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Abstract

Patient characterization is the key for the successful treatment of type
1 diabetes mellitus. This characterization is currently done heuristically
by physicians over continuous clinical visits to the patient. Improving
diabetes care has been identi�ed as a priority in national and international
health programs. In this context, attention has been focused on automated
control strategies of plasma glucose -the so called Arti�cial Pancreas-, and
signi�cant investment has been done by governments and pharmaceutical
companies to its development. Mathematical modeling of the patient is
crucial in this aspect, and the parametric characterization of the patient
in the mathematical model has proven to be a di�cult task to accomplish.

In this thesis, identi�ability studies have been performed on several
models present in literature. A critical review of the models based on their
identi�ability has been performed, and a new model has been proposed to
overcome the problems found. A clinical protocol has been developed to test
this methodology, based on home continuous glucose monitoring of subjects
with type 1 diabetes mellitus. Preliminary results of this validation study
are shown here.
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Chapter 1

Glucose Control and Diabetes

Glucose is the main source of energy for the metabolism of the cells. In

particular, brain metabolism is strictly dependent on glucose supply from the

bloodstream. Thus, it is not surprising that regulation of glucose metabolism

in the human body implies many di�erent control systems, relating several

hormones and organs. Indeed, the hormonal interplay regulates glucose

production (basically in the liver and, to a lesser extent, in the kidney) and

glucose uptake from tissues, as to maintain blood glucose concentrations in

a narrow range.

However, there exist a number of pathologic conditions that a�ect glucose

metabolism, the most famous (and frequent) being Diabetes Mellitus (DM).

This chapter exposes the most important cycles and reactions that take place

in the organism in order to maintain the glucose homeostasis, and discusses

what the disease called Diabetes Mellitus consists in, and how it endangers

the glucose regulation.
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1.1 Glucose Metabolism

In humans plasma glucose is normally maintained within a narrow range

(approximately 65-140 mg/dl), in both the fasting and fed state, due to a

tightly linked balance between glucose production (basically from the liver)

and utilization (from all the other tissues: the muscle, the adipose tissue

and the brain). This is critical in patient's health, as explained by the

devastating e�ects of deregulation of glucose metabolism. Indeed, excessive

increase in plasma glucose concentration (diabetes) over years is responsible

for a 2-5 fold increase in cardiovascular morbidity and mortality among

diabetic people as compared to the general population. On the other hand,

maintenance of plasma glucose above the threshold of hypoglycemia is critical

for survival of the whole body. This is because glucose oxidation normally

provides more than 90% of the energy needed for brain function and since

the brain cannot synthesize glucose, and has reserves su�cient for only a few

minutes, its function is almost totally dependent upon a continuous supply of

glucose from the arterial circulation. Thus, it is not surprising that control

mechanisms which maintain plasma glucose homeostasis are complex and

that organs which normally release glucose into the circulation, namely liver

and kidney, play a key physiological role in supporting brain function. The

central nervous system and several hormones (insulin, glucagon, epinephrine,

norepinephrine, GH and cortisol) participate into the regulation of glucose

metabolism. However, as explained below, insulin is certainly the main actor.

For more information about glucose metabolism check Williams and Pickup

[105].

1.1.1 Role of Insulin

Insulin is the main regulatory hormone used in the body for reducing the

glucose concentration in blood. Its main function is to enable the glucose

absorption from blood by muscles and liver, and then convert that glucose
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into glycogen. It is also the hormone that controls the absorption of glucose

by the adipose tissue, and then stores that glucose as triglycerides. It has

also an e�ect over the metabolism of many nutrients, as carbohydrates and

proteins.

Insulin is secreted from the pancreas, in the zones called Langerhans

islets, and speci�cally by the β-cells. The Langerhans islets are regions of

the pancreas where the hormones related with the glucose homeostasis and

metabolism are produced. Four main types of cells can be found: α-cells

producing glucagon; β-cells producing insulin and amylin; δ-cells producing

somatostatin; PP cells producing pancreatic polypeptide.

In both the fed and fasted states, insulin is foremost among the

factors that regulate glucose production and utilization. Under normal

circumstances, an increase in plasma glucose concentration such as after

carbohydrate ingestion, is accompanied by a prompt increase in insulin

secretion. The resultant increase in plasma insulin concentration accelerates

glucose utilization and suppresses production. Conversely, a decrease

in plasma glucose concentration is accompanied by a decrease in insulin

secretion; the resultant decrease in circulating insulin concentration causes

a decrease in glucose utilization and an increase in endogenous glucose

production.

Hence, plasma insulin levels change according to the metabolic status,

ensuring the balance between glucose production (by the liver) and glucose

utilization (by the other tissues), and resulting in stability of plasma

glucose concentrations. Rates of glucose production and utilization are

also in�uenced by the so called �counterregulatory hormones� glucagon,

adrenaline, cortisol and growth hormone independent of changes in insulin

concentration. All of these hormones have biological e�ects that can oppose

those of insulin and are involved in physiological responses to prevent/limit

hypoglycemia.
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Post-absorptive and fasting state

The four-hour to six-hour interval following ingestion of a meal is generally

referred to as the post-absorptive state. At this point, plasma glucose

concentrations average 80 to 90 mg/dl, and rates of glucose utilization are

approximately 2 mg/kg/min. At least 50% of whole body glucose utilization

is due to noninsulin-dependent uptake of glucose from the brain. The formed

elements of the blood, renal medulla and muscle, metabolize glucose to

pyruvate and lactate. These substances can be released into the circulation

and serve as substrates for gluconeogenesis. In the postabsorptive state,

insulin sensitive tissues such as muscle, adipose tissue, and liver account for

less than 30% to 50% of overall glucose utilization. Following meal ingestion,

however, liver and muscle take up glucose to replenish their glycogen stores

and transiently increase their utilization of glucose.

If fasting is prolonged beyond the post-absorptive period, plasma glucose

concentrations decrease over the succeeding 48 to 78 hours to reach a nadir

of approximately 45 to 60 mg/dl that can be maintained for several weeks.

Plasma free fatty acids and ketone body concentrations increase several-fold,

reaching levels of 1 to 2 mmol/l by 72 hours. Glucose utilization decreases

during this time to approximately 1 mg/kg/min and remains constant

thereafter. These changes are in large part due to decreases in plasma insulin

concentration that permits accelerated lipolysis with increased ketone body

formation. Muscle and other tissues become progressively more dependent

on free fatty acids and ketone bodies. Also, ketone bodies replace glucose as

the predominant fuel for neural tissues, thus reducing the obligatory glucose

uptake by the brain.

Absorptive state

The increase in plasma insulin concentration that occurs immediately

following a meal suppresses endogenous glucose production, an e�ect also
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mediated by the increased plasma glucose concentration. Consequently,

hepatic glycogenolysis is suppressed and glycogen deposition stimulated.

Approximately 50% of an oral glucose load is taken up by the liver and

the remaining by peripheral insulin-sensitive tissues. Three to four hours

following meal ingestion, the liver again releases glucose into circulation.

Ultimately, the rate of glucose released equals the rate of glucose utilization

so that plasma glucose concentrations are maintained stable.

Nearly all tissues, to varying degrees, oxidize glucose to derive energy

for metabolic demands. Yet only the liver and kidney release glucose. This

release results from the presence in these organs of glucose-6-phosphatase

which liberates glucose into the bloodstream. The liver and kidney do not,

however, contribute equally to post-absorptive glucose homeostasis. It is

generally believed that the liver makes the major quantitative contribution

during this state, while the kidney plays a minor role.

1.1.2 Role of Glucagon

In the experiments of Banting and Best that led to the discovery of insulin

in 1921 [4], a �contaminant� in pancreatic extracts was reported that caused

a transient increase in blood glucose. Nevertheless, the hypoglycemic e�ect

of the extract was sustained and predominated. Insulin was isolated from

the extract and went into immediate use for treatment of diabetes. Working

in the shadow cast by the discovery of insulin, Murlin and colleagues [42]

[58] went on to de�ne the hyperglycemic factor in pancreatic extracts. They

wrote in 1923: �There are two substances in these aqueous extracts, one of

which lowers the blood sugar and the D:N ratio and raises the R.Q. (insulin),

the other raises the blood sugar of both normal and depancreatized animals.

...� Based on their observations, these investigators proposed the existence

of a second hormone secreted by the pancreas. They proposed the name

glucagon, a contraction of the words �glucose� and �agonist�, for this putative

hormone.
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The full signi�cance of glucagon in physiology and diabetes was not

appreciated until the development of the radioimmunoassay, which made

plasma glucagon measurement routine. Exercise has been used as a

physiological stimulus to challenge the glucoregulatory system in a dog model

and to de�ne the roles of glucagon, demonstrating its important role in

maintaining blood glucose. It was shown that glucagon has mainly an hepatic

e�ect, being the key to both the glycogenolytic and gluconeogenic responses

to exercise [100]. This means that it stimulates glucose production by the

liver, allowing for compensation of increased glucose uptake from the muscle

during periods of physical activity, therefore preventing plasma glucose fall

to hypoglycaemia. Indeed, several studies have demonstrated that glucagon

secretion, along with suppression of endogenous insulin production, is the

�rst physiological counterregularoy response to impending hypoglycaemia

[56]. Disfunction of this counterregulatory system is responsible for the

burden of hypoglycemia in people with diabetes [19].

1.1.3 Role of Epinephrine

Epinephrine, also known as Adrenaline, is a hormone and neurotransmitter

secreted by the adrenal glands. Catecholamines (mainly adrenaline) appear

to play a key role in counterregulatory response to hypoglycemia. In fact,

blockade of their e�ects causes severe hypoglycemia despite increases in other

counterregulatory hormones, particularly glucagon. In contrast to glucagon

which exerts its e�ects exclusively on glucose production, catecholamines

exhibit multiorgan e�ects, including suppression of endogenous insulin

secretion, stimulation of hepatic and renal glucose production, inhibition of

peripheral glucose utilization, and stimulation of lipolysis. Like glucagon, it

is likely that the sustained increase in glucose production is primarily due to

stimulated gluconeogenesis ([47]).
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1.1.4 Role of slow-acting Hormones

Growth hormone and cortisol are referred to as �slow-acting� hormones

because their e�ects become evident after a few hours of their increase

in plasma. Therefore, the counterregulatory role of these hormone is

appreciated only after 3 hours of hypoglycemia. Both cortisol and growth

hormone are critical to counterregulation because absent response of either

one of these two hormones is not compensated by even larger responses

of other hormones, including the rapid-acting hormones glucagon and

adrenaline.

1.1.5 E�ectiveness of Glucose Control

Blood glucose control has two attributes that make it very e�ective. First,

there is redundancy of control due to multiple layers of the glucoregulatory

response. Changes in pancreatic islet glucagon and insulin secretion normally

prevent hypoglycemia. Should the response of the pancreas be inadequate,

other controllers (e.g., catecholamines, cortisol, growth hormone, and glucose

autoregulation) are in place to prevent a deeper fall in blood glucose. Second,

there is distribution of control that includes nutrition, liver function, and

energy metabolism. Glucose delivery is a function of glucose concentration

and vascular regulation. The ability of the gut to supply glucose in the

postprandial state and the liver to do so in the postabsorptive state maintains

blood glucose concentration. By doing so, these organs sustain glucose

delivery and exert control over peripheral (mainly muscle) glucose uptake.

In fact, in the postabsorptive state the rate that glucose is released from

the liver is the most sensitive regulator of muscle glucose uptake. With

prolonged exercise or mild hyperinsulinemia, the muscle is highly permeable

to glucose but muscle glucose uptake still declines. During prolonged exercise,

the glycogen-depleted liver cannot sustain blood glucose.

With iatrogenic hyperinsulinemia (i.e., treatment of diabetes), the release
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of glucose from the liver is suppressed, causing a decrease in blood glucose.

In short, factors that control the release of glucose from the liver such as

insulin, glucagon, and nutritional state are part of distributed control.

1.2 Diabetes Mellitus

For 2,000 years diabetes has been recognized as a devastating and deadly

disease. In the �rst century A.D. a Greek, Aretaeus, described the destructive

nature of the a�iction which he named �diabetes� from the Greek word for

�siphon�. Eugene J. Leopold in his text Aretaeus the Cappodacian describes

Aretaeus' diagnosis: �...For �uids do not remain in the body, but use the

body only as a channel through which they may �ow out. Life lasts only

for a time, but not very long. For they urinate with pain and painful is the

emaciation. For no essential part of the drink is absorbed by the body while

great masses of the �esh are lique�ed into urine�.

Physicians in ancient times, like Aretaeus, recognized the symptoms of

diabetes but were powerless to e�ectively treat it. Aretaeus recommended

oil of roses, dates, raw quinces, and gruel. And as late as the 17th century,

doctors prescribed �gelly of viper's �esh, broken red coral, sweet almonds,

and fresh �owers of blind nettles�.

In the 17th century a London physician, Dr. Thomas Willis, determined

whether his patients had diabetes or not by sampling their urine. If it had a

sweet taste (due to a phenomenon known as glycosuria, which occurs when

blood glucose goes up above the threshold of 180 mg/dl) he would diagnose

them with diabetes mellitus- �honeyed� diabetes. This method of monitoring

urine glucose went largely unchanged until the 20th century.

In the early 20th century, diabetologists such as Dr. Frederick Allen

prescribed low calorie diets-as little as 450 calories per day for his diabetic

patients. His diet prolonged the life of people with diabetes but kept them
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su�ering from near starvation. In e�ect, people with diabetes su�ered a

painful wasting death. Then in 1921 something truly revolutionary occurred

in Ontario, Canada. A young surgeon Frederick Banting, and his assistant

Charles Best, kept a severely diabetic dog alive for 70 days by injecting it with

a murky concoction of canine pancreas extract. With the help of Dr. Collip

and Dr. Macleod, Banting and Best administered a more re�ned extract of

insulin to Leonard Thompson, a young boy dying of diabetes. Within 24

hours, Leonard's dangerously high blood sugars had dropped to near normal

levels. Until the discovery of insulin, most children diagnosed with diabetes

were expected to live less than a year. In a matter of 24 hours the boy's

life had been saved. News of the miracle extract, insulin, spread like wild�re

across the world.

Since insulin's discovery, medical breakthroughs continued to prolong and

ease the lives of people with diabetes. In 1935 Roger Hinsworth discovered

there were two types of diabetes: �insulin sensitive� (type 1) and �insulin

insensitive� (type 2). By di�erentiating between the two types of diabetes,

Hinsworth helped open up new avenues of treatment. Indeed, type 1 and type

2 diabetes are characterized by di�erent pathophysiologic processes, resulting

in di�erent therapeutical approaches.

In the last decades it has become a major health problem worldwide.

Its impact all over the world, and especially in the developed countries, has

alarmed the health organizations in many countries, and major e�orts are

being performed to overcome this threat. Scoping into the future is even

more shocking. In �gure 1.1 the estimate of diabetes prevalence per country

in 2010 can be seen. The increase in population combined with aging of

people makes the problem of diabetes to get into epidemic proportions in the

next decades, as can be seen in �gure 1.2.

Insulin has a major importance in treatment of diabetes. It is usually

delivered subcutaneously, which delays the e�ect of the insulin in the blood as

compared with to natural insulin in healthy persons that is secreted directly
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Figure 1.1: Prevalence estimates of diabetes (29-70 years old) in 2010 [39]

Figure 1.2: Prevalence estimates of diabetes (29-70 years old) in 2030 [39]
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into the circulatory system. Human insulin is found in what is called hexamer

form, in which there are six insulin molecules aggregated by means of a zinc

atom. This can be seen in �gure 1.3, where every twisted �gure is a single

monomer of insulin, and the six of them and the nucleus form the whole

molecule.

Figure 1.3: Structure of insulin in its hexamer form [15]

Subcutaneous absorption of insulin in the hexamer form is really slow,

and it usually has to dissociate into monomers to be able to pass through

the subcutaneous tissue into the bloodstream. The most stable form of

insulin (human insulin) is the hexamer form, and that is the way is stored for

Diabetes treatments, but insulin analogs have been developed in recent years,

which change their most stable form to monomer or dimer (intermediate

stage between monomer and hexamer). The fact that their most stable form

is monomer form makes these insulin analogs to be much faster absorbed than

human insulin, and that has made insulin treatments much more �exible.

There are two main types of diabetes mellitus. Type 1 diabetes is

characterized by absolute insulin de�cit, due to the autoimmune destruction

of the pancreatic beta cells. Hence, the treatment for people with type 1
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diabetes is necessarily the replacement of the endogenous insulin secretion

by means of the administration of exogenous insulin. On the other hand, type

2 diabetes is the result of two concomitant alterations: 1) insulin resistance

(i.e. the liver and the muscle have less than normal sensitivity to the insulin

action); 2) impaired beta cell function (i.e. the physiological response of the

beta cell to a meal is lost, as well as its ability to compensate for insulin

resistance). This results in relative insulin de�cit, which can be approached

with several non pharmacological (physical exercise) and pharmacological

measures. However, the natural history of type 2 diabetes is characterized

by progressive lost of the beta cell function overtime, �nally leading to a

condition of absolute insulin de�cit requiring replacement with exogenous

insulin.

There are other types of DM, like the pathologies that are induced by

infections or endocrinopathies, and they can be of transitional character,

like the gestational diabetes occurring in pregnant women, or remain chronic

for the patient, but these sorts of DM are not going to be studied in here.

Diabetes type 1 and 2 will be explained in detail in chapters 1.2.1 and 1.2.2.

The degree of metabolic control obtained by people with diabetes can be

measured by the concentration of glycated hemoglobin in blood, also called

HbA1c. Hemoglobin is the protein used to transport oxygen though the

circulatory system. In presence of glucose it undergoes a non-enzymatic

reaction, becoming glycated. This transformation is in relation to the average

concentration of glucose in blood, due to the half-life of red blood cells, it

is representative of mean blood glucose concentrations during the past 8-12

weeks. For the record, a healthy person has a 5.5% of hemoglobin in glycated

state, while a diabetic patient is considered to be under control if its HbA1c

is under 7%.
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1.2.1 Diabetes type 2

Diabetes Mellitus type 2 is the most extended sort of diabetes, and accounts

for 85% of cases in developed countries. It is related to various clinical

risk factors such as increasing age, obesity, and racial and geographical

characteristics. It is the diabetes type 2 the one that threats with epidemic

proportions worldwide. Its onset peak is around 50 years and almost 80% of

type 2 diabetic subjects are obese.

Two main defects characterize the pathophysiology of T2 DM:

1. Beta cell dysfunction. Usually the deterioration a�ects initially the

prandial insulin secretion. Indeed, the so called �rst phase of insulin

response is lost early on in the natural history of the disease, resulting in

post-prandial hyperglycemia. However, Beta cell function deteriorates

progressively overtime, leading to an absolute insulin de�cit.

2. Insulin resistance. Hepatic insulin resistance causes excessive glucose

production, contributing to fasting hyperglycemia. Peripheral (muscle)

insulin resistance leads to ine�cient glucose utilization. It is related to

obesity and physical inactivity, both related to hepatic and intra-muscle

lipid accumulation. However, insulin resistance is not able 'per se' to

cause diabetes. Indeed, the normal beta cell can compensate for insulin

resistance and this is the reason because obese people are not always

diabetic.

Diabetes develop when defective beta cell cannot compensate for insulin

resistance.

A wide therapeutic armamentarium is available for the treatment of type

2 diabetes mellitus. Unfortunately deterioration of β-cells does not stop with

any drugs, and diabetic patients type 2 will become dependent of exogenous

insulin, just as type 1 diabetic people are. The treatment related to insulin
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administration will be explained in chapter 1.2.2.

1.2.2 Diabetes type 1

Aetiology

This type of diabetes is an autoimmune disease, and as said before, idiopathic,

meaning that the disease arises spontaneously, or from an obscure or

unknown cause. It is related to a low level of insulin in blood, which causes

the blood glucose to be constantly in high levels, which can cause severe

symptoms including ketoacidotic coma in some patients. The disease is

also suddenly discovered in most patients, who are usually lean people that

present recent loss of weight. Patients with Diabetes Mellitus Type 1 presents

markers of antibodies denoting the destruction of β-cells. This destruction

causes the low insulin levels that lead to the rest of the symptoms, such

as constant high blood glucose concentrations and ketoacidotic coma in the

extreme cases. The aetiology (chain of events leading to diagnosis) of DM1

is complex and not completely understood, but it is supposed to imply both

genetic predisposition and environmental factors, as can be seen in �gure 1.4.

Physiopathology

The problem for the patients of DM1 is then that they do not have an

endogenous (proceeding from within) insulin secretion system and this insulin

has to be given in an exogenous (coming from outside) way.

Normal non-diabetic subjects maintain plasma glucose below 100 mg/dl

during fasting state, and below 140 mg/dl in the post-prandial period.

During fasting, maintenance of normoglycaemia is possible because of the

continuous release of insulin from the pancreas which restrains hepatic

glucose production and prevents hyperglycaemia. At meal times, the normal
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Figure 1.4: Aetiology of type 1 diabetes [105]
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pancreas releases insulin very rapidly in response to meal ingestion as

indicated by the early and elevated insulin peak appearing in peripheral

plasma. It can be estimated that the corresponding �portal� plasma insulin

concentrations of the prandial peaks are nearly twice as elevated. This

is what is needed in terms of insulin delivery to prevent post-prandial

hyperglycaemia.

However, of similar importance is the rapid decrease of plasma insulin

60-90 minutes after meal ingestion, preventing hypoglycaemia in the post-

prandial period. Also, the fact that between meal plasma insulin is �at

and peakless is a key factor in the prevention of interprandial and fasting

hypoglycaemia, particularly at night.

This model of natural insulin dynamics should be imitated whenever

insulin has to be replaced. Given that Diabetes Mellitus type 1 is

characterized by absolute insulin de�cit and therefore the only treatment

is its replacement, the logical strategy to palliate the e�ects of the disease is

to mimic the non-existent insulin secretion rate.

Current strategies for insulin replacement

In the early 1980s human insulin was introduced to the market by drug

companies substituting animal insulin emphasizing the belief that diabetic

people should be treated with �naturally� secreted insulin from the human

body. Better glycaemic control was expected in people with diabetes using

human compared with animal insulin. This was not the case, since no single

advantage could be proven for humans versus animal insulin ([89]).

However, the positive aspect of human insulin was the innovative

technology used for its production (DNA-recombinant technique) versus

the traditional insulin extraction method from animal pancreata. This

new technique helped to develop a number of insulin analogues. Major

16



e�orts were started to modify the human insulin and develop �modi�ed�

insulins for administration to diabetic subjects. Slow and rapid acting

insulin analogues are available now for the di�erent stages of the treatment

of diabetes. Slow acting insulins (up to 24h permanence in blood) can

be used for substituting the �at insulin level in the interprandial periods.

Fast acting insulin analogues (1-2 hours life cycle) on the contrary, may be

used to replicate the postprandial insulin peaks of the (non-existent) insulin

secretion.

Regardless of the system of glucose measurement or the way insulin is

delivered, the control philosophy for glucose control in DM1 is to replicate the

insulin secretion pattern of the non-diabetic person. As already explained,

in the fasting and post-absorptive state, insulin secretory rate is regulated

in a feedback fashion by plasma glucose levels. This is known as basal

insulin, which modulates hepatic glucose production to exactly compensate

for peripheral glucose utilization maintaining plasma glucose concentrations

in a very narrow range. In the post prandial state, beta cells increase insulin

secretion to cope with glucose absorption from the gut into the bloodstream.

This is called prandial insulin secretion, which results in high plasma insulin

concentrations that suppress hepatic glucose production (unnecessary since

glucose is being absorbed from the gut) and increase glucose disposal into

the liver and the muscle, allowing for very small meal-induced �uctuations

in plasma glucose concentrations. It should be noted that the feedback

mechanisms regulating insulin secretion, probably rely on measurement

of glucose concentration in the blood (or in some compartment in fast

equilibrium with the blood). Thus, mimicking physiological insulin secretion

must translate into replacement of both basal and prandial components, and

ideally it should be based on measurements of blood glucose concentrations

and on insulin infusion directly into the blood stream.

However, for practical reasons in clinical practice, insulin is usually

injected subcutaneously. This introduces a delay between insulin injection

and insulin action, which represents the time needed for the absorption
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of insulin from the subcutaneous tissue into the blood. This lag time

depends on the chemical properties of the insulin injected (which in�uence

its rate of absorption) and is one of the barriers to the development of the

arti�cial pancreas. The insulin molecule has been modi�ed in order to obtain

preparations suitable for more accurate insulin replacement ([84]). Indeed,

current strategies for insulin administration use a long-acting insulin analogs

(the molecule has been modi�ed to ensure a constant 24 hour absorption

from the subcutaneous tissue, following injection) for basal replacement and

a fast acting insulin analogs (the molecule has been modi�ed to accelerate

its absorption from the subcutaneous tissue) for prandial requirements.

This therapy is called basal-bolus strategy, and it is clearly limited by

the pharmacokinetics of insulin, and leaves no possibility of reaction to

unexpected events, such us too low absorption rate of glucose, or sudden

increase of insulin sensitivity of the patient.

