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Abstract

Background: Parkinson’s Disease is the most common neurodegenerative disor-
der after Alzheimer’s disease, affecting 6.3 million people worldwide. It is characterized
by motor and non-motor symptoms such as bradykinesia, muscular rigidity, rest tremor
or dementia. Treatments consist of Levodopa medication and Deep Brain Stimulation
(DBS) in advanced stages of the disease. DBS treatments usually target the subtha-
lamic nucleus (STN) or the internal globus pallidus and require a long programming
phase after the surgical intervention. Biophysical modelling of DBS can provide a bet-
ter understanding of the therapy. Thus it can reduce programming times and increase
treatment efficacy, benefiting both, patients and physicians.

Hypothesis: The activation of hyperdirect pathway in DBS treatments for Parkin-
son’s disease is more effective than the activation of the indirect pathway. Besides, the
beta activity in the STN is related to the fiber recruitment produced by DBS.

Materials and methods: Fiber tracking of the indirect and hyperdirect pathways
was performed to diffusion weighted images of healthy subjects and Parkinson patients
using DSI Studio. DBS volumes of tissue activated of 20 patients from Inselspital
(Bern) were used to relate the fiber recruitment produced by the stimulation to clinical
score. Besides, DBS volumes were analyzed in function of the direction of stimulation.
A cortico-thalamic basal ganglia model was used to obtain the STN firing rate for
different percentages of fiber recruitment.

Results: To achieve maximal clinical improvement, different proportions of the
hyperdirect or indirect pathway were recruited. For the tracts obtained from the
Parkinson patients, 44% of hyperdirect pathway fibers had to be recruited on median
to obtain maximal clinical improvement versus 87% of indirect pathway fibers for a
similar clinical effect. Contrary, for the tracts obtained for the healthy subjects, 80%
of hyperdirect pathway had to be recruited on median to obtain maximal clinical
improvement versus 25% of indirect pathway. The segmented contacts at the third
level of the lead resulted in the best clinical score, which agrees with the findings from
previous literature. The analysis of the beta activity in the STN suggested that the
internal globus pallidus could be a more effective target in suppressing beta oscillations.

Conclusion: As hypothesized, the hyperdirect pathway was a more effective target
to obtain the best clinical outcome in the Parkinson’s patients. The corticothalamic-
basal ganglia model used did not allow to obtain a good characterization of beta
activity in function of fibre recruitment. Further studies with local field potential
measurements are required to better characterize the connection parameters of the
cortico-thalamic basal ganglia model when DBS is applied.

Keywords: DBS, hyperdirect pathway, indirect pathway, fiber tracking, VTA.
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Chapter 1

Introduction

1.1 Background review

1.1.1 Parkinson’s Disease

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by an early destruc-
tion of the dopaminergic neurons in the Substantia Nigra pars compacta (SNpc) [1]. The
Substantia Nigra is part of the basal ganglia, a group of subcortical nuclei which are strongly
interconnected with the cortex and the thalamus. The basal ganglia has an important role
in motor control and is also involved in cognitive and associative functions [2, 3]. This group
of subcortical nuclei will be explained in further detail in section 1.1.2.

Changes in the basal ganglia can evoke motor and non-motor symptoms. These changes
can precede the motor symptoms by more than a decade [1]. When approximately 80% of
the dopaminergic neurons have degenerated, motor symptoms gradually appear [4]. The
motor symptoms include movement disorders as bradikinesia, muscular rigidity, rest tremor
and postural and gait impairment (see Fig. 1.1).

Figure 1.1. Clinical symptoms and time course of Parkinson’s disease progression [1].
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Parkinson disease patients can be classified according to empirical observations into two
major subtypes: tremor-dominant and non-tremor dominant Parkinson’s disease. Tremor-
dominant PD is characterized by the relative absence of other motor symptoms while non-
tremor dominant patients have phenotypes described as akinetic-rigid syndrome and pos-
tural instability gait disorder. Additionally, other patients can be classified into a third
sub-group with a mix of different motor symptoms [1].

PD is the most common neurodegenerative disorder after Alzheimer’s disease and it is
thought to be caused by both genetic and environmental factors (see Fig.1.2)[1]. Nowadays
there are no diagnostic tests at the early stages of the disease and its progression is character-
ized by worsening of motor features due to Levodopa resistance as well as treatment-related
complications, psychosis and dementia. In the late stages, PD leads to severe disability and
finally mortality.

Figure 1.2. Environmental and Genetic risk factors for the development of Parkinson’s
disease [1]. From epidemiological and genome studies, environmental exposures and genetic
risks factors that increase (OR >1) or decrease (OR <1) the risk of developing Parkinson’s
disease respectively. OR=odds ratio.

It is estimated that 6.3 million people worldwide have PD, with an age onset usually
over 60. But approximately 1 in 10 are diagnosed before the age of 50 and some patients
can be diagnosed in their 40’s and earlier. In Europe, there are approximately 1.2 million
people with PD: 260,000 in Germany, 200,000 in Italy, 150,000 in Spain, 120,000 in UK,
117,000 in France [5].

The incidence of PD ranges from 10–18 per 100,000 person-years; and its prevalence
seems to be higher in Europe, North America, and South America (estimated crude preva-
lence for all ages: 66–1500 per 100,000, 111–329 per 100,000, and 31–470 per 100,000, re-
spectively) compared with African, Asian, and Arabic countries (estimated crude prevalence
for all ages: 10–43 per 100,000, 15–119 per 100,000, and 27–43 per 100,000, respectively)
[1].
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Other risk factors for the disease are gender, ethnicity and age. The male-to-female ratio
is approximately 3:2 [6]. With respect to the ethnicity, in the USA incidence is highest in
people of Hispanic origin, followed by non-Hispanic, Whites, Asians, and Blacks [7].

But age is still the greatest risk factor for the development of the disease. The prevalence
and incidence increase nearly exponentially with age and peak after 80 years of age [1]. With
the aging of population and rising life expectancy, the number of people with Parkinson’s
disease is expected to increase to between 8.7 and 9.3 million by 2030 [8]. This will affect
directly the sustainability of the health systems as more people will develop the disease and
will require long-term treatments.

1.1.2 Basal Ganglia
The basal ganglia comprehends a set of nuclei relevant for motor function of the body.
These nuclei are divided into distinct groups according to its functionality.

The first group, striatum, includes two principal nuclei, caudate and putamen, and
comprehends the input zone of the basal ganglia since their neurons are the destinations of
most of the pathways that reach this complex from other parts of the brain. The destinations
of the incoming axons arriving to the striatum from the cerebral cortex are the dendrites of
the medium spiny neurons. The projections of the medium spiny neurons converge in the
pallidum, a second structure which includes the globus pallidus and the substantia nigra
pars reticulata (SNr). This second group of nuclei are the main sources of output from the
basal ganglia to other parts of the brain [9].

Figure 1.3. Neurons and circuits of the basal ganglia. Medium spiny neurons in the caudate
and putamen [9].

The projections from the medium spiny neurons of the caudate and putamen (striatum)
to the internal segment of the globus pallidus (GPi) constitute the direct pathway of the
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basal ganglia, which facilitates the initiation of voluntary movements [9].

The basal ganglia circuits connecting the caudate and putamen (striatum) to the GPi
through the external part of the globus pallidus (GPe) form the indirect pathway. The
GPe sends projections to the subthalamic nucleus (STN) and directly to the GPi. Finally,
projections from the STN will end in the GPi. This second pathway increases the level
of tonic inhibition mediated by the projections neurons of the internal segment (and the
substantia nigra pars reticulata), modulating the disinhibitory actions of the direct pathway
[9].

The subthalamic nucleus also receives excitatory projections directly from the cerebral
cortex that work together with the disinhibitory effect mediated by the projections from the
external segment of the globus pallidus [9]. This cortico–STN–pallidal connection, known
as hyperdirect pathway, has dominant excitatory effects on the output nuclei of the basal
ganglia, and is faster in signal conduction from the cerebral cortex than the ‘direct’ and
‘indirect’ pathways [10].

Figure 1.4. Corticothalamic basal ganglia system. Comparison of direct, indirect and hy-
perdirect pathways. Blue connections correspond to the direct pathway, green connections to
the indirect pathway and red connections to the hyperdirect pathway.

The circuit formed by the dopaminergic cells in the substantia nigra pars compacta
(SNc) has a significant influence over the integration of cortical input in the striatum. The
medial spiny neurons of the striatum project directly to the SNc, which in turn sends diffuse
dopaminergic projections back to the medium spiny neurons [9].
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The striatum contains two inhibitory populations of medial spiny neurons, one expressing
the D1 dopamine receptor and one expressing the D2 dopamine receptor [11]. This duality
allows the same nigral neurons to have excitatory inputs to the spiny cells that project to
the GPi (direct pathway) and inhibitory inputs to the spiny cells that project to the GPe
(indirect pathway). Dopamine affects the spiny neurons by modulating their responses to
the cortical input, enhancing the excitatory input from cortex through D1 receptors and
suppressing this excitation with D2 receptors [9].

As mentioned in the previous section 1.1.1, Pakinson’s disease is characterized by an
early destruction of the dopaminergic neurons in the substantia nigra pars compacta (SNc).
It is thought that dopamine depletion causes an imbalance between the two pathways,
changing the excitability of D1 and D2 receptors. In the case of PD, dopamine depletion
decreases direct pathway activity via D1 receptors and increases indirect pathway activity
via D2 receptors. As a result, the imbalance between the two pathways will over-inhibit the
thalamus [12].

