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Then, a different recovery technique is used for each component:
the SPR C technique for the smooth part, and a reconstruction of
the singular field using the stress intensity factors (SIFs) KI and KII
computed from the interaction integral [25,26] for the singular
part.

b) Use of the conjoint polynomial enhancement proposed by Blacker
and Belytschko [21]. This is a PUM based technique that ade
quately weights the different values of recovered stresses obtained
at each point from different patches.

1.2. Upper error bounds in the FEM

The residual type error estimators build up a statically admissible
stress field and furnish upper bounds of the energy norm of the error
[12,13,27,28]. This has been a traditional advantage of the residual
type estimators over recovery based error estimators which were
unable to produce guaranteed upper bounds of the error in energy
norm.

Other approach aims at obtaining upper error bounds involving
dual analysis that directly provides an equilibrated solution. This
solution is compared with the standard and compatible finite element
solution in order to assess the error [29,30]. The obtained estimate is
therefore an upper error bound.

Ref. [31] introduces a recovery based technique that provides
practical upper error bounds for the FEM framework. The technique is
based on obtaining a recovered equilibrated stress field. The
technique proposed in this reference provides a very accurate
estimation of the error in energy norm and, additionally, a practical
upper bound of the error that shows a good behaviour in problems
with smooth solutions. Nevertheless, if this approach is used in
problems containing singularities, the effectivity of the estimate is not
guaranteed in a mesh refinement procedure.

1.3. Error assessment tools in the XFEM

The literature on error estimation methods for mesh based PUMs,
however, is very limited. Xiao et al. [10] propose an approach based on
the use of the Moving Least Squares (MLS) technique adapted to the
XFEM framework and the use of statically admissible basis functions
to obtain a recovered stress field that improves the accuracy of the
stresses obtained by XFEM. In any case, these authors do not use the
recovered stress field to obtain an error estimate.

Strouboulis et al. [9] propose the use of a recovery type error
estimator for the Generalized Finite Element Method (GFEM) yielding
good results for h adapted meshes. A later proposal includes two new
a posteriori error estimators for GFEM [32]. The first one is based on
patch residual indicators and provides an accurate theoretical upper
bound estimate, but its computed version severely underestimates
the exact error. The second one is an error estimator based on a
recovered displacement field and its performance is closely related to
the quality of the GFEM solution.

Bordas and co workers [33 35] have recently developed recovery
techniques adapted to the XFEM framework yielding very accurate
estimations of the error in energy norm but lacking from the equilib
rium constraints needed to guarantee the upper bound property. The
first technique is a MLS approach that introduces a visibility criterion
and a MLS basis enriched with crack tip functions, and the second one
is a global derivative recovery formulation extended to XFEM
problems.

Recently, a technique that provides local error bounds on quan
tities of interest for problems in the XFEM context has been presented
in [36]. This new technique is an extension to enriched approxima
tions of the constitutive relation error (CRE) concept previously used
to obtain error bounds for FEM formulations.

Ródenas et al. [37] developed a modification of the SPR technique,
specifically adapted to the XFEM framework, that makes use of a

singular+smooth stress field splitting technique around the crack tip
similar to that described in [24] for FEM. Ref. [37] uses a simplified
version of the SPR C technique [23] to enforce the boundary equi
librium equation. This simplified SPR C technique imposes the
fulfillment of the boundary equilibrium equation in boundary nodes
but does not impose the satisfaction of the internal equilibrium
equation.

1.4. Objective and outline of the paper

Although a few techniques to obtain upper bounds for XFEM
approximations have been developed through a residual approach, to
the authors' knowledge, there are no available recovery based
techniques to evaluate upper error bounds in XFEM.

This paper proposes an improvement of the technique described in
[31] and its adaptation to XFEM in order to obtain sharp upper bounds
of the exact error in energy norm for linear elastic fracture mechanics
(LEFM) problems solved with this technique.

The remainder of the paper is organized as follows: Section 2
briefly introduces the problem and presents the XFEM and the inter
action integral used to evaluate the stress intensity factors (SIFs) KI
and KII. The main concepts exposed in [31] are resumed in Section 3
and serve as the basis for the development of the technique for error
bounding in XFEM presented in Section 4. The numerical examples
included in Section 5 demonstrate that the proposed strategy pro
vides very sharp and reliable practical upper error bound estimates for
XFEM. Finally, Section 6 provides a summary and some concluding
remarks.

2. Problem statement and XFEM solution

Consider the 2D linear elasticity problem. The unknown displace
ment field u, taking values in Ω⊂ℝ2, is the solution of the boundary
value problem

−∇·σ uð Þ = b in Ω ð1aÞ

σ uð Þ·n = t on ΓN ð1bÞ

u = 0 on ΓD ð1cÞ

where ΓΝ and ΓD, with ∂Ω=гN ∪гD and гN∩гD=∅, are the Neumann
and Dirichlet parts of the boundary. The Dirichlet boundary
condition (1c) is taken homogeneous for the sake of simplicity.

The weak form of the problem reads: Find u∈V such that

a u; vð Þ = l vð Þ for all v∈ V ð2Þ

where V is the standard test space for the elasticity problem and

a u; vð Þ : = ∫
Ω
σ uð Þ : ε vð ÞdΩ = ∫

Ω
σ uð Þ : D 1 : σ vð ÞdΩ ð3aÞ

l vð Þ : = ∫
Ω
b·vdΩ + ∫

ΓN
t·vdΓ ð3bÞ

where D is the Hooke's tensor, σ and ε denote the stress and strain
operators.

The bilinear form a(·,·) can also be expressed in terms of stresses
by formally introducing a ̅(·,·)such that

aðσ;τÞ : = ∫
Ω
σ : D 1 : τdΩ ð4Þ

Note that aðu; vÞ = a σðuÞ;τðvÞð Þ:
LEFM problems are characterized by the singularity at the crack

tip. The following expressions show the first term of the asymptotic

2





evaluate an upper bound of the error. A summary of the theoretical
basis of this technique is outlined below:

3.1. Statically admissible stress field and upper bounds

The basis of the technique proposed in [31] is Proposition 3. Let
σe⁎ :=σ⁎−σ(uh) be an error estimate of the stress field σ(uh)
evaluated using FEM, where σ⁎ is a recovered statically admissible

stress field. Let ‖e‖ be the exact error in energy norm and a σ⁎
e ;σ⁎

e

� �r
the energy norm associated to σe

⁎:

‖e‖2 = ∫
Ω

σ−σðuhÞ
� �T

D 1 σ−σðuhÞ
� �

dΩ ð9Þ

a σe
⁎;σe

⁎
� �

= ∫
Ω

σ⁎−σðuhÞ
� �T

D 1 σ⁎−σðuhÞ
� �

dΩ ð10Þ

Under these circumstances and recalling that uh is kinematically
admissible one gets:

‖e‖2≤ a σe
⁎;σe

⁎
� �

ð11Þ

3.2. Nearly statically admissible stress field and upper bound of the error

Ref. [31] proposes the use of the SPR C technique [23] to obtain
interpolation polynomials σi

⁎ that describe the recovered stress field
in the patch of elements associated to each vertex node i. The SPR C
technique ensures the satisfaction of the internal and boundary
equilibrium equations and also the satisfaction of the strains
compatibility equation.