Figure 1.5: Insulin pumps [54]

Subcutaneous insulin pumps (as shown in �gure 1.5) traditionally use

basal-bolus strategy, but the possibility of adjusting the insulin delivery rate

at any time rises scenarios of a closer control. The main advantages of using

Continuous Subcutaneous Insulin Infusion (CSII) are:

1. Use of rapid acting analogs both for meal insulin and basal insulin.

Indeed, they show better reproducibility of subcutaneous absorption
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as compared to long acting insulins resulting in lower variability.

2. Possibility to adjust basal insulin requirements to the subject

needs (ex circadian variations in insulin sensitivity). This is not

possible with long acting insulins with `�xed' pharmacokinetics and

pharmacodynamics.

These new CSII scenarios require of a more e�cient glucose measuring

system as well, and the recent subcutaneous real-time glucose monitors, like

the guardian real-time glucose monitoring system from Medtronic shown in

�gure 1.6, provide this continuous monitoring required to close the control

loop.

Figure 1.6: Guardian Real-Time Glucose Monitoring System from Medtronic
[54]

Given the chance to read glucose in real-time and act over it with (at

least) one control action, which is the insulin infusion, it is de�ned a control

system, and there are several control laws that can be applied to create a

tighter control of blood glucose than trying to mimic the behavior of the

physiological insulin production rate. The �natural� physiological control is

impossible to obtain with the subcutaneous infusion of insulin. However, the

presence of continuous sensors, even though the uncertainty that present,
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opens the possibility of designing new control strategies that will stabilize

glycaemia in diabetic patients.

Even though the simpli�cations performed to the �real� model are strong,

a reliable control law can be implemented and tested in real patients. This

control problem has been a matter of research for over 40 years, and it is still

going on. The product that is edxpected from the design and implementation

of the control law that is to replace the damaged β-cells in the pancreas is

called Arti�cial Pancreas, and it is the framework of research this thesis is

placed in.

1.3 Arti�cial Pancreas

Over the last 30 years, even with the availability of new insulin preparations

with more physiological pro�les, continuous administration systems aimed at

emulating endogenous insulin secretion, and new education strategies, there

is still no universal, e�cient and safe system able to normalize the glucose

levels of diabetic patients. Progress with enzyme electrodes in the 1970s

[104] allowed for the emergence of continuous glucose monitoring (CGM),

and for the subsequent development of the �rst prototypes of glucose-sensor

controlled insulin infusion systems, by di�erent groups ([1] and [2]).

The next two decades saw huge progress in the development of continuous

glucose sensing. Research focused on the skin as an appropriate candidate

for direct glucose measurement. Indeed, the subcutaneous tissue is easily

accessible for sensor implantation and measurement of glucose in the

interstitial �uid, with fewer problems as compared to the intravascular

space. The amperometric glucose-sensing technique was re�ned and this

process culminated, in 1999, with the development and FDA approval of the

CGMS R©, the �rst commercial CGM device [53]. Since then, technological

progresses have fueled research on closed-loop glucose control systems using
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the subcutaneous route (see below), for e�ective treatment of diabetic

subjects.

Preliminary studies using o�-the-shelf insulin pumps and subcutaneous

continuous glucose monitoring (CGM) sensors have suggested that, in

research settings, closed-loop systems that automatically dispense insulin

can achieve better control of glucose levels than open-loop systems in which

a person makes dosing decisions [92]. Such promising results prompted the

Juvenile Diabetes Research Foundation (JDRF) to push the research forward

by launching its Arti�cial Pancreas Project 4 years ago, and the US Food and

Drug Administration (FDA) to designate the arti�cial pancreas as a priority

within its Critical Path Initiative. However, so far only a few prototypes

have been developed and tested in controlled clinical settings. In fact, several

challenges do still exist:

1. Coping with big disturbances a�ecting the system, such as meals, stress

and exercise

2. Robustness face to the great variability of patient's physiological

behavior

3. Accuracy and reliability of continuous glucose monitors, that must be

improved to a higher degree

4. Safety of insulin pumps and detection of faults

5. Adequate correction for the slow responsiveness of controllers due to

delays in the control loop (see below)

Control of post-prandial glycaemic excursions is certainly a key issue in

the arti�cial pancreas. Indeed, meals are one of the major perturbations to

counteract and the main challenge found in current clinical validations of the

few existing prototypes of closed-loop glycaemic control systems. This thesis

focus on this issue, aiming at the development of new feedback strategies for

post-prandial glycaemic control.
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1.3.1 Current state of development

The �rst experiment conducted closing the control loop in a patient with

diabetes can be traced back to 1964 by Kadish [41]. It was the �rst trial to

control the blood glucose with a continuous glucose monitor, and the control

algorithm was just an `on-o�' system with constant supervision of doctors,

and the control action (insulin) was delivered in an intravenous way, which

minimizes the delays related to insulin transport in tissues.

In 1974 an `arti�cial endocrine pancreas' was developed simultaneously

by two di�erent researchers, Albisser [1] and Pfei�er [72], which led to the

�rst commercial device that emulated an arti�cial pancreas: The Biostator.

The device implemented a complex algorithm aiming to prevent postprandial

hyperglycaemia, but it was still a bulky machine (�gure 1.7) with need of

constant supervision and none at all designed for an independent use.

As already said, considerable improvement has been made in the

technology of glucose monitors for the past 20 years, and insulin pumps

have been developed and proven to be reliable and to improve life quality for

diabetic patients, as shown by Pickup [73]. The use of continuous insulin

infusion coupled with subcutaneous aims to solve the main problem the

Biostator supposed, its low manageability, but it adds new delays to the

control loop, which makes the algorithms needed much more complicated.

The classi�cation of closed-loop systems based on the body interface, and

thus related to its average delay stays as follows:

• Intravenous measuring and intravenous insulin delivery. This

option is the most invasive system, and it represents the minimum delay

possible from the glucose measuring to its response (about 30 minutes).

A revision of the control algorithms used in this paradigm was done

by Parker [69]. Its application is unfeasible in clinical practice and

might be used, in the near future, only in critical patients and hospital
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Figure 1.7: Biostator designed by Pfei�er [72]
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treatments (in contexts where invasive techniques do not constitute a

barrier to its implementation). The Biostator is the main example for

this sort of interface.

• Intravenous measuring and intraperitoneal insulin delivery.

Implantable insulin pumps have been used for intraperitoneal (into the

abdominal cavity) infusion, which has many of the advantages of the

full-intravenous interface. However, it still is invasive and adds the

delay related to the absorption of the insulin.

• Subcutaneous measuring and subcutaneous insulin delivery.

It is the less invasive option but also the choice that adds the largest

delays to the control loop. This system is the more suited for long time

treatments, and is the one that is going to be studied in detail in this

thesis.

The increasing delay added by the less invasive interfaces is a present problem

anytime designing a controller for blood glucose. Revision of the main

drawbacks and advantages for every method was done by Hovorka [33], and

the delays present in every sort of control system can be seen in �gure 1.8.

Other possible classi�cation for closed-loop control in diabetes will be

regarding the control algorithm implemented:

• PID control. The classical approach control of Proportional-Integral-

Derivative (PID) control is the broadest implemented control algorithm

in industrial applications due to its simplicity and the fact that tuning

algorithms for the controller have been developed for decades.

IIR = Kp(G−Gt) +KI

∫
(G−Gt) +Kd

∂G

∂t
(1.1)

Where IIR represents the insulin infusion rate, Kp, Kd and Ki are

the parameters of the controller (to be determined), G is the measured

glucose, and Gt is the target glucose. Due to its simplicity, many times
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Figure 1.8: Delays related to the interface of the arti�cial pancreas system as
stated by Hovorka [33]. s.c. stands for the subcutaneous route, i.p. stands
for the intraperitoneal route and i.v. stands for the intravenous interface.
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the PID gives the base structure to the controller, and many heuristic

methods make the controller an �expert� controller. Marchetti [52] for

example, developed one of these algorithms for type 1 diabetic patients

and Chee [16] did it for critically ill patients.

• State-feedback control. The so called �Optimum control�

methodology has been used to design algorithms as a feedback of the

state of the model considered. Palumbo [65], for example, used this

approach to design a controller for a Delayed Di�erential Equation

model of the glucose regulation system.

• Model predictive control (MPC). MPC is a rather more complex

control philosophy, based on optimization methods to �nd the optimum

input that leads the controlled variable to the desired reference in a

target time. It is, as well as the PID controller, widely implemented in

industries, and the tuning algorithms are very e�cient and have been

re�ned for the last decades. A complete overview for the development

of the algorithm and its impact on industry was performed by Camacho

and Bordons [14]. In the context of arti�cial pancreas MPC is the most

applied method of control, and several controllers have been developed,

such as the one of Parker [68], or the one implemented by Hovorka

[34], which was tested in its application on critical patients by Plank

[74], showing that patients were more often within the glucose target

range than with the usual therapy, and that hypoglycemia episodes

were avoided completely by using the MPC controller.

About the optimum algorithm to be chosen in order to control a determined

patient, the answer is not clear. Despite MPC methodology has been the

most used option, it is mathematically proven that if the model is close

enough to reality, the feedback of the state is the most robust and fastest

control possible. That raises the question of whether the models used are

reliable or useful, and how much should we deepen in the matter of modeling,

or just use impulse and step models, as many MPC controllers do. The

question of modeling is explained in depth in chapter 2.
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The last classi�cation of arti�cial pancreas systems is regarding the

situation of the patient during the control, or the population that the system

aims to control:

• Pregnant woman transitional diabetes. Gestational diabetes has

been studied from the point of view of arti�cial pancreas in several

works. Murphy et al. [59] showed the e�ectiveness of continuous

glucose monitoring in pregnant women with diabetes, and Hernando

et al. [30] used algorithms based in diabetic models to plan insulin

therapy. No speci�c controllers have been designed for this particular

case.

• Critical patient control. Critical patients are monitored in detail,

not only in glucose, but also in many other important measures of

body functions, which are intended to be as controlled as possible.

This fact gives the opportunity to test many controllers designed for

glucose regulation. The previously mentioned controller of Chee et al.

[16] and the one designed by Hovorka's group in Cambridge [74], are

examples of controllers used to maintain the glucose homeostasis in

intensive care unit patients.

• Overnight fasting control. Overnight period is usually related

to a natural reduction of the sensibility to insulin, and the lack of

consideration of this e�ect creates an increase in blood glucose that is

commonly known as �Dawn e�ect�. Hovorka's group, for example, has

achieved great success in controlling this kind of behavior by means of

glucose monitoring and MPC controllers both with subcutaneous and

intravenous interfaces [86].

• Postprandial control. The main disturbance to blood glucose control

is the absorption of glucose from the gut. The postprandial blood

glucose control aims to soften the abrupt increase of glucose after a

meal without risking the patient's health. This thesis will be focused

in this kind of control, which will be explained in detail in chapter 1.3.2.
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Despite all the work that has been done already, the practical realization of a

human pancreas is not yet possible, nor implanted as an arti�cial organ due

to maintenance issues, neither emulated by an external device. The main

problem with the external approach, as stated by Hovorka [33], is the low

reliability and exactitude of the subcutaneous continuous glucose monitors,

assuming the subcutaneous (and more comfortable to the patient) interface.

Work has yet to be done in this area principally about characterizing

the monitor behavior or designing controllers that manage to overcome

measuring inexactitudes.

In addition, arti�cial pancreas research has been developing slowly during

the last years due to ethical restrictions in the experiments, and the fact

that some health and drugs agencies only considered allowing closed loop

experiments in humans after having successful experiments with animals.

Recently, in the Diabetes Technology Meeting of 2008 [91] an Food and Drug

Administration (FDA) [24] approval was presented to substitute the stage of

experiments on animals with in silico trials with the University of Virginia

Simulator [44]. Many simulators have been developed lately for research

purposes, and most of them come from members of the Juvenile Diabetes

Research Foundation (JDRF) [40] closed-loop consortium which is one of the

most important funding entity for diabetes research in the international level.

1.3.2 Postprandial control of mixed models

Postprandial response of blood glucose is usually a sudden increase in its

concentration, usually resulting in long hyperglycemia situations, which lead

to harmful pathologies in diabetic patients. Its control and understanding is

one of the objectives of the arti�cial pancreas project.

Modeling of glucose absorption is the most complicated issue to achieve

a good postprandial control, due to the huge variability implied in the

composition of meals, the variation between patients, and even within the
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same patient, as stated by Steil and Reifman [91]. Many models of the glucose

absorption, including di�erent types of nutrients, and variable emptying rate

of the stomach have been developed in the last years, and will be shown in

the chapter 2.2.2.

The control approaches for postprandial control can be classi�ed in three

blocks, depending on the nature of the control loop:

• Insulin delivery without meal announcement. This approach is

the pure closed loop approach, and there is no feed-forward action given

by the patient. Some variations of this approach include predictors or

alarms, that MPC controller, achieving positive results.

• Insulin delivery and qualitative meal announcement. In this

case, the patient informs the controller if there is going to be a meal

event, but there are no further speci�cations about the event, such as

the composition of the meal or the size of it. Few work has been done

in this �eld, and only one full system has been described by Panteleon

et al. [66].

• Insulin delivery and quantitative meal announcement. In this

case, there is an announcement of the meal event, and some information

about it is given, such as the amount of carbohydrates of the meal.

This situation is the most common, and is also the closest one to the

classic approach, in which the insulin bolus quantity is proportional

to the size of the meal. Many controllers have been developed for

this scenario, and tested in silico, and despite that there are some

examples of control of the postprandial glucose response in diabetic

patients, regulation to perform experiments in real patients has been

very restrictive so far, especially regulations by the FDA in the USA.

Strategies to improve postprandial response by means of an adaptive

therapy have been developed by Cesar Palerm [63] [62] as a way to

help doctors with their recommendations to patients, but no closed-

loop controllers have been developed for this case in particular.
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A di�erent approach has been used by Revert et al. [81] to calculate

the best combination of basal and bolus delivery rate for the postprandial

control. This work is based on a previous one developed by Bondia et al.

[11], parting from interval analysis of di�erent models. The set-inversion

methods utilized to infer the best infusion to be delivered use discretization

of glucoregulatory models under conditions of uncertainty, which permits

�nding the bounding regions of all the possible glucose responses considering

some uncertainties. Calm et al. [13] already discretized postprandial models

considering uncertainty in parameters and meal intake. If only the insulin

infusion rate is considered as uncertainty, then restrictions in the blood

glucose, such as `no hypoglycemia' or `limited time hyperglycemia', describe

a set of inputs that will always accomplish with the restrictions.

The set inversion methods for postprandial control are currently being

developed by the INSULAID2 research group [12], in which this thesis

is placed. This methods, together with those developed by Palerm in

Santa Barbara, and the rest of controllers described before, have the same

requirement, and that is a model that describes the postprandial response

in detail, and that, as has been stated before, is the main problem for this

control scenario in diabetes.
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Chapter 2

Modeling the glucose-insulin

system in type 1 diabetes

One of the main problems for glucose control is the insu�cient accuracy

of existing mathematical models for describing the physiology of the

glucoregulatory system. In this chapter the modeling context for the arti�cial

pancreas will be reviewed, and the state of the art of mathematical models

in literature will be described.

2.1 Behavioral and phenomenological models

It is often said that �all models are wrong, but some are useful�. So the

objective of a model is not to be accurate, or �nd any truth, but to be useful

in the aim that it is intended to be. Walter and Pronzato [99] listed some

objectives a model may aim at. Some of them are:

• Analyzing phenomena to deepen understanding. Models for simulation.

• Estimating quantities for which no sensor is available. Estimators of
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state.

• Testing hypothesis.

• Controlling processes and testing controllers. Models for control.

Depending on the aim of the model (and this aim must always be clear before

starting modeling), the model is radically di�erent. Models for control, for

example, tend to simplify the system they are representing much more than

models for simulation, which are usually complex, more accurate models.

A model is characterized by its structure, and this is the �rst choice to

be made when deciding which model is appropriate. The main distinction

to be made when looking at the model structure is whether it has to be

phenomenological or behavioral. A phenomenological model is a model based

on prior knowledge about a physical or, in the case of the arti�cial pancreas,

physiological principles. This kind of processes are often called knowledge-

based models as opposed to behavioral models, which merely approximate the

observed behavior of the output without any prior knowledge of the process.

Behavioral models are focused on data reproduction, and not at all in the

process behind, while phenomenological models only use the data to adjust

the parameters, while the structure is determined by the process itself.

Examples of phenomenological models are:

• Chemical reactions. Biological reactions

• Systems of force equilibrium.

• Models of deposit systems.

• Electromagnetic models. Electrical engines.

Examples of behavioral models are:
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• ARX/ARMAX models.

• Polynomial models.

• Random models.

The behavioral models exposed do not have a purpose on imitating any

real process, and are �all-purpose� models that have to be adjusted to any

particular system, while the phenomenological models shown are speci�c of

the process they represent. Table 2.1 shows a comparison of the di�erences

between both modeling paradigms.

Phenomenological models Behavioral models
Parameters have a concrete meaning have no concrete meaning
Simulation long and di�cult quick and easy

Prior information taken into account neglected
Validity domain large (if structure is correct) restricted

Table 2.1: Phenomenological and behavioral models as seen by Walter and
Pronzato [99]

Usually, phenomenological models tend to be complex, and highly

nonlinear. Linearizing a phenomenological model changes its aim, and

therefore it changes its nature. When a nonlinear phenomenological model

is designed, its aim is usually a better understanding of the system through

simulation. Reasons for linearizing are usually attempts to control, or design

of better controllers, but this transformation neglects the prior information

of the system and its complexity, so the model results in a behavioral model,

with a restricted validity domain and lost of the meaning of the parameters.

In the context of the arti�cial pancreas almost every model published is

phenomenological, even the simplest ones, due to the vast knowledge of the

physiology available from the physicians. There are though some methods

that use simpli�cation and linearization of those models to extract some

information out of them, but this problem will be explained later in detail.
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2.2 Physiological processes (models) of the

glucose-insulin system

Modeling of any insulin therapy for type 1 diabetes involve three main

subprocesses:

• Insulin absorption model. This model represents the way insulin

gets into the organism, which involves its pharmacokinetics, di�usion

through di�erent tissues and natural insulin degradation. Insulin

absorption depends on the type of insulin used for the therapy and

the interface used for its delivery. Insulin is injected or infused in the

subcutaneous tissue, delaying its appearance in plasma compared to

insulin secretion by the pancreas. In case multiple daily injections are

used, pharmacokinetics of both rapid-acting and long-acting insulin

will have to be modeled. In case of insulin pump (and the arti�cial

pancreas) only rapid-acting insulin is used.

• Glucose absorption model. This model is also called the

gastrointestinal model, because it involves the process of ingestion,

digestion and absorption from the intestine into blood of glucose and

other nutrients. The nutritional composition of the meal has in�uence

over the process of digestion, and that may slow down the �ow of

carbohydrates through the gut.

• Glucoregulatory model. The internal regulation of glucose is

represented by this model. The transformation of glycogen to glucose

by the liver (hepatic glucose production) and glucose uptake by

peripheral tissues, the in�uence of di�erent hormones in blood glucose,

insulin independent consumption of glucose, and in summary, every

e�ect that, in the organism, can a�ect the concentration in glucose.

The models representing all these physiological processes and relations

tend to be really complex, and it is really common to disregard some of
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the in�uences on the glucose concentration, so that the model becomes

simpler and for other purposes than simulation.

The insulin absorption and gastrointestinal models are usually considered as

the input models for the glucose-insulin system, for they characterize the two

main exogenous (that come from outside the body) inputs into blood that

have in�uence on the glucose concentration (�gure 2.1). A good review of

the physiology and models of the systems described can be found in Amores

[3]. Other reviews in literature include Willinska review [103] and Nucci and

Cobelli review [61].

Figure 2.1: Glucose-insulin system and its subprocesses

Subcutaneous insulin injection or pump delivery is the only control

action that can be used to counteract the main disturbance considered,

meal ingestion. Insulin pharmacokinetics, has been studied for a long time,

and the behavior of insulin analogues is well documented in bibliography.

Complex glucose absorption models have been developed in the last years

with increasing accuracy, but the physiological behavior of the digestive and

intestinal absorption processes during a mixed meal ingestion, which is almost

every meal a normal person has, is yet to be represented by a gastrointestinal

model. The main di�culty in characterization of the gastrointestinal model

is that absorption of glucose is only measurable with tracer methods [6],

but few studies have been done in this area so far. The only experiments

done in this area were not performed using real mixed meals, but instead

the patients ate marked jelly with eggs and bacon. The in�uence of the
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nutritional composition is very relevant in the �nal model output, and it has

not been taken in consideration so far.

Several models for the systems described are going to be shown in the

next sections, and later a critical review of the usefulness of these models is

going to be performed, in order to narrow down the scope of the research, not

to forget that the last objective of this thesis is identi�cation of postprandial

models for control.

2.2.1 Insulin absorption models

Insulin absorption models are going to be reviewed starting in one

compartment model, viewing next models with several compartments and

�nally to models in partial di�erential equations. In order to make this

chapter easier to read, there are going to be shown only the structure and

basic concepts and equations of the model. Some models will be explained

in further detail if considered necessary.

Kobayashy et al. [43]

In this model, published in 1983, the subcutaneous absorption of a short-

acting insulin is represented by a one compartment model, with another

compartment representing the pool of insulin in blood, as seen in Figure 2.2.

The equations related to this model are:

ẋ1(t) = −kax1(t) + u(t− τ) (2.1)

i̇(t) = −kei(t) +
ka
Vd
x1(t) (2.2)

The four parameters to be identi�ed are shown in Table 2.2.
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Figure 2.2: Kobayashy model compartments

Parameter Published value Units
τ 7 min
ka 2.7× 10−2 min−1

ke 1.2× 10−2 min−1

Vd 1.5× 103 ml kg−1

Table 2.2: Nominal values of the parameters in Kobayashy's model

This was one of the �rst models for insulin pharmacokinetics published,

and it was only designed for Actrapid insulin in a concentration of 40 U/ml,

which makes the model outdated (current insulin concentration are 100

U/ml).

Kraegen et al. [45]

Kraegen model was published also in 1984, and it removes the delay block

from the Kobayashy model to substitute it with a compartment that acts

as such delay. It also considers degradation of insulin in every stage of the

di�usion of insulin in the interstitial space. The compartment diagram can

be seen in Figure 2.3.

The equations related to this model are:

ẋ1(t) = −(kd + k21)x1(t) + u(t) (2.3)

ẋ2(t) = k21x1(t)− (kd + kps)x2(t) (2.4)
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Figure 2.3: Kraegen model compartments

i̇(t) =
kps
Vd
x2(t)− kei(i) (2.5)

The �ve parameters to be identi�ed are shown in Table 2.3.

Parameter Published value Units
k21 2.97× 10−2 min−1

kd 0.0 min−1

Kps 9.67× 10−3 min−1

Ke 9× 10−2 min−1

Vd 12× 103 ml

Table 2.3: Nominal values of the parameters in the Kraegen model

It must be pointed out that the published value of the kd parameter is

identically zero, which makes the degradation of insulin in the compartments

of insulin subcutaneous di�usion non existent. This fact makes the model

identi�able, while having that parameter to be identi�ed would make the

model globally non identi�able. The issue of identi�ability will be discussed

in depth in Chapter 3.

Puckett et al. [77]

Puckett model considered the combined action of long-acting and short-

acting insulins. Insulin degradation is only considered in the place of the

injection as an insulin e�ectiveness constant.
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Figure 2.4: Puckett model compartments

The equations related to this model are:

ẋ1(t) = −kax1(t) x1(0) =
αD

Vd
(2.6)

ẋ2(t) = −ka [x1(t)− x2(t)] x2(0) = 0 (2.7)

i̇(t) = kax2(t) + ke [ibh(t)− i(t)] i(0) = ib (2.8)

The dose injected is considered to have an e�ectiveness α, which represents

the degradation of insulin, and it is set as the initial condition of the �rst

compartment x1. ib is the constant term for the plasma insulin describing the

e�ect of long-acting insulin, and h(t) = 1 for the �rst 24 hours of simulation.

This model is non identi�able, so the authors decided to agregate α and Vd

parameters in a new parameter β = Vd/α, which is shown in Table 2.4.

Parameter Published value Units
ka 1.42× 10−2 min−1

ke 6.25× 10−2 min−1

β 3.47× 10−3 ml
ib 14.58 ml−1

Table 2.4: Nominal values of the parameters in Puckett model

Shimoda et al. [88]

Shimoda et al. published a model in 1997 valid for two subcutaneously

injected insulin preparations: soluble and monomeric insulin analogue. The
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model has the same structure for both insulin preparations, and the di�erence

is only in the parameters, which are di�erent for each type of insulin used.

The structure of the model is shown in Figure 2.5.

Figure 2.5: Shimoda model compartments

The equations related to this model are:

ẋ1(t) = −k21x1(t) + u(t) (2.9)

ẋ2(t) = k21x1(t)− (kd + kps)x2(t) (2.10)

i̇(t) =
kps
Vd
x2(t)− kei(t) (2.11)

the sets of parameters for each insulin type are shown in Table 2.5.