High frequency deep brain stimulation (DBS) of the STN has demonstrated to reduce
increased firing of the indirect pathway [13]. DBS was approved as a treatment for PD by
the US Food and Drug Administration (FDA) in 2002 and since then it has been used to
treat over 40,000 people with PD and essential tremor worldwide [14].

1.1.3 Deep Brain Stimulation
Deep Brain Stimulation (DBS) is a neurosurgical therapy in which a thin lead with a number
of electrodes is implanted in deep brain structures of the patients, delivering electrical
pulses (60-200µs duration, 1.5V amplitude) at a high frequency (typically > 100Hz) to the
surrounding brain tissue through one or a combination of electrode contacts [12, 11].

DBS has become an effective treatment for several movement disorders such as Parkin-
son’s disease in advanced stages and essential tremor. Furthermore, other studies have
shown its efficacy in dystonia [15], epilepsy [16] and obsessive-compulsive disorder [17].

In Parkinson’s disease DBS treatments, a macroelectrode is chronically implanted in a
target nucleus that can be the Globus Pallidus internus (GPi), the Subthalamic Nucleus
(STN) or the ventral intermediate nucleus of the thalamus.

The leads are implanted bilaterally into the brain to achieve symmetrical results and
are connected to one or two battery-powered generator units, usually near the clavicles (see
Fig. 1.5). The placement of the leads requires careful stereotaxic surgery combined with
radiological imaging of the patient’s brain, and electrophysiological recordings of sponta-
neous and movement-related neuronal activity. Once the target structures are localized,
stimulation is tested to determine whether the desired effects can be observed. Four to six
weeks after the surgical procedure, the generator units are activated and the parameters of
stimulation are fine-tuned with various combinations of pulse widths, current amplitudes
and temporal patterns of pulse trains [9].

Although less frequent, adverse neurocognitive side effects may happen and negatively
impact treatment outcomes. These adverse effects can be due to suboptimal placement of
the electrodes or the spread of the current to surrounding structures such as the limbic
system [19]. Among the possible psychiatric effects are: hypomania, which can lead to
depression and apathy, and changes in behaviour and personality [20].
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Figure 1.5. Electrode location at different sites for stimulation in DBS [18].

As mentioned above, there are different possible target nuclei that can be stimulated.
Although the desired spot is the dorsolateral part of the STN (motor part), there is as well
a limbic subdivison that, when stimulated, could produce psychiatric side effects. Targeting
the GPi has been shown to produce less psychiatric side effects with almost equal motor
improvement, although it will not be possible to reduce levodopa treatments as much as
when stimulating the STN [20].

But it should be considered that the basal ganglia and cerebellum are involved in the
processing of cognitive and emotional tasks and because of the stimulation spreading effects,
it will be difficult to completely avoid non-motor side effects [20].

The efficacy of DBS is still to be improved with a better understanding of the underly-
ing mechanisms of the involved specific brain circuits under physiological and pathological
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conditions. In order to better comprehend these therapeutical mechanisms, combining com-
putational modeling at various levels of description (from the cellular to the largescale brain
networks) with in-vivo and clinical data appears to be a promising approach to identify the
best and most effective stimulation parameters, electrode geometries and locations [12, 11].

1.1.4 Computational models of DBS

Parkinson’s disease is characterized by an enhanced activity in the basal ganglia, thalamus
and motor cortex at 4–8Hz and 13–30Hz. The enhanced beta band oscillations (13–30Hz)
in the STN of PD patients are thought to be related to symptom severity. Besides, a
reduction in beta band power has been observed after treatments to alleviate PD symptoms
such as dopamine treatments or DBS [11].

Several computational models have been developed with the objective of better under-
standing the role of the basal ganglia-thalamo-cortical loop and the modulatory effects of
DBS [12]. Some of these studies suggest that the circuit formed by the STN-GPe may
be responsible for the beta activity generation [21, 22] and that that these oscillations are
amplified by the cortical STN inputs [23].

A first approach is to study the activity of the basal ganglia at the neuronal level. These
are single neurons models describing membrane dynamics, which have been used to describe
normal and pathological neuronal behaviour as synchronized oscillations. These models
usually include single compartment models with a determined number of neurons belonging
to the studied populations (e.g., 16 STN neurons, 16 GPe neurons, 16 GPi neurons, 2
thalamo-cortical neurons) [12].

The combination of multi-compartment neuron models with finite element models has
been used to study DBS responses in small neuron assemblies and the distribution of the
electrical field. These models have shown a dissociation of the activity at the soma relative
to the axon during extracellular stimulation, and a systemic activation of axons both efferent
and afferent to the stimulation site [11].

The multi-compartment single cell models require large amounts of computational power
so, to reduce the model’s dimension, a mean-field approach incorporating connectivity STN-
GPe patterns from neuroanatomy can be used. In this second case, the activity of each
structure is described by a distribution of membrane voltages [12]. By averaging microscopic
structure and activity, it will be possible to analyze large-scale neuronal dynamics. These
neural field models have already provided good results in the study of brain activity as
sleep stages, eyes-open and eyes-closed in walking, nonlinear seizure dynamics, anesthesia
and other phenomena. In the case of Parkinson’s disease, these models have been able to
account for changes in the 4–8Hz and 13–30Hz oscillations [11].

More advanced models as the one proposed by Müller et al. [11, 24] include DBS
to potential stimulation sites such as the STN and GPi. This model aims to develop a
population level description of the cortico-thalamic-basal ganglia system that can reproduce
the already existing experimental observations characteristic of PD. The model includes
DBS input to the STN and GPi to study how DBS stimulation suppresses or diminishes
the pathological beta activity [11, 24].



8 CHAPTER 1. INTRODUCTION

1.1.5 Diffusion Tensor Imaging
Magnetic resonance imaging (MRI) allows to visualize brain structures and detect lesions
in the central nervous system (CNS) non-invasively. This technique is widely used in neuro-
science research and clinical diagnostics due to its versatility to provide soft tissue contrasts.
There are several modalities of MRI: proton-density, T1-weighted, T2-weighted, diffusion
weighted (see Fig. 1.6) [25].

Figure 1.6. Axial proton density-weighted (PD-weighted), T1-weighted, T2-weighted, and
diffusion-weighted images acquired from one healthy adult volunteer [25].

Although the contrast between grey matter and white matter in the diffusion weighted
images (DWI) is not as sharp as in other modalities, this image modality can be used for
the evaluation and monitoring of stroke and edema in the CNS, where the diffusion of the
water molecules of the affected tissues is compromised [25].

DWI is based on the diffusion of water molecules. Water molecules inside biological
tissues move randomly due to its internal kinetic energy. But biological structures such
as the cell membranes and myelin sheath can restrict or hinder the movement of these
molecules [25]. Furthermore, diffusion of water molecules is not equal in all directions being
lower when measured perpendicular to the fiber direction rather than parallel to it [26].

At a fixed temperature, the rate of diffusion can be described by the Einstein equation:

< r2 >= 6Dt
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where < r2 > refers to the mean squared displacement of molecules, t is the diffusion time
and D is the diffusion constant. The diffusion constant relates to the average displacement
of a molecule over an area to the observation time. Its value depends on the particular
substance being measured. Higher values of D will indicate more mobile water molecules
in the medium [27].

To measure water diffusion, a pair of diffusion-sensitizing gradients are added to a T2-
weighted spin-echo sequence to construct a diffusion-weighted pulse sequence. The diffusion
gradients are applied along the same directional axis before and after the 180º refocusing
pulse with a time delay ∆ (see Fig. 1.7) [27].

Figure 1.7. Pulse sequence diagram for a diffusion-weighted acquisition with 2 diffusion
sensitizing gradients (dark gray) [27].

The diffusion effect of water molecules (spins) on MRI signals is an attenuation of the
signal intensity due to incomplete rephasing of water proton spins, which change positions
when applying the two diffusion-sensitizing gradients. The attenuation of the signal reflects
the statistical distribution of spin displacement for each voxel [27, 25].

As a function of the strength, duration and temporal spacing of the diffusion sensitizing
gradients, a b factor (s/mm2) is determined as a measure of diffusion weighting. The signal
attenuation in a voxel increases with higher b values. Typical clinical b values are between
600 and 1500 (s/mm2).

By comparing the images acquired with diffusion gradient pulses (diffusion-weighted)
and the ones acquired without diffusion gradient pulses (non-diffusion-weighted), a map
of apparent diffusion constant (ADC) is calculated. This value characterizes the water
molecules diffusion along a particular axis and depends on the geometrical configuration of
the diffusion barriers for water molecules. To characterize the water molecules diffusion in
three dimensions, ADC has to be measured along multiple axes [25].

Water molecules diffusion can be characterized as isotropic (diffusion is equal in all
directions) or anisotropic (diffusion of water molecules is not equal in all directions) [27].
To quantify the direction and anisotropy of water molecules, the concept of the diffusion
tensor can be used.

A diffusion tensor, in mathematical terms, is a three-by-three, symmetric, positive def-
inite matrix. Diffusion tensors are estimated from a minimum of seven diffusion-weighted
images using regression methods, with at least one non-diffusion-weighted image and six
diffusion-weighted images. For each diffusion tensor, three real, positive eigenvalues λ1, λ2, λ3
and the three corresponding eigenvectors ε1, ε2, ε3 are computed. λ1, λ2, λ3 are the ADCs
along the axes defined by ε1, ε2, ε3, being ε1 the orientation with maximal diffusion coeffi-
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cient and ε3 the orientation with minimal diffusion coefficient (see Fig. 1.8) [25].

Figure 1.8. From the diffusion tensor matrix three eigenvalues λ1, λ2, λ3 and three eigenvec-
tors ε1, ε2, ε3 are computed [28].