Remark 1. Body loads b are approximated by a 1st order Taylor's
expansion around the patch assembly node, whereas boundary
tractions t are approximated by a 2nd order Taylor's expansion
around the same point. The results obtained using this approximation
are very accurate.

The global continuous recovered stress field σ⁎ is obtained from
the local descriptions of stresses in each patchσi

⁎ using the Partition of
Unity concept as indicated in the following equation:

σ⁎ xð Þ = ∑
nV

i 1
N′i xð Þσi⁎ xð Þ ð12Þ

where nV is the number of vertex nodes in each element and Ni
′ are

the linear version of the shape function corresponding to each vertex
node. This technique to obtain σ⁎was termed the conjoint polynomial
enhancement in 1994 by Blacker and Belytschko[21].

The divergence of σ⁎ is:

−∇⋅σ⁎ = −∑
nV

i 1
Ni · ∇σi⁎|{z}

=−b

−∑
nV

i 1
σi⁎·∇N′i = b−∑

nV

i 1
σi
⁎·∇N′i : ð13Þ

This equation shows that despite of the fact that the local
representation of stresses at each patch σi⁎ satisfies the equilibrium
equations, the σ⁎ stresses are not equilibrated due to the term

s = ∑
nV

i 1
σi
⁎·∇N′i ð14Þ

which can be considered as an equilibrium residual resulting from the
evaluation of the continuous stress field σ⁎ using Eq. (12).

Thus, σ⁎ is a nearly statically admissible stress field that satisfies
the boundary equilibrium equation (each σi

⁎ satisfies this equation)
but does not exactly fulfil the internal equilibrium equation. In fact, it
fulfils a slightly modified version of this equation:

−∇σ⁎ = b + s ð15Þ

Under these circumstances Proposition 5 in Ref. [31] provides the
following expression for the upper bound of the error in energy norm

‖e‖2 ≤ a σe
⁎;σe

⁎
� �

−2∫
Ω
e⋅sdΩ ð16Þ

And using the Cauchy Schwartz inequality:

‖e‖2 ≤ a σe
⁎;σe

⁎
� �

+ 2j∫
Ω
e⋅sdΩj≤ a σe

⁎;σe
⁎

� �
+ 2jejL2 jsjL2 = E2UB0

ð17Þ

According to Strouboulis et al. [32] we have to distinguish between
a theoretical upper estimator, its computed version and a computable
upper estimator. It is possible to have a theoretical upper estimator
with good effectivity greater than one while its computed version can,
under certain circumstances, severely underestimate the norm of the
exact error (specially in the context of the GFEM, XFEM and other
similar methods). By computable upper estimator the authors refer to
a corrected version of the computed estimate so that it can guarantee
the upper bound property.

According to the definitions given by these authors, the expression
shown in Eqs. (16) and (17) are theoretical upper estimators. A
procedure to obtain a computed version of Eq. (17) was presented in
Ref. [31].

In Eq. (17) the terms a ̅(σe⁎,σe⁎) and |s|L2 are computable. Díez et al.
[31] proposed a technique that can be used to obtain an accurate
estimation of |e|L2. The convergence rate of |e|L2 is higher than
the convergence rate of ||e||, therefore the use of a good approxima
tion to |e|L2 is enough to provide good quality upper bounds for ||e||,
as proven by the numerical examples. The technique used to estimate
|e|L2 consists of using the last mesh of the sequence of meshes as the
reference solution for the evaluation of |e|L2 in the rest of the meshes.
Finally, the value for the last mesh, N, is obtained by extrapola
tion from the value calculated for mesh N−1. The technique provided
good quality computed upper bounds for ‖e‖ in problems with
smooth solutions. However, inaccurate upper bounds were obtained
for problems with singular solutions as a result of the increase of the
|s|L2 term with the mesh refinement.

4. Upper bounds of the error in XFEM

This section presents a new theoretical upper bound of the error in
energy norm, more general than Eq. (16), and adapted for LEFM
problems solved with the XFEM.

The proposed technique, as in the FEM case, is based on the
evaluation of a nearly statically admissible recovered stress field σ⁎
and the consideration of the defects of equilibrium through the use of
a correction term. For the evaluation of σ⁎ we propose the use of a
recovery technique specially adapted to the XFEM called SPR CX,
derived from the SPR technique and described in Section 4.1.
Regarding to the consideration of the equilibrium defaults, and
in order to obtain the computed version of the theoretical bound,
we propose the use of a technique that noticeably outperforms the
behaviour of the technique described in Section 3. This new tech
nique, which provides very sharp upper error bounds, is presented in
Section 4.2.
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4.1. The SPR CX stress recovery technique

The SPR CX technique described here, derived from the stress
recovery technique exposed in [23,24,37], will be used to obtain the
recovered nearly statically admissible σ⁎ field.

4.1.1. Equilibrated recovered stress field at patches based on a singular+
smooth stress field splitting

The exact stress field can be expressed as the sum of two fields, a
smooth stress field σsmo and a singular stress field σsing:

σ = σsmo + σsing: ð18Þ

Considering the above expression, the recovered stress field σ⁎
required to compute the error estimate given in Eq. (10) can be
expressed as the contribution of two recovered stress fields, smooth
σsmo
⁎ and singular σsing

⁎ :

σ⁎ = σsmo
⁎ + σsing

⁎ ð19Þ

The stress field represented by the first term of the asymptotic
expansion in the vicinity of the singular point given in Eq. (6) will be
used to obtain the recovered singular field σsing

⁎ . This equation
provides an accurate representation of the singular stress field using
the SIF values, KI⁎ and KII⁎, evaluated for example using the interaction
integral as suggested in this paper. Therefore, the equation used to
evaluate σsing

⁎ is:

σ sing;11
⁎

σ sing;12
⁎

σ sing;22
⁎

8>>><
>>>:

9>>>=
>>>;=

KI
⁎

2πr
p cos

ϕ
2

1− sin
ϕ
2
sin

3ϕ
2

sin
ϕ
2
cos

3ϕ
2

1 + sin
ϕ
2
sin

3ϕ
2

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

+
KII
⁎

2πr
p

− sin
ϕ
2

2 + cos
ϕ
2
cos

3ϕ
2

� �

cos
ϕ
2

1− sin
ϕ
2
sin

3ϕ
2

� �

sin
ϕ
2
cos

ϕ
2
cos

3ϕ
2

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
:

ð20Þ

The σh stresses directly obtained using the XFEM for this type of
problems are a finite element approximation of the stress field σ. An
FE type stress representation of the smooth fieldσsmo

h can be obtained
using the following equation:

σh
smo = σh−σsing ð21Þ

Therefore, assuming that σsing
⁎ is a good approximation of σsing,

σsmo
h can be calculated using the following expression:

σh
smo≈σh−σsing

� ð22Þ

Once the σsmo
h

field has been obtained, the SPR C technique [23] is
used to obtain an equilibrated description of the smooth solution at
each patchσsmoi

⁎ , where i indicates the i th patch assembly node. Both,
a discrete and a continuous approach can be used for the least squares
fitting[43]. In the discrete formulation, which is the traditional
approach, the stresses are sampled at the superconvergence points.
In the continuous formulation, the functional representing the L2
norm of the difference between the XFEM (or FEM) solution gradient
σh and the polynomial expansion representing the recovered field σ⁎

is minimized. This procedure implies sampling the stresses at the
integration points of the quadrature rule but also the use of the
weighting factors given by the quadrature rule at each of these points.
Our numerical experience has shown a better performance of the
error estimator using the continuous formulation, which has been the
approach used in our implementation.

Finally, the recovered stresses at each patch are evaluated as

σi
⁎ = σsmoi

⁎ + σsing
⁎ : ð23Þ

This decomposition recovery technique is particularly effective in
the vicinity of the singularity, although it does not need to be used in
the whole domain of the problem. Far from the singularity, the
equilibrated stress field at each patch can be adequately recovered
using the SPR C technique. In the proposed procedure, if the patch
contains an enriched node, the singular+smooth stress decomposi
tion method, described above, is used to compute σi

⁎, otherwise the
SPR C technique is used to directly obtain σi⁎ from σh. Thus, in
patches outside the decomposition area σi

⁎ are stress interpolation
polynomials, whereas in patches within the decomposition area σi⁎

represents stress interpolation functions that contain a polynomial
part σsmoi

⁎ and a singular part σsing⁎ .
Fig. 2 illustrates how the patch stress interpolation functions σi

⁎

are obtained in the different domain areas of the problem.

Remark 2. The recovered stress field at each patch σi
⁎ is obtained by

the addition of two functions that, individually, satisfy the equilibrium
equations. On the one hand the SPR C technique enforces σsmoi

⁎ to
satisfy the internal equilibrium and boundary equilibrium equations;
on the other handσsing

⁎ also satisfies the internal equilibrium equation
because it is evaluated using Eq. (20), derived from Eq. (6) which is
the first term of the asymptotic expansion that describes the stress
field in the vicinity of the crack tip. Therefore, adding these two terms
produces a statically admissible stress field.

Remark 3. Using the argument exposed in Remark 2 we can also
justify that σi

⁎ also satisfies the compatibility equation. Note that the

Fig. 2. Calculation of σi
⁎ in different types of patches.
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satisfaction of this equation is not necessary for the upper bound
property. Thus, it is only used to improve the quality of σ⁎.

Remark 4. Observe that the use of this technique can be directly
extended to deal with problems with multiple crack tips, as long as
they do not interact with each other or with the boundary, because
the singular+smooth stress field decomposition technique is only
used in the vicinity of the crack tip.

4.1.2. Patch assembly
As in the standard SPR technique, the patches are composed by the

elements that surround each of the vertex nodes of the mesh.
However, for patches containing the crack it is not convenient to use
one single functionσi

⁎ to represent the stress state in the whole patch.
In these cases two different patches are created, one at each side of the
crack. Each of these two patches is composed by the integration
subdomains of the elements of the original patch of elements located
at each side of the crack. This allows the use of different functions to
represent the stress state at each side of the crack.

In the SPR CX technique crack surfaces are treated as any other
external boundary. Assuming that there is no contact between the
crack surfaces, these surfaces will be free of external tractions. The
procedure used to obtain σi⁎ in patches located along the boundary of
the domain is described in [23]. According to this procedure, the
boundary equilibrium equation can be easily imposed along the
external boundaries. To do this we will use a local Cartesian reference
system to describe σi⁎with the origin located over the patch assembly
node and with the axes aligned with the normal and tangential
direction with respect to the surface. This procedure cannot be
directly applied on the crack because in the general case there are no
nodes along the crack. In this case, the local Cartesian reference
system used to describeσi

⁎will be located on the point of the crack (or
its prolongation) closest to the patch assembly node, as described in
Fig. 3.

Remark 5. Some of the subpatches next to the crack can even be
composed by a single integration domain. Rank deficiency during the
least squares fitting is avoided in these cases if the number of Gauss
points used in the integration subdomains is equal to or greater than the
number of polynomial terms used to describe each stress component.

4.1.3. Nearly statically admissible continuous recovered stress field σ⁎
The stress values at each point into the elements are evaluated from

different patches because patches overlap each other. More precisely,
the stress values at each point into the elements are evaluated from nv

patches, being nv the number of vertex nodes in the element. As in the

FEM context, a continuous recovered stress field σ⁎ will be evaluated
from the stress contribution corresponding to each patch σi

⁎ by means
of the Partition of Unity procedure indicated in Eq. (12).

Again, in the XFEM context this process introduces defects in the
equilibrium and compatibility equations. These lacks of equilibrium
will be considered in the evaluation of the upper bound of the
discretization error.

4.2. Correction of the estimated error in energy norm: The theoretical
upper bound of the error.

The technique previously described provides a field σ⁎ that does
not fully satisfy the internal equilibrium equation, but verifies the
slightly modified version of this equation shown in Eq. (15).