Parameter Published value (soluble) Published value (monomeric) Units
k21 1.1× 10−2 1.7× 10−2 min−1

kps 1.5× 10−2 4.8× 10−2 min−1

kd 2.1× 10−3 2.9× 10−3 min−1

ke 9.9× 10−2 1.33× 10−1 min−1

Vd 1.25× 10−1 8× 10−2 ml kg−1

Table 2.5: Nominal values of the parameters in Shimoda model

Berger et al. [8]

Berger et al. model is a non-compartmental model that allows kinetic

description of di�erent insulin preparations, such as regular, NPH, lente and
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ultralente insulins. The percent of the insulin absorbed subcutaneously with

respect to the amount injected is given by:

A%(t) = 100A(t) = 100− 100ts

T s50 + ts
(2.12)

T50 = aD + b (2.13)

Where s, a and b are parameter depending on the insulin preparation, D

is the insulin dose, and T50 is the time interval to reach a 50% absorption

of the total dose. The insulin input �ux to the plasma compartment is

easily calculated by multiplying the time derivative of A(t) by D. The single

expression for the Berger model, together with equation 2.13 stands:

i̇(t) = −kei(t) +
Ȧ(t)D

Vd
= −kei(t) +

ts−1sT s50D

Vd(T s50 + ts)2
(2.14)

Two sets of parameters are shown in Table 2.6, one for regular insulin, and

one for NPH insulin.

Parameter Published value (soluble) Published value (NPH) Units
s 2 2 -
a 3 10.8 min U−1

b 102 294 min
ke 9× 10−1 9× 10−1 min−1

Vd 12× 10−3 12× 10−3 ml

Table 2.6: Nominal values of the parameters in Berger model

Cobelli et al. [51]

The model proposed by Cobelli's group has also two compartments for the

interstitial space, and it considers that the elimination of insulin takes place

entirely after the absorption to plasma. There are two variants of the model,

depending on the complexity considered for the model of distribution of

insulin. The �rst and simpler model is the one shown in Figure 2.6.
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Figure 2.6: Cobelli model with one compartment for the plasma insulin

The absorption takes place from both stages in the subcutaneous route.

The equations related to the model are:

Ṡ1(t) = −(ka1 + kd)S1(t) + u(t) (2.15)

Ṡ2(t) = kdS1(t)− ka2S2(t) (2.16)

İp(t) = ka1S1(t) + ka2S2(t)− keIp(t) (2.17)

But the subcutaneous part is usually considered together with a more

complex distribution and elimination model, also proposed by Cobelli's

group. The new model is displayed in Figure 2.7.

Now the elimination of insulin takes places both by degradation in

the plasma compartment and in the liver, that is considered as another

compartment. The corresponding system of equations related is exactly

the same as before, but substituting equation 2.17 by the following two

di�erential equations:

İl(t) = −(m1 +m3)Il(t) +m2Ip(t) (2.18)

İp(t) = −(m2 +m4)Ip(t) +m1Il(t) + ka1S1(t) + ka2S2(t) (2.19)

No published values of the parameters for T1DM people have been
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Figure 2.7: Cobelli model considering insulin in the liver and in plasma

published. Insulin pharmacokinetics parameters have not been published

either. Published values [21] for healthy and T2DM patients for the

distribution and elimination part of the model are shown in Table 2.7.

Parameter m3 is only constant for T1DM patients while for the published

cases it has dynamic behavior depending on the endogenous insulin secretion.

Nevertheless, this model is implemented in the University of Virginia

Simulator [44], and nominal parameters for healthy and diabetic patients

are used in the simulations performed with it.

Parameter Normal value T2DM value Units
m1 0.19 0.379 min−1

m2 0.484 0.673 min−1

m4 0.194 0.269 min−1

Table 2.7: Published values of the Cobelli model

Willinska et al. [102]

In 2005 Willinska performed a comparison of subcutaneous models increasing

in complexity. Those models where evaluated for treatments of bolus and

continuous infusion with insulin pumps with insulin lispro, a human insulin

analog. The model with a better �t to experimental data is shown in Figure

2.8.
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Figure 2.8: Willinska model compartmental structure

It is one of the most complex compartmental models existing. The

equations related to the model are:

Q̇1a(t) = ku− ka1Q1a − LDa (2.20)

Q̇1b(t) = (1− k)u−Ka2Q1b − LDb (2.21)

Q̇2(t) = ka1Q1a − ka1Q2 (2.22)

Q̇3(t) = ka1Q2 + ka2Q1b − keQ3 (2.23)

i(t) =
Q3

V ·BW
(2.24)

LDa =
VMAX,LDQ1a

kM,LD +Q1a

(2.25)

LDb =
VMAX,LDQ1b

kM,LD +Q1b

(2.26)

(2.27)

The most signi�cant characteristic of this model is the existence of two

channels of insulin, one of slow absorption and a fast absorption insulin

channel, both with degradation of insulin governed by a Michaelis-Menten

kinetic equation. The insulin concentration is now directly calculated from
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the fourth compartment. Published parameters of the model are shown in

Table 2.8.

Parameter Published value Units
ka1 1.12 · 10−2 min−1

ka2 2.1 · 10−2 min−1

ke 1.89 · 10−2 min−1

k 0.67 -
V 56.45 · 10−2 L kg−1

VMAX,LD 1.93 mU min−1

kM,LD 62.6 mU

Table 2.8: Nominal values of the parameters in Willinska model

Trajanoski et al. [96]

This model considers di�usion of insulin in the subcutaneous tissue and is

described by partial di�erential equations. This kind of equations make this

model much more complicated than all the others, and also computationally

heavier. The Trajanoski model [96] was published in 1993 as a simpli�cation

of Mosekilde model [57] assuming that at therapeutic concentrations insulin

binding to proteins, therefore inactive insulin, in the subcutaneous space is

negligible. Under those assumptions, the model equations stand:

∂h(r, t)

∂t
= P

[
Qd3(r, t)− h(r, t)

]
+D∇2h(r, t) (2.28)

∂d(r, t)

∂t
= P

[
−Qd3(r, t) + h(r, t)

]
+D∇2d(r, t)−Bd(r, t) (2.29)

∂i(t)

∂t
= i̇(t) = −kei(t) +

1

Vd

∫
SC

(Bd(r, t))dVSC (2.30)

where:

• h is the state representing the insulin concentration in subcutaneous

tissue in hexamer state and it is measured in U
ml
.
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• d is the state representing the insulin concentration in subcutaneous

tissue in dimer state and it is measured in U
ml
.

• i is the state representing the insulin concentration in blood, measured

in U
ml
.

• r is the variable representing the radial distance from the point of

injection.

• Q is the parameter representing the chemical equilibrium of the

transformation of insulin into di�erent states.

• P is the parameter of velocity of the transformation of insulin into

other states.

• D is the parameter representing the di�usion rate.

• B is the parameter representing the rate of absorption of insulin.

• ke is the parameter for the elimination of insulin in blood.

• Vd is the parameter for the distribution volume of insulin in blood.

In this model, a simple, single compartment model has been used for plasma

insulin dynamics, just as the Berger model. The absorption is the result of

an integral all over the control surface of the concentration of insulin in dimer

state, due to the fact that only dimer insulin is transported into blood.

Table 2.9 shows the parameters for this model.

Tarín et al. [93]

The Tarín model was developed in the same research group as this thesis.

It is a model based on the Trajanoski model and tries to extend the model

for long acting insulin glargine. This is done by considering a new virtual

compartment called bound state (not to be confound with binding state in
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Parameter Published value Units
Q 1.3× 10−1 ml2U−2

P 5× 10−1 min−1

D 9× 10−5 cm2min−1

B 1.3× 10−2 min−1

ke 9× 10−2 min−1

Vd 12× 10−3 ml

Table 2.9: Nominal values of the parameters in Trajanosky model

Trajanoski model that represents inactive insulin), which is a virtual initial

state of this type of insulin when injected. This fact adds a new partial

di�erential equation, and the model equations are:

∂cd(r, t)

∂t
= P

[
ch(r, t)−Qc3d(r, t)

]
−Bdcd(r, t) +D∇2cd(r, t) (2.31)

∂ch(r, t)

∂t
= −P

[
ch(r, t)−Qc3d(r, t)

]
+ κcb(r, t) [ch,max − ch(r, t)] +D∇2ch(r, t)

(2.32)

∂cb(r, t)

∂t
= −κcb(r, t) [ch,max − ch(r, t)] + dbD∇2cb(r, t) (2.33)

∂i(t)

∂t
= i̇(t) = −kei(t) +

1

Vd

∫
SC

(Bdcd(r, t))dVSC (2.34)

The variables of the model are:

• ch is the state representing the insulin concentration in subcutaneous

tissue in hexamer state and it is measured in U
ml
.

• cd is the state representing the insulin concentration in subcutaneous

tissue in dimer state and it is measured in U
ml
.

• cb is the state representing the insulin concentration in subcutaneous

tissue in bound state and it is measured in U
ml
.

And the parameters are exactly the same as for Trajanoski model, except for

the κ parameter, that represents the rate of dissociation of insulin in bound

state into hexamers, ch,max that limits the concentration of hexamer insulin
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and db that reduces the speed of di�usion of the bound insulin. As for the

rest parameters, the P parameter is considered to be �xed for every type of

insulin and patients, due to its low sensibility. The rest of the parameters

are shown in Table 2.10 for the Glargine insulin.

Parameter Published value (Glargine) Units
Q 3.04 ml2U−2

D 8.4× 10−5 cm2min−1

Bd 1.18× 10−2 min−1

κ 0.01 ml min−1U−1

ch,max 15 U ml−1

db 0.1 -
ke 9× 10−2 min−1

Vd 12× 10−3 ml

Table 2.10: Nominal values of the parameters in Tarin model

An extensive identi�ability and identi�cation analysis has been performed

by Ana Revert [80] in this model for lispro insulin, showing that it is able

to mimic with certain �delity the behavior of di�erent types of insulin,

including slow acting insulins, usually used to keep constant basal insulin

concentration.

Li-Kuang et al. [49]

Li and Kuang published a model simpler than the previous models able to

simulate di�erent types of insulin. This model is based on the Tarin model,

but it does not consist of partial di�erential equations, what makes it much

simpler to identify. The model adds a new equation if using slow acting

insulins such as the glargine insulin, that simulates a virtual bound state as

Tarin model does. The ordinary di�erential equations that represent each
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state of insulin in Li-Kuang model are:

Ḃ(t) = −kB(t)
Cmax

1 +H(t)
(2.35)

Ḣ(t) = −p(H(t)− qD3(t)) + kB(t)
Cmax

1 +H(t)
(2.36)

Ḋ(t) = p(H(t)− qD3(t))− bD(t)

1 + I(t)
(2.37)

İ(t) =
rbD(t)

1 + I(t)
− diI(t) (2.38)

Every equation represents a compartment, and each compartment is a state

in insulin transformation before it can go through the vascular walls in it

dimeric form. The states of the model are:

• B(t) represents the insulin in bound state. This state is only present

for slow acting insulins, and the input to the model is the initial state

of this variable in those cases.

• H(t) is the compartment representing the hexamer form of the insulin.

For regular and rapid acting insulins the initial state of this variable is

the input of the model.

• D(t) is the dimer insulin compartment.

• I(t) is the mass plasma insulin compartment. Insulin concentration

is directly calculated from this variable by dividing by the apparent

distribution volume for insulin.

In their paper of 2009 [49], Li and Kuang perform a complete mathematical

analysis of the solutions of the model, and they also propose a set

of parameters identi�ed and extracted from bibliography. This set of

parameters is shown in Table 2.11.

49



Parameter Published value (lispro) Published value (Glargine) Units
p 0.5 0.5 min−1

q 0.13 3.04 ml2U−2

r 0.2143 0.2143 -
b 0.0068 0.02 U min−1

di 0.081 0.0215 min−1

k - 2.35× 10−5 min−1

Table 2.11: Nominal values of the parameters in Li-Kuang model

Wong et al. [108]

Wong, in 2008, published a new model for diverse insulin types with a

compartmental structure. It goes even further, predicting the behavior of

insulin kinetics when there are mixed insulin types, or multiple injections,

or mixed pump infusion. Its structure is way more complex than any other

previous, and it has a di�erent compartment and dynamics for every type

of insulin considered, having di�erent pools for the hexamer insulin and

dimer/monomer insulin.

The decision of use a compartmental structure for such a complex model

is based on the principle of providing a computationally-minimal model, yet

consistent, and physiologically united framework for all insulin types. The

fact of only using ordinary di�erential equations speeds up the computations,

as the complexity of the structure helps with the consistency of the model.

Figure 2.9 is shown to depict the structure of the model, and for more

information, the reader is referred to Wong thesis [108] and papers [107]

[106].

The Figure shows that every insulin (NPH, Lente, RI, MI, Ultralente

and Glargine) has its own sub-model, behaves by its own kinetic, and is

one input of the main model. The model of pharmacokinetics itself is not

much di�erent than the other ones that have been shown before, and in fact,

Wong uses the values of the parameters shown in previous tables as a priori

identi�ed values, and then �xes the values of those parameters in order to
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Figure 2.9: Wong model compartmental structure
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make easier the identi�cation of each insulin block.

Summary

In Table 2.12 all the models reviewed are displayed, showing the

characteristics that make them di�erent, and with which types of insulin

have been used or are capable of simulate.

Model Types of Insulin Structure
Kobayashy Actrapid 40U/ml input delay, compartmental
Kraegen - compartmental
Puckett - compartmental
Shimoda monomeric and soluble compartmental
Berger regular, NPH, lente and

ultralente
algebraic

Cobelli - compartmental
Willinska lispro (CSII) compartmental
Trajanosky NPH and soluble PDE
Tarín glargine PDE
Li-Kuang lispro, glargine ODE no compartmental
Wong NPH, lente, RI, MI,

ultralente and glargine
compartmental

Table 2.12: Insulin absorption models. Insulin types in blank are not speci�ed
by the authors of the model

2.2.2 Glucose absorption models

The models described in this section aim at characterizing the �ux of

exogenous glucose absorbed by the intestine under di�erent circumstances.

There are di�erent scenarios to be simulated by these models. One of the

most common experiments performed in diabetic patients is the so called

�Oral Glucose Tolerance Test� (OGTT), and its objective is to observe the

response of blood glucose when the patient drinks a solution of glucose. This

glucose is rapidly absorbed by the intestine, and that boosts the blood glucose
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concentration, forcing the pancreas (if able) to secrete insulin to counteract

the rising of glucose. This scenario is broadly used to characterize sensitivity

and tolerance parameters to glucose but is of no use when compared to the

absorption of a common meal ingestion. The nature of the meal, its size and

composition, as well as the speed of ingestion, and patient conditions, have

in�uence on the rate of stomach emptying [55] and the �nal absorption rate of

glucose, which make the mixed meal ingestion very di�cult to characterize.

The models shown in here were designed regarding to the scenarios

described, some only looking at the OGTT, others having a broader sight.

The optimal model would be able to simulate both, the OGTT and a mixed

meal ingestion, but unfortunately, there is no such thing as the perfect model.

The structure of the models for glucose absorption have some elements

in common. The gastric emptying is one of the critical points in the �ow of

food through the gastrointestinal tract, due to its dependence on di�erent

variables [37]. Figure 2.10 shows the general diagram for glucose absorption

models, with the food intake as input (described most of times as amount of

carbohydrates), and the exogenous �ux of glucose (rate of appearance) Gex,

as output.

In the following, literature models are described.

Figure 2.10: Block diagram of the gastrointestinal model
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Hunt et al. [38][94]

The model presented here is an extended version of the Hunt model. Hunt

et al published a model of gastric emptying in 1975 extended in its intestinal

absorption part by Teufel. The combined system is a very complete model

that uses a set of algebraic equations to characterize the gastric emptying,

and a set of partial di�erential equations to simulate the transformation of the

carbohydrates from their polysaccharide form into the �nal monosaccharide

form, which is the only one that is possible to be absorbed by the intestine

walls.

The equations related to the gastric emptying are not ordinary di�erential

equations, but algebraic, and the output is not the �ux of glucose due to the

gastric emptying, but the volume of glucose remaining in the stomach V (t).

V (t) = V0e
−at + (1− e−at)qbasal

a
(2.39)

a =
ln2

Vmeal(0.1797− 0.167e−0.2389κ)
(2.40)

κ =
1

Vmeal
(0.0167mch + 0.0167mprot + 0.0377mlip) (2.41)

The solution to the previous equations will give the remaining volume of

carbohydrates in the stomach. Operating with that variable, the output of

the stomach as a �ux of carbohydrates can be obtained. The parameters and

variables involved are:

• V is the stomach volume, measured in ml. V0 is the value of the variable

at time 0.

• Vmeal is the total volume of the ingested meal.

• a represents the emptying speed of the stomach.

• κ is the weighted in�uence of the amount of carbohydrates, lipids and

proteins in the gastric emptying.
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• mch is the total amount of carbohydrates present in the meal in mg.

• mprot is the total amount of proteins present in the meal in mg.

• mlip is the total amount of lipids present in the meal in mg.

Once determined the rate of emptying of the stomach, the rest of the

model consists in a series of partial di�erential equations for every stage

in the dissociation process of the carbohydrates, from polysaccharides to

monosaccharides:

∂

∂t
p(z, t) = −υ ∂

∂z
p(z, t)− Qpp(z, t)

Kmp + p(z, t)
(2.42)

∂

∂t
o(z, t) = −υ ∂

∂z
o(z, t) +

Qpp(z, t)

Kmp + p(z, t)
− Qoo(z, t)

Kmo + o(z, t)
(2.43)

∂

∂t
m(z, t) = −υ ∂

∂z
m(z, t) +

Qoo(z, t)

Kmo + o(z, t)
− Qmm(z, t)

Kmm +m(z, t)
(2.44)

Gex(t) =

∫
Qmm(z, t)

Kmm +m(z, t)
dz (2.45)

The gastric emptying will come into the previous equations as a boundary

condition in p(0, t), and then carbohydrates will move forward in the linear

space z that represents the gut space. The transformation �uxes are de�ned

by a Michaelis-Menten dinamic equation, and the exogenous �ux of glucose is

calculated considering the monosaccharides present in all the intestine. Each

Michaelis-Menten equation adds two new parameters that will have to be

identi�ed. The published values of these parameters are shown in Table 2.13

with the rest of the published parameter values.

Hovorka et al. [34]

Hovorka proposed a much simpler model for glucose absorption in his paper of

2004, where the gastrointestinal system is modeled by compartmental model

with two identical compartments with the same transfer rate. Later, the
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Parameter Published value Units
qbasal 0.4861 ml min−1

υ 1 min−1

Kmm 30
Kmo 100
Kmp 100
Qm 60
Qo 30
V0 50

Table 2.13: Nominal values of the parameters in Hunt model

model was re�ned in a new paper [101] considering the transfer rate tmax as

a time-varying parameter. The equations of the model are:

Ġ1(t) = −G1(t)

tmax
+Bio ·D(t) (2.46)

Ġ2(t) =
G1(t)

tmax
− G2(t)

tmax
(2.47)

Gex =
G2

tmax
(2.48)

where:

• D(t) is the amount of carbohydrates ingested in grams. The meal in

this model is considered as a pulse input.

• Bio is the e�ectiveness of the absorption of the carbohydrates ingested

i.e. is the portion of the carbohydrates that have been eaten that will

go into the circulatory system.

• tmax is the maximum absorption time of the carbohydrates. This

parameter regulates the transfer speed between the compartments. It

is a bounded parameter following:

tmax =

{
tmax ceil if Gex > Gex ceil

tmax otherwise
(2.49)
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where tmax ceil = G2

Gex ceil
and Gex ceil is the maximum glucose �ux from

the gut.

The nominal values of the parameters are shown in Table 2.14.

Parameter Published value Units
tmax 40 min
Bio 0.8 -

Gex ceil [0.02, 0.035] mmol kg−1 min−1

Table 2.14: Nominal values of the parameters in Hovorka model

This model has the weakness of not considering the di�erent compositions

of mixed meals, as most models. That is not the aim of this model though,

but to rapidly provide a coherent input for the glucoregulatory system.

Fabietti et al. [23]

Fabietti et al. published a model of the complete glucoregulatory system,

with a gastrointestinal part, that is going to be described in the following

lines. The model considers three paths of absorbing nutrients, depending

on the nature of the meal ingested. The speed of absorption is related to

the complexity of the carbohydrates present in the meal. For example, if

the meal has a high percentage of glucose in its monosaccharide form, the

absorption will be done mainly through the fastest path, and making it slower

as the complexity of the carbohydrates increases in the meal (majority of

polysaccharides).

The type of input is also di�erent depending on whether we consider the

meal as an impulse or a pulse signal (Figures 2.11 and 2.12 respectively).

Once determined the shape of the input the meal is decomposed into

monosaccharides and fast/slow absorption polysaccharides, with di�erent

dynamics, following the hierarchy shown in Figure 2.13. The parameters
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Figure 2.11: An impulse meal input. All the meal is considered to be eaten
instantaneously

Figure 2.12: A pulse meal input, considered along a period of time

Figure 2.13: The meal is absorbed by a di�erent model in the proportions
marked by Fs and Fm
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Fs and Fm are parameters dependent on the composition of the meal being

ingested. The equations that follow are each one of the models for the

channels of absorption. Note that the order of the system decreases with

the speed of absorption of the carbohydrates:

Ag(s) = (1− Fs)
16.6

(s+ 1.44)(s+ 135)
Ri(s) (2.50)

As(s) = Fs(1− Fm)
467

(s+ 1.61)(s+ 7.20)(s+ 7.18)
Ri(s) (2.51)

Am(s) = FsFm
75.1

(s+ 0.466)(s+ 5.54)(s+ 5.86)(s+ 6.43)
Ri(s) (2.52)

Gex = Ag + As + Am (2.53)

where Ri = A for an impulse meal or Ri(s) = 1
s
· A
ε
· (1 − e−εs) for a pulse

meal of duration ε.

This is a very sti� model, and its structure only changes with the shape of

the input considered and with the composition of the meal. The parameters

related to the poles and zeros of the models for every kind of carbohydrates

are already given.

Natalucci et al. [60]

The Natalucci model is a very simple set of two equations, in which one

describes the evolution of the amount of glucose in the gut, while the other

represents the gastric emptying rate. These equations are:

Rge(t) = Dkβe(−kt)
β

(2.54)

Ġgut(t) = Rge(t)− kabsGgut(t) (2.55)

where D is the amount of glucose ingested in mg. Once solved the equations

shown above, the rate of appearance is easily calculated by:

Gex(t) = kabsGgut(t) (2.56)
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This model only considers the absorption of glucose in a OGTT scenario,

and it is of no use when trying to simulate a mixed meal. The parameters

identi�ed by Natalucci are shown in Table 2.15.

Parameter Published value Units
kabs 2.89 min−1

k 0.014 min−1

β 1.23 -

Table 2.15: Nominal values of the parameters in Natalucci model

Elasho� et al. [32]

The model proposed by Elasho� et al. is quite similar to the proposed by

Natalucci, but with a more complex formula for the gastric emptying, and a

new parameter f that de�nes the e�ectiveness of the absorption of glucose by

the gut. The rate of gastric emptying is going to be denoted here as Gempt(t)

in order to be consistent with the references. The equations related to the

model are:

Gempt(t) = Dβkβtβ−1e(−kt)
β

(2.57)

Ġgut(t) = Gempt(t)− kabsGgut(t) (2.58)

Gex(t) = fkabsGgut(t) (2.59)

And the published parameters related are those in Table 2.16.

Parameter Published value Units
kabs 2.89 min−1

k 0.011 min−1

β 1.23 -
f 1 -

Table 2.16: Nominal values of the parameters in Elasho� model
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Lehmann et al. [48]

Lehmann model de�nes the gastric emptying as a trapezoidal function

(Figure 2.14) given by:

Gempt =


Vmax
Tup
· t if t < Tup

Vmax if Tup ≤ t < Tup + Tmax

Vmax − Vmax
Tdown

· (t− Tup − Tmax) if Tup + Tmax ≤ t < Tup + Tmax + Tdown

0 otherwise

(2.60)

Figure 2.14: The form of the gastric emptying is a trapezoidal function

where parameters characterize the nature and composition of the meal,

as well as the patient behavior in front of that particular meal. Vmax can be

directly calculated by considering that the area of the trapezoid is the total

amount of glucose ingested (D), as follows:

Vmax =
2D

Tup + 2Tmax + Tdown
(2.61)

The rest of the parameter values published are shown in Table 2.17.

The intestinal absorption part of the model is de�ned a a single-

compartment model as in the previous models exposed. The equations
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Parameter Published value Units
Tup 9.37 min
Tmax 6.44 min
Tdown 27.81 min

Table 2.17: Nominal values of the parameters in Lehmann model

related are:

Ġgut(t) = Gempt(t)− kabsGgut(t) (2.62)

Gex(t) = fkabsGgut(t) (2.63)

Dalla Man et al. [20]

Chiara Dalla Man published in 2006 a complete gastrointestinal model and

a critical review of the existing models in literature. This model considers

a two-compartment model for digestion and a simple single-compartmental

model for the absorption in the gut. The model follows the structure shown

in Figure 2.15.

The two compartments in the stomach part suppose two parts of the

digestion of glucose before the gastric emptying. The emptying of the

stomach is a non-linear function of the total amount of glucose in the stomach,

as will be shown in the model equations later. The compartmental model

equations are:

q̇sto1(t) = −K21qsto1(t) +Dδ(t) (2.64)

q̇sto2(t) = −Kempt(qsto)qsto2(t) +K21qsto1(t) (2.65)

q̇gut(t) = −Kabsqgut(t) +Kempt(qsto)qsto2(t) (2.66)

Gex(t) = fKabsGgut(t) (2.67)

where δ(t) is the Dirach delta, simulating an impulse input to the model.