To visualize the diffusion tensor in three dimensions, a diffusion ellipsoid can be used (see
Fig. 1.9). The shape of the ellipsoid will depend on the ratio between the three eigenvalues,
determined by the tissue restriction to water diffusion (see Fig. 1.10).

Figure 1.9. The shape of the ellipsoid will be determined by the eigenvalues while its
orientation will be given by the eigenvectors of the ADC. The major eigenvalue and eigenvector
(λ1, ε1) will correspond to the direction of maximal diffusivity [28].

For two dimensional display, it is convenient to use scalar or vector measurements as
the diffusion anisotropy. Common anisotropy indices are: mean diffusivity (MD), fractional
anisotropy (FA), relative anisotropy (RA), and linear, planar and spherical anisotropy in-
dices (CL, CP, CS) [25].

Based on the diffusion tensor concept, another MRI technique is diffusion tensor imaging
(DTI), which provides information about the pathways connecting parts of the brain and
the function of the cells in those pathways. Together with tractography, this technique
is a powerful tool to study the macroscopic brain connectivity and pathology of several
neurological diseases, such as sclerosis and brain damage following stroke [25].

Fractional anisotropy (FA) is the most used measure of anisotropy in DTI and it reflects
the degree of directionality of the diffusion measured in a voxel. The FA value varies from 0
to 1. Low values indicate isotropic diffusion (corticospinal fluid or grey matter) while values
closer to 1 indicate perfectly linear diffusion (compact myelinated white matter pathways
as the corpus callosum and the corticospinal tract (CST)) [27].

When the primary eigenvalue (λ1) is larger than λ2, λ3, the values of anisotropy measures
as FA and RA will be high, indicating a preferred direction of diffusion [27].
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Figure 1.10. Diffusion ellipsoids for isotropic unrestricted diffusion, isotropic restricted dif-
fusion and anisotropic restricted diffusion. Image source: [27]

The FA map can be combined with the primary eigenvector to create a coloured map
showing the orientation of the primary eigenvector. Left-right oriented axonal fibers will
be shown in green, anterior-posterior fibers will be shown in red and inferior-superior fibers
will be shown in blue (see Fig. 1.11) [27].

Figure 1.11. Fiber orientation map showing the orientation of the fibers. Left-right in green,
anterior-posterior in red and inferior-superior in blue [27].
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Diffusion tensor based models are easier to implement but have some drawbacks. The
diffusion tensor only identifies a fiber orientation for each voxel, so in voxels with different
orientated streamlines the tensor will not describe properly the orientation. The term
crossing fibers is used for situations where multiple fiber orientations contribute to the signal
measured for the same voxel, and anisotropy measurements such as FA are particularly
sensitive to these situations [29].

Previous studies show that 60 to 90% of the voxels in white matter have crossing fibers
[28]. Consequently, DT based models will be prone to errors when tracking white matter
pathways containing complex fiber bundle architectures (see Fig. 1.12). In practice, the
orientation produced by DT based models is reasonably close to the largest contributing
fiber direction in dominant tracts such as the CST. Thus, the impact of crossing fibers will
be more severe for non-dominant tracts [29].

Figure 1.12. Simulated configurations of complex fiber bundle architecture at the length scale
of a single voxel. Crossing fibers architectures can be described as (i) bending (e.g., uncinate
fasciculus), (ii) fanning fiber bundles (e.g., pyramidal projections), (iii) interdigitating fibers
(e.g., region of the centrum semiovale, where the lateral projections of the corpus callosum
intersect with the corticospinal tract among others), (iv) adjacent fiber bundles (e.g., cingulum
bundle and the body of the corpus callosum) [29].

More complex diffusion models with different acquisition schemes have been developed
to better characterize the diffusion signal of each voxel: Diffusion Spectrum Imaging (DSI),
Q-ball imaging (QBI), Spherical deconvolution and Persistent angular structure (PAS) MRI.
These methods provide spherical functions as estimations of the fiber Orientation Distribu-
tion function (fODF). The fODF aims to describe the biophysical properties of the tissue
and provides more insights into the underlying configuration of the fibers, quantifying the
proportion of fibers along each orientation [30].

1.1.6 DTI Tractography
DTI tractography is a neuroimaging techninque which allows non-invasive study of brain
structures and connectivity. The objective of DTI fiber tracking is to determine intervoxel
connectivity based on the anisotropic diffusion of water molecules. This can be done by using
the orientation information from the colour map and the diffusion anisotropy measurements
to reconstruct axonal bundles in three dimensions [27]. DTI fiber algorithms can be divided
into deterministic and probabilistic methods.
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1.1.6.1 Deterministic tractography

Deterministic methods based on the diffusion tensor (DT) model initiate fiber trajectories
from user-defined voxels or seeds. Fiber trajectories, also known as streamlines, follow
the primary eigenvector voxel by voxel in three dimensions. When the fiber trajectory
reaches the end of the voxel, the direction of the trajectory is changed to match the primary
eigenvector of the next voxel [27]. Two voxels will be connected or non-connected, and each
seed voxel will have only one streamline. Therefore, deterministic tractography assumes a
single orientation and a single fiber in each voxel that can be determined as the maximum
probability estimation of the fiber trajectory.

Figure 1.13. Result of deterministic tractography given by a single trajectory [31].

In these methods, it is necessary to insert constraints on the maximum turning angle of
the streamline between voxels and on the minimum FA within a voxel for propagation of the
streamline. Thus it is possible to constrain the streamlines to the regions where the model
is actually representing the white matter pathways. Besides, the user can define regions of
interest (ROIs) based on anatomical knowledge to restrict fiber tracts to areas of interest
[27].

The limitations of deterministic fiber tracking are as follows [32]:

• The tracking error accumulates throughout the tracking process.

• There are problems of false continuation and premature termination.

• The connecting count between two brain regions has poor reproducibility.

• There is a crossing-branching problem.

1.1.6.2 Probabilistic tractography

Probabilistic tractography provides an estimate of the ’precision’ with which a tract pathway
has been reconstructed. The obtained probability values are not related to connectivity (e.g,
number of axons) of the white matter pathways, but instead they reflect the confidence
that the particular connection exists [29]. Therefore, probabilistic tractography algorithms
iterate all possible trajectories and provide a simulated distribution of the fiber pathways
[27].
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The main difference with deterministic algorithms is the use of white matter orienta-
tion estimates, that are randomly drawn from the local probability density function of fiber
orientations. At each step of the algorithm the direction for the next step is chosen from
a range of likely orientations, instead of being unique. To obtain an estimate of the distri-
bution of likely connections, a large number of probabilistic tracks are generated from the
same seed point [29]. The probability density function of the orientation of a neuronal fiber
can be estimated with an empiric function based on the FA, bayesian methods, bootstrap
statistics or calibration methods [30].

Figure 1.14. Probabilistic tracks. The result of probabilistic tractography is given by the
connectivity matrix for each voxel [31].

Probabilistic tractography techniques allow the user to quantify and compare the confi-
dence with which streamlines from a certain region might reach any different target regions.
While deterministic tractography requires harsh stopping criteria, probabilistic tractogra-
phy aims to go beyond uncertain regions and is more robust to noise, reducing the need
for stopping criteria. Therefore, these algorithms most likely will not apply anisotropy
constraints and, if any, some lenient curvature constraints [30].

Probabilistic tractography methods can define larger portions of white matter, recon-
struct smaller fibers and better resolve crossing fibers, but the accuracy of these methods
still depends on the information contained in the diffusion tensor and the method used to
construct the probability density function [27].

Despite improved performance of probabilistic methods when delineating crossing fiber
tracts compared to deterministic methods, probabilistic tractography still cannot completely
overcome the limitation that the diffusion tensor model is not an adequate model for the
underlying physiology in crossing fiber regions [33]. Other limitations of probabilistic trac-
tography are that it may produce a high number of false connections and that the link to
biophysics is weak [32].
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1.2 Motivation

Actual DBS treatments require a long term programming which is inconvenient for pa-
tients and physicians. Two to four weeks after the placement of the leads, the stimulation
programming is started. It is a time consuming manual process which requires the configu-
ration and adjustment of several parameters during a long period of time. Besides, 20-30%
of patients with implanted electrodes do not respond to the treatment.

Computational models of DBS are a promising tool to reduce programming times and
increase treatment specificity. Before surgery, individualized patient models can help in the
decision of whether the patient is a good candidate for DBS treatment or not, and help
in the pre-surgical planning and definition of the target site. After surgery, these models
could determine the best stimulating parameters according to the electrode localization and
predict the patient response to the stimulation.

Diffusion tensor imaging allows a non invasive study of white matter structures and
enable the study of brain development and progression of a disease. Tractography techniques
based on DTI imaging provide information about the tracts that can be very useful for the
planning and targeting of DBS tratments. The combination of structural information of
the brain tracts with simulations of stimulation volumes can provide additional data of how
the stimulation will affect the brain pathways.

Commercial programming platforms are already available but must be improved as they
do not provide estimations with enough exactitude. In order to provide physicians with
reliable programming tools, pathway-specific tractography and stimulation studies have to
be performed to better understand and characterize the underlying connections in the brain
and how they are affected by the DBS stimulation.

1.3 Objectives

The aim of the thesis is to determine if there is a fiber pathway, indirect or hyperdirect,
which is more effective when activated in DBS treatments for Parkinson disease.

The first hypothesis is that the activation of the hyperdirect pathway in DBS treatments
will result in a better clinical outcome. The second hypothesis is that, when applying a
DBS stimulus, beta activity in the STN will decrease with the fiber recruitment of the
hyperdirect and indirect pathways.

