

MASTER’S THESIS IN INDUSTRIAL ENGINEERING
ACADEMIC YEAR: 18/19

IMPLEMENTING AN INTEGRATED
DEVELOPMENT ENVIRONMENT IN

THE INTERNET OF THINGS GENERATION
OF VISUAL PROGRAMMING TOOLS

AUTHOR: JOSÉ QUILES ALEMAÑ

SUPERVISED BY:
 DIMITRIS KYRITSIS (EPFL)

 PRODROMOS KOLYVAKIS (EPFL)
 LUIS JOSÉ SAIZ ADALID (UPV)

Implementing an IDE in the
IoT Generation of Visual Programming Tools

Implementing an IDE in the
IoT Generation of Visual Programming Tools

2

ACKNOWLEDGEMENTS

“This Master Thesis will probably draw a line under my university life, an amazing journey in

which I have had the opportunity to study in different cities such as Elche, Valencia, Prague or

Lausanne. A stage in which of course I have worked hard, but especially, a stage in which I have

had a really good time; meeting some of my greatest friends, getting to know different

cultures, universities, parties and beers of the world, and learning, learning a lot, not only

about engineering subjects but also about life. For these reasons, I just can be extremely

thankful to all the people (professors, friends, family…) who have been part of this journey that

made me better both professionally and personally.

In particular, I would like to thank Professor Dimitris Kyritsis for allowing me to develop this

thesis in the ICT4SM group at EPFL, making me feel part of his exceptional team. I would also

like to mention Prodromos Kolyvakis for his patience, close support and essential collaboration

during the development of this project, and Professor Luis José Saiz for his attention,

encouragement and helpful advices from Valencia.

Por último, quiero dar las gracias a mis abuelos, por haber sido siempre ejemplo de valores

fundamentales como la humildad, el trabajo, la alegría o la familia. A mi hermana, por

aguantar al pesado de su hermano y ser una mega-crack, no sabe qué hacer con su vida y aun

así de lo único que estoy seguro es que haga lo que haga todo le va a ir bien. Y a mis padres,

hoy y siempre, por los partiditos de fútbol en el pasillo de medio metro de ancho en Santa Pola,

por esos platos espectaculares que solo vosotros podéis llegar a preparar (nótese la ironía), por

todas las charlas y discusiones que habremos tenido, por estar ahí cuando yo he estado mal,

por habérmelo dado todo… muchas gracias.”

Implementing an IDE in the
IoT Generation of Visual Programming Tools

3

ABSTRACT

The present Master Thesis is directly aligned with the bIoTope project, funded by the European

Union, which aims to build an Internet of Things (IoT) open innovation ecosystem that enables

companies to easily create IoT systems with minimal investment.

In order to contribute to the consecution of this ambitious objective, in this thesis, an

implementation of an Integrated Development Environment (IDE) in a widely used application

for connecting smart objects and getting information from them, known as Node-RED, is

carried out. To make this possible, it is conducted an in-depth study of the different concepts

and technologies needed in the set of development stages: Definition, Building a Python

Development Environment based on Skulpt and Implementation with Node-RED.

Once the implementation is completed, the new environment is used and tested in different

case scenarios, as the Heat Wave Mitigation in Greater Lyon or a possible Smart Parking

system for the FIFA World Cup of Qatar 2022, so that, it is possible to analyze the results and

draw positive conclusions, because in spite of the existence of limitations, a new environment

that facilitates users the creation of IoT systems is achieved, just as the bIoTope project lays its

foundations.

Keywords: Internet of Things (IoT), Integrated Development Environment (IDE), bIoTope,

Visual Programming, Node-RED, Industry 4.0, DevOps.

Implementing an IDE in the
IoT Generation of Visual Programming Tools

4

RESUMEN

El presente Trabajo Fin de Máster se encuentra directamente alineado con el proyecto

bIoTope, financiado por la Unión Europea, que pretende construir un ecosistema abierto y de

innovación donde las empresas puedan crear con mayor facilidad y menor inversión, sistemas

que permitan extraer la información que nos proporciona el Internet de las Cosas (IoT).