Remark 1 exposed that with the SPR C technique [24] body loads b
are approximated by a 1st order Taylor's expansion around the patch
assembly node, whereas boundary tractions t are approximated by a
2nd order Taylor's expansion. In the examples presented in Section 5
body loads are assumed to be null, therefore, the approximation does
not introduce further equilibrium defects in the internal equilibrium
equation. The second assumption related to the approximation of t
using a 2nd order Taylor's expansion around the patch assembly node
can be considered as very accurate in the FEM framework. However,
the lack of equilibrium along the boundary must also be taken under
consideration in XFEM, where the size of the elements tends to be
bigger than in FEM,

Proposition 1. Let σ⁎ be such that σ⁎·n is continuous almost every
where (a.e.) alongany interior curve Γ⊂Ω (beingn theunit normal to Γ)
and

−∇σ⁎ = b + s a:e: in Ω ð24aÞ

σ⁎·n = t + r a:e: on in ΓN : ð24bÞ

Note that if s=0 and r=0, σ⁎ is statically admissible. For small s
and r (when compared to b and t, respectively) σ⁎ is said to be nearly
statically admissible, up to the equilibrium default terms.

Then, the following expression holds:

a σ⁎;σðvÞ
� �

= lðvÞ + ∫
Ω
v·sdΩ + ∫

ΓN
v·rdΓ for all v∈V ð25Þ

and, as a direct consequence assuming that the Dirichlet boundary
conditions are homogeneous

‖u‖2 = a σðuÞ;σðuÞð Þ≤ a σ⁎;σ⁎
� �

−2∫
Ω
u·sdΩ−2∫

ΓN
u·rdΓ ð26Þ

Moreover, the error approximation σe
⁎ :=σ⁎−σ(uH) is also

providing an upper bound of the error norm, up to the equilibration
default terms

‖e‖2 = a e; eð Þ = a σe;σeð Þ≤ a σe
⁎;σe

⁎
� �

2∫
Ω
e·sdΩ 2∫

ΓN
e·rdΓ = E2UB

ð27Þ

and this latter property stands also for non homogeneous Dirichlet
boundary conditions, up to oscillation terms.

These results are valid even if σ exhibits singularities. Note
however that in the presence of singularities, the equilibrium default
associated with a post processed solution σ⁎ is possibly large unless
σ⁎ has a singularity of the same kind.

Proof. The expression (25) is derived by the standard weighted
residuals technique combined with the usual integration by parts

Fig. 3. Reference systems used in the evaluation of σi
⁎ on external boundaries and crack

surfaces.
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from Eq. (24) (using Eqs. (24a) and (24b) and the fact that the test
function v vanishes on ΓD).

∫
Ω
v· b + sð ÞdΩ = −∫

Ω
v·∇·σ⁎dΩ

= −∫
Ω
∇·ðσ⁎·vÞdΩ + ∫

Ω
∇v : σ⁎dΩ

= −∫∂Ωn·ðσ⁎·vÞdΓ + ∫
Ω

1
2
∇v + ∇Tv
� �

·σ⁎dΩ

= −∫
ΓN
v·ðσ⁎·nÞdΓ + a σ⁎;σðvÞ

� �
= −∫

ΓN
v·ðt + rÞdΓ + a σ⁎;σðvÞ

� �
Then Eq. (25) follows by considering the definition of l(v).

Thus, the proof of Eq. (26) is straightforward by considering in Eq.
(25) v=u (this requires that in the original problem, the Dirichlet
boundary conditions state that u=0 on ΓD):

a σ⁎;σðuÞ
� �

= lðuÞ + ∫
Ω
u·sdΩ + ∫

ΓN
u·rdΓ

= a σðuÞ;σðuÞð Þ + ∫
Ω
u·sdΩ + ∫

ΓN
u·rdΓ

and therefore

0≤a σðuÞ−σ⁎;σðuÞ−σ⁎
� �

= a σðuÞ;σðuÞð Þ−2a σ⁎;σðuÞ
� �

+ a σ⁎;σ⁎
� �

= a σðuÞ;σðuÞð Þ
−2∫

Ω
u·sdΩ−2∫

ΓN
u·rdΓ + a σ⁎;σ⁎

� �
:

The proof of Eq. (27) is similar, by considering in Eq. (25) v=e (this
can be done, up to oscillation terms, even if in the original problem the
Dirichlet boundary conditions are non homogeneous). Thus,

a σ⁎;σðeÞ
� �

= lðeÞ + ∫
Ω
e·sdΩ + ∫

ΓN
e·rdΓ

= a σðeÞ;σðeÞð Þ+ a σ uh
� �

;σðeÞ
� �

+∫
Ω
e·sdΩ+∫

ΓN
e·rdΓ

that results on

a σe
⁎;σðeÞ

� �
= a σðeÞ;σðeÞð Þ + ∫

Ω
e·sdΩ + ∫

ΓN
e·rdΓ:

Note that the following error representation has been used

a σðeÞ;σðeÞð Þ = lðeÞ−a σ uh
� �

;σðeÞ
� �

:

Thus, Eq. (27) is proved using the same idea as before by simply
considering the positiveness of a ̅(σ(e)−σe

⁎, σ(e)−σe
⁎).

The expression shown in Eq. (27) is a theoretical upper estimator.
Its computed version remains to be calculated.

In Eq. (27) the value of s is evaluated using Eq. (14). On the other
hand, the value of r, that represents the residual of the boundary
equilibrium equation, can be evaluated using

r = σ⁎·n−t = ∑
n

i 1
N′i σi

⁎
� �

·n−t = ∑
n

i 1
N′i σi

⁎·n−t
� �

: ð28Þ

Díez et al. [31] propose the evaluation of the upper bound of the
error in energy norm by using Eq. (17), based in the use of the Cauchy
Schwartz inequality and the evaluation of the L2 norms of e and s.
Here, we propose the direct use of Eq. (27) to obtain sharper bounds
of the error avoiding the use of the Cauchy Schwartz inequality, which
introduces a too pessimistic approximation, as it is shown in the
numerical examples. Eq. (27) requires the value of the error e at any
point of the mesh. A procedure to obtain an approximation of e is
presented below.

The displacement field u(N)H obtained as the solution from the last
mesh of the refinement process can be considered as an approxima
tion to the exact solution of the problem, u≈u(N)H . This allows the
evaluation of an approximation of e for the first N−1 meshes of the
sequence:

eðiÞ = u−uh
ðiÞ≈uh

ðNÞ−uh
ðiÞ = eesðiÞ: ð29Þ

The use of Eq. (29) in the evaluation of ees(i), i=1,...,N−1, requires
the projection of the displacements field of mesh N on mesh i. Finally,
it is possible to obtain an estimate of integrals −2∫Ωe·sdΩ and
−2∫

ΓΝ
e·rdΓ for mesh N considering the values of these integrals

evaluated for the previous meshes and the use of the Richardson
extrapolation technique.