By performing a tractography study to obtain the tracts for the hyperdirect and indi-
rect pathways, and combining the tracts obtained with simulations of activation volumes
generated by DBS, it will be studied if there is a threshold for fiber activation and which
stimulation volumes result in a better clinical score. Besides, a corticothalamic-basal gan-
glia computational model will be incorporated to evaluate how beta oscillations are related
to the fiber recruitment and clinical score.
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Materials and Methods

2.1 Subjects images and datasets

Diffusion weighted magnetic resonance images (DWI) of healthy and Parkinson’s disease
subjects were used for the present study.

For the Parkinson’s disease subjects, 27 image sets from the NITRC database were
used. The DWIs were acquired with 120 unique gradient directions, b = 2500 s/mm2,
and isotropic 2.4mm3 voxels. The acquisition used a twice-refocused spin echo sequence
in order to avoid distortions induced by eddy currents. All scanning parameters (b-vectors
and b-values) are available when downloading the images from the website (www.nitrc.org).
The database also contains demographic data of all patients such as sex, age, handedness,
UPDRS scores, etc.

For the healthy subjects, a publicly available connectome was used. The connectome
contains diffusion MRI data from 1021 subjects from the Human Connectome Project (2017
Q4, 1200-subject release). A multishell diffusion scheme was used for the acquisition of
the images and the b-values were 1000, 2000, 3000 s/mm2. The DWI were acquired with
90 sampling directions for each b-value. The analysis was conducted using DSI Studio
(http://dsi-studio.labsolver.org) and the template file is provided when downloading the
software.

Additionally, 20 patients with Parkinson’s disease from Inselspital (Bern, Switzerland)
were included in the study. All the 20 patients had been implanted with bilateral leads
for DBS treatment. Pre-operative and post-operative scans (CT, T1-weighted MRI and
T2-weighted MRI) were used to reconstruct the leads and compute the Volumes of tissue
activated (VTAs). The clinical outcome corresponding to the different VTAs was available
for the study.

2.2 Image reconstruction

To perform fiber tracking with DSI Studio (Jun 26 2018 build), the diffusion MRI data
(NIfTI files and corresponding b-values and b-vectors) has to be reconstructed using one of
the available methods: DTI, GQI or QSDR.

DTI assumes that the velocity of water diffusion follows a 3D Gaussian distribution, and
the tensor calculated is the covariance matrix of the Gaussian. This type of method as-
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sumes a particular diffusion distribution function/pattern and its parameters are calculated
by fitting diffusion signals with the model, only requiring few samples to get the whole
distribution. However, it is common that the diffusion pattern does not agree with the
assumption, hence limiting the validity of the corresponding results. Besides, with com-
plicated models, overfitting problems may happen. Nonetheless, DTI can characterize the
major diffusion direction of the fibers and the reconstruction performs eigenanalysis on the
calculated tensor. Anisotropy indices such as MD and FA and the three eigenvalues are
exported [32].

Another approach are models which estimate the distribution of water diffusion with no
assumption on the distribution. Diffusion spectrum imaging (DSI), q-ball imaging (QBI)
and generalized q-sampling imaging (GQI) are examples of these model-free approaches
[32].

DSI uses the Fourier transform and numerical integration to calculate the orientation
distribution function (ODF) of water diffusion. The Fourier transform requires multiple
b-values and multiple directions for the diffusion sampling scheme [32].

QBI uses the Funk-Randon transform or spherical harmonics to calculate the ODF, and
its diffusion sampling scheme must be shell-like (HARDI acquisition, single b-value, multiple
directions) [32].

GQI [34] quantifies the density of diffusion water at different orientations. This method
measures the spin distribution function (SDF), a type of ODF which is the orientation
distribution function of diffusion spins. GQI reconstruction offers quantitative anisotropy
(QA) instead of FA. The definition for QA can be found in [34]. GQI has a great sensitivity
and specificity to white matter characteristics and pathology and provides an analytical
relationship between diffusion signals and the SDF. It can be applied to multiple diffusion
sampling schemes and it is free from the error in numerical estimations [32].

This second type of methods (DSI, QBI, GQI) are not limited by a model since they do
not assume a particular diffusion structure. They do not have the overffiting problems of
the DTI approach and the calculation is less affected by outliers because it does not require
complicated optimization or fitting. But these methods require more diffusion samplings to
get a robust estimation (60 samplings compared to the 6 samplings and the b0 that DTI
requires) [32].

A generalization of GQI, Q-Space diffeomorphic reconstruction (QSDR) allows to recon-
struct SDF in the MNI template space to analyze group differences. As GQI, QSDR can be
applied to DTI data, multi shell data, DSI data, none-shell-non-grill data or a combination
of the previous diffusion schemes. In QSDR, DSI Studio will first calculate the quantitative
anisotropy (QA) mapping in native space and then normalize to the MNI QA map. The
R-squared value between the subject QA and MNI map is also calculated. This value will be
an indicator about the registration results (values greater than 0.6 will correspond to good
registration results whereas lower values will indicate a possible error in the registration).
To perform QSDR reconstruction it is necessary to assign a template that must match the
data to be reconstructed. By default, the template used is the HCP 1021 subjects, but
other templates (i.g., animal templates) can be assigned.

In this study, the diffusion MRI images of the 27 PD subjects from the NITRC database
were reconstructed using QSDR. The selection of the method was motivated by the objective
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of creating a template from the PD subjects. As QSDR is a generalization of GQI, it allows
multiple scheme acquisitions. In addition, the obtained results are in the MNI space allowing
the creation of a PD subjects template.

For the 27 subjects, a HARDI scheme was used and a total of 120 diffusion sampling
directions were acquired. The b-value was 2500 s/mm2, the in-plane resolution was 2.4mm,
and the slice thickness was 2.4mm. The diffusion data were reconstructed in the MNI space
using q-space diffeomorphic reconstruction to obtain the spin distribution function [34]. A
diffusion sampling length ratio of 1.25 was used and the restricted diffusion was quantified
using restricted diffusion imaging [35].

For the healthy subjects, the template used did not need to be reconstructed. This
template was created by the reconstruction of diffusion data from the Human Connectome
Project using q-space diffeomorphic reconstruction as in [36] and the available file is the
final connectome containing the data of the 1021 subjects. The DWI from the HCP were
acquired with a multishell diffusion scheme and the b-values were 1000, 2000, 3000 s/mm2.
The number of diffusion sampling directions were 90 for all b-values. The in-plane resolution
was 1.25mm and the slice thickness was 1.25mm. The diffusion data was reconstructed in
the MNI space using q-space diffeomorphic reconstruction [36] to obtain the spin distribution
function [34]. A diffusion sampling length ratio of 2.5 was used, and the output resolution
was 1mm.

2.3 Selection of Regions of Interest (ROI)

As explained in section 1.1.1, Parkinson’s disease is caused by changes in the basal gan-
glia. These changes produce an imbalance in the direct, indirect and hyperdirect pathways
resulting in an increased connectivity to the STN.

Previous computational models have shown that the connection between the GPe and
STN is essential for the appearance of beta oscillations [22], which have been related to
PD symptoms and severity. The connection between GPe and STN affects the indirect and
hyperdirect pathways (see Fig. 1.4) and to better understand the effects of DBS on these
pathways, a tractography study was performed.

To obtain the fiber tracts corresponding to the indirect and hyperdirect tracts, different
masks were used. DSI Studio incorporates several atlases containing delimited regions from
previous studies. Using these regions, it was possible to create masks delimiting the regions
of interest (ROI), regions of avoidance (ROA), end regions or terminative regions.

The ATAG atlas was used to establish the regions corresponding to the basal ganglia (see
Fig. 2.1), and a sensorimotor cortex mask from the Automated Anatomical Labeling atlas
(AAL) was used to determine the region of interest in the cortex. The SMA region from the
AAL atlas included both the supplementary motor area (SMA) and the pre-supplementary
motor area (pre-SMA) [37].

The indirect pathway was tracked with the fibers that originate in the sensorimotor
cortex and pass through the striatum and GPe to finally end in the STN (see Fig. 2.2a),
while the hyperdirect pathway was tracked with the fibers that originate in the sensorimotor
cortex and end in the STN (see Fig. 2.2b). In both cases, the GPi and and red nucleus (RN)
were established as regions of avoidance (Table 2.1).
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Figure 2.1. Basal ganglia structures from the ATAG atlas. The striatum is shown in blue,
the GPe in pink, the GPi in yellow, the STN in red and the red nucleus in purple. The SMA
region from the AAL atlas is shown in green.

(a) Structures involved in the indirect
pathway

(b) Structures involved in the HDP

Figure 2.2. Basal ganglia structures in the left hemisphere involved in the indirect and
hyperdirect pathways. Structures: SMA (green), striatum (blue), GPe (pink), STN (red).

Apart from the direct and hyperdirect pathways, the corticospinal tract (CST) was
obtained to visually verify that the streamlines belonging to this tract were not included in
the HDP or indirect pathways. In this case, the tracts obtained start in the precentral gyrus
in the cortex, go through the posterior limb of the internal capsule, through the cerebral
peduncle and continue to the spinal cord (see Fig. 2.3). The atlases used were Harvard-
Oxford Cortical and JHU White Matter atlas, both available in DSI Studio. The regions
of interest/avoidance of the CST were placed in DSI Studio as shown in Table 2.2.
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Table 2.1. Regions of interest/avoidance used to tract the indirect and hyperdirect (HDP)
pathways in DSI Studio.

Indirect HDP Atlas

SMA ROI ROI AAL
Striatum ROI ROA ATAG

GPe ROI ROA ATAG
GPi ROA ROA ATAG
STN Seed Seed ATAG
RN ROA ROA ATAG

Figure 2.3. Corticospinal tract structures in the left hemisphere. Structures: precentral
gyrus (blue), posterior limb internal capsule (green), cerebral peduncle (red).