The rest of parameters added are �ux constants, for the transfer of glucose
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Figure 2.15: A two compartment model represents the stomach and a single
compartment the intestine
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through the system, except for the Kempt parameter, which is time-varying

and de�nes the form of the gastric emptying. The equations describing the

transfer rate describing the �ow of glucose from the stomach to the intestine

are:

Kempt(qsto) = Kmin + Kmax−Kmin
2

·
·{tanh[α(qsto − b ·D)]− tanh[β(qsto − c ·D)] + 2}

(2.68)

qsto(t) = qsto1(t) + qsto2(t) (2.69)

α =
5

2D(1− b)
; β =

5

2Dc
(2.70)

These equations give the gastric emptying a very characteristic shape. In

Figure 2.16 the Kempt is plotted against the amount of glucose remaining in

the stomach qsto.

The parameters have been identi�ed both for an Oral Glucose Tolerance

Test (OGTT) and a mixed meal. Parameter K21 is forced to be equal to

Kmax for identi�ability issues. The published values are shown in Table 2.18.

Parameter Published value (OGTT) Published value (meal) Units
Kabs 0.205 0.071 min−1

K21 0.045 0.054 min−1

Kmax 0.045 0.054 min−1

Kmin 0.013 0.006 min−1

b 0.85 0.69 -
c 0.25 0.17 -

Table 2.18: Nominal values of the parameters in Dalla Man model

Some work has been done within this research group on identi�ability

of mixed meals with the Dalla Man model [5], showing a dependence of

the identi�cation results on the size of the meal considered. A library of

identi�ed meals has also been developed by Pau Herrero in 2008 [31]. Dalla

Man model will be also studied in this thesis and used to design optimal
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Figure 2.16: Gastric emptying rate versus glucose remaining in the stomach
[20]
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clinical experiments.

Summary

In Table 2.19 all the gastrointestinal models reviewed are displayed, showing

their structures for the stomach and intestine parts, and the gastric emptying

process.

Model Stomach Intestine Gastric emptying
Hunt algebraic PDE direct
Hovorka - 2 compartments -
Fabietti - 3 transfer functions -
Natalucci 1 compartment 1 compartment algebraic
Elasho� 1 compartment 1 compartment algebraic
Lehman - 1 compartment trapezoidal
Dalla Man 2 compartments 1 compartment depends on mass of

CHO in the stomach

Table 2.19: Glucose absorption models

2.2.3 Endogenous models

Glucoregulatory models for type 1 diabetic patients are going to be described

in the following lines. The endogenous model is the part of the glucose-

insulin model that describes the di�erent regulatory pathways of blood

glucose concentration. Given that this thesis is focusing in the control and

identi�cation of T1DM people, the authors decided that the dynamics and

equations describing the secretion of insulin were no relevant to be shown for

those models that describe it.

Usually the endogenous model has two sub-models, one for the insulin

distribution and elimination system (if not considered in the insulin

absorption model), and the other for the glucose metabolism, transformation

and elimination. This second sub-model has to consider the in�uence of the
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liver and the kidneys on the blood glucose, as well as the peripheral intake by

muscles and adipose tissue, and any other in�uences that may a�ect glucose

concentration. The complexity of the model will be increasing as more e�ects

are considered in the modeling of the metabolic phenomena present in this

system.

Bergman et al. [9]

The �rst model to be reviewed is going to be the (probably) most used and

best known among all the models used in diabetes. It is called the Bergman

minimal model because it only describes the in�uence of insulin on blood

glucose concentration, and it does not consider many other phenomena, or it

considers them in a very simpli�ed way. The justi�cation for this simplicity

is that the objective of this model was, initially, to simulate the response of

the IntraVenous Glucose Tolerance Test (IVGTT), which has a very simple

behavior.

Bergman minimal model considers that insulin actions on glucose are

delayed, and that delay is represented by a new compartment of remote

insulin. The scheme of the model is shown in Figure 2.17.

The equations related to the model are:

İ(t) = −nI(t) + p4u1(t) I(0) = Ib =
p4
n
u1b (2.71)

Ẋ(t) = −p2X(t) + p3[I(t)− Ib] X(0) = 0 (2.72)

Ġ(t) = −p1G(t)−X(t)G(t) + p1Gb +
u2(t)

V olgG
G(0) = Gb (2.73)

Depending on the model of insulin absorption used, equation 2.71 can be

substituted by the corresponding equation of the model chosen. X(t) is the

remote insulin compartment, G(t) is the blood glucose concentration, u1(t) is

the insulin �ow coming from the insulin system, u2(t) is the exogenous �ow

of glucose coming either intravenously or from the gastrointestinal system.
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Figure 2.17: Bergman minimal model of insulin and glucose dynamics,
adapted from Bergman and colleagues [9]

Published values for the model parameters are shown in Table 2.20.

Parameter Published value Units
p1 0.035 min−1

p2 0.05 min−1

p3 0.000028 ml/µU · min2

p4 0.098 ml−1

n 0.142 min−1

V olG 117 dl

Table 2.20: Nominal values of the parameters in Bergman model [85]

Bergman model has been used for more than 20 years in diabetes research

due to its identi�ability and controllability properties, but it is far of being

the perfect model. There have been many critics to this model, both from

the medical and control point of view [79], and later on this thesis, Bergman

model will be analyzed in detail. In fact, this is one of the models tested and

used for experimental design in this work.
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Panunzi et al. [67]

Simona Panunzi and the group of biomathematics in Rome published a study

in 2007 comparing some of the characteristics of Bergman model and new

features of a proposed model for the IVGTT scenario, with a delayed insulin

secretion rate. The new model proposed surpassed the rest in simulated

experiments and in identi�ability properties, but it was only tested in healthy

patients. The equations of the model are:

Ġ(t) = −KxglI(t)G(t) +
Tgh
Vg

(2.74)

İ(t) = −KxiI(t) +
Tig max
Vi

(
G(t−τg)
G∗

)γ
1 +

(
G(t−τg)
G∗

)γ (2.75)

This model includes delayed di�erential equations for the insulin production

sub-model, but when simulating type 1 diabetic patients, whom do not have

endogenous insulin secretion, the model becomes much more simple. The

parameters involved in the previous model are:

• Gb is the basal glucose concentration.

• Ib is the basal plasma insulin.

• Kxgl is the insulin sensitivity. It represents the insulin-dependent

glucose uptake by tissues per unit of insulin concentration.

• Tgh represents the balance between the hepatic outtake of glucose and

the insulin-independent glucose intake, including the one of the liver.

• Vg is the apparent glucose distribution volume.

• Kxi is the disappearance rate of insulin.

• G∗ is the glycemia at which the insulin secretion rate is half of its

maximum.
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• Tig max is the maximum rate of insulin release.

• Vi is the apparent insulin distribution volume.

• τg represents the apparent delay with which the pancreas changes

insulin release in response to a variation in blood glucose.

• γ is the progressivity with which the pancreas reacts to circulating

glucose concentrations.

The values published for these parameters, only for healthy patients, are

shown in Table 2.21.

Parameter Published value Units
Vg 0.152 L kg−1

τg 19.271 min
Kxgl 1.43× 10−4 min−1 pM−1

Kxi 0.101 min−1

γ 2.464 -

Table 2.21: Nominal values of the parameters in Panunzi model

Panunzi model is also considered for the study performed in this thesis

because of its simplicity, but some variations were made due to the focus of

this model on healthy patients and the IVGTT scenario.

Vicini et al. [98]

Vicini et al. published a simulation (non-minimal) model in 1999. The

compartmental structure of the model for a healthy person is shown in Figure

2.18.

The model for diabetic patients is slightly di�erent than the one shown

for healthy patients. A type 1 diabetic patient will not have insulin secretion

S(t) and so, compartment q4(t) disappears, and every insulin input will go

directly from the subcutaneous insulin model, into the q3(t) compartment,
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Figure 2.18: Vicini model compartmental structure for a healthy person. It
consists of two compartments for glucose, two for insulin and two virtual
insulin actions [98]
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which is the plasma insulin compartment. The variables related to the model

are:

• q1(t) is the compartment representing the blood glucose mass.

• q2(t) represents the mass of glucose in the interstitial �uid.

• q3(t) is the plasma insulin mass compartment.

• xr(t) is the remote insulin action on the glucose production.

• xu(t) is the remote insulin action on glucose utilization.

• Di is the insulin input. In this model, insulin is considered to be an

intravenous bolus (impulse).

• D is the glucose input. In Figure 2.18 it is considered as an intravenous

impulse input, but again, if instead of the Dirach delta δ(t) there is a

digestive model, the input is the output of the gastrointestinal model.

• P (t) Is the endogenous glucose production.

The equations of the model are:

q̇1(t) = −[kp +
Rd,0

q1(t)
+ k21]q1(t) + k12q2(t) + P (t) +Dδ(t) (2.76)

q̇2(t) = −[k02 + k12 + xu(t)]q2(t) + k21q1(t) (2.77)

q̇3(t) = −k03q3(t) +DIδ(t) (2.78)

ẋu(t) = −kaxu(t) + ku[I(t)− Ib] (2.79)

ẋr(t) = −kaxr(t) + kr[I(t)− Ib] (2.80)

P (t) = Pb − kl[q1(t)− q1b]− xr(t)q1(t) (2.81)

I(t) =
q3(t)

V3
(2.82)

G(t) =
q1(t)

V1
(2.83)
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Finally, the parameter values published by the authors are shown in Table

2.22.

Parameter Published value Units
V1 1.58 dl kg−1

V3 65.36 ml kg−1

k21 0.043 min−1

k12 0.059 min−1

k02 0.006 min−1

kp 0.0049 min−1

kl 0.0044 min−1

k03 0.2114 min−1

ka 0.045 min−1

ku 6.48× 10−6 µIU ml−1 min−2

kr 3.76× 10−5 µIU ml−1 min−2

Rd,0 1 -
Pb 4 mg kg−1 min−1

Table 2.22: Nominal values of the parameters in Vicini model

Cobelli et al. [21]

Cobelli model is one of the most important models in diabetes research. It

is a very complex model almost exclusively based in physiological knowledge

of the glucose metabolism. It is usually combined with the Dalla Man

gastrointestinal model and the insulin pharmacokinetics model of the same

group (in fact all the models were developed together) in a large mathematical

model of the glucose metabolism. Magni et al. [51] used the complete

Cobelli model to control an in silico diabetic patient. It is also the model

implemented in the UVa (University of Virginia) simulator [44], accepted by

the FDA as substitute of animal trials in the context of a protocol application

of University of Virginia and Padova for a controller validation clinical trial.

The core structure is pretty simple, as shown in Figure 2.19:
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Figure 2.19: Cobelli model core is composed of two compartments of glucose,
one for blood and one for the tissues interstitial �uid

The model equations are:

Ġp(t) = EGP (t) +Ra(t)− Uii(t)− E(t)− k1Gp(t) + k2Gt(t) (2.84)

Ġt(t) = −Uid(t) + k1Gp(t)− k2Gt(t) (2.85)

G(t) = Gp(t)/VG (2.86)

In the previous equations there are many inputs and outputs to the glucose

compartments that have to be described. It must be noted that so far there

is no insulin related equations; insulin will have in�uence in the �ow of

glucose coming in or out of the di�erent compartments. The meaning of

these variables will be explained now:

• Ra is the exogenous �ux of glucose coming from the gut.

• Uii is the utilization of glucose that is non dependent on insulin. It is

usually considered constant and equal to Fcns.

• Uid is the utilization that depends on the insulin concentration, and it

74



follows the following set of equations:

Ẋ(t) = −p2UX(t) + p2U [I(t)− Ib] (2.87)

Vm(t) = Vm0 + VmxX(t) (2.88)

Uid(t) =
Vm(t)Gt(t)

Km +Gt(t)
(2.89)

where X(t) is the remote insulin, I(t) is the plasma insulin, Ib is the

basal insulin and Vm(t) is the transfer rate for the Michaelis-Menten

equation shown in equation 2.89.

• E(t) represents the renal excretion, which occurs if plasma glucose

exceeds a certain threshold. Is modeled as follows:

E(t) =

{
ke1[Gp(t)− ke2] if Gp(t) > ke2

0 otherwise
(2.90)

where ke1 is the glomerular �ltration rate and ke2 is the renal threshold

of glucose.

• EGP (t) is the Endogenous Glucose Production, and it depends on a

delayed insulin signal as follows:

İ1(t) = −ki[I1(t)− I(t)] (2.91)

İd(t) = −ki[Id(t)− I1(t)] (2.92)

EGP (t) = max{0, kp1 − kp2Gp(t)− kp3Id(t)} (2.93)

where I(t) is the insulin concentration in plasma.

The published parameters for healthy and type 2 diabetic (no type 1 diabetic

parameters have been published) patients are those in Table 2.23. Even

though the parameters shown are those of a healthy and T2DM patients, no

endogenous production of glucose has been described in here fot this model,

which is the case of a T1DM person.
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Parameter Healthy Type 2 diabetes Units
VG 1.88 1.49 dL kg−1

k1 0.065 0.042 min−1

k2 0.079 0.071 min−1

kp1 2.70 3.09 mg kg−1 min−1

kp2 0.0021 0.0007 min−1

kp3 0.009 0.005 mg kg−1 min−1 per pmol L−1

ki 0.0079 0.0066 min−1

Fcns 1 1 mg kg−1 min−1

Vm0 2.5 4.65 mg kg−1 min−1

Vmx 0.047 0.034 mg kg−1 min−1 per pmol L−1

Km0 225.59 466.21 mg kg−1

p2U 0.0331 0.0840 min−1

ke1 0.0005 0.0007 min−1

ke2 339 269 mg kg−1

Table 2.23: Nominal values of the parameters in Cobelli model

Hovorka et al. [36]

Roman Hovorka endogenous model regards separately at each action of

insulin on di�erent phenomena with its �nal e�ect on blood glucose. The

model adds a new compartment for every action of insulin, and there are

three considered events:

• Insulin increases the �ow of glucose from blood to the tissues.

• Insulin increases the glucose uptake by muscles and adipose tissue.

• Insulin inhibits production of glucose of glucose in the liver.

These three in�uences are re�ected in the model as virtual compartments.

The relation between actual insulin in plasma, every virtual compartment

representing insulin actions and the two compartments for glucose is shown

in Figure 2.20. x1, x2 and x3 represent the insulin actions, Q1 is the glucose

mass in the accessible compartment, and Q2 is the glucose present in the

non-accessible compartment.
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Figure 2.20: Hovorka endogenous model structure arranged in compartments
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The equations that represent this model are:

ẋ1(t) = −ka1x1(t) + kb1I(t) x1(0) = 0 (2.94)

ẋ2(t) = −ka2x2(t) + kb2I(t) x2(0) = 0 (2.95)

ẋ3(t) = −ka3x3(t) + kb3I(t) x3(0) = 0 (2.96)

Q̇1(t) = −
[

F c
01

VGG(t)
+ x1(t)

]
Q1(t) + k12Q2(t)− FR + EGP +Gex(t) Q1(0) = Q1,0

(2.97)

Q̇2(t) = x1(t)Q1(t)− [k12 + x2(t)]Q2(t) Q2(0) = Q2,0 (2.98)

G(t) = Q1(t)/VG (2.99)

Equation 2.97 has several terms that have to be de�ned:

• EGP stands for Endogenous Glucose Production, which is the �ux of

glucose coming from the liver. It is de�ned as:

EGP =

{
EGP0[1 + x3(t)] if EGP ≥ 0

0 otherwise
(2.100)

• F c
01 is the insulin-independent glucose �ux, and it is de�ned as:

F c
01 =

F s
01G

G+ 1.0
where F s

01 =
F01

0.85
(2.101)

• FR is the renal glucose clearance above the glucose threshold of R_thr,

and it is de�ned as:

FR =

{
R_cl(G−R_thr)VG if G ≥ R_thr

0 otherwise
(2.102)

Where R_cl is the renal clearance.
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The model has many parameters to be identi�ed, specially in the part of

insulin actions, where there are two parameters for each action corresponding

to the input and output �ows of the compartment. Usually these parameters

are reformulated into what are called insulin sensitivities, due to their

physiological meaning since they correspond to the glucose decrement per

unit of insulin given. The reformulation is then:

• SIT = kb1
ka1

where SIT is the insulin sensitivity to the transport of glucose.

• SID = kb2
ka2

where SID is the insulin sensitivity to the distribution of

glucose.

• SIE = kb3
ka3

where SIE is the insulin sensitivity to the endogenous glucose

production.

After this transformation, equations (2.94), (2.95) and (2.96) result in:

ẋ1(t) = −ka1x1(t) + SITka1I(t) x1(0) = 0 (2.103)

ẋ2(t) = −ka2x2(t) + SIDka2I(t) x2(0) = 0 (2.104)

ẋ3(t) = −ka3x3(t) + SIEka3I(t) x3(0) = 0 (2.105)

The published values of all the parameters are those in Table 2.24. The

parameters shown in here are mean values of the several sets of parameters

published.

Hovorka model hss been used both for simulation and control purposes, in

many di�erent scenarios, from critical patients [35] to overnight experiments

[34] with successful results, and recently it has been implemented in a

complete mathematical patients simulator [101], like the UVa simulator.
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Parameter Published value Units
k12 0.066 min−1

VG 0.16 L kg−1

EGP0 0.0161 mmol kg−1 min−1

F01 0.0097 mmol kg−1 min−1

ke 0.138 min−1

Vi 0.12 L kg−1

ka1 0.006 min−1

ka2 0.06 min−1

ka3 0.03 min−1

SIT 51.2× 10−4 mU L−1 min−1

SID 8.2× 10−4 mU L−1 min−1

SIE 520× 10−4 mU L−1 min−1

Table 2.24: Nominal values of the parameters in Hovorka model

Summary

In Table 2.25 all the gastrointestinal models reviewed are displayed, showing

their structures for the stomach and intestine parts, and the gastric emptying

process.

Model Purpose Implemented in
Bergman control (minimal) -
Panunzi control (minimal) -
Vicini simulation -
Cobelli simulation UVa simulator
Hovorka simulation Hovorka simulator

Table 2.25: Glucose absorption models
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Chapter 3

Identi�cation techniques and

procedures

The identi�cation of the parameters of a model is an inverse problem. An

inverse problem consists in �nding the conditions and inputs to a system

given the outputs of the system. In the glucose-insulin model identi�cation,

the inverse problem is to �nd parameters and model that characterize a

patient given the glucose behavior of that patient.

Identi�cation can be solved by means of optimization algorithms that try

to optimize an index of the �t of the model's output to the available data.

That index can be formulated, for example, as a quadratic error depending

on a set of parameters p that has to be minimized:

J(p) =
N∑
i=1

(yi(p)− ỹi)TQi(yi(p)− ỹi) (3.1)

where yi(p) are the model predictions and ỹi are the experimental

measurements, therefore, the data that has to be �tted. Qi is the data

weighting matrix, which permits to �t more accurately some data in

81



detriment to other data samples. Qi is usually chosen as a diagonal matrix,

due to the assumption that data samples are independently correlated to each

other. The choice of the diagonal values in the matrix are usually referred

to as �weights� of the data samples.

A usual compromise choice for the ponderation matrix is to make the

relative errors of each data sample weight the same in the cost index. This is

achieved by forcing the diagonal of Qi to be equal to 1/ỹ2i . This ponderation

matrix has the disadvantage of giving less importance to big errors in big

values of the output of the model than in small values. Usually it is desired

that all errors are normalized in the optimization index, and this is achieved

with other Qi, like for example all the elements of the diagonal to be equal to

1/max(ỹi)
2. This way the contribution of every data sample is standardized

and the errors are not weighted in any way.

Countless strategies and softwares have been developed for every speci�c

type of optimization problem. There are several methods focused in

parametric identi�cation and a couple of them will be explained in the last

part of the chapter.

In order to analyze the structural properties of the model, it is necessary

some kind of study to try to forecast if the problem is going to be solvable

and in which terms. This is what is called identi�ability study.

3.1 Identi�ability a priori

Considering now the case of a given model and given parameters, the

identi�ability of the system can be studied at two di�erent levels. By one

side, there is the identi�ability of the parameters given the structure and

under ideal conditions, and by the other side there is the identi�ability of

the parameters given the parameter values, and considering measurement

noise. The �rst case is called identi�ability a priori and the second is the
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identi�ability a posteriori.

There are many methods for testing models for structural identi�ability

and the one that will be shown next is completely valid for non-linear models.

That method is the Taylor series approach for identi�ability a priori.

Taylor series approach

Considering then an state-space, non-linear, time invariant model:

d

dt
X(t) = f [X(t), u(t), t, P ] x(0) = x0(p) (3.2)

y(t, P ) = h[X(t), P ] (3.3)

here X(t) is the state vector, y(t, P ) is the output of the model, u(t) is

the input, P is the vector of parameters, and f(·) and h(·) are non-linear

functions. In this case, de�ning the derivative order k of the output as:

ak(P ) = lim
t→0+

dk

dtk
y(t, P ) (3.4)

then, based on Pohjanpalo's paper [75], if ak(P̂ ) = ak(P
∗) yields P̂ =

P ∗, then the model is structurally identi�able, which means that only one

set of parameters can simulate a determined output. Notation has been

chosen to be coherent with [99], and P̂ represents the model parameters,

while P ∗ represents the system's hypothetical real parameters. Examples,

further explanations and more methods can be found in [99] and [82].
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3.2 Identi�ability a posteriori

Now, the fact that a model is structurally identi�able does not mean that

identi�cations performed to that model are going to be successful. There

is another type of identi�ability that has to be tested that will determine

if a given set of parameters can be estimated from the outputs they give.

Obviously, if there is no a priori identi�ability, i.e. there is more than one

set of parameters that can produce the same output, it will be impossible

to identify the model. But the information contained by a realization of the

model may be insu�cient to induce which parameters produced it, and that

information analysis is what a posteriori identi�ability consists in.

Again, there are several methods to quantify the identi�ability of a model,

but only one will be shown in detail in the following, the Fisher Information

Matrix (FIM) approach.

The Fisher information matrix approach

Analyzing with detail the Fisher Information Matrix (FIM from now on), all

information about identi�ability of the model can be extracted, but only in

local basis, due to the fact that this method's application implies linearization

of the model.

To understand the method, let's take the index de�ned in equation 3.1.

The statistical estimation of the index for a set of parameters slightly di�erent

of the optimal is given by:

E[J(p+ δp)] ∼= δpT

[
N∑
i=1

(
∂z

∂p
(ti))

TQi(
∂z

∂p
(ti))

]
δp+

N∑
i=1

tr(ViQi) (3.5)
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where Vi represents the covariance matrix of the measurement errors (Qi

is typically chosen as V −1i ), z is the model output and N is the number of

data samples. The term between brackets is what is known as the Fisher

Information Matrix and it expresses the quantity of information contained

in the experimental data, as explained in detail by Ljung [50]:

FIM =
N∑
i=1

(
∂z

∂p
(ti)

)T
Qi

(
∂z

∂p
(ti)

)
. (3.6)

The terms ∂z/∂p are the sensitivity functions and they are of great

importance for the evaluation of the practical identi�ability. The FIM is

a square matrix with dimension equal to the number of parameters that are

to be identi�ed. The inverse of the FIM is also an approximation of the

covariance matrix of the estimation error of the model parameters:

C = FIM−1 =

[
N∑
i=1

(
∂z

∂p
(ti))

TQi(
∂z

∂p
(ti))

]−1
(3.7)

The diagonal of C contains the information of the con�dence interval

in the estimation of every parameter. The maximum lower bound of this

con�dence interval is called Cramer-Rao Bound. Cramer-Rao also de�ned

the inverse of the FIM evaluated in the real parameters as the lower bound

of the covariance matrix of the parameters (in the real system). The bound of

the coe�cient of variation for the parameter pi being identi�ed is calculated

as:

CVi =

√
Cii
pi

(3.8)

The interpretation of the Cramer-Rao limit is simple. If, for example,

a parameter pi has a CV of 0.4 it means that, for the measurement error
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which variance was considered in the calculation of Qi, successive parameter

estimations will have a deviance of 40% of the parameter value. As such,

coe�cient of variation is a relative measure of the parameter standard

deviation given the error variance considered in Qi = V −1i , being Vi the

the error variance. There is more useful information to be drawn o� the

FIM, like the correlation matrix. This matrix, the elements of which are

the approximated coe�cients of correlation between the ith and the jth

parameters, is de�ned as:

Rij =
Cij√
CiiCjj

(3.9)

Analyzing the correlation matrix gives and idea of the compensation e�ect

of the changes in the values of the parameters over the model output. If two

parameters, pi and pj, are highly correlated, a change in the output due to a

change in parameter pi can be hidden by the appropriate change in pj.

In practical terms, the identi�ability analysis must be done applying some

simpli�cations. The sensitivities of the parameters have to be calculated by

approximating the derivatives of the output with �rst order approximations.

In general, application of the analytic expression of the derivative function is

the correct way of performing the FIM calculation. With the models exposed

before though, the analytical expression of the derivative with respect to the

parameters of the outputs of those equations is not feasible, and it has not

been done in here.