A fin de colaborar en la consecución de este ambicioso objetivo, en este trabajo, se lleva a

cabo el diseño y la implementación de un Entorno de Desarrollo Integrado (IDE) en una

aplicación ampliamente utilizada para conectar objetos inteligentes y obtener información de

ellos, conocida como Node-RED. Para hacer esto posible, se realiza un profundo estudio del

estado del arte de los conceptos y tecnologías necesarias en las diferentes etapas del

desarrollo: Definición, Creación del Entorno de Desarrollo basado en Skulpt e Implementación

con Node-RED.

Una vez completada la implementación, ésta es utilizada y testada en distintos casos reales,

como la mitigación de las olas de calor en Greater Lyon o un posible sistema de parking

inteligente para el Mundial de Fútbol de 2022 en Qatar. De esta forma, un análisis de los

resultados es realizado, obteniendo conclusiones positivas, puesto que a pesar de que existen

limitaciones, se consigue desarrollar un nuevo entorno que facilita la creación de sistemas IoT,

tal y como el proyecto bIoTope asienta sus bases.

Palabras Clave: Internet de las Cosas (IoT), Entorno de Desarrollo Integrado (IDE), bIoTope,

Programación Visual, Node-RED, Industria 4.0, DevOps.

Implementing an IDE in the
IoT Generation of Visual Programming Tools

5

RESUM

El present Treball Fi de Màster, es troba directament alineat amb el projecte biotope, finançat

per la Unió Europea, que pretén construir un ecosistema obert i d'innovació on les empreses

puguen crear amb més facilitat i menor inversió, sistemes que permeten extreure la

informació que ens proporciona l'Internet de les Coses (IoT).

Per tal de col·laborar amb la consecució d'aquest ambiciós objectiu, en aquest treball, s’ha

portat a terme la implementació d'un Entorn de Desenvolupament Integrat (IDE) en una

aplicació àmpliament utilitzada per connectar objectes intel·ligents i obtenir informació d'ells,

coneguda com Node-RED. Per fer això possible, es realitza un profund estudi de l'estat de l'art

dels conceptes i tecnologies necessàries en les diferents etapes: Definició, Creació del Entorn

de Desenvolupament basat en Skulpt e Implementació amb Node-RED.

Completada la implementació, aquesta és utilitzada i testada en diferents casos reals, com la

mitigació de les onades de calor a Greater Lyon o un possible sistema de pàrquing intel·ligent

per al Mundial de Futbol de 2022 a Qatar, d'aquesta manera es pot realitzar una anàlisi dels

resultats i treure conclusions positives, ja que tot i que existen limitacions, un nou entorn que

permet crear fàcilment sistemes IoT és desenvolupat, tal i com el projecte biotope assenta les

seues bases.

Paraules clau: Internet de les Coses (IoT), Entorn de Desenvolupament Integrat (IDE), bIoTope,

Programació Visual, Node-RED, Indústria 4.0, DevOps.