Table 2.2. Regions of interest/avoidance used to tract the corticospinal tract (CST) in DSI
Studio.

CST Atlas

Precentral gyrus ROI Harvard Oxford Cortical
Post. limb IC ROI JHU WM labels

Cerebral peduncle ROI JHU WM labels

2.4 Fiber tracking

Fiber tracts of the indirect pathway, HDP and CST were obtained for the group of Parkin-
son patients (NITRC database images) and for the group of healthy patients (HCP 1021
template) in their dominant hemisphere using the regions of interest and avoidance specified
in section 2.3.



22 CHAPTER 2. MATERIALS AND METHODS

2.4.1 Tracking parameters
DSI Studio allows the user to modify the tracking parameters according to the requisites of
the study. The tracking parameters used are visualized in Fig. 2.4.

The anisotropy threshold determines the threshold for fiber termination. In QSDR,
the fiber threshold is based on the quantitaive anisotropy (QA), which is defined for each
fiber orientation. The initial value is determined automatically by 0.6*(Otsu’s threshold).
Otsu’s threshold, obtained by Otsu’s method, will be the optimal separation threshold that
maximizes the variance between the background and the foreground [32]. In all cases, PD
images and HCP template, the anisotropy threshold used was the default value provided
initially.

The maximum turning angle will terminate the tracking if two consecutive moving
directions have crossing angle above this threshold [32]. As in similar tractography studies,
[38, 39, 40], this value was fixed in 60 º.

Step size defines the moving distances in each tracking interval [32]. The value used
was half of the voxel size in one dimension (half of the spatial resolution of the image). In
the case of the HCP template, this value was fixed at 0.6mm while for the PD image set
the step size was 1.2mm.

The value for the smoothing parameter was 0 in all cases. This parameter serves like a
"momentum" and a value of 0 means that the propagation direction is independent of the
previous incoming direction [32].

A minimum and maximum length was determined to filter the fibers shorter or longer
than these values. For both images types, HCP template and PD image set, the minimum
length was 10mm and the maximum length 300mm. These parameters are consistent with
the expected length for the studied pathways.

Setting the parameter Topology-Informed Pruning (TIP) iterations to 1, 2 or 3
will allow to remove false connections using the TIP method [41]. This value was set to
"3".

Seed orientation was defined as "all". This approach starts a track for each fiber
orientation resolved in a voxel aiming to explore all possible connection even though it will
be sensitive to noisy fibers [32].

The seed position was set to subvoxel. With this strategy, each seed voxel may have
infinite seeding locations within the voxel.

The interpolation method used in estimating the fiber orientation was trilinear, and
the deterministic tracking method was the default Euler approach.

The tracking algorithm was terminated when 5000 seeds were placed in the seeding
area. The randomize seeding was set to "off" and no checking ending was applied.

2.4.2 Fiber tracking of Human Connectome Project template
Tractography was performed directly to the HCP 1021 template. The tracts for the three
pathways (indirect, hyperdirect and CST) were obtained separately placing the regions of
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Figure 2.4. Tracking parameters used in DSI Studio to track the fiber pathways.

interest and avoidance as specified in section 2.3.

Considering that the HCP contains data from a majority of right handed patients, the
three pathways were obtained only for the left hemisphere, which would be the dominant
hemisphere for these subjects (see Fig. 2.5).

The tracking parameters were determined as specified in section 2.4.1. The anisotropy
threshold used was 0.18618 and the step size 0.6mm.

As a final step in the tracking, the tracts were transformed to the MNI template when
exporting them from DSI Studio.

Figure 2.5. Pathway tracking in HCP 1021 template.
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2.4.3 Fiber tracking of Parkinson’s disease image set

The images from the PD image set were reconstructed with QSDR in DSI Studio, and the
three pathways in the left hemisphere were obtained individually with the ROIs and ROAs
as specified in section 2.3. Each file of the image set had a different anisotropy threshold
determined automatically by DSI Studio, and the step size used for all the images was
1.2mm.

After obtaining the tracts individually for the hyperdirect pathway, a group template
was created using DSI Studio. The PD template only contains data from right handed
patients that in the individual analysis had tracts for the hyperdirect pathway.

The group template was analyzed in the same way as the HCP template. As all the
included patients were right handed, only tracts in the left hemisphere for the indirect and
hyperdirect pathway and CST were obtained (see Fig. 2.6). These group tracts and not the
individual ones were used for the post-hoc analysis. As for the HCP template, the tracts
were transformed to the MNI template space for further analysis.

2.5 DBS Lead localization and VTA estimation

2.5.1 Lead localization

DBS leads were localized in the 20 patients from Inselspital using Lead-DBS software
(http://www.lead-dbs.org) as in [42, 43] (see Fig. 2.7).

Postoperative CT images were linearly co-registered to preoperative MRI scans using
Advanced Normalization Tools (ANTs) [44], and postoperative MRI scans were co-registered
to preoperative MRI scans using SPM12 [45].

A first subcortical refinement was applied to correct possible brain shift occurred during
surgery. Then, the co-registered images were normalized into standard stereotactic (MNI)
space using the Advance Normalization Tools (ICBM 152 2009b Nonlinear Asymmetric)
protocol available in Lead-DBS. This protocol uses nonlinear diffeomorphic normalization
algorithms (SyN) where the deformation field is estimated based on a series of preoperative
acquisitions and applied to all the co-registered images [46].

An additional brainshift correction was applied to obtain a more precise subcortical
alignment between the subject and the template, and the results from the co-registration
and normalization steps were visually verified before localizing the leads.

Electrodes were localized in the MNI space using the semi-automatic implementation
PaCER [47]. If necessary, the lead’s localization was refined with the TRAC/CORE (Horn
2015) module implemented in Lead-DBS Horn 2015 or manually. Finally, the contacts were
identified.

2.5.2 VTA estimation

Volume of tissue activated (VTA) was estimated using a finite element method as in [43].
A volume conductor model was constructed based on a four compartment meshs with
tetrahedral mesh that included grey matter, white matter, electrode contacts and insulated
parts [46].
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Figure 2.6. Workflow for the creation of PD template and pathway tracking.
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Figure 2.7. DBS leads localized in a patient MRI scan using Lead-DBS. Structures: red
nucleus (red), STN (orange), GPi (green), GPe (blue).

The electric field distribution was simulated using and adaptation from the FieldTrip-
SimBio pipeline [48] integrated in Lead-DBS.

The leads implanted in the patients and used for the VTA estimation in Lead-DBS were
directional DBS leads (Boston Scientific, Marlborough, MA). These leads have contacts
distributed along four levels with segmented contacts on levels two and three (level two:
contacts 2/3/4; level three: contacts 5/6/7). Each lead contains a marker visible in CT
scans which allows to identify the direction of stimulation for each contact (see Fig. 2.8).

Figure 2.8. Boston Scientific directional DBS leads [49].

2.6 Fiber recruitment and clinical score

2.6.1 Fiber recruitment by VTA
The number of fibers recruited by each VTA was calculated with custom Matlab code, using
the hyperdirect and indirect pathway’s tracts obtained from the HCP and PD templates.

Each of the patients from Inselspital was stimulated with eight different contacts and
two rings (segmented contacts on levels two and three) per hemisphere. Thus, each of the
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patients had ten different VTA’s calculated at effect threshold per hemisphere.

First, the tracts in MNI space calculated in DSI Studio were reorganized to match the
tract format from Lead-DBS. Then, for each of the VTAs and using the Matlab function
inpolyhedron, the tract points that were inside the volume determined by each of the VTA
were calculated. The fibers corresponding to those tract points inside the VTA were iden-
tified and computed, and a percentage of the recruited fibers was obtained.

This calculation was done for the tracts of the hyperdirect and indirect pathways in
both of the templates, HCP and PD. For each patient, the results provided with these
calculations were the number of fibers recruited for the ten VTAs and its percentage with
respect to the total number of fibers of the pathway (Table 2.3).

Table 2.3. The number of fibers recruited when stimulating with each of the VTA has been
calculated using the indirect and hyperdirect pathway fiber sets.

PD / HCP template Nº fibers recruited % fibers recruited

|V TA1|
|V TAn|

Figure 2.9. Fiber recruitment by VTA. Visualization in Lead-DBS.

2.6.2 Clinical score
The clinical score provided for the Inselspital patients contains a classification from zero to
one according to the improvement experienced by the patients when stimulating with the
different contacts of the electrodes. A clinical score value of zero indicates no improvement
while a value of one indicates total improvement. This clinical score was based solely on
testing the rigidity of the patient’s hand [50].

The clinical score corresponding to each of the stimulation’s VTAs has been compared to
the percentage of recruited fibers to observe if there is a correlation between the recruitment
and the clinical outcome (see Fig. 2.10).
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Figure 2.10. Fiber recruitment workflow.

2.7 Computational model of corticothalamic-basal ganglia system

The computational model used was developed by Müller et al. [11]. This corticothalamic-
basal ganglia model includes nine neural populations of the cortex, basal ganglia and tha-
lamus, and an input source for deep brain stimulation, x.

The cerebral cortex contains populations of excitatory pyramidal neurons, e, and in-
hibitory interneurons, i. The thalamus contains an inhibitory population, the reticular
nucleus, r, and an excitatory population, the relay nuclei, s. The basal ganglia contains two
inhibitory populations within the striatium, d1 and d2, expressing the D1 and D2 dopamine
receptors respectively. The striatum projects to two inhibitory populations, the internal
part of the globus pallidus (GPi) and the substantia nigra pars reticulata (SNr), p1, and
the external part of the globus pallidus (GPe), p2. An excitatory population represents
the subthalamic nucleus (STN), ζ. The input source x corresponding to the deep brain
stimulation is connected to the GPe, GPi and STN populations (see Fig. 2.11).