As the evaluation of ees introduces an approximation, the results
obtained using Eq. (27) cannot be taken as guaranteed upper bounds.
However, Section 6 will show that the technique used to estimate e at
each mesh provides very accurate approximations of the correction

Fig. 4. Procedure for the evaluation of the upper bound of the error in energy norm.
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terms −2∫Ωe·sdΩ and −2∫
ΓΝ
e·rdΓ, thus validating the use of the

technique proposed to obtain e.

4.3. Proposed procedure

The techniques for the evaluation of the upper bound of the error
in energy norm introduced above are summarized in Fig. 4.

5. Numerical results

The numerical analyses performed to test the behaviour of the pro
posed technique are presented in this section. The classic Westergaard
problem [44] has been used in the analyses as it is one of the few LEFM
problems in mixed mode that has an exact analytical solution.

Bilinear quadrilaterals have been used in the numerical examples.
Linear polynomials have been used in the implementation of the
stress recovery technique for patches of nodes located in the interior
of the domain whereas quadratic polynomials have been considered
along the boundary of the domain and along the crack surfaces.

5.1. Test problem: the Westergaard problem

The Westergaard problem consists of an infinite plate loaded with
biaxial tractions σx∞=σy∞=σ∞ and τ∞ in the infinite, with a crack of a
finite length 2a, as is shown in Fig. 5. Combining the externally applied

tractions one can generate stress states in pure modes I or II, or in
mixed mode [37].

A finite portion of the domain (a=1 and b=4 in Fig. 5) was
included in the numerical model and the projection of the stresses
corresponding to the analytical Westergaard solution for modes I and
II, given by the expressions below, were applied to the boundary [44].

Mode I.

σ I
x =

σ∞
∣t∣p x cos

ϕ
2
−y sin

ϕ
2

	 

+ y

a2

∣t∣2 m sin
ϕ
2
−n cos

ϕ
2

	 
" #

σ I
y =

σ∞
∣t∣p x cos

ϕ
2
−ysin

ϕ
2

	 

−y

a2

∣t∣2 m sin
ϕ
2
−n cos

ϕ
2

	 
" #

τI
xy = y

a2σ∞
∣t∣2 ∣t∣p m cos

ϕ
2
+ n sin

ϕ
2

	 

:

ð30Þ

Mode II.

σ II
x =

τ∞
∣t∣p 2 y cos

ϕ
2
+ x sin

ϕ
2

	 

−y

a2

∣t∣2 m cos
ϕ
2
+ n sin

ϕ
2

	 
" #

σ II
y = y

a2τ∞
∣t∣2 ∣t∣p m cos

ϕ
2
+ n sin

ϕ
2

	 


τII
xy =

τ∞
∣t∣p x cos

ϕ
2
−y sin

ϕ
2

	 

+ y

a2

∣t∣2 m sin
ϕ
2
−n cos

ϕ
2

	 
" #
:

ð31Þ

In the above equations, the stress fields are expressed as a function
of the coordinates x and y, whose origin is in the centre of the crack,
where t, m, n and ϕ are defined as:

t = z2−a2 = ðx + iyÞ2−a2 = ðx2−y2−a2Þ + ið2xyÞ = m + in

m= Ret = Reðz2−a2Þ = x2−y2−a2

n = Imt = ðz2−a2Þ = 2xy

ϕ = arg t = arg ðm−inÞ with ϕ∈ −π;π½ �:

ð32Þ

The exact SIF values for this problem are defined as:

KIex = σ∞ πa
p

KIIex = τ∞ πa
p

: ð33Þ

Bilinear elements with a smooth+singular decomposition area of a
radius ρ=0.5 equal to the radius re of the fixed enrichment area have

Fig. 5.Westergaard problem. Infinite plate with a crack of length 2a subjected to uniform
tractions σ∞ (biaxial) and τ∞. Finite portion of the domain,Ω0, modelled with FE.

Fig. 6. Sequence of uniform meshes.
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been considered in the numerical analyses. Young's modulus was
E=107, and Poisson's ratio ν=0.333.

The sequences of meshes shown in Figs. 6 and 7 have been used in
the numerical examples.

Three cases of the Westergaard problem were considered: pure
mode I, pure mode II, and mixed mode. The geometric models and
boundary conditions consideringmode I, mode II andmixedmode are
shown in Figs. 8 10.

Various approaches for the evaluation of the upper bounds of the
error in energy norm have been implemented based on Eq. (27). The
first one is the adaptation to XFEM of technique developed by Díez et al.
[31] given by Eq. (17), which has been shown below for convenience:

jjejj2≤a σe
⁎;σe

⁎
� �

+ 2j∫
Ω
e⋅sdΩj≤a σe

⁎;σe
⁎

� �
+ 2jejL2 jsjL2 = E2UB0

The second technique to be implemented is the technique
proposed in this paper for the evaluation of the error in energy
norm as described by Eq. (27), which is also shown here for
convenience:

jjejj2≤a σe
⁎;σe

⁎
� �

−2∫
Ω
e⋅sdΩ−2∫

ΓN
e⋅rdΓ = E2UB

Fig. 7. Sequence of non-uniform meshes.

Fig. 8. Mode I. Model for crack in infinite plate subjected to biaxial traction in the
infinite. (σ∞ =100, τ∞=0). KI,ex=177.2453850905516.

Fig. 9. Mode II. Model for crack in infinite plate subjected to tangential stresses in the
infinite. (σ∞=0, τ∞=100). KII,ex=177.2453850905516.

Fig. 10.Mixed Mode. Model for crack in infinite plate subjected to biaxial traction in the
infinite. (σ∞=50, τ∞=50). KI,ex=KII,ex=88.6226925452758.
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5.2. Accuracy of the recovered stresses σ⁎

The technique proposed for the computation of the upper bound of
the error in energy norm is based on the evaluation of a highly accurate
recovered stress field σ⁎. Fig. 11 shows the exact errors σex−σh and
σex−σ⁎ for each of the stress components σxx, σyy, σxy and for the von
Mises stress σvm. It can be clearly observed that σ⁎ is, approximately,
one order of magnitude more precise than the raw XFEM solution. The
circle shown in the graphs represents the contour of the enrichment
area that coincides with the radius of the singular+smooth splitting
area.

The graphs shown in Fig. 11 represent the values of the error at the
integration points in the second uniform mesh with 800 elements.
Fig. 12 represents the results for a more general case consideringmixed
mode and a non uniformmesh of 818 elements. To obtain these graphs,
the value at each integration point has been represented as a constant
value in a prescribed area surrounding each integration point.