Usually, the sensitivity function is calculated applying the linearization of

the model around the nominal parameter, and obtaining the symmetric �rst

order di�erence. In practice, two simulations of the model are calculated,

one with a positive variation of the selected parameter, and the other with a

negative variation, as seen in Figure 3.1. The sensitivity function is calculated

with equation (3.10).
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Figure 3.1: A three meals simulation with perturbation in one parameter is
shown. The blue line represents the nominal parameter's simulation, while
the red and green lines are the simulations variating the selected parameter

Sp =
z(p+ ∆p)− z(p−∆p)

2 ·∆p
(3.10)

Also, if the FIM results to be singular it can not be inverted, and that is

a sign of non-identi�ability. In fact, it is a sign of a priori non-identi�ability,

so that analysis is being carried out with this method as well. Usually,

when working with noisy measurements, it is really di�cult to get that

the FIM is completely singular, and yet it will be di�cult to identify any

parameter because the FIM is bad-conditioned. The condition number has

to be analyzed then, and checked if it is large enough to permit inversion of

the matrix and identi�ability.

When ill-conditioning happens the solution is usually to �x some

parameter to a determined value. The decision of which parameter to �x

is taken from the singular value decomposition analysis of the sensitivity

matrix. De�ning the sensitivity matrix as a matrix with as many columns
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as parameters being analyzed, and rows as data samples, decomposition can

be applied and interesting properties arise. Singular Value Decomposition

(SVD) is de�ned as:

M = UΣV ∗ (3.11)

where M is the matrix being decomposed in three other matrices. Matrix U

is a unitary square matrix, Σ is a diagonal matrix with non-negative values

of the same dimensions as M , and V ∗ is the conjugate transpose of V , which

is another unitary square matrix. For further information about the singular

value decomposition check the classic reference of Golub [28].

Applying that decomposition, the values of the diagonal matrix Σ

quantify the sensitivities of the singular directions in the parameter space

in decreasing order. The last value of the diagonal is then the less

sensitive direction of the parameter space. In order to �nd what parameter

has the bigger in�uence in that direction (and then, which is the less

in�uential parameter), one have to look at the V matrix of the singular value

decomposition. The columns of V are the eigenvectors of the sensitivity

matrix and the last column expresses the in�uence of the parameters in the

less sensitive direction of the parameter space. The bigger entry in the last

eigenvector de�nes the parameter to be �xed in the identi�ability analysis.

In summary, there are two ways of increasing the identi�ability of a model:

(1) Changing the experiment paradigm. (2) Not to try to identify some of

the parameters, the decisions of which parameter to �x being taken based on

the identi�ability analysis results, for example, depending on the sensitivity

matrix properties or with the correlations between parameters.
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3.3 Practical Identi�ability

So far theoretical background on identi�ability analysis has been explained

and some broadly used methods for the calculation of identi�ability

estimators has been given. In the following lines there is a depiction of

the steps taken to quantify identi�ability in this thesis, as well as some hints

for calculation of the FIM and its estimators.

Given a model and a set of parameters, the sensibility analysis has to

be performed at �rst. Variations on the number of parameters will have to

be done until there is a model found identi�able, but identi�ability has to

be quanti�ed. In the case of this thesis, a model is identi�able when all the

parameters of the model analyzed have coe�cients of variation of less than 0.3

and there are no correlations between the parameters greater than 0.98. For

non-invertible matrices, the singular value decomposition explained in the

previous section can be carried out in order to determine which parameter

to �x. The steps to follow in order to determine which set of parameters are

identi�able can be seen in Figure 3.2.

Figure 3.2: The model starts with all of its parameters, but they fall o�
the identi�cation as prove themselves not sensible enough or too related to
another parameter
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Following that �ow chart, the sensitivity analysis starts with all the

parameters of the model i.e. `p' parameters. The sensitivities of all the

parameters are calculated, and the FIM is evaluated. If the FIM is singular,

it means that it is not invertible, and thus, no con�dence intervals for the

estimation of parameters are calculable. Non-invertibility is always related to

a small condition number of the matrix, and that is why the most e�cient way

to estimate the invertibility of the matrix is calculate its condition number.

A condition number of 10 times the maximum �oat precision, i.e. 2.2 · 10−16

is considered small enough to label the matrix as non-invertible [82]. When

this happens, the most in�uent parameter in the smallest singular value's

eigenvector is �xed to it's nominal value, and it is not used anymore in

sensitivity analysis. The analysis considers now `p-1' parameters, and the

FIM is now a matrix of dimensions (p-1)×(p-1).

Once the FIM has an inverse matrix, the objective of the analysis is to

reduce coe�cients of variation (CVs) of the rest of the parameters. The

Cramer-Rao bound has to be calculated for every parameter, and the one

with the highest value is then �xed, reducing the number of parameters of

the analysis by one. After several iterations, when all the parameter CVs

are to be under a pre�xed value, let's say under 0.3 (as it says in Figure

3.2). A value of 0.3 will guarantee that at least the sign of the value will be

captured. The decision of which parameter to �x in this case is up to the

user. Of the two parameter correlated, one has to be �xed, and it can be

either the one with the highest CV, or the one that is lower in the in�uence

ranking (that may di�er of the highest CV parameter due to the correlations

not considered in the ranking).

Once the appropriate set of parameters is selected, there is still the

question of whether or not the model is truly identi�able. Identi�ability

has been calculated and it has resulted theoretically satisfactory, but many

simpli�cations and assumptions were made in the way, so a real attempt of

identi�cation may not be successful. In other words, the sensitivity analysis

has to be validated. In order to do so a virtual identi�cation can be performed.
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Virtual identi�cation is an identi�cation in which the �experimental� data

is obtained from simulation, and error is added to the signal, so it emulates

possible measurement or modeling errors in the real identi�cation. With the

noise addition trick multiple data sets can be obtained, and so statistics of

the identi�cation, referring to every data set as a sample, can be calculated.

These statistics can be comparable to the outputs of the sensibility analysis,

being then able to validate it's success or to disprove it. The �ow chart

summarizing the steps to perform a virtual identi�cation can be seen in

Figure 3.3.

Figure 3.3: The �nal objective of the virtual identi�cation is to �nd similar
results as the sensitivity analysis, under the same conditions

Following the �ow chart, we start from a set of known parameters

(nominal parameters), and the sensitivity analysis has already been

performed. The model simulation is performed, obtaining �perfect� data,

without noise or variation in the parameters. By adding di�erent realizations
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of a white noise (mean 0 and uncorrelated), several �noisy� data, that can

be considered as di�erent outputs of the model, are obtained. Identi�cation

is then carried out to all of the noisy sets of data, obtaining multiple sets

of parameters identi�ed. Statistics can be calculated for every parameter,

because from the di�erent identi�cations the same parameter has been

identi�ed many times. The mean values of every parameter has to be

comparable to the initial (nominal) parameter. The deviations of the

identi�cations for each parameter must be contained in the con�dence

intervals obtained by the sensitivity analysis, following the same probability

distribution.

If sensibility analysis and virtual identi�cation statistics are (roughly)

similar, then the model is proven to be identi�able, as long as the nominal

parameters considered are correct. This does not mean that the model is

correct. The aim of identi�cation is to �nd a model that imitates the behavior

of a system, if the data sets given by the system are not at all like the model

output, the identi�cation may still be unsuccessful.

3.4 Optimization and software

Once the identi�ability analysis shows that the model is identi�able,

identi�cation still has to be done. As was said before, identi�cation is a

problem that can be formulated as an optimization (minimization) of an

index measuring the error between the model output and the measurements.

A good example of an index to be minimized was shown in equation 3.1.

There are several algorithms that can be used to execute that minimization.

A quick review and classi�cation of optimization algorithms will be now done.

The �rst classi�cation to be done is about local and global optimization.

The local approach assumes solution is in a region near to the starting point,

and that there is only one solution in that region that has to be found. The
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global approach does not consider regions, and assumes that there can be

several optimal points in there respective regions, but only one is the global

optima. Local algorithms are usually deterministic searchers, and are e�cient

solving linear problems or adjusting linear models to experimental data.

In the case of the models seen in this thesis, global optimizers have to be

used because of the non-linearities and discontinuities the models present.

This kind of optimization problems needs of global optimizers, that usually

involve using stochastic sampling methods or multiple starting points using

deterministic algorithms. Also, the problem of identi�cation is always bound

because the parameters cannot take any values imaginable. There are non-

negativity boundaries and theoretical stability limits in the values of certain

parameters (some values of certain parameters may make the model unstable.

This fact is very important in the choice of an algorithm to identify, for

the boundaries are usually treated as non-linearities, and thus non-linear

algorithms tend to be more prepared to deal with this kind of problems.

3.4.1 Nonlinear programming

The �rst algorithm to be used for identi�cation was a non-linear local solver

that �ts into the group of solvers denominated as �Nonlinear programming

solvers�, or �Constrained nonlinear optimizers�. This sort of algorithms are

deterministic solvers that use �rst and second derivatives of the objective

function, along with some heuristics to cope with the various problems that

deterministic local searchers have. Abundant information about this kind

of algorithms can be found in Coleman and Li paper of 1996 [18], Powell's

conference in 1978 [76], or for a more general reference see Bazaraa's book

[7].

The suite used is part of Matlab's Optimization Toolbox, which is

composed of many di�erent searchers to solve any optimization problem

in the Matlab environment. The function used in the identi�cation of
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postprandial models is the main nonlinear programming function in the

toolbox, the �fmincon� function. The use of this function has a major

drawback, due to its local scope. It usually gets stuck in local minima instead

of searching for the global optimum.

3.4.2 Scatter search for Matlab

Scatter search for Matlab (SSM from now on) is a global optimizer based

on statistical principles that has already been used in the arti�cial pancreas

project, with the objective of patient identi�cation, by Cesar Palerm in Santa

Barbara [64].

SSM optimizer is a project of the CSIC (Centro Superior de

Investigaciones Cienti�cas) and the university of Vigo. It is a global

optimizer, and as such it is easily comparable with genetic algorithms

[27]. Scatter search does not use codi�cation of the population as genetic

algorithms do, but it does work generating new generations (o�spring) of

the function optima by combining the properties of the previous (parents)

population. Plus, it does not generate random �mutation� on the population,

but it does renew the existing individuals by adding new random samples to

the new generations of optimal solutions. The details of the inner algorithms

are not going to be exposed in here. For the better understanding of the

searcher check out Julio Banga's group papers in 2006 [83] and 2007 [22].

This optimizer has the advantage of using local solvers to re�ne the search

when it seems to have found some optimum solution. The local solver to be

used can be chosen from a list available in the SSM's documentation. fmincon

is one of the many solvers available, so the use of SSM incorporates the use

of the other solver described before.
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Chapter 4

The Challenge of Model

Identi�cation in Diabetes

Identi�cation of a model in the arti�cial pancreas context consists on

the characterization of a patient with a series of parameters. Those

parameters can be constant, time-varying, yes/no parameters, periodic,

etcetera. Parameterization of the patient is of common practice in diabetes

treatment heuristically estimated woth parameters such as:

• Insulin sensitivity. It is the decrease of glucose related to a certain

amount of insulin. It is one of the principal parameters for the

characterization of a diabetic patient, and it is subject to circadian

and long term variations. It determines rate of basal insulin to be

administered to a diabetic patient.

• Insulin to carbohydrate ratio. It is the amount of insulin required

to counteract a certain amount of ingested carbohydrates (CHO). It is

also subject to circadian and long term variations.
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These parameters can be heuristically determined by simple observation

of the patient, but there are other parameters in a diabetic mathematical

model that are representative of internal physiological processes, and their

quanti�cation is not straightforward. Some of those parameters are:

• Endogenous glucose production.

• Glucose uptake by tissues.

• Glucose absorption rate.

• Insulin absorption rate.

• Insulin degradation rate.

These parameters are very di�cult to characterize because their dynamics

are usually related to several hormone concentrations, and those relations are

usually subject to circadian and long-term variations. Furthermore, those

dynamics are not completely well understood, and proposed models are not

accurate. The di�erence with the observable parameters described before

is that the quanti�cation of the variations (especially the circadian) is very

di�cult, and usually including complicated dynamics in the mathematical

models yields to non-identi�able models.

One of the most complex models describing the physiology of diabetes

is the model seen in section 2.2.3, and its published simulator. That

model represent in a detailed manner physiological processes, describing the

dynamics with a set of equations, and reducing the patients characterization

to a set of constant parameters, shown in Table 2.23.

This model and the simulator developed by the University of Virginia

has been accepted by the FDA for controller testing in the context of a

clinical trial at Padova and Virginia. The FDA acceptance was not due to

the models capabilities on characterizing individual patients behavior but
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due to the set of virtual patients included, characterizing variability found

in a real population. The simulator is distributed with a non-disclosed set

of parameters that is able to simulate over 300 patients (100 children, 100

adolescent and 100 adults).

In this chapter, the ability of the model to test controllers is not discussed,

but the identi�ability of this model and its practicality when trying to

characterize a real patient.

A set of experimental data from several T1DM patients was available for

the use of the INSULAID2 project, which has already been used for real

time glucose estimation in continuous monitoring [46]. That data will be

used for model �tting in order to prove Cobelli's model feasibility to adjust

to experimental data. The study included 18 patients with type 1 diabetes

following the protocol approved by the Dr. Josep Trueta University Hospital

of Girona's Ethics Committee. Patients were monitored for three days (one

day at the hospital and two days at home) using the CGMS Gold (MiniMed

CGMS). The CGMS Gold was applied to the subcutaneous abdominal region

of each patient and was used continuously for a period of 72 h. After the third

day, the monitor data were downloaded to a computer using the CGMS Gold

algorithm (Solutions Software 3.0). The CGMS Gold was calibrated with

capillary glucose measurements using conventional self-measurement of blood

glucose. During the �rst day, plasma glucose was simultaneously measured

with a Beckman Glucose Analyzer every 15 minutes during 2 hours after a

meal and every 30 minutes otherwise. Plasma insulin was also measured.

4.1 Cobelli's model identi�ability

Prior to the experimental identi�cation of the patients from the Josep Trueta

Hospital, the model's identi�ability is going to be analyzed. Previous work

on identi�ability of the insulin model was done by Ana Revert [80], given that
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plasma insulin data was also available in this study. The insulin submodel

was then considered known for several patients in which the identi�cation

was successful, and the plasma insulin was considered as an input to the

model.

In this identi�cation study, initial states were also considered as

parameters of the model to be identi�ed. This was done in order to consider

the identi�cation as a broader general case. Only the initial states of the

compartments of the glucose model were considered to be di�erent to its basal

values, the rest of the initial conditions were considered equal to the basal

parameters (EGP, insulin delays, ...) due to the fact that at the beginning of

the day there are no previous insulin bolus or meals. The two new parameter

added are:

• Gp0 - Initial state for mass of plasma glucose.

• Gt0 - Initial state for glucose in the tissues.

Another variation has been included in the model in order to improve

identi�ability and to simulate patients with more accurate physiologic

conditions. The �dawn e�ect� is a well known rising in blood glucose in

diabetic patients after the night period [10] [71]. This phenomenon is

known to be caused by a decrease in insulin sensitivity during the night.

Insulin sensitivity is known to have circadian variations of di�erent intensity

depending on the patient. A 24 hours periodic variation of insulin sensitivity

has been included into Cobelli's model, as shown in Figure 4.1, and two new

parameters have been added to adapt the variation depending on the patient:

• modsens - sensitivity variation's modulation. It ampli�es the variation

of insulin sensitivity.

• sensdelay - sensitivity variation's delay. It shifts the variation of insulin
sensitivity in time, advancing or delaying the peaks or the valleys of

insulin sensitivity depending on the patient.
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Figure 4.1: Circadian variation over 24 hours in an average diabetic patient.
It multiplies insulin sensitivity. Extracted from [87]

Identi�ability analysis has been applied to this model for a three meals

scenario. The analysis was done following the scheme shown in Figure 3.2,

and results are shown in Table 4.1.

The table shows the evolution of each parameter coe�cient of variation

at each iteration of the sensitivity analysis. The �rst iteration shown is the

�rst one in which the FIM is not singular. The parameters in which no CV

is shown are the parameters that made the FIM singular. As can be seen,

all the con�dence intervals decrease as more and more parameters are �xed

to their nominal values. Always the highest CV determines the parameter

to be �xed.

At iteration 11, all the parameter CVs are under 0.3, which is the

threshold decided for identi�ability. The next iteration was performed due to

the correlation of two parameters. The correlation matrix for the parameters

left in the 11th column of Table 4.1 is that shown in Table 4.2. As can be

seen in that table, of the two parameters with a correlation bigger than 98%,
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parameters 16 and 17, the one that is lower in the ranking is parameter 16,

which results to be the one with the biggest CV as well. The decision taken

was then, �xing parameter 16.

2 4 5 6 8 16 17 19 Ranking
2 1,00 0,02 -0,07 -0,16 0,88 0,60 -0,54 0,70 95,50
4 0,02 1,00 0,72 -0,12 -0,20 -0,25 0,26 -0,13 35,64
5 -0,07 0,72 1,00 -0,44 -0,04 -0,37 0,39 0,13 24,43
6 -0,16 -0,12 -0,44 1,00 -0,07 0,60 -0,69 -0,33 131,10
8 0,88 -0,20 -0,04 -0,07 1,00 0,71 -0,66 0,83 92,69
16 0,60 -0,25 -0,37 0,60 0,71 1,00 -0,98 0,41 48,62
17 -0,54 0,26 0,39 -0,69 -0,66 -0,98 1,00 -0,33 217,62
19 0,70 -0,13 0,13 -0,33 0,83 0,41 -0,33 1,00 22,97

Table 4.2: Parameter's correlations for the last iteration of the sensitivity
analysis. The last column is not part of the correlation analysis but the
ranking of the parameters in the most in�uent eigenvalue of the FIM.

Starting from a model in which 20 parameters were characterizing a

diabetic patient, only 7 parameters remain identi�able at the end of the

analysis. Identi�cation of two real patients is going to be performed with

blood glucose for a whole day, and validation will be done by comparing

the results of simulating the two following days to the identi�cation, and

comparing it to CGMS home data (no blood glucose data is available).

Cost ponderation for the �tting is decided to be a diagonal matrix where

all the entries of the diagonal are equal to the maximum of the experimental

data, as explained in Chapter 3.

4.2 Experimental Data Fitting

In this chapter some examples of data �tting are going to be shown and

discussed. The number of available patients was initially 22, but few of

those patients were possible to be identi�ed in their insulin sub-model due

to anomalous absorption or high variability. Out of the patients that were
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successfully identi�ed in their insulin sub-model, few of them were possible

to �t accurately to the Cobelli's model. Many experimental identi�cations

were performed, and only two of those data �tting were satisfactory. The

�tting of those two patients is shown in Figures 4.2 and 4.3.

Figure 4.2: Data �tting of Cobelli's model to blood glucose experimental
data

In those �gures the blue line represents the blood glucose data, and the

red line is the model prediction. In the �rst identi�cation, all three meals are

very well simulated by the identi�ed model, as well as the general descendant

tendency of the day. In the second identi�cation, the �rst meal is not very

well �tted, but the descendant tendency in the following hours is very well

captured. Both cases are successful in terms of similarity of the response and

repeatability of the optimizer. Several runnings of the optimizer were done

in order to prove a single solution. Other patients data were discarded due
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Figure 4.3: Data �tting of Cobelli's model to blood glucose experimental
data
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to this problem.

Although data �tting was successful for two data sets, this does not mean

the model is useful. Model identi�cation has to be validated with some data

di�erent than the utilized for the identi�cation. In the case of the data

available for this experiment, the Josep Trueta monitoring, the validation

data that was used was the CGMS data acquired at home in the two following

days to the hospital monitoring. The results of that validation are shown in

Figures 4.4 and 4.5.

Figure 4.4: Identi�cation of a three days real monitoring. The �rst day was
used for identi�cation while the two last days were used for validation of the
identi�ed model

In these �gures several signals that are considered interesting for the

understanding of the model's behavior are plotted. The top graph is the

patient's glucose, now the red line being the CGMS signal, the blue line

being the identi�ed model prediction, the pink line in the �rst day being the
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Figure 4.5: Identi�cation of a three days real monitoring. The �rst day was
used for identi�cation while the two last days were used for validation of the
identi�ed model
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blood glucose data (already shown in previous �gures), and the green spikes

being the meal ingest periods. The second graph (from the top) that is shown

in the �gures is the plasma insulin pro�le from the model. It can clearly be

seen the times of the bolus infusions, and how the level of plasma insulin

increases drastically during meal times. There is also a basal level of insulin

assumed constant. The third graph is the endogenous glucose production,

which is an internal state of Cobelli's model and that is dependent on the

plasma insulin. The forth graph is the insulin sensitivity variation along the

three days of monitoring, as described before. The bottom graph is the rate

of appearance of glucose in blood as delivered by Dalla Man's model.

As it is clearly seen by Cobelli's model validations, even though the model

�ts perfectly the identi�cation data, it does not reproduce the validation days,

which is its main purpose. This is not an unexpected result, and the validity

of this model was questioned at every step. Anyway, a prediction horizon of 2

days, as was considered in the previous identi�cation, is unrealistic, but given

that this work with Cobelli's model is a preliminary contact with modeling

in diabetes, it is a useful result. No model for diabetes has been proven

good for predictions of more than a two hours horizon, and only predictions

of populations, not single individuals. Following work on this �eld will be

focused on the postprandial stage and it's prediction, with prediction horizons

of no more than 5 hours.

Cobelli's case study and its identi�ability study proves that the model

is too complex, even without attempting to identify the insulin subsystem.

Simpler models are going to be analyzed in the following, and Cobelli's

endogenous model will not be used anymore, except maybe in future work,

using the simulator for testing controllers.

Simple postprandial identi�cation trials with Bergman's model were also

performed on the Josep Trueta's data with similar results. Bergman's model

identi�ability will be discussed in chapter 6.1. In this case, the insulin

submodel was also being identi�ed, but the philosophy of identi�cation was
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di�erent. In order to avoid variations in the gastric emptying, and thus in the

gastric submodel parameters, the meals identi�ed are the three breakfasts

of one patient, whom repeated the same breakfast for three days, even in

quantity of CHO. The fact of being the breakfast the meal identi�ed was

also good due to the fasting state in which patients arrived to the beginning

of the meal, which is the most similar state to a steady state in a diabetic

patient. This time, two days were used for �tting of the model, and one

was used for validation, as can be seen in Figure 4.6. All the data was

extracted from a CGMS in this case, in order to minimize the di�erence

between identi�cation data

Figure 4.6: Identi�cation of a three meals real monitoring. The two �rst
meals were used for identi�cation, while the third was used for validation.
All the date was extracted from a continuous glucose monitor

In that �gure, the blue lines represent the CGMS data, and the red lines

are the identi�ed model response. The two graphs in the top of the �gure

are the postprandial responses of the patient and the model to the breakfast.
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The same model is being �tted to both breakfasts. The graph in the bottom

is the validation breakfast.

As can be seen, even with simpler models the validation of model

identi�cation is tricky in diabetes. The reasons for this lack of repeatability

are many. The metabolic state of a person in terms of diabetic physiology

is not completely understood. Trying to reproduce consecutive days (meals)

with the same model, considering the models that are now published in

literature, may not be possible. Many parameters that are considered

constant in the endogenous models are variable with time, and not only

in a circadian manner.

Data provided may be not appropriate for identi�cation, and that is

the reason why the Josep Trueta's data will not be used anymore in this

thesis. Instead, new sources of data will be used. Taking advantage of a

new collaborative way with the �Hospital Clinic Universitari de Valencia�,

possibility of new data acquisition arises. Plus, new models will be studied

and analyzed.

4.3 Critical selection of models

The identi�cation problem in diabetes has been proven really di�cult even

for the simplest models, like in the study of Ana Revert [80], or the pure

control approach of Stål [90] in Lund. The problem of the identi�cation is

not about adjusting the data existing to the models provided. That task

is usually performed with success. But when using the model identi�ed for

further simulations, models prove themselves mainly useless.

Of course, the main solution to this problem is to develop new, more

e�cient models for the glucoregulatory system, but that is not the main

objective of this thesis. Instead, a critical review of the most used models is

going to be quickly done in the following lines.
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The fact that the set of Cobelli's group models is now accepted by the

FDA as a simulator of diabetes makes those models to look like the correct

choose to be used in research works like this thesis. Also Dalla Man describes

the gastric emptying of the stomach as a function of the fraction of glucose

in the stomach, being the only model implementing this feature, so this

was the model chosen to be the exogenous glucose model in this research.

While working on this thesis, there was a parallel research being done by

INSULAID2 (the research project in which this thesis is involved) with

the Willinska model, showing much better identi�ability results than with

previous work done with other models [80], and so this model was used for

the identi�ability and optimal experiment analysis.

When trying to choose an endogenous model the question is much trickier.

Following the same logic as before, reason dictates Cobelli's model has to be

chosen because of it's FDA acceptance. Willinska published a review of the

identi�ability of models for simulation [103], stating that Cobelli's model has

the problem of having too many parameters to be identi�ed from clinical

data, what makes the identi�ability of the model to drop.

Minimal models (not used for simulation) such Bergman's or Panunzi's

model skip the problem of overpopulation of parameters, but obviously

describe with less accuracy glucose behavior. Bergman's model has been

strongly criticized in late years because of it's simplicity and the fact that it

does not �t correct glucose behavior against insulin. Quon et al [78] proved in

1994 with a series of experiments involving the Biostator device that Bergman

model underestimates insulin action on glucose removal from blood, and it

overrates the e�ect of glucose concentration in its own disappearance (glucose

e�ectiveness).