The numerical simulations of the model are performed using the NFTsim code package
[51]. In the model, ordinary populations (non-stimulus) have an initial firing rate and a
specific sigmoidal firing response, and the axonal propagation activity is governed by the
damped wave equation [11, 52].
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Figure 2.11. Corticothalamic basal ganglia model developed by Müller et al. [11]. The
model contains populations of the cerebral cortex, (i, e), populations of the thalamus, (r,
s), and basal ganglia populations in the striatum, GPi/SNr, GPe and STN, (d1, d2, p1, p2,
ζ). The substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) are also
included in the figure indicating neural pathways affected by dopamine but are not included
in the model.

For each of the connected populations, a connection strength parameter is defined as:

vab = Nabsab

This parameter describes the influence of incoming spikes to population a from popu-
lation b, being Nab the mean number of connections between the two populations and sab
the mean strength of response in neuron a to a single spike from neuron b [11].

DBS has been modeled as a stimulus population. In the same way as for the non-stimuli
populations, DBS is coupled to a target population a by a connection parameter vax with a
pulse frequency fstim. In the model developed by Müller et al., DBS besides being coupled
to STN is coupled to GPi and GPe populations as an approximation of axons terminals
near the stimulation site [11].

Following the objective of this project, the firing response of the STN population has
been studied. Assuming that the time scales of relevance for this study are much shorter
than the time scales for significant plasticity induced change to sab in the regions of interest,
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sab can be approximated as constant. Then, if Nab increases or decreases so must vab
proportionally. And it will be possible to infer changes in the mean connections strengths,
vab.

To observe how beta oscillations vary when applying DBS, the coupling parameters vax
corresponding to the connections between DBS and the target sites were modified. Nax was
decreased linearly from the original value in the model to zero. It was considered that the
original coupling value represents the state of total fiber recruitment, while for a coupling
value of zero, none of the fibers would be recruited and DBS input would not affect that
population.

The DBS stimuli applied is a rectangular pulse of 20 seconds of duration with an onset
at 30 seconds from the starting of the stimulation, 1V of amplitude, 128Hz and 2432
pulses. The mean strength parameters used for the situation of total recruitment of the
fibers correspond to the ones defined by Müller et al. in [11] (see Table 2.4).

Table 2.4. Mean strength parameters for DBS input connections to the STN, GPe and GPi.

Target site Mean strength parameter (mV s)

STN 1.086
GPe 2.4
GPi 1
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Results

3.1 Tractography

3.1.1 Human Connectome Project template

The tracts for the indirect and hyperdirect pathways and the CST were obtained using the
HCP template as specified in sections 2.3 and 2.4.

In the case of the indirect pathway, the tracts go through the striatum and GPe before
ending in the STN (see Fig. 3.1a). For the HDP, the tracts start in the primary region of
the cortex reaching directly the STN (see Fig. 3.2a). The tracts obtained for both pathways
correspond anatomically to the literature description.

With respect to the corticospinal tract (CST), the tracts obtained start in the precentral
gyrus and traverse the posterior limb of the internal capsule and the cerebral peduncle
towards the spinal cord. As expected from the literature, these tracts do not traverse the
STN (see Fig. 3.3a).

3.1.2 Parkinson’s disease image set

When the 27 image set from the NITRC database were analyzed individually, HDP tracts
were obtained only in seven out of the 27 patients in the left hemisphere, starting in the
motor area and ending in the STN. For the rest of the images, the tracts either started from
anterior areas in the cerebral cortex or continued to the spinal cord, in most of the cases
through the red nucleus (see Fig. 3.4).

One of the seven images containing HDP tracts in the left hemisphere corresponded to
a left handed subject and consequently, this subject was excluded from the group analysis.
Then, the other six image set were used to create the PD patient template.

Tracts for the indirect and hyperdirect pathways and the CST were obtained PD tem-
plate in the same was as for the HCP template, as specified in sections 2.3 and 2.4.

Indirect pathway tracts obtained using the PD template are visualized in Fig. 3.1b,
HDP tracts in Fig. 3.2b, and CST tracts in Fig. 3.3b. All the tracts obtained for the three
pathways correspond anatomically to the literature description.

The numbers of tracts obtained for each of the pathways are visualized in Table 3.1.
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(a) HCP 1021 template

(b) PD template

Figure 3.1. Indirect pathway tracts for the HCP 1021 and PD templates. Tracts start in
the SMA area and pass through the striatum and GPe before ending in the STN. Structures:
SMA (green), striatum (blue), GPe (pink), GPi (yellow), STN (red).
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(a) HCP 1021 template

(b) PD template

Figure 3.2. Hyperdirect pathway tracts for the HCP 1021 and PD templates. Tracts start
in the SMA area and end directly in the STN. Structures: SMA (green), striatum (blue), GPe
(pink), GPi (yellow), STN (red).
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(a) HCP 1021 template

(b) PD template

Figure 3.3. The Corticospinal tract (CST) include the tracts starting in the precentral gyrus
and traversing the posterior limb of the internal capsule and the cerebral peduncle towards
the spinal cord. Structures: precentral gyrus (blue), posterior limb internal capsule (green),
cerebral peduncle (red).



3.2. BETA ACTIVITY 35

Figure 3.4. For some of the PD image sets, when tracking the HDP the results obtained were
not anatomically correct. Tracts start from anterior areas in the cerebral cortex or continue
to the spinal cord.

Table 3.1. Number of tracts obtained for the indirect, hyperdirect and corticospinal tracts
in the HCP and PD templates.

HCP template PD template

Indirect 44 1079
Hyperdirect 280 326

CST 388 374

3.2 Beta activity

Data about beta activity was obtained using the corticothalamic-basal ganglia model from
Müller et al. [11].

The model provides information about the firing rate of the different established popu-
lations and allows to include an external stimulus. The firing rate time series of the STN
was obtained when applying an external stimulus targeting the STN at t=30 s (see Fig. 3.5
left). Besides, the power spectrum of the firing rate was calculated before and after the
stimulus (see Fig. 3.5 right). As it can be observed, the power spectrum after applying the
stimulus (red curve) decreases but the shape of the curve is maintained, presenting the same
characteristic peaks of the beta oscillations.

Figure 3.6 shows the variation of beta activity with fiber recruitment when a DBS stim-
ulus is coupled to different populations. For beta oscillation values, the maximum peaks
in the power spectrum of the STN firing rate were considered. As explained in section
2.7, the initial coupling values in the model were modified according to the percentage of
recruitment, considering the initial values as 100% of fiber recruitment.

In function of the populations that DBS stimulus was liked to, beta activity increased
or decreased. Activating DBS STN-GPe increased STN firing rate while DBS STN-GPi
resulted in the strongest reduction of the firing rate. Activating DBS STN and DBS STN-
GPe-GPi also reduced the firing rate of the STN.
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Figure 3.5. Firing rate time series and power spectrum of beta activity when applying a
128Hz external stimulus at t=30 s using the coupling strength parameters specified in Table
2.4. In the power spectrum plot, the black curve corresponds to the power spectrum before the
stimulus (t=10-30 s) and the red curve to the power spectrum after the stimulus (t=30-50 s).

Müller et al. considered that when stimulating the STN, the GPi and GPe populations
were affected. When tracking fibers from a volume of tissue activated (VTA) generated for
the Inselspital patients, there were fibers going through these populations. Consequently,
the connections to these populations were also considered when obtaining the beta oscilla-
tions in the STN. Therefore, the beta activity data used in Fig. 3.7 corresponds to the curve
where DBS stimulus is coupled to the STN, GPi and GPe.

Beta activity data for a stimulus coupled to the STN, GPi and GPe was included in
Fig. 3.7 as a colour bar. It can be observed that beta oscillations are reduced when recruiting
a higher percentage of fibers, as expected from the linear decreasing curve obtained in
Fig. 3.6.

Figure 3.6. Beta activity when applying a 128Hz stimulus at t=30 s coupled to STN, STN-
GPe, STN-GPi, STN-GPe-GPi.
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3.3 Fiber recruitment and clinical score

Figure 3.7. Fiber recruitment and corresponding clinical score obtained for the VTAs from
the Inselspital patients. The median value of fiber recruitment has been calculated for the
VTAs with a maximum clinical score. Beta activity of the STN has been included as a colour
bar where dark blue indicates lower activity and green higher higher beta activity.

Figure 3.7 shows the percentage of recruited fibers for all the available VTAs (20 patients,
10 VTAs per patient at effect threshold) with their corresponding clinical score. The colour
bar indicates the beta activity in function of the fiber recruitment.

The relationship between the fibers recruited and the clinical score varied depending on
the connectome analyzed.

When using the tracts obtained for the healthy subjects connectome (HCP template), if
the percentage of recruited fibers and their corresponding clinical score are compared, the
results showed differences between the hyperdirect and indirect pathways.

For the hyperdirect pathway, there was a threshold around 50% of fiber recruitment to
produce an improvement in the clinical score. Noteworthy is that fiber recruitment between
20 and 70% resulted in full improvement (clinical score equal to one), while when recruiting
more than 70% of the fibers lower clinical scores appeared. However, the median value of
the stimulations resulting in a maximal improvement was at 80% of fiber recruitment. This
means that although exceeding the threshold of 70% resulted in lower clinical score values
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for some stimulation volumes (VTAs), half of the VTAs resulting in a maximal clinical score
recruited more than 80% of fibers of the hyperdirect pathway.