Fig. 11 shows thatσ⁎ is less accurate in the crack front. This is not a
surprising result because of the proximity of the crack tip. However,
the lack of accuracy is also strengthened by the process followed to
impose the satisfaction of the boundary equilibrium. At each patch,
σ⁎ is forced to satisfy the boundary equilibrium Eq. (1b) along ξ=0
(see Fig. 3). For patches containing the crack tip, this implies forcing
σξξ⁎ =0 and σξη⁎ =0 , not only along the crack surface but also along
the prolongation of the crack located after the crack tip (see patch for

node i in Fig. 3). Although the accuracy ofσ⁎ is reduced, the use of this
procedure is necessary to impose the satisfaction of the boundary
equilibrium equation required to obtain the upper bound property.

Fig. 13 shows the evolution of the exact error of the solution
provided by XFEM ||u−uh||=||e|| and that corresponding to the
recovered solution ||u−u⁎||=||e⁎||. The first conclusion extracted
from this figure is that σ⁎ is more accurate than σh in all the analyzed
examples. Furthermore, Fig. 13 shows that the rate of convergence in
||e⁎|| is higher than the rate of convergence in ||e||, due to the high
accuracy of σ⁎. According to Zienkiewicz and Zhu[16] this proves that
the error estimator a ̅(σe⁎, σe⁎) is asymptotically exact.

5.3. Accuracy of the upper bound EUB0

Fig. 14 shows the evolution of the global effectivity index θ defined as

θ =
jjeesjj
jjejj ð34Þ

considering Mode I for the error estimator ESPR-CX and for the bound
EUB0. The results regarding the accuracy of these errors are similar to
those shown by Díez et al. [31] using the FEM. Note that as theσ⁎ field
used to evaluate the ESPR-CX estimate does not fully satisfies the
equilibrium requirements this estimate does not provide upper error
bounds, as can be seen in Fig. 14 and more clearly in Fig. 15.

Fig. 11. Mode I, uniform mesh 2. Exact error in σxx, σyy, σxy and σvm obtained by XFEM and by means of the SPR-CX technique. Under each graph is indicated the range of the error
in stresses.
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5.4. Accuracy of the proposed upper error bound considering the exact
error in the displacements

Fig. 15 shows the evolution of the error estimator ESPR-CX and for
the bound EUBex defined as in Eq. (27) and using the exact value of the
error in the displacements field e, for Mode I.

The results displayed in Fig. 14 show effectivities of EUB0 in the
range (1, 1.80) whereas the results displayed in Fig. 15 show much
more accurate results for EUBex, with effectivities in the range (1, 1.04),
of the same order of magnitude than the results obtained for the error
estimator ESPR-CX.

The lackof accuracy of the results obtained through theuse of Eq. (17)
is mainly due to the use of the excessively conservative C S inequality in
theevaluationof this expression,which strongly penalizes the evaluation
of the upper bound.

5.5. Effect of the correction terms due to lacks of equilibrium

This section is used to analyze the effect of the integrals used to
account for the equilibrium defects of σ⁎, into the domain and along
the boundary, over the value of the upper error bound EUB, see Eq. (27).
Fig. 16 shows, in a logarithmic scale, the evolution of the absolute
values of the correction terms when calculated both, using the exact
values of the error in the displacements field e and its estimation ees
evaluated as described in step 4 of Fig. 4, Section 4.2. The graph shows

that the results obtained considering the estimate ees accurately
reproduce those obtained with e, demonstrating the validity of the
technique used to obtain the estimate ees. The graph also shows that
the correction term due to lack of equilibrium along the boundary,
associated with ∫

ΓΝ
e·r dΓ is about two orders of magnitude smaller

than the correction term due to the lack of internal equilibrium,
associatedwith∫Ω e·sdΩ. Thus, one can reduce the computational cost
of the proposed procedure assuming that ∫

ΓΝ
e·r dΓ≈0, and rewriting

Eq. (27) as

jjejj2≤a σe
⁎;σe

⁎
� �

−2∫
Ω
e⋅sdΩ = E2UB: ð35Þ

Note that the value of ∫
ΓΝ
e·r dΓ can be neglected because the

boundary equilibrium residual, r, is very small as the recovery tech
nique guarantees that σ⁎ exactly represents a 2nd order Taylor's
expansion of the stresses applied over the surface. This approximation
is very accurate. In fact, this approximation ensures the exact
satisfaction of the boundary equilibrium equation along the crack
surfaces assuming that they are not in contact. On the other hand, the
type of loads that cannot be represented by a second order
polynomial, as those used in the numerical example (see Eq. (30)),
will only appear in exceptional cases. In practical applications, the
load distribution along the boundary, in general, can be exactly
represented by a second order polynomial. Therefore, in these cases

Fig. 12.Mixed mode , non-uniform mesh 2. Exact error in σxx, σyy, σxy and σvm obtained by XFEM and by means of the SPR-CX technique. Under each graph is indicated the range of
the error in stresses.
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there will be no residual associated with equilibrium defaults along
the boundaries. If a less accurate recovery technique along the
boundaries is used, the residual r will be higher. The evaluation of
∫
ΓΝ
e·r dΓ would then be required.

5.6. Effectivity of the upper bound

The accuracy of the upper bound of the discretization error has
been studied in this section using the effectivity of the error estimator

Fig. 13. Evolution of errors in energy norm.

Fig. 14. Mode I. Evolution of the error estimator ESPR CX and the upper bound EUB0.
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in the 3 problems under analysis (modes I and II and mixed mode)
considering both, uniform and non uniform meshes. Four effectivity
curves have been represented in each of the graphs of Fig. 17:

a) ESPR-CX curve: the effectivity of the error estimator,
b) EUBex curve: the effectivity of the upper error bound given by Eq.

(27) evaluated using the exact value of the error of the displace
ments field e,

c) EUB curve: the effectivity of the upper error bound evaluated using
Eq. (35) and the estimated error in the displacements field ees
obtained from the last mesh of the overall refinement sequence,
i.e., from the 5th mesh in all the problems analyzed,

d) EUBs curve: the effectivity of the upper error bound in Eq. (35)
using the estimated error in the displacements field ees consider
ing the last mesh available at each refinement step.

Remark 6. It is clear that using the last mesh of a refinement se
quence to project the estimated error in the first mesh will provide
good results. However, what it is interesting is to estimate the error in
the best solution available at each refinement step. To evaluate EUBs
we would need at least 3 meshes in order to obtain the convergence
rate from the first 2 meshes and then to extrapolate the values of the
correcting terms for the last mesh.