Implementing an IDE in the
IoT Generation of Visual Programming Tools

6

GENERAL INDEX

Documents of the Master Thesis

1. Document 1: Report ... (12-79)

2. Document 2: Budget .. (80-91)

3. Document 3: Annex ... (92-125)

Index of Report

1. Introduction .. 14

1.1. Context ... 14

1.2. Objectives ... 17

1.3. Motivation .. 18

2. State of the Art .. 21

2.1. Visual Programming ... 21

2.1.1. Node-RED ... 23

2.2. Integrated Development Environments (IDE) .. 24

2.3. Interpreters .. 25

2.3.1. Skulpt ... 26

2.4. Databases ... 27

2.4.1. MongoDB ... 28

2.5. DevOps ... 28

3. Technologies ... 31

3.1. Docker .. 31

3.2. Git ... 33

3.3. Programming and Markup Languages ... 34

3.3.1. JavaScript ... 34

Implementing an IDE in the
IoT Generation of Visual Programming Tools

7

3.3.2. Python .. 35

3.3.3. HTML .. 36

3.4. Node.js ... 36

3.5. Ajax ... 38

4. Development Phase ... 39

4.1. Stage 1: Definition .. 39

4.1.1. Methodology .. 39

4.1.2. Requirements ... 40

4.1.3. Tasks ... 41

4.1.4. Structure .. 42

4.2. Stage 2: Building a Python Development Environment based on Skulpt 44

4.2.1. Building Skulpt ... 44

4.2.2. Developing JavaScript Functions.. 46

4.2.3. Creating Node.js files ... 47

4.2.4. Ajax Connection ... 48

4.2.5. Implementing Python Modules ... 49

4.2.6. Configuring Graphs .. 49

4.2.7. Developing Google iframe ... 50

4.3. Stage 3: Implementation with Node-RED .. 51

4.3.1. Node-RED Service .. 51

4.3.2. Integration ... 51

4.3.3. Example of Use ... 52

5. Application Case Scenarios .. 55

5.1. Case 1: Heat Wave Mitigation, Greater Lyon .. 55

5.1.1. Case 1: Problem ... 55

5.1.2. Case 1: Justification .. 57

5.1.3. Case 1: Possible Solution ... 57

5.1.4. Case 1: IDE Functions ... 58

5.1.5. Case 1: Node-RED Flows .. 59

5.2. Case 2: Smart Parking System, FIFA World Cup Qatar 2022 .. 62

5.2.1. Case 2: Problem ... 62

5.2.2. Case 2: Justification .. 63

5.2.3. Case 2: Possible Solution ... 63

5.2.4. Case 2: IDE Functions ... 64

5.2.5. Case 2: Node-RED Flows .. 66

6. Conclusions and Future Work .. 70

7. References .. 74

Implementing an IDE in the
IoT Generation of Visual Programming Tools

8

Index of Budget

1. Introduction .. 82

2. Measurement Units ... 83

3. Detailed Budget ... 85

4. Total Cost .. 88

Index of Annex

1. Introduction .. 94

2. Annex I (INDEX.HTML) ... 95

3. Annex II (JavaScript Functions) ... 98

4. Annex III (Node.js Files) ... 100

5. Annex IV (Docker) .. 102

6. Annex V (Example of Use) .. 107

7. Annex VI (CASE 1: Heat Wave Mitigation, Greater Lyon) 108

8. Annex VII (CASE 2: Smart Parking System, FIFA World Cup Qatar 2022) 114

9. Annex VIII (ProjectDocumentation.md) .. 122

10. Annex IX (Automated Docker Commands) .. 124

Implementing an IDE in the
IoT Generation of Visual Programming Tools

9

Index of Figures

1. Figure I. Summary of the Context ... 17

2. Figure II. Industry Revolutions .. 19

3. Figure III. VPLs Distribution .. 22

4. Figure IV. MongoDB Customers .. 28

5. Figure V. DevOps ... 29

6. Figure VI. Technologies for Development ... 31

7. Figure VII Distributed SCM ... 33

8. Figure VIII Ajax Working Example ... 38

9. Figure IX Iterative Development Model .. 39

10. Figure X Development Scheduling: Phases .. 43

11. Figure XI Development Scheduling: Initial Iteration .. 43

12. Figure XII Development Scheduling: Iteration 2 + Deployment 44

13. Figure XIII Josephus IDE Function ... 53

14. Figure XIV Using IDE Function on Node-RED ... 53

15. Figure XV Josephus Node-RED Flow .. 54

16. Figure XVI Case1: Node-RED Flow I .. 59

17. Figure XVII Case1: Node-RED Flow II .. 60

18. Figure XVIII Case1: Node-RED Result .. 61

19. Figure XIX Case2: Node-RED Flow I ... 66

20. Figure XX Case2: Node-RED Flow II .. 67

21. Figure XXI Case2: Node-RED Flow III .. 68

22. Figure XXII Case2: Node-RED Result I .. 69

23. Figure XXIII Case 2: Node-RED Result II .. 69

24. Figure XXIV Allocating Error ... 71

25. Figure XXV Cost Distribution by Phase .. 89

26. Figure XXVI Cost Distribution by Activity .. 90

Implementing an IDE in the
IoT Generation of Visual Programming Tools

10

ABBREVIATIONS

A list of the different abbreviations used through the project is presented below:

• AJAX = Asynchronous JavaScript And XML

• API = Application Programming Interface

• BOM = Browser Object Model

• DB = Database

• CERN = Conseil Européen pour la Recherche Nucléaire

• CSS = Cascading Style Sheets

• DOM = Document Object Model

• DMT = Daily Mean Temperature

• EHF = Excess Heat Factor

• EU = European Union

• FIFA = Fédération Internationale de Football Association

• GSK = GlaxoSmithKline

• GUI = Graphical User Interface

• HTML = HyperText Markup Language

• IBM = International Business Machines

• ICT = Information and Communication Technology

• IDE = Integrated Development Environment

• IIoT = Industrial Internet of Things

• IoT = Internet of Things

• IT = Information Technology

• JS = JavaScript

• JSON = JavaScript Object Notation

• NCSA = National Center for Supercomputing Applications

• NoSQL = Not only Structured Query Language

• PHP = Hypertext Pre-Processor

• REPL = Read-Eval-Print Loop

• SCM = Source Code Management

• SQL = Structured Query Language

• TDP = Three Day Period

• UHI = Urban Heat Island

• VPL = Visual Programming Language

• XHTML = eXtensible HyperText Markup Language

• XML = eXtensible Markup Language

Implementing an IDE in the
IoT Generation of Visual Programming Tools

11

Implementing an IDE in the
IoT Generation of Visual Programming Tools

12

REPORT

IMPLEMENTING AN INTEGRATED

DEVELOPMENT ENVIRONMENT IN

THE INTERNET OF THINGS GENERATION

OF VISUAL PROGRAMMING TOOLS

AUTHOR: JOSÉ QUILES ALEMAÑ

SUPERVISED BY:

 DIMITRIS KYRITSIS (EPFL)

 PRODROMOS KOLYVAKIS (EPFL)

 LUIS JOSÉ SAIZ ADALID (UPV)

Implementing an IDE in the
IoT Generation of Visual Programming Tools

13

Implementing an IDE in the
IoT Generation of Visual Programming Tools

14

CHAPTER 1. INTRODUCTION

In this introductory chapter a complete definition of the project is pursued. In order to get a

better understanding, a contextualization of the project is presented in the first place, then,

the objectives are exposed with a brief description of the activities planned to meet them.

Ultimately, the reasons and motivations that have driven the author to develop this particular

project are described.

1.1. CONTEXT

This Master Thesis, according to the objectives that attempts to achieve, may be categorized in

the denominated Internet of Things (IoT) framework.

One of the most representative definitions of the Internet of Things (and also the working

definition for this thesis) was proposed by P. Guillemin and P. Friess (2009), conceptualizing

the Internet of Things as a dynamic global network infrastructure that will be integrated into

and act as an extension of the future internet, in which various “things” have unique identities,

physical attributes, virtual personalities, and intelligent interfaces. Put differently, “the

Internet of Things will allow people and things to be connected any time, any place, with

anything and anyone, ideally using any path/network and any service” [1]. In spite of the fact,

that the IoT concept is relatively new, it is claimed that the first IoT device was created long

time ago, specifically in the year 1982. Necessity, as most of the times, was the mother of

invention. In the early 1980s, David Nichols was a graduate student with an office in Carnegie

Mellon University’s computer science department; he was really interested in Coke soda and

usually run a long way to the building with the closest Coke machine. Nichols knew there was a

good chance it would be empty or that, if the machine had recently been refilled, the sodas

inside would be extremely warm. So one day, tired of walking long distances without the

recompense of a cold Coke, he started to think about the idea of monitoring the state of the

machine from his office. Nichols wrote a few friends about this idea to track the machine’s

contents remotely and taking advantage of the lights already installed on the machine, put an

end to the unsatisfying soda runs once and for all. The final program, could inform anybody

connected to the university local Ethernet if there were any Cokes in the machine, and, if so,

which ones were cold (more than three hours since restocking) [2], [3].

Now, after years of technological advances that have facilitated the extraction of valuable

information from everyday devices, just as the Coke Machine ideated by Nichols, has led the

Internet of Things to be recognized as one of the most exciting and key opportunities for both

academia and industry. For example, in the Global McKinsey Institute Report (2015), Unlocking

the potential of the Internet of Things, it was concluded that the Internet of Things offers a

Implementing an IDE in the
IoT Generation of Visual Programming Tools

15

potential economic impact of four to eleven trillion dollars a year in 2025, distributed in such a

different fields as predictive maintenance or monitoring and managing illness [4]. Regarding

academia, Miorandi et al. (2012) in the article: Internet of things: Vision, Applications and

Research Challenges, summarize the IoT technical perspective as follows: “The term Internet-

of-Things is used as an umbrella keyword for covering various aspects related to the extension

of the Internet and the Web into the physical realm, by means of the widespread deployment

of spatially distributed devices with embedded identification, sensing and/or actuation

capabilities.” [5].