In 1999, Regittnig et al. [79] con�rmed the overestimation of glucose

e�ectiveness. They also proved that all minimal models are inevitably wrong

if they consist of one single compartment for glucose, without considering

the interstitial dynamics or other situations. Considering that a minimal
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model has to stay simple, let us take a closer look to the equations related

to the glucose compartment in minimal models, like the Bergman model.

Considering that there is no exogenous input of glucose, equation (2.73)

stands:

Ġ(t) = −p1G(t)−X(t)G(t) + p1Gb (4.1)

The part of the equation −p1G(t) is the term of the Bergman model that

represents the glucose e�ectiveness, and it depends directly on the parameter

p1, that has to be identi�ed. The term p1Gb sets the equilibrium point of the

model to the basal glucose if insulin is at basal level and there is no glucose

input. The term X(t)G(t) is the insulin related term, applying insulin with a

delayed compartment. Looking at the equation of the glucose compartment

of another minimal model, the Panunzi model:

Ġ(t) = −KxglI(t)G(t) +
Tgh
Vg

(4.2)

The term related to glucose e�ectiveness does not exist. The term related to

insulin input, −KxglI(t)G(t), is applied without a delay because Panunzi's

model was designed for healthy patients and the delay is considered in

the endogenous secretion of insulin. The term
Tgh
Vg

is similar to the

equilibrium point term in equation 4.1, both are constant terms that de�ne

the equilibrium point of the equation, but they are considered in di�erent

ways. In the Bergman model, the basal level is stated explicitly, while in the

Panunzi model it is seen as a hepatic balance of glucose. Both approaches

are true and useful, and the identi�cation is done in the same way in both

examples.

In this thesis, experiments will be performed with the Bergman model

because it is considered in diabetes research as a sort of �benchmark� model

to test any methodology, but every result will be compared with a variation

of Panunzi's model that will be explained in the following lines.

Bergman model has an odd behavior when simulating a diabetic patient

to whom basal insulin infusion is removed. The correct behavior to a empty
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insulin compartment in a diabetic patient is blood glucose to increase without

measure. In Figure 4.7 a simulation with Bergman's model is shown, with a

warming period of 10 hours in which the insulin infusion is stopped; then, at

minute 600, insulin infusion is restored, a 75 grams of a mixed meal ingested

(simulated by Dalla Man's model) simultaneously to a 7.5 units of insulin

injected as a bolus.

Figure 4.7: Bergman simulation of a change in basal level and nominal values
of glucose e�ectiveness

If there is an stop in basal insulin infusion with a smaller glucose

e�ectiveness, the results are shown in Figure 4.8.

The behavior observed in the warming period of the previous �gures

is unrealistic. A diabetic patient whose insulin infusion is removed should

become an unstable process, not just change its equilibrium point. Panunzi's

model, in its equation (4.2) becomes a pure integrator if insulin is removed,

making the system unstably increasing. Panunzi's model seems more suited

to the physiology of glucose in this case, but it also has its disadvantages. As

it was said before, the Panunzi model represents the delay of insulin action
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Figure 4.8: Bergman simulation of a change in basal level and 50% reduced
glucose e�ectiveness

in the equation of secretion, but that equation (2.75) is eliminated when

simulating diabetic patients, so the delay e�ect is removed. This results in a

faster acting of the bolus insulin in front of the simultaneous meal ingestion,

making blood glucose to drop inmediately after the injection, as can be seen

in Figure 4.9.

This phenomenon can be easily avoided by adding a delay equation (4.4)

to Panunzi's model, resulting in the next model:

Ġ(t) = −KxglX(t)G(t) +
Tgh
Vg

(4.3)

Ẋ(t) = −ki[X(t)− I(t)] (4.4)

With the addition of a new parameter to the model. This new parameter has

to be set to a new nominal value, and it is going to be done by bibliography

review. In [29] Helms quanti�es the insulin action delay with a 20 minutes

settling time, which makes the parameter ki to be approximately equal to
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Figure 4.9: Panunzi's simulation of a meal at minute 120

0.08 min−1. The response to a meal and a bolus in that case is shown in

Figure 4.10, where the dropping of glucose just after the bolus time is almost

non present.

The shown model is completely satisfactory for identi�cation purposes

and control. There is one last check to be done to the model to prove

its reliability. In their paper of 1994 [95], Torlone et al. showed a series

of experiments in which insulin bolus is injected some minutes prior to a

intravenous glucose infusion. This experiment shows clearly the e�ect of

insulin, and how it makes glucose to drop an impulse response behavior. In

Figure 4.11 this behavior is shown for almost one hour before the glucose

infusion starts.

In the previous �gure it can be seen that there is no change in blood

glucose until 15 minutes after bolus injection, and then glucose drops for 30

minutes until approximately 70 mg/dl (approximately 3 mmol/l). In the

case of simulation with the Panunzi model with delayed insulin action, the
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Figure 4.10: Variation of Panunzi's model simulation of a meal at minute
120

results are shown in Figure 4.12, in which no intravenous glucose infusion

was simulated.

In simulation, the response is exactly as expected: no signi�cant change in

blood glucose in the �rst 15 minutes, and in the next half hour, glucose level

drops to almost 70 mg/dl. This makes the new model much more reliable

than Bergman or Panunzi's models, and as such it will be used in this thesis.

Another simple feature was included in the modi�ed Panunzi model.

Endogenous hepatic glucose production is one of the parameters of the model,

Tgh, and it is considered constant. This is actually not true, for endogenous

hepatic production is suppressed by insulin. A simple variation of the model

was introduced, considering the Tgh parameter to be reduced when plasma

insulin surpassed a de�ned threshold:
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Figure 4.11: Insulin impulse response of glucose after bolus and counteraction
with intravenous glucose infusion [95]. Black dots are the blood glucose
measurements for monomeric insulin analog, and the white dots for human
insulin
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Figure 4.12: Variation of blood glucose (mg/dl) in Panunzi's model
simulating a fall of glucose after insulin injection. Insulin is given in minute
120
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Tgh =

{
Tgh if Ip < 30 mIU/l

0.1 ∗ Tgh otherwise
(4.5)

In summary, one model was chosen for simulating purposes between the

so called models for simulation. That is Cobelli's model, which is the one

accepted by the FDA as a valid simulator, as seen in Chapter 4.1. Out of the

minimal models, two were chosen: Bergman's model, because it is probably

the most used model in diabetes research for the las 20 years, and it has been

studied and compared thoroughly, and also a variation of Panunzi's model

was chosen, because of its simplicity and its properties.
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Chapter 5

Optimal experiment design

In the diabetes research scenario, the fact of performing experiments is a

high-cost, time consuming task that has to be thoroughly planned in order

to obtain the biggest bene�t out of it. In the case that is being reviewed

in here, the objective of that planning is to get the models to be easier to

identify. There are some methods that will help the researcher to obtain

the best identi�ability of a given model, choosing from a constrained set of

possible experiments.

An experiment of data recollection in diabetes initially has in�nite number

of variables that can change under di�erent circumstances. The models

chosen is the �rst choice to be made, and it is not an obvious one. In

this thesis case the models have already been chosen, but for the optimal

experiment design only the two minimal models will be used. The reason

of that decision is simply of computational e�ort. The experiment design

implies solving optimization problems whose computation times depends on

the complexity of the models, and those times are usually very long.

The design of an optimal experiment usually consists of the following

steps:
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1. De�ne an optimality criterion related to the �nal purpose of the

modeling, in this case optimal identi�ability, via a scalar cost function.

2. Take into account all constraints on feasible experiments.

3. Optimize the chosen cost function with respect to the experimental

variables available to the experimenter.

The experiment design will usually result in a non-linear constrained

optimization problem and thus, global optimization solvers will be needed

in order to �nd the solution. In this chapter there will be a justi�cation

of the optimal experiment design in diabetes, followed by the formulation

necessary to de�ne the criterion of optimality for identi�cation. Finally

results of optimal designs will be shown.

5.1 The need of optimal design

There is a classical example seen in [99] that explains very clearly the need of

optimal design for almost every experiment to be performed. That example

will be reproduced in the following lines, showing that usually the intuitive

approach for experimentation is not optimal.

Example.-

There are three objects called O1, O2 and O3 with respective weights w∗1, w
∗
2

and w∗3 to be estimated. The spring balance used for this purpose produces

a biased random measurement error, de�ned by a Gaussian distribution

N (0, σ2) and the measurement bias w∗0. Only four measurements can be done

in this experiment.

Intuition dictates to do the �rst of the measurements y(0) without any
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object on the balance, in order to characterize the bias, and then have the

other three resting measurements for each of the objects. In that case the

estimates of the weight for each object is ŵi = y(i)− y(0), i = 1, 2, 3. The

estimates in this case are unbiased (which is very good), and have variances

var(ŵi) = 2σ2 and covariances cov(ŵi, ŵj) = σ2, i 6= j.

Another case has to be considered now. If the �rst measurement is now

taken with all the objects in the balance, being then y(0) = w∗0 +w∗1 +w∗2 +w∗3,

the estimates of the weights for the objects are:

ŵi =
y(0) + y(i)− y(j)− y(k)

2
, i = 1, 2, 3, i 6= j, i 6= k, j 6= k (5.1)

In this case, the variances of the estimators, which is a good approximation

of the identi�cation performance, are var(ŵi) = σ2 and its covariances

cov(ŵi, ŵj) = 0, i 6= j. Compared to the �rst intuitive approach, this second

approach yields to a more accurate estimation and independent estimates,

plus the estimation is also unbiased.

In the context of the arti�cial pancreas there are few published examples

of experiment design, and even fewer of them are based on the optimality

of the experiment in terms of identi�ability. One of the earliest attempt to

improve the identi�cation in an endogenous model was carried out Cobelli

in 1986 [17]. The approach is based in the FIM methodology that will be

explained in Section 5.2, and it is the same method that will be used in

the work done in this thesis. Cobelli though, used a simpli�ed version of

experimental design evaluating only the identi�ability of single parameters

instead of evaluating the identi�ability of the model as a block, combining

the identi�ability of di�erent parameters.

There are several examples of modi�ed standard protocols to perform

better identi�cations, like the work of Percival et al. [70] where it is proven

that simply by separating the instants of insulin bolus injection and the

beginning of the meal the identi�cation of a model is improved. However, no

theoretical study is presented with this regard.
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Only in the last years publications have appeared with complete

identi�ability studies and optimal design for the identi�cation in diabetes.

Galvanin [26] published a study of optimal experiments based on Hovorka's

model, checking identi�ability involving meal ingestion or oral glucose intake,

yielding in quite complex insulin infusion rates like the one shown in Figure

5.1.

Figure 5.1: (a) Glucose concentration pro�les predicted by Hovorka's model
(dashed line) and after identi�cation (solid line). (b) Insulin infusion rate
designed for the identi�cation. Extracted from [26]

Given the huge problem that identi�cation of models supposes in the

arti�cial pancreas environment, it seems logical to ease the problem as much

as possible. In this thesis work several approaches to optimal experiment

design based on di�erent models using the FIM methods will be carried out

as stated in Section 6.

5.2 Methods based on the FIM

The aim and need of the experiment design is now clear, and the question of

how to perform that design arises. So far, identi�ability has been analyzed

as a property of a parameter, quanti�ed as the con�dence interval in the
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estimation of each parameter. That information is obtained from the Fisher

Information Matrix (or better said from its inverse), which summarizes the

information of all the parameters of the model for a given experiment. The

problem of optimal design can be expressed then as an optimization problem

of �nding the minimum value of a certain scalar function of the FIM. That

function is called optimality criteria, and its general expression is:

j(Ξ) = φ[F (p,Ξ)] (5.2)

where φ is a scalar function. The evaluation of the Fisher Information Matrix

is a function F of p, the parameters vector, and Ξ, the experiment conditions

to be optimized.

There are several criteria that can be used in this case, as seen in [25]:

• D-optimality, in which the scalar function chosen is the determinant of

the FIM. The three following equations are equivalent, and all of them

de�ne the D-optimality criterion and whether it has to be maximized

or minimized in order to improve identi�ability:

Ξ = argminΞ jD(Ξ) = argminΞ det(F−1(p,Ξ)) (5.3)

Ξ = argmaxΞ jD(Ξ) = argmaxΞ det(F (p,Ξ)) (5.4)

Ξ = argmaxΞ jD(Ξ) = argmaxΞ ln(det(F (p,Ξ)) (5.5)

• E-optimality, in which the function is the smallest eigenvalue of the

information matrix, and it has to be maximized.

• A-optimality, in which the problem is solved by maximizing the trace

of the information matrix.

In order to better understand the meaning of each one of these criteria,

spatial analogy is needed. If every parameter is placed in an axis of the

space, then the region de�ned by the con�dence intervals of each one of the
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parameters de�nes an ellipsoid the axis of which are given by the eigenvalues

of the inverse of the information matrix. Given that the objective of the

optimization is to minimize all the regions of con�dence, every axis of the

ellipsoid have to be minimized, or equivalently, the volume of the ellipsoid has

to be minimized, and that volume is exactly the determinant of the inverse of

the FIM. The rest of the criteria have similar meanings that are summarized

in Figure 5.2.

Figure 5.2: Each criterion reduces the con�dences intervals attempting to
minimize one singular scalar value [25]

The question of which criteria to be used arises now. The D-optimal is

the most used of the three standard criteria cited above. This is due to some

exclusive appealing properties of the criterion [25]:

• Easy geometrical interpretation, as seen in Figure 5.2.

• Invariance with respect to non-degenerated transformation applied to

the model parameters, such as rescaling. This property is applied in

124



equation (5.5) in order to work, during the optimization process, with

smaller quantities.

• Yielding to optimal experiments which correspond to replications of a

small number of di�erent experimental conditions.

• Optimal experiment design yields to non-singular FIM.

The main drawback this criterion has is that it gives too much importance

to the parameter to which the model is most sensitive. Geometrically, this

problem is equivalent to the idea of trying to minimize the volume of the

ellipsoid by reducing mostly its bigger axis.

There are other criteria available for di�erent purposes, like the modi�ed

E-optimality, that tries to maximize the FIM condition number, aiming

to make the con�dence ellipsoid as spherical as possible [97]. The correct

application of this criterion would be in a case of strong parameter

correlations, and the design will yield to a decoupled identi�cation in

parameters.

That is not the case in this thesis though. D-optimality will be the one

used for the experiments designed for diabetic patients, and for every model

tested.
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Chapter 6

Optimal Design Results

The �rst task to be done when designing an experiment is to determine

what parameters is the experiment going to be based on. The model for the

experiment design is excited by its inputs. These inputs are the variables that

can be adjusted in the experiment. For obtaining an optimal experiment,

the best combination of the inputs have to be found, regarding at the

identi�ability of the model.

Another variable usually considered in the optimization of the inputs

is the sampling period of the measurements. In the experiments to

be performed in here, the measurements are taken with the Continuous

Glucose Monitoring System (CGMS), so the measurements are taken with

the sampling period of the monitor, and its number increases with the

experiment. The problem is then about how long the experiment should

last. Usually, identi�ability of the model increases as the samples do, so the

boundary of the experiment time is not of identi�ability issues but of the

patient's comfort. It was decided that the time of the experiment was to be

�xed at �ve hours after a meal.

The inputs of a complete glucoregulatory model are two, the meals and

the insulin infusion (supposing insulin pump treatment). The complexity of
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the meal absorption and the absence of satisfactory models has historically

made meals to be considered as a disturbance, but in this work it is treated

as an input to be designed. Insulin is considered as an input as well. Both

inputs can be parameterized as:

• Parameterization of the meal.

1. Meal size

2. Meal composition

• Parameterization of the insulin.

1. Insulin bolus size

2. Insulin bolus time (relative to meal time)

3. Basal infusion rate

In order to parametrize the meals that patients have to eat there are two

variations that can be done. One is the size of the meal, and the other is

the composition. In the digestive model being analyzed in here, the Dalla

Man model, the set of parameters published were identi�ed under speci�c

conditions listed below:

• Caloric input: 10 kcal/kg

• Carbohydrate: 45%

• Protein: 15%

• Fat: 40%

• Glucose: 90±5 g

The grams of glucose represent the size of the meal. The rest of the

parameters are supposed to determine the gastric emptying pro�le, and
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the identi�cation performed in [20] transform the composition of the meal

in the parameter values shown in Table 2.18. Unfortunately, no further

identi�cations have been performed on this model. Therefore, if one looks

for better identi�ability of the model, the experiments should be performed

with similar composition as shown. The size of the meal is going to be one

of the parameters for the experiment design.

Considering the insulin input, it is much more complex than the meal

ingestion, which is only considered as an impulse. The insulin pump

treatment can have any shape imaginable respecting the pump limitations.

Designing an absolutely free insulin pro�le, i.e. a non-parametric input,

would be too expensive in computational terms (for more information see

[99]), so a parametric input is chosen. The usual pro�le of basal-bolus

infusion is preserved in this experiment design for simpli�cation purposes

and to increase the patient's compliance in the experiment design.

Once decided that a traditional treatment is going to be followed, the

only parameters to be chosen are the amount of insulin to be given in the

bolus, the basal insulin level, and the instant the bolus is administered. Basal

variations during meal time were considered at �rst, but the importance of it

in the postprandial response is negligible. The experiment conditions chosen

to be optimized are, thus:

• τ - Delay of the insulin bolus with respect the meal time, in minutes. A

positive delay means that the insulin dose will be given after the meal

and vice versa. The boundaries for the optimization problem are set

to -60 and 300 minutes. Maximum advancement of the insulin bolus is

de�ned so as to prevent hypoglycemic events.

• Meal - The size of the meal in grams of carbohydrates. The boundaries

for the optimization problem are 0 and 100 grams of carbohydrates.

• Bolus - The amount of bolus insulin units to be given. The boundaries

for the optimization problem are 0 and 10 insulin units. These
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boundaries were chosen using an insulin-to-carbohydrate ratio of 1:10

as population mean.

Only one meal per day is considered due to the circadian variation of insulin

sensitivity. The vector Ξ is then a vector of size 3nd, where nd is the number

of days of monitoring. This vector is the output of the experiment design.

Given that the problem is highly non-linear (due to non-linearities of the

index and the model) SSM global optimizer is used to obtain the solutions.

The constraints for the optimization problem are the restrictions of the

blood glucose in order to keep the patient under safe health conditions. The

simulation was forced to start from equilibrium in a blood glucose level of 100

mg/dl. The maximum level of glucose (hyperglycemic bound) was set to 250

mg/dl and the minimum level (hypoglycemic bound) was set to 70 mg/dl.

These boundaries have to be respected at all times during the experiment

design.

Next, several results for experiment design in diabetes for di�erent models

are shown. Despite the fact that Bergman's model has been proven unreliable

for simulating some glucose dynamics, it is desirable to try the experiment

design varying the models used in order to make the experiments as less

model-dependent as possible. That is why the �rst experiment design shown

is calculated for this model. After that, two experiments designed for the

modi�ed Panunzi model are explained.

6.1 Bergman's model identi�ability

Initially, Bergman's endogenous model has only three parameters to be

identi�ed, but two more are going to be added to the study, the distribution

volume and the basal glucose. Bergman's endogenous model combined with

Dalla Man's glucose absorption model and Willinska's insulin subcutaneous
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model sums up a total of 17 parameters, described in Table 6.1.

Model Number Parameter Meaning
Endogenous 1 p1 Glucose e�ciency

2 p2 Insulin action rate of disappearance
3 p3 Insulin action rate of appearance
4 V olg Distribution volume of glucose
5 Gb Basal glucose

Gastric 6 Kabs Glucose absorption rate in the gut
7 Kmax Maximum gastric emptying
8 Kmin Minimum gastric emptying
9 b Involved in the gastric emptying
10 d Involved in the gastric emptying

Insulin 11 Vi Distribution volume of insulin
12 k Proportion of insulin in the slow channel
13 ka1 Transfer rate in the slow channel
14 ka2 Transfer rate in the fast channel
15 ke Insulin elimination
16 VMAX,LD Michaelis-Menten parameter
17 kM,LD Michaelis-Menten parameter

Table 6.1: Parameters to be identi�ed in Bergman's model

Considering only blood glucose as the measurable output of the system,

and a three days experiment as the identi�cation period for the reasons

explained before, all the parameters are not identi�able (as expected).

Sensitivity analysis previous to the experiment design was performed, and

the results are shown in Table 6.2.

As the results of the sensitivity analysis show, many of the parameters of

the model are not identi�able. The parameters that are �xed in the initial

iteration of the sensitivity analysis are parameters that present a priori non-

identi�ability, therefore, parameters that make the FIM non invertible. That

is the reason for the absence of CVs of the rest of parameters, for those

coe�cients of variation are calculated from the inverse of the FIM.

Once the FIM was made invertible, only two more parameters had to

be �xed to make the model identi�able. The �nal number of parameters
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Number Parameter
1 p1 - - -
2 p2 - - -
3 p3 - - -
4 V olg 0,25 0,14 0,13
5 Gb 0,12 0,08 0,07
6 Kabs - - -
7 Kmax 0,25 0,24 0,23
8 Kmin 0,42 - -
9 b 0,16 0,12 0,04
10 d 0,20 0,18 0,09
11 Vi - - -
12 k 0,34 0,33 -
13 ka1 0,31 0,22 0,09
14 ka2 - - -
15 ke 0,22 0,14 0,12
16 VMAX,LD - - -
17 kM,LD - - -

Table 6.2: Bergman's model parameter coe�cient of variation (CV) for
a three meals identi�cation. Each column represents an iteration in the
sensitivity analysis, and parameters that don't have CV are �xed due to
non-identi�ability
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identi�able, out of the initial 17, is 7. Only two of those parameters are part

of the endogenous model, while three of them characterize the gastrointestinal

model, and the other two are part of the insulin model, as can be seen in

Figure 6.1

Figure 6.1: Total number of parameters identi�able in Bergman's model

Those 7 parameters are the ones used to calculate model's identi�ability

in the experiment, thus the only ones involved in the calculation of the cost

index for optimal design.
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6.2 Experiments designed with Bergman's

model

Experiments with Bergman's model were designed considering only the set

of parameters decided optimum by the sensitivity analysis, and for a range

of experiment days from 1 to 4 days. At the end of the experiment design

for all the models under study, the best option was chosen from within of all

the experiments designed, including the di�erent options of parameter sets,

models, and length of the experiments.

The results of an experiment designed for only one day of monitoring

consisting on the �ve following hours to a meal is shown in Table 6.3.

Experiment Units Day 1
τ minutes -31,59

Meal gr CHO 100
Bolus IU 10

Table 6.3: Experiment designed for Bergman's model considering one day of
monitoring

As it can be seen, in the case of only being able of monitoring one day, the

optimum experiment to be followed by the diabetic patient is to advance the

bolus approximately half hour, and then eat 100 grams of carbohydrates. It is

worth remembering that 100 grams of carbohydrates is the top value given to

the optimizer for the experiment design. Also, 10 is the top boundary for the

bolus variable in the optimization, and it is the corresponding value of insulin

for an standard treatment of insulin boluses for a 100 grams of carbohydrates

meal. This means that, in addition to maximizing identi�ability of the model,

the experiment design keeps the patient under good glycaemic control.

The Bergman's model response for the experiment described can be seen

in Figure 6.2.
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Figure 6.2: Bergman's model response to the proposed experiment for 1 day
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The model's response shows a very quick response of the blood glucose

to the advanced insulin bolus, falling quickly to a level of approximately 70

mg/dl. This level is the safety threshold indicated to the optimizer to keep

the patient under safe conditions. That means that the optimizer is moving

the signal utilized for identi�cation to the limits, and then rising it up to the

highest level it can, but always keeping the (virtual) person in safe levels.

The results of the experiment designed for two days monitoring are shown

in Table 6.4.

Experiment Units Day 1 Day 2
τ minutes 25,23 -29,58

Meal gr CHO 86,81 100
Bolus IU 10 10

Table 6.4: Experiment designed for Bergman's model considering two days
of monitoring

In this new experiment two di�erent therapies are applied to the patient.

The second day is the same case as in a single day experiment. In the �rst

day of identi�cation, a bolus of 10 insulin units is delayed approximately 25

minutes, for a meal of 86.81 grams of carbohydrates. Now the proportion

of insulin units to grams of carbohydrates is not maintained. Now the

proportion of insulin units to grams of carbohydrates is not maintained, and

thus, not a good glycaemic control os performed on the patient (including

the e�ect of the delay).

The model response for the designed two days experiment is shown in

Figure 6.3.

Observing the �rst day response of the model to the proposed experiment,

the fact of non-proportionality of insulin to carbohydrates makes more sense.

The model moves from 250 mg/dl down to 70 mg/dl, which are the top and

bottom thresholds in the experiment design. The optimizer is trying to move

the identi�cation variable (blood glucose) in all the range that is possible, so
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Figure 6.3: Bergman's model response to the proposed experiment for 2 days
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to maximize identi�ability. Given that in the �rst day, due to the delay of

the insulin bolus, there is no falling of the blood glucose to the lowest level,

it has to drop to that level after the meal, that is why the insulin bolus is

still relatively big with respect to the size of the meal. Given those values,

the maximum amount of carbohydrates for that meal is 86.81.