The following conclusions can be extracted from Fig. 17:

• The ESPR-CX curves show the high precision of the recovery technique
used to evaluate σ⁎ both for uniform and non uniform meshes.

• Although σ⁎ is very accurate, the error estimator ESPR-CX2 =a (̅σe
⁎, σe

⁎)
cannot be considered, by itself, as an upper error bound. While the
effectivity of the error estimator is very close to 1, in many cases is
smaller than 1.

• The EUBex curves numerically show that, for the different problems
analyzed, Eq. (35) always provides an upper bound of the discretiza
tion error in energy norm.

• The EUB curves, obtained using the estimation of the error in the
displacements field described in Section 4.2, accurately reproduce
the EUBex curves evaluated with the exact values of the error. These
results validate the use of the displacement error estimation tech
nique, although the accuracy slightly diminishes in the last mesh of
the sequence due to the Richardson extrapolation technique used in
this mesh (see Table 1).

• The EUBs curves verify the accuracy of the proposed technique when
the solution for a highly refined mesh used to project the displace
ment error is not available. The effectivity in such cases is evaluated
at each refinement step, obtaining values close to the effectivity of
EUBex. Note that only in one case the computed version of the
theoretical bound given by Eq. (27) provides effectivity values
below unity (θ=0.996).

6. Conclusions

This paper presents a theoretical upper bounded estimator for the
error in energy norm and a strategy to evaluate its computable version
for LEFM problems solved using XFEM. The technique here proposed
is an enhancement of a previous technique developed for FEM [31]
and an adaptation to XFEM approximations.

The proposed procedure consists of two phases: a) evaluation of a
nearly statically admissible recovered stress field that provides a very
accurate estimation of the error in energy norm; and b) correction of
the error estimation to account for the equilibrium defects of the
nearly statically admissible field, which guarantees that the error
obtained is an upper bound of the exact error.

The recovery technique providing the nearly statically admissible
stress field is based on the SPR technique and the use of a splitting

Fig. 15. Mode I. Evolution of ESPR CX and EUBex.

Fig. 16. Mode I. Evolution of the absolute value of the correction terms.
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technique that decomposes the stress field into a singular part and a
smooth part. The proposed procedure uses a recovery technique
which ensures that, at each patch,σi

⁎ is statically admissible, matching
body loads and boundary tractions. Finally, a PUM based technique is
used to obtain a continuous recovered field σ⁎, which, on the other
hand, introduces lacks of equilibrium in the recovered solution.

A new technique for the evaluation of the correction terms associat
ed with the lack of equilibrium has also been presented. The technique
requires the problem to be solved using a sequence of refined meshes.
The numerical experiments show the high accuracy of the proposed
technique. The need for amesh sequence and the lack of accuracy in the
last mesh suggest developing new procedures for the estimation of the
error in thedisplacementfield,without using anymesh sequence. This is
left for future research.

The numerical results show that the estimation of the discretization
ESPR-CX is very accurate, with effectivities within the range (0.95−1.01).
Despite of the fact that ESPR-CX is not an upper bound of the exact error,
the numerical results indicate that this value could be considered as a
low cost computed version of the theoretical upper bound where the
effect of all the correction terms due to equilibrium defects has been
neglected.
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Mixed mode 113,991 1.00278 1.00476 1.00310

14



The financial support of the Generalitat Valenciana and the
Universidad Politécnica de Valencia is also acknowledged.

References

[1] N. Moës, J. Dolbow, T. Belytschko, A finite element method for crack growth
without remeshing, Int. J. Numer. Meth. Eng. 46 (1999) 131–150.

[2] J.M. Melenk, I. Babuška, The partition of unity finite element method: basic theory
and applications, Comput. Meth. Appl. Mech. Eng. 139 (1996) 289–314.

[3] B.L. Karihaloo, Q.Z. Xiao, Modelling of stationary and growing cracks in FE
framework without remeshing: a state-of-the-art review, Comput. Struct. 81
(2003) 119–129.

[4] N. Moës, A. Gravouil, T. Belytschko, Non-planar 3D crack growth by the extended
finite element and level sets— part I: mechanical model, Int. J. Numer. Meth. Eng.
53 (2002) 2549–2568.

[5] A. Gravouil, T. Belytschko, N. Moës, Non-planar 3D crack growth by the extended
finite element and level sets— part II: level set update, Int. J. Numer. Meth. Eng. 53
(2002) 2569–2586.

[6] D.L. Chopp, N. Sukumar, Fatigue crack propagation of multiple coplanar cracks
with the coupled extended finite element/fast marchingmethod, Int. J. Eng. Sci. 41
(2003) 845–869.

[7] P. Laborde, J. Pommier, Y. Renard, M. Salaün, High-order extended finite element
method for cracked domains, Int. J. Numer. Meth. Eng. 64 (2005) 354–381.

[8] E. Béchet, H. Minnebo, N. Moës, B. Burgardt, Improved implementation and
robustness study of the X-FEM method for stress analysis around cracks, Int. J.
Numer. Meth. Eng. 64 (2005) 1033–1056.

[9] T. Strouboulis, K. Copps, I. Babuška, The generalized finite element method,
Comput. Meth. Appl. Mech. Eng. 190 (2001) 4081–4193.

[10] Q.Z. Xiao, B.L. Karihaloo, Improving the accuracy of XFEM crack tip fields using
higher order quadrature and statically admissible stress recovery, Int. J. Numer.
Meth. Eng. 66 (2006) 1378–1410.

[11] J.E. Tarancón, A. Vercher, E. Giner, F.J. Fuenmayor, Enhanced blending elements for
XFEM applied to linear elastic fracture mechanics, Int. J. Numer. Meth. Eng. 77
(2009) 126–148.

[12] M. Ainsworth, J.T. Oden, A Posteriori Error Estimation in Finite Element Analysis,
John Wiley & Sons, Chichester, 2000.

[13] W. Bangerth, R. Rannacher, Adaptive Finite Element Methods for Differential
Equations, ETH, Zürich, Birkhäuser, Basel, 2003.

[14] O.C. Zienkiewicz, J.Z. Zhu, A simple error estimation and adaptive procedure for
practical engineering analysis, Int. J. Numer. Meth. Eng. 24 (1987) 337–357.

[15] O.C. Zienkiewicz, J.Z. Zhu, The superconvergent patch recovery and a posteriori
error estimates. Part I: the recovery technique, Int. J. Numer. Meth. Eng. 33 (1992)
1331–1364.