Such is the importance of the Internet of Things, that one of the challenges inside the

Leadership in Enabling and Industrial Technologies objective, for the European Union (EU)

project Horizon 2020 (“the biggest EU Research and Innovation programme ever with nearly

€80 billion of funding available over seven years, from 2014 to 2020”, whose goal is to “ensure

Europe produces world-class science, removes barriers to innovation and makes it easier for

the public and private sectors to work together in delivering innovation, emphasizing on

excellent science, industrial leadership and tackling societal challenges” [6]), is directly the

Internet of Things and Platforms for Connected Smart Objects, which is identified as one of the

next big concepts to support societal changes and economic growth at an annual rate

estimated at 20% [7]. The scope of this challenge is to “create ecosystems of Platforms for

Connected Smart Objects, integrating the future generations of devices, embedded systems

and network technologies and other evolving ICT advances. These environments support

citizen and businesses for a multiplicity of novel applications. They embed effective and

efficient security and privacy mechanisms into devices, architectures, service and network

platforms, including characteristics such as openness, dynamic expandability, interoperability,

dependability, cognitive capabilities and distributed decision making, cost and energy-

efficiency, ergonomic and user-friendliness. Such Smart Environments may be enriched

through the deployment of wearable/ambulatory hardware to promote seamless

environments” [7].

However, in order to fulfil their aspiration, the projects funded will face difficulties that need

to be overcome. For example, moving from vertically-oriented closed systems, architectures

and application areas towards open systems and platforms that support multiple applications

[7], or security issues, according to the Harvard Business Review, The Internet of Things Is

Going to Change Everything About Cybersecurity, the number of unmanaged devices being

introduced onto networks daily is increasing by orders of magnitude, being predicted that

there will be 20 billion in use by 2020. Traditional security solutions will not be effective in

addressing these devices or in protecting them from hackers, attacks on IoT devices were up

280% in the first part of 2017. In fact, it is anticipated that a third of all attacks will target

shadow IT and IoT by 2020 [8].

One of those projects that fight against these obstacles is the bIoTope project, (Building an IoT

OPen innovation Ecosystem for connected smart objects) [9]. bIoTope capabilities lay the

foundation for open innovation ecosystems where companies can innovate both by the

creation of new software components for IoT ecosystems, as well as create new Platforms for

Connected Smart Objects with minimal investment. Large-scale pilots implemented in smart

cities will provide social, technical and business proofs-of-concept for such IoT ecosystems

Implementing an IDE in the
IoT Generation of Visual Programming Tools

16

[10]. The present Master Thesis is directly aligned with the bIoTope project, since it main

objective will focus on providing an open environment that facilitates companies the creation

of new Platforms for Connected Smart Objects.

Currently, different open environments and applications that allow the creation of IoT

systems, connecting smart objects and getting information from them, exist. One of the most

recognized is known as Node-RED, in fact Michelle L. Corbin (2016), presented Node-RED as

“the fundamental open-source programming tool for IoT”, highlighting its ability to integrate

all kind of services and devices, the possibility to be run at the edge of the network or in the

cloud or its easy-to-use flow-based/visual programming environment [11].

Visual programming is gaining more and more importance in the Internet of Things domain, as

P. Pratim Ray (2016) exposed in his review article: A Survey on Visual Programming Languages

in Internet of Things, the shift from traditional programming ways to visual programming may

be directly associated to the easy visualization of the programming logic (e.g., flow chart), the

benefits for naïve users to get associated with the concept of interactions among the logical

structures, its finality for rapid development of IoT products, its better handling of the “syntax

error,” or its portability on a tablet (or hand held smart phone/device) or in situations where

no physical keyboard is present [12].