It is interesting to understand why the two days di�er in the time in which

the bolus is administered. In the �rst day, no insulin variation is given for

approximately 30 minutes, and so, all the information extracted from that

period is only increasing identi�ability for the other input model, the Dalla

Man model. In the other day, the opposite situation is happening. Only the

insulin subcutaneous model is experimenting variations, so information is

being created for the parameters of that model. The strongest the variation

of the states of the model in that period, the greater the identi�ability will

be.

The experiment designed for the case of a three days monitoring is shown

in Table 6.5.

Experiment Units Day 1 Day 2 Day 3
τ minutes 26,43 -30,44 -30,71

Meal gr CHO 85,60 100 100
Bolus IU 10 10 10

Table 6.5: Experiment designed for Bergman's model considering three days
of monitoring

In this case, the advancing of the bolus is repeated two days. Given that

the meals does not have to be consecutive, or that one day does not have any

relation to the others, the order of the experiment days is not important for

the result of the experiment.

Model's response to the experiment proposed is shown in Figure 6.4.

The second and third days are virtually the same, and the �rst one is again

138



Figure 6.4: Bergman's model response to the proposed experiment for 3 days
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rising and falling to both boundaries. It is again clearly seen the separation

of dynamics.

The four days experiment results are shown in Table 6.6.

Experiment Units Day 1 Day 2 Day 3 Day 4
τ minutes 25,44 14,36 -29,92 -30,88

Meal gr CHO 86,81 99,64 100 100
Bolus IU 10 10 10 10

Table 6.6: Experiment designed for Bergman's model considering four days
of monitoring

In this case the last days are repeated again with the advance of the

insulin bolus, and a new delayed bolus pro�le appears, but in this case with

a big meal. The delay on the bolus is smaller so that the meal can be bigger,

improving this way the identi�ability of the Dalla Man model.

The response of the model for the four days experiment is shown in Figure

6.5.

As it can be observed, there is not much di�erence in the �rst two days

of identi�cation because the di�erence in the meal size is relatively small.

The most relevant observation of this experiment design with the

Bergman model is that separating dynamics is the key to improve the

identi�cation. It is better for model's general identi�ability to advance the

bolus rather than having it delayed, but the best situation is to have both

situations in an experiment of 2 days minimum.

The number of days of the experiment has to be selected paying attention

to both identi�ability and conditions of the experiment. It has been stated

that a minimum of two days for monitoring seems reasonable for identi�cation

purposes due to the two di�erent pro�les of experiment. In Figure 6.6 and

6.7 evolution of identi�ability of each parameter of Bergman's model can be

observed for all the cases exposed.
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Figure 6.5: Bergman's model response to the proposed experiment for 4 days
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Figure 6.6: Bergman's identi�cation parameters and its coe�cients of
variation as they get smaller with the number of monitoring days

Figure 6.7: coe�cients of variation of Bergman's parameters for the
experiments designed as they get smaller with the number of monitoring
days

142



It can be clearly seen that a sudden falling of the coe�cient of variation

happens when the monitoring days increases from one to two. After that,

identi�ability of all the parameters keeps increasing, but more slowly. Similar

tendencies are observed for the identi�abilities of the parameters in the case of

applying the experiment design, but the levels of the coe�cients of variation

of the same parameters are much lower. The comparison of coe�cients of

variation before and after optimal design is shown in Figure 6.8.

Figure 6.8: A comparison of identi�ability for each parameter with and
without the experiment design for the case of a three meals monitoring

A remarkable fall in the coe�cient of variation is observed for all the

parameters, although to a di�erent extent.

A three-day experiment was chosen thinking on clinical implementation

of the experiment design. It is desired to have as many identi�cation days

as validation days, which makes the real monitoring period twice as long as

the experiment designed. Given that the average life period of a continuous

glucose monitor is around one week, the three days experiment was chosen (in

this case) as monitoring duration, for maximizing the identi�ability. Results

have to be compared with other models experiment design to make the
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experiments as less model-dependent as possible.

6.3 Modi�ed Panunzi's model identi�ability

The modi�ed version of Panunzi's endogenous model described in Section

4.3 is going to be tested, starting with its identi�ability. In this case the

parameters of the model to be identi�ed are 16, including the 4 corresponding

to the endogenous model. The 16 parameters are described in Table 6.7.

Model Number Parameter Meaning
Endogenous 1 Kxgl Insulin sensitivity

2 Vg Distribution volume of glucose
3 Tgh Hepatic balance
4 ki Insulin action delay

Gastric 5 Kabs Glucose absorption rate in the gut
6 Kmax Maximum gastric emptying rate
7 Kmin Minimum gastric emptying rate
8 b Involved in the gastric emptying
9 c Involved in the gastric emptying

Insulin 10 Vi Distribution volume of insulin
11 k Proportion of insulin in the slow channel
12 ka1 Transfer rate in the slow channel
13 ka2 Transfer rate in the fast channel
14 ke Insulin elimination
15 VMAX,LD Michaelis-Menten parameter
16 kM,LD Michaelis-Menten parameter

Table 6.7: Parameters to be identi�ed in Modi�ed Panunzi's model

Many of the parameters involved in the sensitivity analysis for Bergman's

endogenous model, in particular those of the insulin and intestinal submodels,

are repeated in this model, but the numeration is di�erent due to the

di�erent number of parameters in the endogenous model. The results of

the identi�ability study are shown in Table 6.8.
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Number Parameter
1 Kxgl 2,95 1,14 0,98 0,55 0,53 0,31
2 Vg 0,70 0,46 0,43 0,26 0,24 0,23
3 Tgh 0,55 0,51 0,18 0,18 0,18 0,06
4 ki 4,93 4,91 - - - -
5 Kabs 2,00 1,60 1,12 0,67 - -
6 Kmax 0,95 0,78 0,66 0,53 0,24 0,24
7 Kmin 1,27 0,87 0,68 0,33 0,33 0,30
8 b 0,43 0,41 0,20 0,18 0,17 0,13
9 c 0,87 0,66 0,51 0,34 0,20 0,18
10 V 6,47 - - - - -
11 k 1,16 0,91 0,81 0,36 0,29 0,27
12 ka1 0,74 0,45 0,43 0,26 0,25 0,20
13 ka2 6,17 3,77 2,57 - - -
14 ke 3,36 0,88 0,71 0,49 0,49 0,30
15 VMAX,LD 1,96 1,92 0,92 0,66 0,62 -
16 kM,LD - - - - - -

Table 6.8: Modi�ed Panunzi's model parameter coe�cients of variation (CV)
for a three meals identi�cation

In this case, only two parameters were not identi�able because of FIM

singularity, parameters 10 and 16 which have their respective rows in the

previously mentioned table in blank. Parameter 16 is discarded because its

low sensitivity, and parameter 10 is �xed to its nominal value due to a very

strong correlation (actually, it has a proportional relation) to parameter 1.

Even though the threshold for identi�ability was �xed at 30% of variation,

the set of 10 parameters on the last column of Table 6.8 is considered the

optimum set of parameters for the modi�ed Panunzi's model proposed. There

are three parameters that are in the limit of the proposed identi�ability: Kxgl,

Kmin and ke. Of those three, the most critical one (greater variation), which

is the insulin sensitivity Kxgl is very important to be identi�ed since it is a

physiological parameter that su�ers huge variations between patients, and

it is key in patient's treatment. The other two parameters are in the limit

of their own identi�ability, so it was decided to treat them as identi�able

parameters. The summary of identi�able parameters is explained in Figure
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6.9.

Figure 6.9: Total number of parameters to be identi�ed in the modi�ed
Panunzi's model

These 10 parameters will be used in the experiment design for the

calculation of the index of total identi�ability of the model.

6.4 Experiments designed with modi�ed

Panunzi's model

Two di�erent sets of parameters are considered in the experiment design of

this model. The �rst set of parameters is the one concluded as optimum for

the model's identi�ability, as shown in the previous section. In that set the

parameter Kabs, key for the intestinal absorption characterization, was not

included. The other set of parameters includes the parameter Kabs in the

identi�cation, which is the constant rate of absorption of glucose from the

gut to the blood. This parameter has a great physiological importance in the

understanding of how di�erent meals can be absorbed by the gastrointestinal

tract, and it is supposed to be related to the composition of the meal. Due

146



to its importance, it is decided that Kabs is forced to be identi�ed, creating

a new set of parameters called suboptimal set of parameters, as shown in

Figure 6.10.

Figure 6.10: Suboptimal set of parameters to be identi�ed in the modi�ed
Panunzi's model

Two parameters are not being considered in the suboptimal set that were

being identi�ed for the optimal set, those are Vg and ke. These parameters

and their identi�abilities before the design are shown in Table 6.9.

Number Parameter CV
1 Kxgl 0,028
3 Tgh 0,048
5 Kabs 0,580
6 Kmax 0,496
7 Kmin 0,227
8 b 0,135
9 c 0,263
11 k 0,290
12 ka1 0,199

Table 6.9: Panunzi's model suboptimal parameters coe�cients of variation
(CV) for a three meals identi�cation

Anyway, the �rst set of parameters that is going to be considered for the
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experiment design is the optimal one, described in Section 6.3. The results

for the experiment designed for one day is show in Table 6.10.

Experiment Units Day 1
τ minutes -17,959

Meal IU 10
Bolus gr CHO 100

Table 6.10: Experiment designed for Panunzi's model considering one day of
monitoring and the optimal set of parameters

The same pro�le as in the Bergman's model experiment design is observed

in this case. The advance in the insulin bolus is a little smaller, but the meal

and bolus size is again maximum. The response of the new model to the

experiment designed is shown in Figure 6.11.

Comparing modi�ed Panunzi's model response in a single day experiment

with the Bergman's model response, the glucose pro�le is virtually identical.

That somehow, proves the independence of the results of the experiment

design from the model used to calculate them. Of course the parameters

being identi�ed are not the same in one or other model, but the signal

from where information is being extracted is the same, and thinking about

that signal from an theoretical point of view, an optimal signal in terms of

information for one model, must contain big amounts of information for any

other model too. That is why it is expected of optimal experiment results to

be similar for the new model to the results for the other experiments already

designed.

The experiment design results for a two days experiment can be seen in

Table 6.11.

The second day in this experiment is the same as the single day

experiment, in which the bolus is administered in advance to the meal time,

thus only the insulin system is being identi�ed in that case. In the �rst day,

a new situation is proposed, similar to the case of Bergman's design in which
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Figure 6.11: Modi�ed Panunzi's model response to the proposed experiment,
with its optimal set of parameters, for 1 day

Experiment Units Day 1 Day 2
τ minutes 157,80 -17,92

Meal gr CHO 44,25 100
Bolus IU 3,07 9,99

Table 6.11: Experiment designed for modi�ed Panunzi's model considering
two days of monitoring and the optimal set of parameters
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the bolus was delayed, but in this case, the delay is much bigger. However,

delaying the insulin bolus up to two hours and a half can be quite dangerous

for the patient because of risks of hyperglycemia.

In Figure 6.12 the response of the model to the experiment proposed can

be observed.

Figure 6.12: Modi�ed Panunzi's model response to the proposed experiment,
with its optimal set of parameters, for 2 days

In the case of the �rst day can be observed that the small amount of

carbohydrates given to the patient (44,25 grams) have the objective of rising

the blood glucose up to the superior limit of safety of the patient. The insulin

bolus is given when the blood glucose gets to the maximum established, and

the amount of insulin given is so that will make the blood glucose to fall to

the inferior limit of safety. Again, the experiment design is moving the signal

used for identi�cation from one boundary to the other, in order to maximize
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the amount of information.

Bergman's model was probably not able rise so fast up to the limit of

hyperglycemia due to the so called term of glucose e�ciency (as explained

in Section 4.3) that makes glucose to fall automatically when it rises above

the stability point.

The results of the three days experiment can be seen in Table 6.12.

Experiment Units Day 1 Day 2 Day 3
τ minutes -17,83 -18,42 165,74

Meal gr CHO 100 100 44,38
Bolus IU 10 10 3,01

Table 6.12: Experiment designed for modi�ed Panunzi's model considering
three days of monitoring and the optimal set of parameters

In this case the advanced bolus administration is given in two out of the

three days of the experiment, while the other day a small meal is given, with

the insulin bolus delayed 2,5 hours, just like in the two days experiment.

The response of the model is shown in Figure 6.13.

This is a very good example of how the di�erent experiments designed

for each independent day are not dependent on the order of those days.

Sometimes the case of the small meal and delayed bolus is in the �rst day,

some others at the end, and it can also be in the middle of the 3 days.

The �nal case of the experiment design with 4 days and the optimal set

of parameters, is shown in Table 6.13.

The last day is a little bit di�erent than the previous ones, but it hardly

de�nes a new type of therapy for a day of identi�cation. It is a variation of

the pro�le with a small meal and delayed insulin bolus, only that the delay is

smaller so that the insulin bolus has not only a role of correction of the level

of blood glucose, but also tries to counteract the rise of blood glucose that
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Figure 6.13: Modi�ed Panunzi's model response to the proposed experiment,
with its optimal set of parameters, for 3 days

Experiment Units Day 1 Day 2 Day 3 Day 4
τ minutes 167,06 -17,22 -18,41 86,19

Meal gr CHO 44,25 100 100 47,07
Bolus IU 3 10 10 4,13

Table 6.13: Experiment designed for modi�ed Panunzi's model considering
four days of monitoring and the optimal set of parameters
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is still coming from the gut. That is observed in Figure 6.14, where the time

of administration of the bolus does not wait for the blood glucose to stop

rising and get stabilized, and instead, it forces it down before the absorption

is over.

Figure 6.14: Modi�ed Panunzi's model response to the proposed experiment,
with its optimal set of parameters, for 4 days

As a summary, with the optimal set of parameters of the modi�ed

Panunzi's model, two di�erent pro�les of glucose are determinant for the

good identi�cation of the model.

• The �rst therapy has already been seen in Bergman's model experiment

design, and it consists of an advance of the bolus of insulin to the meal

time, improving this way the identi�ability of the insulin subsystem.

• The second therapy is a big delay (2-3 hours) in the administration of
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the bolus, while giving a small amount of carbohydrates (40-50 grams)

to avoid excessive hyperglycemia. In this way, separation of insulin and

glucose dynamic from the meal is obtained, while maintaining plasma

glucose in a safe range.

In Figures 6.15 and 6.16 the evolution with the number of days of the

parameters identi�ability is shown for the optimal set of parameters.

Figure 6.15: Modi�ed Panunzi's optimal set of parameters and their
coe�cients of variation as they get smaller with the number of monitoring
days

The graphs are very similar to those seen in the analysis of Bergman's

model. The in�uence of the number of days, especially when it goes from one

to two is very important, and no negligible, both in the case of experiment

and no experiment design.

The in�uence of the experiment design in the identi�ability of the model

can clearly be seen in Figure 6.17, where it is shown that experiment design

improves identi�ability dramatically. In this case, it can be observed that

identi�ability of almost all the parameters rises enormously, getting their
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Figure 6.16: coe�cients of variation of modi�ed Panunzi's optimal
parameters for the experiments designed as they get smaller with the number
of monitoring days

coe�cients of variation divided by two or three. Special cases are the

parameters 1 and 14, whose identi�ability rises to a smaller extent. This

strange behavior might be explained by the strong correlation between these

two parameters since both of them are very related to the plasma insulin and

its in�uence in blood glucose (parameter 1,Kxgl, is the insulin sensitivity and

parameter 14, ke, is the plasma insulin elimination).

These results have yet to be compared to the experiment design results

with the suboptimal set of parameters of modi�ed Panunzi's model. For this

new set of parameters, another experiment design was performed. This set

of parameters was the one that was going to be identi�ed in ambulatory

conditions, because it was physiologically interesting for the reasons stated

before. It is expected that the results are not radically di�erent to anything

already seen, and this experiment design is going to be considered as a whole

new design as it was a completely new model.
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Figure 6.17: Identi�ability of the optimal set of parameters of modi�ed
Panunzi's model before and after the experiment design for the case of a
three meals monitoring

The results of the experiment design for the case of a single day of

monitoring are shown in Table 6.14.

Experiment Units Day 1
τ minutes -18,41

Meal gr CHO 100
Bolus IU 10

Table 6.14: Experiment designed for modi�ed Panunzi's model considering
one day of monitoring and the suboptimal set of parameters

It shows again the administration of the bolus in advance to the meal

time. This sort of therapy seems to be the most e�cient way to extract

information for the model, regardless the model being identi�ed.

The response of the model to that therapy is show in Figure 6.18,

which is actually exactly the same �gure as the model's result with the
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optimal parameters' set. The same model and the same input must give

the same output. The small di�erences that can be found are related to

small di�erences on the convergence of the optimizer, that are translated to

small di�erences in the input of the model.

Figure 6.18: Modi�ed Panunzi's model response to the proposed experiment,
with the suboptimal set of parameters, for 1 day

The results for the two days experiment are shown in Table 6.15.

A new type of experiment is designed in the �rst day. There is the delay

again in the insulin dose, but now the meal is as big as it gets, and the insulin

is not exactly proportional to the meal size. This can be a problem, because

the insulin control may not be accurate.

The model response can be seen in Figure 6.19.
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Experiment Units Day 1 Day 2
τ minutes 19,49 -17,50

Meal gr CHO 100 100
Bolus IU 8,16 10

Table 6.15: Experiment designed for modi�ed Panunzi's model considering
two days of monitoring and the suboptimal set of parameters

Figure 6.19: Modi�ed Panunzi's model response to the proposed experiment,
with the suboptimal set of parameters, for 2 days
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It can be observed in the �rst day of simulation how the delay in the

insulin administration and the big size of the meal make the blood glucose

to rise up to the limit of safety, and then drop down to the lower limit.

Probably, a bigger insulin dose would lead to hypoglycemia, and lower meal

sizes will not make the Dalla Man model's identi�ability large enough. It is

worth remembering that the whole gastrointestinal model is being identi�ed

in this case.

The experiment results for a three days experiment are shown in Table

6.16, and the model's results are drawn in Figure 6.20.

Experiment Units Day 1 Day 2 Day 3
τ minutes -18,26 18,77 -17,96

Meal gr CHO 99,62 99,56 99,18
Bolus IU 9,98 8,10 9,91

Table 6.16: Experiment designed for modi�ed Panunzi's model considering
three days of monitoring and the suboptimal set of parameters

Again, the advance of the insulin bolus is repeated, as it is the most

e�cient way of getting information from the signal. The day in the middle is

the delayed insulin pro�le as described in the previous experiment. It can be

observed again that the order of the days does not matter, and having the

delayed insulin therapy in the �rst, the second, or the third day, will have

the same result.

The last experiment designed, the one for four days of monitoring, is

shown in Table 6.17, and the simulation is in Figure 6.21.

Experiment Units Day 1 Day 2 Day 3 Day 4
τ minutes 19,42 -17,77 -17,54 -17,69

Meal gr CHO 100 100 100 100
Bolus IU 8,16 10 10 10

Table 6.17: Experiment designed for modi�ed Panunzi's model considering
four days of monitoring and the suboptimal set of parameters
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Figure 6.20: Modi�ed Panunzi's model response to the proposed experiment,
with the suboptimal set of parameters, for 3 days
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Figure 6.21: Modi�ed Panunzi's model response to the proposed experiment,
with the suboptimal set of parameters, for 4 days
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In this last experiment, the administration of the insulin dose is advanced

three times, while the delay is applied only once. Given that with this set

of parameters, Dalla Man's model is being completely identi�ed, and that it

is assumed that the delays on insulin bolus are associated with the better

identi�ability of the gastrointestinal system, on can only assume that the

importance of identi�ability of Dalla Man's model to the total identi�ability

of the model gets to a relative minimum with only one day of insulin delayed.

As a summary, the identi�ability of the models, increase with longer

periods of monitoring (Figures 6.22 and 6.23), regardless of the experiment

design.

Figure 6.22: Modi�ed Panunzi's suboptimal parameters and their coe�cients
of variation as they get smaller with the number of monitoring days

The only di�erence (they look mostly the same) in this �gures is the level

in where the coe�cients of variation move. The comparison between the

cases of before and after the experiment design can be observed in Figure

6.24 for the 3 days case.
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Figure 6.23: coe�cients of variation of modi�ed Panunzi's suboptimal
parameters for the experiments designed as they get smaller with the number
of monitoring days

Figure 6.24: Identi�ability of the suboptimal set of parameters of modi�ed
Panunzi's model before and after the experiment design in a three meals
monitoring
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As can be observed, the experiment design increases the overall

identi�ability of the model with the experiment design, except for two Dalla

Man's model parameters, the 5th and 6th. Those parameters are Kabs and

Kmax, and both of them express �ow rates of glucose in the gastrointestinal

tract. It is likely that they are very correlated. The rest of the coe�cients of

variation are maintained relatively high probably due to the overlapping of

the dynamics derived from those two parameters. This phenomenon would

explain the fact that only one day of the experiment (even in a 4 days

monitoring) is utilized for individually identify the gastrointestinal model

delaying the insulin bolus.

6.5 Discussion and clinical protocol

The results of the experiment design do not have to be taken literally in

practice. The assumptions made when using each model and the nominal

parameters of it have great importance on the results of the experiment

design. However, from a practical point of view, experimenting with several

di�erent models allows us to draw some general qualitative conclusions. That

is why the design has been repeated several times in this thesis. Qualitative

and common characteristics of the experiments designed are going to be

extracted in the next lines, trying to get the most important features needed

in a monitoring for the good posterior identi�cation of a patient, regardless

of the model used.

There are two di�erent single day experiments. The experiment design

aims to separate the dynamics of the sub-models for a better identi�cation.

In one case insulin dose is given without meal perturbation, limited by the

hypoglycemia constraint, in order to obtain information of the subcutaneous

insulin model. The other situation is exactly the opposite; a meal is given

while the insulin dose is delayed limited by the hyperglycemia constraint.

During this time, the intestinal absorption model is the only one acting on
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the output signal. Optimal experiment design forces the model to move in all

the range of operation set in order to preserve patient's safety, thus extracting

more information out of the data.

The application of the designed experiment in ambulatory conditions is

not straightforward. In the optimal experiment design the patient (virtual) is

supposed to be stabilized and in situation of normal glucose. In the real life,

even in the fasting state, patients may not be under steady state conditions,

with glucose values in any glycemic range. Under these circumstances,

application of the optimal experiment design to the clinical setting requires

some cautions. Indeed, if the patient is hyperglycemic at the beginning of the

experiment, delaying more than two hours the insulin dose can be dangerous

for the patient's health, with extremely high glucose values. On the other

hand, if the patient is hypoglycemic, administrating an insulin dose without

carbohydrates ingestion can lead to severe hypoglycemia.

Therefore, an adaptation of the optimal experiment design to the initial

metabolic state of the patient is proposed. If the patient has a blood glucose

level over 150 mg/dl or in the 100-150 mg/dl range with an increasing trend

(hyperglycemic risk), the insulin bolus is given followed 30 minutes later by

a 100 grams meal. If the glucose level is below 100 mg/dl or in the 100-

150 mg/dl range with a decreasing trend (hypoglycemic risk), a 40 or 60

(patient's choice) grams meal is given and the insulin dose administration is

delayed 120 minutes. In both situations the dose to be administered is the one

recommended to the patient, depending on the size of the meal and his/her

usual insulin-to-carbohydrate ratio. The patient can choose among three

menus with the same relative nutritional composition. With this protocol the

separation of dynamics is achieved, while minimizing risks for the patients.

The protocol has been approved by the Ethical Committee of the

Clinic University Hospital of Valencia and clinical trials are currently being

performed for validation of the identi�cation procedure. Patients are

currently being monitored during two weeks, with a wash-up week in between,
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and instructed to follow the protocol de�ned by the experiment design. In

a week, three days are used for identi�cation and three for validation, as it

was scheduled due to restriction of the lifetime of the sensor utilized.

Some preliminary results of monitoring, identi�cation and validation

considering uncertainty on the parameters identi�ed will be shown in the

following chapter.
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Chapter 7

Identi�cation with ambulatory

data: Preliminary results

Clinical validation of experiment design with modi�ed Panunzi's model

started in the Clinical University Hospital of Valencia the 20th of January,

2010, with the �rst week of monitoring of a diabetic patient.

Every week of monitoring is organized in the following way:

• Day 1 - Insertion of the continuous sensor. Warm-up period to ensure

stabilization of the sensor signal.

• Days 2, 3 and 4 - Identi�cation period. At the patient's usual lunch

time, the patient is instructed to follow the experimental protocol

described in the previous chapter. In particular, they are advised to

avoid any snack or additional insulin administration during the �ve

hours period following the meal, unless some harmful event would occur

to the patient, such as an hypoglycemic event.

• Days 5, 6 and 7 - Validation period. The patient follows her/his usual

treatment without any shift of insulin administration, for validation
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purposes. The menus from which the patients can choose are the same

of the identi�cation period, reducing variability related to the meal

composition.

The results that are shown next are only preliminary results, and only are

reviewed qualitatively for identi�cation purposes. The complications related

to experimental data acquisition in diabetic patients are highlighted in every

case. So far 5 patients have been monitored, some of them several weeks,

and others only 1 week. The maximum number of weeks monitored in the

same person is 4.

The results shown next consist of two graphs for each week of monitoring:

the �rst one are the three meals of the identi�cation period; the second graph

is the data corresponding to the validation period, considering uncertainty.