[16] O.C. Zienkiewicz, J.Z. Zhu, The superconvergent patch recovery and a posteriori
error estimates. Part II: error estimates and adaptivity, Int. J. Numer. Meth. Eng. 33
(1992) 1365–1382.

[17] I. Babuška, T. Strouboulis, C.S. Upadhyay, A model study of the quality of a
posteriori error estimators for linear elliptic problems. Error estimation in the
interior of patchwise uniform grids of triangles, Comput. Meth. Appl. Mech. Eng.
114 (1994) 307–378.

[18] I. Babuška, T. Strouboulis, C.S. Upadhyay, J. Gangaraj, K. Copps, Validation of a
posteriori error estimators by numerical approach, Int. J. Numer. Meth. Eng. 37
(1994) 1073–1123.

[19] N.E. Wiberg, F. Abdulwahab, S. Ziukas, Enhanced superconvergent patch recovery
incorporating equilibrium and boundary conditions, Int. J. Numer. Meth. Eng. 37
(1994) 3417–3440.

[20] A.C.A. Ramsay, E.A.W. Maunder, Effective error estimation from continuous,
boundary admissible estimated stress fields, Comput. Struct. 61 (1996) 331–343.

[21] T. Blacker, T. Belytschko, Superconvergent patch recovery with equilibrium and
conjoint interpolant enhancements, Int. J. Numer. Meth. Eng. 37 (1994) 517–536.

[22] Q.Z. Xiao, B.L. Karihaloo, Statically admissible stress recovery using the moving
least squares technique, in: B.H.V. Topping, C.A. Mota Soares (Eds.), Progress in

Computational Structures Technology, Saxe-Coburg Publications, Stirling, Scot-
land, 2004, pp. 111–138.

[23] J.J. Ródenas, M. Tur, F.J. Fuenmayor, A. Vercher, Improvement of the super-
convergent patch recovery technique by the use of constraint equations: the SPR-
C technique, Int. J. Numer. Meth. Eng. 70 (2006) 705–727.

[24] J.J. Ródenas, E. Giner, J.E. Tarancón, O.A. González-Estrada, A recovery error
estimator for singular problems using singular+smooth field splitting, in: B.H.V.
Topping, G. Montero, R. Montenegro (Eds.), Proceedings of Fifth International
Conference on Engineering Computational Technology, Fifth International
Conference on Engineering Computational Technology, Civil-Comp Press, Stirling,
Scotland, 2006.

[25] C. Shih, R. Asaro, Elastic-plastic analysis of cracks on bimaterial interfaces: part I—
small scale yielding, J. Appl. Mech. 8 (1988) 537–545.

[26] J. Yau, S. Wang, H. Corten, A mixed-mode crack analysis of isotropic solids using
conservation laws of elasticity, J. Appl. Mech. 47 (1980) 335–341.

[27] P. Díez, J.J. Egozcue, A. Huerta, A posteriori error estimation for standard finite
element analysis, Comput. Meth. Appl. Mech. Eng. 163 (1998) 141–157.

[28] P. Díez, N. Parés, A. Huerta, Recovering lower bounds of the error by
postprocessing implicit residual a posteriori error estimates, Int. J. Numer. Meth.
Eng. 56 (2003) 1465–1488.

[29] J.P.M. de Almeida, O.J.B.A. Pereira, Upper bounds of the error in local quantities
using equilibrated and compatible finite element solutions for linear elastic
problems, Comput. Methods Appl. Mech. Eng. 195 (2006) 279–296.

[30] O.J.B.A. Pereira, J.P.M. de Almeida, E.A.W. Maunder, Adaptive methods for hybrid
equilibrium finite element models, Comput. Meth. Appl. Mech. Eng. 176 (1999)
19–39.

[31] P. Díez, J.J. Ródenas, O.C. Zienkiewicz, Equilibrated patch recovery error estimates:
simple and accurate upper bounds of the error, Int. J. Numer. Meth. Eng. 69 (2007)
2075–2098.

[32] T. Strouboulis, L. Zhang, D. Wang, I. Babuška, A posteriori error estimation for
generalized finite element methods, Comput. Meth. Appl. Mech. Eng. 195 (2006)
852–879.

[33] S. Bordas, M. Duflot, P. Le, A simple error estimator for extended finite elements,
Commun. Numer. Meth. Eng. 24 (2008) 961–971.

[34] S. Bordas, M. Duflot, Derivative recovery and a posteriori error estimate for
extended finite elements, Comput. Meth. Appl. Mech. Eng. 196 (2007)
3381–3399.

[35] M. Duflot, S. Bordas, A posteriori error estimation for extended finite element by an
extended global recovery, Int. J. Numer. Meth. Eng. 76 (2008) 1123–1138.

[36] J. Panetier, P. Ladevèze, L. Chamoin, Strict and effective bounds in goal-oriented
error estimation applied to fracture mechanics problems solved with XFEM, Int. J.
Numer. Meth. Eng. 81 (2010) 671–700.

[37] J.J. Ródenas, O.A. González-Estrada, J.E. Tarancón, F.J. Fuenmayor, A recovery type
error estimator for the extended finite element method based on a singular
+smooth stress field splitting, Int. J. Numer. Meth. Eng. 76 (2008) 545–571.

[38] M.F. Kanninen, C.H. Popelar, Advanced Fracture Mechanics, Oxford University
Press, New York, 1985.

[39] T. Belytschko, T. Black, Elastic crack growth in finite elements with minimal
remeshing, Int. J. Numer. Meth. Eng. 45 (1999) 601–620.

[40] M. Stolarska, D.L. Chopp, N. Moës, T. Belytschko, Modelling crack growth by level
sets and the extended finite element method, Int. J. Numer. Meth. Eng. 51 (2001)
943–960.

[41] L. Banks-Sills, Application of the finite element method to linear elastic fracture
mechanics, Appl. Mech. Rev. 44 (1991) 447–461.

[42] F.Z. Li, C.F. Shih, A. Needleman, A comparison of methods for calculating energy
release rates, Eng. Fract. Mech. 21 (1985) 405–421.

[43] G. Calderón, P. Díez, Análisis de diferentes estimadores de error de postproceso
para adaptatividad orientada al resultado, Métodos Numéricos Para Cálculo y
Diseño En Ingeniería 22 (2006) 193.

[44] E. Giner, F.J. Fuenmayor, L. Baeza, J.E. Tarancón, Error estimation for the finite
element evaluation of GI and GII in mixed-mode linear elastic fracture mechanics,
Finite Elem. Anal. Des. 41 (2005) 1079–1104.

15