Despite all the advantages that visual programming entails, there are some challenges that

need to be identified, P. Pratim Ray (2016) underlines the extensibility (limitation of

operations, impossibility to perform precise edge cases), the slow code generation, the

integration (existence of development environments that leverages ease of programming), the

standard model (having the ability to solve different kind of problems, since IoT may be

applied to different topics) and the user interface (adapted to the programming knowledge of

their users) [12].

Through this Thesis, issues related with the extensibility and especially the integration of the

Node-RED environment will be tackled. Despite Node-RED originally provided only the user

with the possibility to write JavaScript functions, a new Python module for Node-RED has

recently been created. This new module results particularly interesting since a vast increase of

the knowledge extraction libraries that offer an API for the Python language starts to be

directly accessible from the Node-RED environment.

The Python module increases the extensibility of Node-RED, providing new functionalities and

capabilities to the program; however, its development environment results insufficient to

develop and deploy complex IoT applications or at least shows huge potential for

improvement, since it is not directly adapted to the Python language, being unable to identify

for example where an error is committed, making even more difficult the task of developing

IoT systems and applications.

The next figure (Figure I) aims to summarize the contents of the present subchapter.

Implementing an IDE in the
IoT Generation of Visual Programming Tools

17

Figure I. Summary of the Context

1.2. OBJECTIVES

The fundamental goal of this project is to develop and implement an Integrated Development

Environment (IDE) that facilitates developers and companies the creation of more complicated

IoT applications in Node-RED. As it has been previously introduced, this goal is directly aligned

with the bIoTope project since it is focused on providing an open environment that facilitates

the creation of new Platforms for Connected Smart Objects. This new environment should help

users and programmers to write Python code and functions with more productivity. The IDE

will provide an interactive editor that shows line by line if the user is making any mistake in the

code, afterwards, the code may be run to see if the expected results are obtained; moreover, a

debugger tool will be present, along with different functionalities that allow the user to load

external files or to save the new code to use it directly in Node-RED.

A set of secondary objectives, whose completion will bring the consecution of the main goal a

step closer, are also proposed:

1) Good definition of the project: Getting an overall understanding about what this project

attempts to achieve and how it is actually possible to do it.

2) Understanding which technologies are needed for the development, their fundamentals

and what are their current applications.

3) Developing application that meets requirements.

4) Correct implementation with Node-RED, establishing a connection between the

developed environment and Node-RED.

5) Testing in representative case scenarios.

6) Getting insights and conclusions about the utility and effectiveness of the

implementation.

To meet each one of these objectives, a different group of actions are planned:

Implementing an IDE in the
IoT Generation of Visual Programming Tools

18

1) The right definition of the project is actually the essence of the introduction chapter

of this document, the actions needed consist in reading articles and bibliography about

the IoT framework, defining the existing limitations and obstacles to create new

platforms for connecting Smart Objects, defining an objective that actually helps to

reduce the existing limitations, planning a set of actions, whose completion assure

meeting the main goal, and last but not least, documenting the resultant planning.

2) Regarding the second objective, the actions proposed are: defining requirements and

tasks of the development phase (4.1 Stage 1: Definition), expressing with which

technologies the requirements are met, conducting a study of these technologies by

reading professional literature and official documentation, emphasizing in their

fundamentals, their advantages and their current applications (3. Technologies)

3) In order to develop an environment that meets the requirements, some activities

must be performed as defining a methodology, the requirements and tasks of the

development phase (4.1. Stage 1: Definition), making use and writing new code that

adds all the functionalities required for the environment or solving errors and adding

improvements to the environment (4.2. Stage 2: Building a Python Development

Environment based on Skulpt).

4) The actions that are needed to achieve a correct implementation with Node-RED and

establishing a connection between the developed environment and Node-RED are

dockerizing the new environment as a service (4.2. Stage 2: Building a Python

Development Environment based on Skulpt), dockerizing the Node-RED environment

with its last improvements (4.3. Stage 3: Implementing with Node-RED), integrating the

environment as a unique service with the use of docker volumes to provide the

connection.

5) The set of actions directly related with testing in representative cases are expanded

on Chapter 5: Application Case Scenarios, but they consist basically in research real

application possibilities, selecting and justifying two cases that represent a good test for

the IDE, defining problems and possible solutions for each case, developing an IoT

solution for each case, expressing the advantages and limitations of the new

environment.

