

(1) rk
(
A‖(B,C)

− A‖(D,E)
)

= rk
[

C

E

]
+ rk [B | D] − rk(B) − rk(D).

(2) The following statements are equivalent:

(a) A‖(B,C) = A‖(D,E).

(b) R(D) ⊆ R(B) andN(C) ⊆ N(E).

(c) R(D) = R(B) andN(C) = N(E).
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(d) R(B) ⊆ R(D) andN(E) ⊆ N(C).

Proof. (1) Recall that A‖(B,C) and A‖(D,E) are both outer inverses of A ([4, Theorem 6.1]). Hence applying [20,
Theorem 5.1] we get

rk
(
A‖(B,C)

− A‖(D,E)
)

= rk
[

A‖(B,C)

A‖(D,E)

]
+ rk

[
A‖(B,C)

| A‖(D,E)
]
− rk

(
A‖(B,C)

)
− rk

(
A‖(D,E)

)
.

Observe that equality (2) implies that

rk
[
A‖(B,C)

| A‖(D,E)
]

= dim
(
R

(
A‖(B,C)

)
+ R

(
A‖(D,E)

))
= dim(R(B) + R(D)) = rk[B | D].

We use again (2) to get R
[
(A‖(B,C))∗

]
= N(A‖(B,C))⊥ = N(C)⊥ = R(C∗). Similarly, R

[
(A‖(D,E))∗

]
= R(E∗), and

therefore, R[(A‖(B,C))∗ | (A‖(D,E))∗] = R[C∗ | E∗]. Using item (2) of Lemma 2.1 finishes the proof of (1).

(2) (a) ⇔ (b). Observe that we can write rk(A‖(B,C)
− A‖(D,E)) = α + β, where α = rk

[
C

E

]
− rk(C) and

β = rk([B | D]) − rk(D) are nonnegative. Trivially, A‖(B,C) = A‖(D,E) if and only if α = β = 0, which by Lemma
3.3, is equivalent to (b).

Interchanging B↔ D and C↔ E in (a)⇔ (b) we obtain (a)⇔ (d). Now, (a)⇔ (c) is trivial.

Next result concerns with a generalized Schur complement and it generalizes [20, Theorem 2.1].

Theorem 3.19. Let X ∈ Cn×m, Y ∈ Cn×k, Z ∈ Cl×m, and T ∈ Cl×k, B,C ∈ Cm×n be given. If X‖(B,C) exists, then

rk(T − ZX‖(B,C)Y) = rk
[

CXB CY
ZB T

]
− rk(B).

Proof. Observe that by item (2) of Lemma 2.1 one has R(CY) ⊂ R(C) = R(CXB) and R((ZB)∗) = R(B∗Z∗) ⊆
R(B∗) = N(B)⊥ = N(CXB)⊥ = R((CXB)∗). By Lemma 2.1 and Lemma 2.2,

rk
[

CXB CY
ZB T

]
= rk(CXB) + rk(T − ZB(CXB)†CY) = rk(B) + rk

(
T − ZX‖(B,C)Y

)
.

This finishes the proof.

Observe that this last corollary permits give the generalized Schur complements concerning the Drazin
inverse, group inverse, and core inverse with no effort. We leave the details to the interested reader.
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[18] D. S. Rakić, A note on Rao and Mitra’s constrained inverse and Drazin’s (b, c) inverse, Linear Algebra Appl. 523 (2017) 102-108.
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