When considering the stimulation of the indirect pathway, a threshold of fiber recruit-
ment could not be established. Maximum and lower clinical scores were obtained for all
percentages of fiber recruitment. If only the values with the maximal clinical score were con-
sidered, the median value was at 25% of recruitment. This median value was considerably
lower than the median percentage obtained for the hyperdirect pathway.

The results for the tracts belonging to the Parkinson’s subjects connectome (PD tem-
plate) showed some similarities and differences between the hyperdirect and indirect path-
ways. A threshold of fiber recruitment could not be established for the hyperdirect pathway
since clinical scores equal to one were obtained for all the range of fiber recruitment. Be-
sides, the median percentage of fiber recruitment when considering only the VTAs with a
clinical score of one was at 44%. Still, lower clinical score values were distributed as well in
all the range of fiber recruitment.

As for the hyperdirect pathway, maximum clinical scores were obtained for all the range
of fiber recruitment in the indirect pathway. But in this case, the median value for the
VTAs with a clinical score equal to one was at 87% of recruitment, considerably higher
than the 44% of the hyperdirect pathway. Another difference from the hyperdirect pathway
was that clinical scores lower than one started appearing at 50% of fiber recruitment. Even
so, as the median value indicates, it was necessary to recruit a higher percentage of fibers
to produce a significant clinical improvement.

3.4 Directional stimulation

To observe the relationship between the fiber recruitment, clinical score and direction of
stimulation, each VTA was classified according to the direction of stimulation. To do so,
the direction of the lead’s marker was identified for each patient and the contacts generating
each of the VTAs were classified according to their direction of stimulation: anterior (A),
anterior-lateral (AL), anterior-medial (AM), posterior (P), medial (M), etc.

Figure 3.8 shows fiber recruitment in function of the direction of stimulation. Non-
segmented contacts, contact one (C1) and eight (C8), and the two rings R1 and R2, seg-
mented contacts 2/3/4 and 5/6/4 respectively, were considered as additional directions.
Besides, the clinical score was included as a colour bar where dark blue indicates non-
improvement and green indicates maximal improvement.

The results obtained for the Human Connectome Project template (HCP), in the case
of the hyperdirect pathway, show that for all the directions of stimulations more than 50%
of the fibers were recruited. In the case of the indirect pathway, there was a higher variety
in the range of recruitment depending on the direction of stimulation.

For the tracts belonging to the Parkinson’s patients connectome (PD), all directions of
stimulation had a wide range of fiber recruitment in the hyperdirect pathway. In the case of
the indirect pathway, except the anterior-lateral (AL) and anterior-medial (AM), the rest
of directions recruited more than 20% of the fibers.

The contacts resulting in a better clinical score independently of the template used were



3.4. DIRECTIONAL STIMULATION 39

Figure 3.8. Fiber recruitment and clinical score are analyzed according to the direction
of stimulation of the contact generating the VTA. Direction of stimulation: anterior (A),
anterior-lateral (AL), anterior-medial (AM), posterior (P), posterior-lateral (PL), posterior-
medial (PM) medial (M), contact one (C1), segmented contacts 2/3/4 (R1), segmented con-
tacts 5/6/4 (R2), contact eight (C8).

the segmented contacts 5/6/7 which belong to the ring on the third level of the lead.

Figure 3.9 contains the box and whiskers plots of the clinical score in function of the
direction of stimulation. In line with the results from Fig. 3.8, the best stimulating contacts
belonged to the ring 2, with all the VTAs except one resulting in a maximal clinical score.

On the other side, the contacts stimulating in an anterior (A) or posterior-medial (PM)
direction and the non-segmented contact at the first level (C1) were the ones resulting in
worse clinical scores. The rest of the directions of stimulation, including the ring at the first
level (segmented contacts 1/2/3) and the contact at the fourth level had a mean clinical
score around 0.8.
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Figure 3.9. Clinical score is analyzed according to the direction of stimulation of the contact
generating the VTA.Direction of stimulation: anterior (A), anterior-lateral (AL), anterior-
medial (AM), posterior (P), posterior-lateral (PL), posterior-medial (PM) medial (M), contact
one (C1), segmented contacts 2/3/4 (R1), segmented contacts 5/6/4 (R2), contact eight (C8).
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Discussion and Conclusions

4.1 Fiber tracking

The tractography results for the indirect and hyperdirect pathways and for the corticospinal
tract show that it is possible to obtain independent streamlines for each of the tracts.

The study performed by Neumann et al. [53] considered streamlines passing through the
subthalamic nucleus as tracts belonging to the hyperdirect pathway. In turn, Gunalan et
al. obtained cortifugal streamlines and considered hyperdirect axons to the collateral fibers
starting in nodes of Ranvier of the cortifugal streamlines and terminating in the STN [54].

In this study, only streamlines starting in the supplementary motor area of the cortex
(SMA) and ending in the STN were considered as hyperdirect tracts. This approach was
the same as in Petersen et al. [19], as it was considered that anatomically, the hyperdirect
streamlines end in the STN.

Obtaining proper pathway tracts with DSI Studio was highly constrained or limited by
the signal quality and resolution of the images. Previous versions of DSI Studio were not
able to render small structures such as the STN when the scans had a resolution lower
than 1.5mm. But newer versions of DSI Studio (Jun 26 2018 build) are able to render some
points belonging to the structure. However, this was still not useful and was a problem when
using scans from clinical practice which had resolutions worse than 1.5mm. In addition to
not being able to render the structure, the region was not well characterized as a region of
interest and the obtained tracts did not belong to the pathway of interest.

In general, DSI Studio was able to tract major pathways such as the corticospinal tract
appropriately. But tracking minor pathways such as the hyperdirect pathway did not pro-
vide similarly good results.

The algorithm used to perform the reconstruction of the images influenced the tracking
results as well. The tracts obtained for the hyperdirect pathway could differ significantly
when using GQI or QSDR reconstruction. For some of the patients from the NITRC
database, it was possible to obtain hyperdirect tracts with GQI reconstruction but not with
QSDR reconstruction. On the other side, QSDR reconstruction was more robust when
rendering small structures such as the STN and this allowed a better specification of the
region of interest and provided better tracking results.
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The different tracking results in function of the reconstruction method suggest that
the diffusion information obtained with each of the methods is not exactly the same, even
though QSDR is meant to be a generalization of GQI. These differences could be due to
the data normalization. When reconstructing DTI scans with GQI, the data was kept in
the subject’s space; when using QSDR, the data was normalized into DSI Studio standard
space.

The diffusion data contained in each of the individual images had a strong repercussion
on the average template. If a certain pathway was obtained individually in the scans, when
averaging the scans across patients, it was possible to obtain that pathway in the template.
Otherwise, the averaged template would include data from scans where the pathway was
not obtained and the resulting streamlines did not correspond to the anatomical definition
of the pathway.

Other studies [19, 54] use probabilistic tractography instead of deterministic. Proba-
bilistic methods are more robust to noise, are better when resolving crossing fibers and can
reconstruct smaller tracts, but they produce a high number of false connections. These
methods are very useful when tracking unknown pathways as they consider all possible di-
rections for propagating streamlines. However, deterministic tractography can be accurate
enough when studying known tracts.

In an international tractography competition (ISMRM 2015 Tractography challenge,
http://tractometer.org), 96 tractography pipelines submitted by 20 different research groups
were evaluated by comparing the tractography results to known connectivity. The study
concluded that the results do not improve with higher-quality data and even when using
high resolution data a considerable amount of false-positive bundles were obtained [55]. In
this competition, the methods that offered the higher validation connections were GQI and
DTI tractography. But it must be considered that the data used for the competition had a
poor signal-to-noise ratio.

Considering images from clinical routine, it can be assumed that the data quality is not
as good as in scans for research studies. For these situations, would probabilistic tracking
algorithms overcome the problems derived from the noise and the low resolution maintaining
an adequate ratio for valid connections? According to the results from the international
tractography competition, the major limiting factor is not data quality, but the tracking
algorithm used. Thus, there is still room for improvement regarding the algorithm’s white
matter characterization.

In the present study, the algorithm used to reconstruct the scans was QSDR, a gen-
eralization of GQI. When obtaining the tracts for the hyperdirect and indirect pathways,
manual tract selection had to be used in order to delete some tracts which traversed the
STN and continued to the spine following the corticospinal tract. But manual tract selec-
tion was just a superficial solution to the problem since the algorithm was obtaining some
non-valid tracts not ending in the region of interest.

4.2 DBS of hyperdirect vs indirect pathway

As shown in Table 3.1, the number of fibers obtained for the group of healthy subjects (HCP
template) was 44 streamlines for the indirect pathway, 280 for the hyperdirect pathway and
388 for the corticospinal tract. For the group of Parkinson’s disease patients (PD template),
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the number of tracts obtained for the indirect pathway was 1079, 326 for the hyperdirect
and 374 for the corticospinal tract.

The hyperdirect pathway has strong excitatory effects on the output nuclei of the basal
ganglia and its conduction is faster than for the indirect and direct pathways [10]. Thus, a
higher number of tracts belonging to the hyperdirect pathway than to the indirect pathway
could be expected. This occurs for the HCP template, where the number of hyperdirect
tracts is six times the number of indirect tracts. But for the PD template, the streamlines
belonging to the indirect pathway are three times the number of streamlines belonging to
the hyperdirect pathway.