The response of the model considering uncertainty is calculated by means of

interval analysis of the models explained before, and only 2 �parameters� are

being considered uncertain:

• Meal size is considered with a 10% of uncertainty. Meal size is

not a parameter of the model, but the estimation of the amount

of carbohydrates is usually done by the patient, incurring in severe

approximations of the right size of the meal being ingested.

• Kxgl, or insulin sensitivity, is considered to vary in a 20% from its

identi�ed value. Indeed, in daily life of people with diabetes insulin

sensitivity can change signi�cantly depending on many factors such as

the intensity of physical activity, health conditions, emotional stress,

and so on.

If the uncertainty considered are to be di�erent in any case, it will be

explicitly stated. Based on each patient home glucose monitoring diary,

if high variability in the meal size is observed, or if unexpected/unplanned

168



events potentially in�uential for Kxgl are reported, then greater variability

has been considered to obtain more robust predictions.

Considering uncertainty for validation purposes is one of the main

outcomes of this thesis. In the diabetes context, great variability of

the parameters identi�ed is expected. The ambulatory conditions on

which the monitoring of patients happen, makes the data to be extremely

noisy, with unplanned events and errors in the treatments proposed. The

combination of these sources of error invalidates identi�cations performed

almost immediately.

There exist several ways to overcome the lack of �delity of the

identi�cation to the real process. In the continuous (real-time) control

of diabetes, adaptive algorithms for control seem to be necessary in

order to follow the patient parameters variations. Consecutive model

identi�cations may be performed every day improving data �tting and

prediction capabilities of the model. In an o�-line study of several days like

the one of this thesis, only one identi�cation may be performed, considering

the limitations exposed before (same meal composition, same meal time...).

The variations of the patients in this case cannot be copped with successive

identi�cations or adaptive algorithms, but robust controllers have to be

developed. Robust control needs of a quanti�cation of the error expected on

the model, and this can be done by considering uncertainty on the parameters

identi�ed.

Each one of the following sections corresponds to a di�erent patient

and his/her number of weeks of monitoring. The patients are designated

anonymously with their initials.
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7.1 Monitored Data from Patients

7.1.1 Patient HMJ

HMJ was monitored during 4 weeks (not consecutive), following the protocol

described explicitly. First week's identi�cation period is shown in Figure 7.1.

Each day's postprandial period of 5 hours is separated by vertical dashed

lines.

Figure 7.1: HMJ's �rst week's identi�cation period

The �rst day's meal the patient ate the meal con�guration 1. In this

con�guration, the insulin bolus was given 30 minutes before the meal time (as

shown in the �gure), and the meal size was 100 grams. The second and third

days the patient ate the meal con�guration 2. In this second con�guration

the insulin bolus is delayed 120 minutes and the patient is given to choose
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from a 40 or 60 grams meal. It's worth remembering that regardless the meal

size, the meal composition remains constant. The same meal con�guration

is used for all the patients.

There is a clear di�erence between the dynamics of the second and third

days, and the �rst one, as the experiment design predicted. The rising of

glucose after the meal is though completely faded by the insulin dose. The

last day shows an illustrating example of the problems that can be found

durign experimental data acquisition. The black dots shown in the graph are

the capillary measures of glucose performed by the patient and introduced in

the CGMS as calibration points. In the middle of the third day, the patient

consecutively introduced two very separated calibration points in the sensor,

misleading the signal of the sensor, and consequently, polluting the source of

the identi�cation. Despite the human errors related to the monitoring, the

identi�cation can be considered successful. First week's validation period is

shown in Figure 7.2.

The ideal situation would be to have the continuous line of the monitor

completely covered by the band of prediction of the model. In practice this

would almost never happen. In the case of the �rst week of validation for

HMJ, the CGMS was very noisy (specially the third day), and the validation

was not satisfactory. The lack of similarity in the �rst day can be attributed

to a even bigger (than 20%) variation of insulin sensitivity, making the patient

more resistant to insulin, and making blood glucose to be higher at any time.

The second day presents a delay of 100 minutes in the glucose absorption,

which is not possible to simulate with the model. The third day noise makes

the data unreadable.

The second week's identi�cation period is shown in Figure 7.3.

The data has been �tted with great success in this case. The �rst and

second days correspond to meal con�guration 2, and the third day meal

con�guration 1 was eaten. The second day of identi�cation shows an error in

the calibration data of the sensor. There is a point of capillary glucose of 119
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Figure 7.2: HMJ's �rst week's validation period
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Figure 7.3: HMJ's second week's identi�cation period
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mg/dl, while the sensor is more than 100 mg/dl above that level. Given that

no correction was done by the CGMS of the signal of the estimation of the

blood glucose, it was assumed that the monitor discarded that calibration

point. Other outlying calibration point occurs in the third day, but in this

case the error is smaller (50 mg/dl).

The validation days for that week are shown in Figure 7.4.

Figure 7.4: HMJ's second week's validation period

The �rst day of validation is wonderfully �tted, but the other two days

show longer absorption pro�les than expected, and the patient has higher

blood glucose concentrations than the predicted by the model, despite the

fact that the �ve hours prediction was within boundaries in all the cases.

The third week's identi�cation period of monitoring can be seen in Figure

7.5.
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Figure 7.5: HMJ's third week's identi�cation period
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In this case the three meals eaten were those of con�guration 2. The

�tting is quite satisfactory, but it tends to predict hypoglycemias in a �ve

hours time that usually do not happen. The third day �tting is perfect. The

case of a three repeated meals with the same con�guration does not follow

the experiment design �ndings, and as such, not very good identi�cation is

expected, and the validation period should not be very well predicted.

The validation meals and their postprandial periods can be seen in Figure

7.6.

Figure 7.6: HMJ's third week's validation period

The Second day is very well predicted, the �rst one only in the �rst two

hours, and the third day prediction is not good. The �rst and third days

predictions end in �ctional hypoglycemia, while the patient is actually in

the safe area. This fact makes the model to predict hypoglycemias in the

fourth or �fth hours of the postprandial period. This is an error introduced
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by the lack of con�guration 1 meals in the identi�cation period, and should

be avoided.

The fourth day's identi�cation meals are shown in Figure 7.7.

Figure 7.7: HMJ's fourth week's identi�cation period

The �rst and the second days correspond to con�guration 2 meals, and

the third day a con�guration 1 meal was eaten. The patient ate the same

the �rst and second days, and a clear di�erence in the monitor's prediction

can be seen. Model's �tting is quite good for both days, and a little worse

for the third day, but yet satisfactory.

The validation days can be seen in Figure 7.8.

The �rst day of validation is very well predicted. The second day, the

CGMS had a strange behavior, not caused by any erroneous calibration
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Figure 7.8: HMJ's fourth week's validation period
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points as before, but maybe because of external cause related to the patient.

The third day's prediction is quite good, despite the fact that the prediction

in a 5 hours horizon is overestimating blood glucose.

7.1.2 Patient ACN

This patient was the second one to be monitored, and the last of the patients

that were subjected to 4 weeks of monitoring. The �rst week's identi�cation

meals are shown in Figure 7.9.

Figure 7.9: ACN's �rst week's identi�cation period

The two �rst meals are of con�guration 1, and the third day lunch was a

con�guration 2 meal. The dynamics observed describe very well the di�erence

on the con�guration of the meal. In the case of con�guration 1, blood glucose

does not rise after the meal time as it does in con�guration 2 meal. This
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happens because, in con�guration 1 meals, the peak of insulin concentration

in plasma occurs at the same time that the meal starts being absorbed (45-

75 minutes), which causes the blood glucose to be constant at any time.

Actually, a tighter control of blood glucose is observed in con�guration 1

meals than in standard treatments, or in con�guration 2 meals, where there

is a period of 2 hours without any control at all.

A clear di�erence in the dynamics of blood glucose can be see by

comparing the two �rst days. The rising tendency in 5 hours after the meal

in the �rst day is completely the opposite than it is in the second day, where

the tendency is to drop down. This di�erence can occur due to variations

in the insulin sensitivity of the patient or in other physiologic parameters

(metabolic condition of the patient), or maybe due to a sensor dysfunction.

Indeed, the �rst day a calibration point was introduced in the post-prandial

period, whereas in the second no calibration was performed. This may have

a�ected the sensor's tendency.

The validation period is shown in Figure 7.10.

Validation is very satisfactory. In the last day, prediction is good up to

the fourth hour, where the tendency of the blood glucose is the opposite to

the predicted by the model. This corresponds to the same situation observed

during the identi�cation days, even with the presence of a calibration point

at the end of the third day. The causes can again be various, such as a the

e�ect of that calibration point, or maybe some di�erent conditions of the

patient.

The second week's identi�cation period is shown in Figure 7.11.

In this second week of monitoring, the patient ate two con�guration 1

meals in the �rst two days, and a con�guration 2 meal in the last day. The

�tting is very satisfactory, specially in the �rst and third days.

The validation period is shown in Figure 7.12.
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Figure 7.10: ACN's �rst week's validation period
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Figure 7.11: ACN's second week's identi�cation period
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Figure 7.12: ACN's second week's validation period
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The model seems prone to predict hyperglycemias in a �ve hours time

lapse, but it is usually correct in its prediction. The exception is the second

day of validation, in which the tendency is completely di�erent to the other

days.

The third week's monitoring results and �tting are shown in Figure 7.13.

Figure 7.13: ACN's third week's identi�cation period

The patient repeated three times the con�guration 1 meal in this case.

This is detrimental to the model identi�cation shown by the experiment

design, but still, the �tting is very good. It is very interesting to see that,

despite the three meals were identical in composition, the absorption of

glucose in the �rst day is much smaller (or slower) than in the other two

days, causing a lower fall in the blood glucose.

The validation period for this third week is shown in Figure 7.14.
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Figure 7.14: ACN's third week's validation period
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Validation is not very good in this case. Only the second day is included

in the band of the simulation of the model. The other two days describe

dynamics very di�erent to the predictions of the model. These problems in

the validation may be caused by the fact that only con�guration 1 meals

are identi�ed in the identi�cation period. This can cause problems in

identi�ability of the model, as it has been proven in simulation, but also,

it the three meals of the identi�cation period follow similar dynamics, the

identi�cation of the postprandial model will give a model that mimics that

dynamic, and no other. This is over�tting the data of the experiment. For

example in the present case, all the days of identi�cation have the tendency

of rising the blood glucose at the end of the postprandial period. The

model imitates this behavior, even in the case of normal treatments, which

is obviously not a physiological behavior of the patient.

The fourth week of identi�cation is shown in Figure 7.15.

The �rst day the patient ate a meal of con�guration 1, and two

con�guration 2 meals the second and third days. Data �tting is very good

for the �rst and third days, but de�cient in mimicking the dynamic and the

5 hours prediction of the second day.

The validation is shown in Figure 7.16. This validation was done

increasing the uncertainty of the meal to a 20% of the original value, and a

30% in the insulin sensitivity, as explained before.

The bigger uncertainty in the parameters creates broader bands in the

model simulation. The validation of the second and third days is successful,

but the �rst day's tendency is completely di�erent. Also, there is a �ctional

peak in the �rst day monitoring, caused by an error in the sensor.
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Figure 7.15: ACN's fourth week's identi�cation period
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Figure 7.16: ACN's fourth week's validation period
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7.1.3 Patient VMD

The third patient monitored, VMD, has been only monitored for one

week, and is still being monitored. The only week of monitoring, and it's

identi�cation period is shown in Figure 7.17.

Figure 7.17: VMD's �rst and only week's identi�cation period

The patient ate a con�guration 1 meal the second day, and two

con�guration 2 meals the other days. The data �tting is pretty good for

the �rst two days, and the dynamics are well identi�ed, even though in the

third day the peak of glucose is much higher in the monitor than in the

prediction of the model.

The patient overcharged the sensor with calibration points, like in

the second day, in which there are 3 consecutive capillary measurements,

causing corrections in the signal, and disturbing the dynamics of the sensor
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algorithms. But despite that, the results are satisfactory.

The validation period is shown in Figure 7.18.

Figure 7.18: VMD's �rst and only week's validation period

Hyperglycemia is predicted by the model at a �ve hours time in all the

cases. The second and the third days are �tted quite well, and the �rst one,

in the �rst two hours, is well predicted too. The in�uence of unexpected

calibration points is clearly seen in the �rst and the second days. The

tendency of the signal is clearly modi�ed at the time of the calibration

measurement in order to adjust to that data point, and that makes the signal

of the sensor to get out of the band predicted by the model.

190



7.1.4 Patient SAR

Patient SAR was the fourth patient to be monitored, and only one week has

been monitored so far. More monitoring week are scheduled in the following

months. The identi�cation period is shown in Figure 7.19.

Figure 7.19: SAR's �rst and only week's identi�cation period

The �tting of the model is very unsatisfying. It is expected the

validation to be worse. The causes can be various, such as invalid calibration

points, extreme noise in�uence, or bad use of the monitor from the patient.

Especially bad is the last day of �tting, predicting a drop of the blood glucose

down to 100 mg/dl, and the patient being actually in a level of 200 mg/dl.

The validation is shown in Figure 7.20.

The �rst day the patient's glucose rises up to 350 mg/dl, even with the
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Figure 7.20: SAR's �rst and only week's validation period
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traditional treatment, and the model is not able to predict that behavior.

The other two days of validation are poorly validated. The last day the

patient stopped the monitor in the fourth hour of the postprandial period,

leaving the last day of validation without all the data required.

7.1.5 Patient PGV

Last patient in the study so far was PGV, being monitored only for one

week. The results of the monitoring are shown, for the identi�cation period,

in Figure 7.21.

Figure 7.21: PGV's �rst and only week's identi�cation period

The patient ate two con�guration 1 meals, the �rst and the third days

of the identi�cation period, and a con�guration 2 meal the second day. The
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�tting of the second day is very good, but the tendencies in the �rst and the

third days in the last hour of the postprandial period are not well imitated.

The validation period can be seen in Figure 7.22.

Figure 7.22: PGV's �rst and only week's validation period

Validation, despite having broad bands for the simulations, is quite poor.

The second day the calibration point seems to a�ect the sensor signal once

again. Also, the behavior of the patient in the last hour, in which the glucose

seems to start rising, is not reproduced by the model. In the fourth or �fth

hour, the digestive process is likely to be �nished, and as such, no income of

glucose from the intestine is happening. Plus, the insulin bolus is supposed

to be totally absorbed at that time. That tendency of increasing glucose

seen in almost every day of monitoring have to be then caused by a lack

of basal insulin in the patient in the postprandial period. This does not

excuse, though, the bad identi�cation of this patient in particular, but it
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shows how comparing the results of an identi�ed model can be bene�cial for

understanding the metabolic state of the patient and his/her treatments.

7.2 Discussion

The �rst conclusion drawn out of the �rst weeks of monitoring is that the

experimental factor is the most relevant issue, moreover when speaking of

real patients. The importance of following the experimental design should

be clearly explained to the patients, who may be also advised to report any

deviation from the protocol. This is clearly shown in the patients with more

than 1 week of monitoring. In the �rst week, many errors are committed

by the patient, such as wrong calibration points, stopping the insulin pump

at the wrong moment, or administering the next insulin bolus before the

postprandial monitoring ends. Those problems are less frequent when the

patient feels familiar with the device and also due to the identi�cation and

elimination of the most common errors (by instruction to the patients) by

the clinical sta�.

Experimental design and identi�cation from real data really helps

understanding the model used for simulating patients. Very complex models

were discarded from the beginning of the experiment for practical reasons in

the implementation and lack of identi�ability. However, there are di�erent

behaviors that the simpler models can not mimic. Independently identify

the dynamics of those behaviors, and re�ecting them into the equations of

the model is the aim of modeling. It is not possible to do it without the

experimental experience of observing the monitoring and identi�cation of

the postprandial responses of the patients.

The identi�cation process has remained unchanged for all the patients

analyzed. The identi�cation process might be improved by adapting it

to each case independently. Also, it is possible by varying the matrix
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of weighting Qi, as seen in equation 3.1 to adjust the model to better

conditioned periods of time. This way, the noisy data periods can be avoided

to be �tted, or maybe the data can be �tted better in the early hours of the

postprandial period rather than the last hours. It makes sense to �t better

the periods in where only one sub-model is being perturbed, like for example,

in the case of advancing 30 minutes the insulin bolus, adjusting better those

30 minutes.

As a �nal remark, the identi�cation is satisfactory. Data �tting is usually

excellent. The validation period is trickier to simulate for the current models

in literature. Nevertheless, in many cases, two out of three postprandial

periods were described by the identi�ed model of the same patient, and in

almost all the cases, at least one day was well described by adding uncertainty

to parameters.
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Chapter 8

Conclusions

Much work has already been done in identi�cation and modeling for diabetes.

This thesis deepens in the understanding of the models and their capacity

of reproducing the physiology of a diabetic patient. Several models where

analyzed, a new version of an existing model was proposed and model

identi�cation was performed following a protocol designed for maximizing

the information to be extracted. In this chapter, the achievements of this

thesis will be reviewed, and a list of future items of pending work will be

discussed.

8.1 Analysis of the results

The work performed in this thesis was exposed in detail in chronological

order. The work performed �rst was exposed �rst, and the latest work in the

last chapters. For the �nal analysis of the results, a di�erent point of view

may help to summarize the �ndings of the thesis.

From the point of view of the models analyzed, there were three of them

tested:
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1. Cobelli's model - The �rst model tested for identi�ability in

experimental data was the model accepted by the FDA to simulate

diabetic patients. The model was tested in a whole day of monitoring,

and validated in the next two following days. The results with the

model and the data used were very bad. Out of 22 patients, only 2 were

�tted successfully for a whole day of monitoring, and no validation was

successful. The model was discarded of use due to identi�ability issues.

2. Bergman's model - The same data with which Cobelli's model was

tested was used to test the Bergman model. The scenario was di�erent,

and a postprandial approach was used, trying to identify only using

the 5 hours of monitor data after the meal intake. The data �tting was

successful for only one patient, and the validation with other meals

failed. The set of data used for identi�cation was discarded as a

consequence of that failure raising the need of an optimal experiment

design. Bergman's model was also used for designing experiments in

order to obtained better quality data.

3. Panunzi's (modi�ed) model - A critical review to Bergman's model

dynamics proved it unable to simulate some physiological features of

real diabetic patients, leading the author of this thesis to modify a

third model (Panunzi's model), to adapt to those dynamics. This

third and de�nitive model was used for designing experiments, and

also for identi�cation of the patients monitored in those experiments,

with better results than the identi�cations performed Cobelli's model.

Cobelli's model was proven to be unreliable to �t a whole day in a

diabetic patient's life. The computational cost of the solvers when working

with this model was another cause to discard using it. Plus, the model was

not identi�able in most of its parameters. The rest of the models used are

very light in computational terms. The same solver, working on Bergman's

equations instead of Cobelli's was twice as fast.

Computational cost is an issue that has hardly been mentioned on this
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thesis, but in practice it is one of the biggest drawbacks for the e�ciency

and implementation of the algorithms. Global optimization methods take

thousands of callings to the function being optimized to get to a solution. If

the function being optimized is the glucose model, like in the case of a model

identi�cation, and if the model evaluation takes around 100 miliseconds, an

average identi�cation of the model will take about 1 hour. That is quite a

heavy computational cost, but it can get worse. In the case of the experiment

design, the cost function is not the glucose model, but the determinant of the

FIM. The evaluation of the information matrix involves algebraic calculations

and evaluations of the actual glucose model; depending on the number of

parameters being varied it can make from 10 to 25 evaluations of the model.

Being the objective function much more complex than the glucose model

the optimization required for the experiment design uses many evaluations

of the cost function, from one hundred thousand up to a million function

evaluations. Considering the same model evaluation cost as before, the

average experiment design will take 9 days to be �nished.

Many implementation problems were not described in the thesis report.

The computational cost was a constant problem, and many di�erent

implementations of the algorithms were tested. Starting with conceptual

Matlab's Simulink diagrams for the glucose models, the programs were later

implemented in Matlab code, and then in C programming language, speeding

up the function evaluation many times.

The outcomes of the thesis are various:

1. A complete review of the models in literature was done. Identi�ability

studies on the most relevant models were performed.

2. A new model of endogenous glucose was proposed to better mimic the

observed behavior in experimental data

3. Experiments were designed to achieve a better identi�ability for

diabetes models. A clinical protocol was de�ned to adapt the results
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of the experimental design to the clinic.

4. Experiments of continuous home postprandial monitoring were

conducted following the directions set by the experiment design.

5. Validation of the identi�cations were performed considering intra-

patient variability.

Of special importance are the currently ongoing experiments being

performed with real patients. Apart from the current experiments, the work

described in this thesis has led to many open projects, or lines of research.

In the next section the future work (currently being developed), and further

ideas for the situations explained in this thesis will be explained.

8.2 Future work

A list of key points in the future work related to this thesis is now shown as

the �nal contribution of this thesis:

1. Analysis of the results. Most of the results shown in this thesis are

only studied qualitatively. Deep data analysis of these results still has

to be done. Some tasks to be performed about this matter are:

• Statistical validation: The experiment design still has to be

statistically validated. Preliminary results of the application of

the experiment design have been shown in this thesis, but more

monitoring weeks have to be added to the work already done, and

statistical results of the identi�cations have to be shown. The

identi�ability of the model being identi�ed have to be calculated,

and compared with its identi�ability without the application of the

experiment design, expecting better con�dence intervals for those

parameters identi�ed. Parameters CVs will not be comparable to
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those already shown in this thesis because those are calculated

based on the nominal values of the parameters, and the validation

have to be made based in the parameters already identi�ed.

• Repeatability: The monitoring periods identi�ed have to be tested

for repeatability in the same period. The same patient in two

consecutive weeks can have very di�erent behavior, and this have

to be re�ected in the model's parameters. The variations between

those parameters will give an idea of how much the model can �t

the person instead of �tting the situation.

• Comparison of models: Every tested model have to be tested as

a predictor of the glucose state. The prediction horizon of each

identi�ed model have to be tested to see if physiological models

have prediction advantages over other sorts of models.

2. Identi�cation improvement. Identi�cation of the proposed model

has to be improved. Identi�ability has been deeply studied, but the

process of identi�cation has not been extensively reviewed. Some

feasible improvements to the identi�cation process are:

• Improvement of data: Treatment of the data to be �tted is critical

for the success of the identi�cation. Currently, the model output is

being �t to monitor data, but much more data is available in other

formats, that may be relevant for the model identi�cation. The

calibration points, which are blood glucose direct measurements,

should be perfectly �tted, and may enter cost function of the

optimization in the future. The problem of adding those points

in the identi�cation to be �tted is that they are an input that the

patient have to register in the monitor's log, and patients make

lots of errors. That is why along with the calibration points, there

has to be some fail detection system, to discard outliers in the

capillary measurements or in the monitor signal.

• Weight matrix: More options for improving the identi�cation may

involve to vary the matrix of data weighting Qi, as explained
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earlier in the thesis. One may try to better �ts some sequences

of data than others, or maybe to forget about �tting some

particularly noisy data periods.

• Faster optimization algorithms: More e�cient global optimizers

may help to speed up the identi�cations, helping with one of the

biggest problems of these identi�cations, the computational time.

• Interval identi�cation: In this thesis, the process of identi�cation

was done prior the interval analysis of the model to be used

in validation. These to processes can be mixed into interval

identi�cation. This process identi�es boundaries of parameters

instead of the actual parameters, including the information of

the patient in the model (just as regular identi�cation does), as

well as quantifying the uncertainty of those parameters identi�ed.

This methodology will avoid the heuristic quanti�cation of the

uncertainty that has been used in this thesis.

3. Modeling: The motivation for the experiment design was to improve

the identi�cation of models, due to the low identi�ability found up to

that point. Other option to improve the �tting is to change the model.

It remains as a �to-do� task to continue improving the model proposed

in this thesis.

4. Open-loop control: In the validation days of the preliminary

results, model intervals were shown for considering uncertainty. Heavy

mathematical interval theory is behind these interval model simulations

which has not been shown in this thesis. Work on Interval Analysis

(IA) and Set Inversion Via Interval Analysis (SIVIA) has been done in

parallel to this thesis, and all the models used where �intervalized�, as

explained by Calm et al.[13], for using them with uncertainty.

The set inversion algorithms permit the robust calculation of therapies

basal-bolus for tighter postprandial control, as Revert et al. shown [81]

in silico. This approach requires of an identi�ed model of the patient

to make a good therapy proposal, which relates this thesis' research to
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the work done by Revert et al. The validation of these robust methods

and therapies in a clinical experiment is something never done before.

Some of the identi�cations shown in this thesis will be used for the

in vivo validation of the SIVIA therapy proposals, which will be done

in the Hospital Clinic Universitari of Valencia. The patients will be

monitored, the model identi�ed and used for the calculation of therapies

that happens to be called �ibolus� therapies. Then the patients will be

treated one day with the therapy proposed by the algorithm, and other

day with the traditional bolus treatment, being monitored their blood

glucose both directly and via a monitor. This experiment has been

called the �ibolus� experiment, and it is a very related project to this

thesis work. Improved treatments by means of SIVIA will have to be

analyzed and improved in the future

5. Closed-loop control: It must not be forgotten that the �nal objective

for these models and identi�cations is the control of the blood glucose

in a diabetic patient (arti�cial pancreas). The foundations of this work

have been placed, but there still a lot of work to do. Designing the

controllers will be one of the last steps of this project, and probably

one of the most critical ones.
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