In Parkinson’s disease there is an increase of the excitability of D2 expressing neurons,
affecting the indirect pathway. An increase of the excitability of D2 neurons will over-inhibit
the GPe, reducing the inhibitory output from the GPe to the STN and from the GPe to
the GPi. As a result, the excitatory connection between the STN and the GPi is increased.
The increase of the excitatory connection between the STN and GPi and the over-inhibition
from the GPe to the GPi results in an increment of the inhibitory response from the GPi
to the thalamus, affecting the selection of motor programs.

The imbalances in the pathways affect the neural populations in terms of increasing or
decreasing firing rates, but the tractography results of the indirect pathway in PD showed
an increase of the number of tracts. These structural changes would mean that new con-
nections are being created. Following brain damage, structural changes in brain pathways
generating new connections to other regions of the brain have been observed [56], but the
tractography results obtained for the indirect pathway in PD indicate an increase in the
number of connections for the same pathway. Further patient-specific studies with larger im-
ages dataset and using other tractography algorithms must be performed to clarify whether
the increment in the number of streamlines is characteristic of the disease or if it is related
to the data quality and tractography technique.

Figure 3.7 compared fiber recruitment with clinical score and beta activity. For the
hyperdirect pathway, when using the HCP template, there was a threshold of 50% of re-
cruitment to observe an improvement in the clinical score and the median percentage to
obtain a maximal clinical score was at 80% of recruitment. In the case of the PD template,
the improvement in the clinical score was observed for all percentages of recruitment and
the median recruitment when obtaining a maximum clinical score was at 44%.

For both cases, HCP template and PD template, the percentage of fiber recruitment in
the hyperdirect pathway resulting in a maximum clinical score was over the threshold of
15% of activation proposed by Gunalan et al. in [54]. In their study, they concluded that
after reaching this threshold of activation, internal capsule fibers of passage started being
recruited and side effects appeared. In the present study, the activation of the internal
fibers of passage was not taken into account. While Gunalan et al. obtained cortifugal
streamlines and divided them into two pathways, internal capsule fiber of passage and
hyperdirect pathway, for this study independent hyperdirect pathway tracts starting in the
cortex were obtained.

The clinical score for the Inselspital patients graded their clinical improvement after
DBS stimulation. The VTAs used for the stimulation were at effect threshold, typically
without persistent side effects. Thus, a relationship between activation of the hyperdirect
pathway and appearance of side effects was not established.
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Gunalan et al. used one patient-specific DBS pathway activation model (PAM) to
calculate the biophysical response of the pathway to electrical stimulation. This type of
model is more difficult to develop and analyze than the one used for the present study,
where the stimulation volumes are defined around the electrode contact. The differences in
the methods, to obtain the tracts and to define the volumes of tissue activated, can be a
reason for the different percentages of pathway activation.

Considering that the hyperdirect pathway has a stronger influence on the basal ganglia
output, targeting these tracts would have a better treatment response. Electrical [57, 58] and
optogenetic [59, 60] stimulation of the hyperdirect pathway have been directly associated
to therapeutic benefit in rodent models of PD.

For the PD template, for both the hyperdirect and indirect pathways a maximum clinical
score was achieved when recruiting a reduced percentage of fibers. But if only the VTA’s
resulting in a maximal clinical score are considered, 44% of the hyperdirect pathway fibers
were recruited on median versus 87% of indirect pathway fibers. These results support
the hypothesis of the importance of the hyperdirect pathway since a smaller percentage
of recruitment is necessary to obtain the maximal clinical score. Nevertheless, it must be
considered that the number of tracts for the indirect pathway using the PD template was
much larger than for the hyperdirect pathway and the stimulation volumes were the same
in any case.

4.3 Beta activity in the STN

The beta activity of the STN was studied as a function of fiber recruitment with the
computational model. The strength parameters connecting two populations result from the
multiplication of two terms, the mean number of connections Nab and the mean strength
response to a single spike sab. The original strength parameters of the model were modified
linearly in function of the percentage of fiber recruitment. The values proposed by Muller et
al. are based on physiological estimations and, as the mean strength response sab term was
not available independently from the mean number of connections Nab it was considered
as a constant term. Because of this assumption, the beta oscillations are minimal with a
100% of recruitment and increase with the reduction of fiber recruitment. Even though
tractography studies as the one performed provide enough information to estimate the
number of connections, some physiological measurements are still needed to better estimate
the strength response when applying an external stimulus.

In a later study, Müller et al. evaluated the effects of DBS over the STN, GPi and STN-
GPi. Their results showed that DBS-GPi is more effective than DBS-STN for suppressing
beta activity in the STN, but less effective at reducing cortico-STN beta-band coherence
[24]. Clinical studies of DBS-STN and DBS-GPi show simmilar motor improvements for
both groups of patients, although PD medication is more reduced in DBS-STN and less
adverse events occur in DBS-GPi [61]. Nonetheless, further studies are needed to determine
whether the power of STN activity or the cortico-STN coherence are more correlated with
PD motor symptoms.

4.4 Direction of stimulation

When the fiber recruitment and clinical score were analyzed in function of the direction of
stimulation, the directions of stimulation resulting in a better clinical score were the ones
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produced by the segmented contacts 5/6/7 and the anterior-lateral direction.

Herzog et al. established the dorsolateral part of the STN (motor subdivision) as the
most effective site for stimulation in PD [62]. Besides, it has been observed a higher degree
of beta activity near the dorsolateral border of the STN [63]. After implanting the leads
targeting the STN, the location of the segmented contacts 5/6/7 at the third level of the
lead corresponds to the dorsolateral part of the STN. Depending on the pathway used, the
fiber recruitment generated by the VTAs varied. But the clinical score was always equal to
one except for one patient, for whom it was 0.75. Therefore, these contacts were determined
as the ones producing the best clinical score.

4.5 Conclusions

The tractography results provided different tracts for each of the pathways studied. In-
dividual tracts for each pathway were obtained because different regions of interest were
established for each of them. However, the resolution of DSI Studio when rendering the
STN may be insufficient to clearly differentiate the tracts belonging the the hyperdirect and
indirect pathways.

When incorporating the data from the VTAs, differences in the fiber recruitment of
each pathway were observed. Still, with this results it cannot be established if there is one
pathway that when stimulated results in a better clinical outcome.

When only analyzing the tracts obtained for the PD template, the hyperdirect pathway
had a lower threshold of activation than the indirect pathway to produce a maximum
clinical score. According to these results, this pathway would be a better target for DBS
treatments as it requires a lower percentage of fiber recruitment to produce the maximal
beneficial effects. Nonetheless, the tracts obtained for the HCP template show opposite
results. In this case a higher percentage of fiber recruitment of the hyperdirect pathway has
to be achieved in order to obtain the maximal clinical score, while with lower percentages
of fiber recruitment of the indirect pathway the maximal clinical score was obtained.

Beta activity was analyzed in function of the fiber recruitment using the corticothalamic-
basal ganglia model developed by Müller et al., and beta oscillations were minimal when
all the fibers of the pathway were recruited. When modulating the coupling parameters to
observe the changes in the beta activity, the three connections affected (DBS-STN, DBS-
GPe, DBS-GPi) were modified linearly and likewise varied the beta activity for all the
pathways. Activating DBS STN-GPi resulted in a stronger reduction of STN firing rate
than only activating the STN, which suggests that stimulating the GPi is more effective
for reducing the beta activity in the STN. To improve the accuracy of the model, a better
estimation of the coupling strength parameters between the affected populations and the
stimuli is needed.

Lastly, the direction of stimulation was compared to the fiber recruitment and clinical
score. The contacts stimulating in an anterior-lateral direction were the ones resulting in a
better clinical score. But even better were the results obtained for the stimulation with the
three segmented contacts at the third level of the lead (R2). Considering that beta activity
is directly related to PD symptoms, it is coherent that the electrodes closer to the focus of
beta activity in the dorsolateral part of the STN are the ones resulting in a better clinical
outcome.
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Outlook

The results of the tractography study showed the necessity of improving the methods for the
acquisition of images, reconstruction and tracking algorithms. DSI Studio was not able to
render small structures from the atlases when the images had a resolution worse than 1.5mm
and this was an important limitation when tracking the hyperdirect and indirect pathways.
Although it is possible to create manual regions of interest, for non-expert users or when
analyzing a large data set, the atlases are a very useful tool which allow the reproducibility
of the region of interest. Thus, for further studies using clinical patient images, it must be
considered that the image resolution will determine if the structure can be rendered and
used as region of interest. To avoid this problem, images should have a resolution better
than 1.5mm.

It would be also interesting to reproduce the process done in the present study using
probabilistic tractography. Other studies propose these methods as a better option for
obtaining the hyperdirect pathway, but it would be worthwhile to observe if using the same
images set, probabilistic methods overcome the problems derived from the diffusion tensor
approach and maintain an acceptable rate of invalid connections.

Tracking algorithms must be improved. To improve their specificity, anatomical in-
formation from ex-vivo histological studies could be incorporated. DSI Studio eliminates
automatically some of the obtained tracts, but incorporating extra anatomical information
could help in the reduction of non-valid connections, specially in probabilistic methods.

Besides, considering VTAs not only at effect threshold would allow to study if there
are other pathways such as the corticospinal tract that when activated are related to side
effects.

With respect to the computational models, the one proposed by Müller et al. accurately
reproduces the neural populations of the cortex, thalamus and basal ganglia and incor-
porates a DBS stimulus. However, the estimation of the connection strength parameters
could be improved incorporating local field potential recordings from Parkinson patients.
These measurements of the strength response to a single spike together with the number of
connections obtained with tractography, would allow a better characterization of the beta
activity in the STN when applying a DBS stimulus. More accurate estimates of the mean
strength response to a single spike in the computational model combined with patient-
specific tractography could help in the determination of the best stimulating site, that is
STN or GPi.
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