6) To draw conclusions, the advantages and limitations of the new environment are

analyzed through the application cases, the expected results defined in the first chapter

are compared with the real ones, the possible areas of future improvement are studied,

and a final assessment of the work must be made.

Note: The actions described above do not include all the actions performed during the project,

just the most important ones that may be directly related with the consecution of one of the

objectives.

1.3. MOTIVATION

As a future industrial engineer, the development of this Master Thesis represents not only a

huge challenge to apply the knowledge acquired during my studies in different courses such as

Project Management, Industrial Informatics Technology, Instrumentation and Control

Systems… but also a unique opportunity to keep learning and improving in topics that may be

Implementing an IDE in the
IoT Generation of Visual Programming Tools

19

important during my professional career.

The Internet of Things and more specifically the Industrial Internet of Things (IIoT), which is

defined by H. Boyes et al. (2018) in the article: The Industrial Internet of Things (IIoT): An

Analysis Framework, as “a system comprising networked smart objects, cyber-physical assets,

associated generic information technologies and optional cloud or edge computing platforms,

which enable real-time, intelligent, and autonomous access, collection, analysis,

communications, and exchange of process, product and/or service information, within the

industrial environment, so as to optimize overall production value. This value may include;

improving product or service delivery, boosting productivity, reducing labor costs, reducing

energy consumption, and reducing the build-to-order cycle” [13], represents a new domain of

action for industrial engineers, in fact it is claimed by P. Gerbert , M. Lorenz and M. Rüßmann

(2015) that it constitutes one of the pillars of the fourth industrial revolution, the Industry 4.0

[14].

“The First Industrial Revolution used water and steam power to mechanize production. The

Second used electric power to create mass production. The Third used electronics and

information technology to automate production. Now a Fourth Industrial Revolution is building

on the Third, the digital revolution that has been occurring since the middle of the last century.

It is characterized by a fusion of technologies that is blurring the lines between the physical,

digital, and biological spheres” [15], this sentence of Klaus Schwab (2016), Founder and

Executive Chairman of the World Economic Forum, in his article: The Fourth Industrial

Revolution: what it means, how to respond, summarizes how the industry is continuously

evolving, which may also be observed in Figure II.

Figure II. Industry Revolutions

Source: SenteGroup

Implementing an IDE in the
IoT Generation of Visual Programming Tools

20

In essence, the Industry 4.0 consists in the integration between manufacturing operations

systems and information and communication technologies (ICT) – especially the Internet of

Things (IoT) [16]. This new paradigm of the Industry 4.0 has the power to transform isolated

and optimized cells production into a fully integrated, automated, and optimized production

flow. This leads to greater efficiency and change in traditional production relationships among

suppliers, producers, and customers as well as between human and machine [14], or the

potential to raise global income levels and improve the quality of life for populations around

the world. To date, technology has made possible new products and services that increase the

efficiency and pleasure of our personal lives [15].

Furthermore, apart from the learning experience in such a future-oriented field that it entails,

this project represents the opportunity to collaborate on a higher-purpose goal; by the

consecution of the objectives defined, a contribution to the programmers and developers of

IoT systems would be made, facilitating and improving the productivity of the programming

experience in a widely used application as Node-RED.

Implementing an IDE in the
IoT Generation of Visual Programming Tools

21

CHAPTER 2. STATE OF THE ART

In order to provide the reader with all the knowledge necessary to understand the situation

and the concepts of the project, in this chapter an in-depth study of the state of the art is

presented.

The study is focused on Visual Programming Language and its applications including latest

Node-RED improvements, current Integrated Development Environments, Interpreters that

allow running Python code in the browser, Databases and their particular requirements in the

Internet of Things framework, and DevOps as a Total Quality Measure for development of new

applications.

2.1. VISUAL PROGRAMMING LANGUAGE (VPL)

“Visual programming is programming in which more than one dimension is used to convey

semantics. Examples of such additional dimensions are the use of multidimensional objects,

the use of spatial relationships, or the use of the time dimension to specify ‘‘before–after’’

semantic relationships. Each potentially significant multidimensional object or relationship can

be regarded as a token (just as in traditional textual programming languages each word is a

token) and the collection of one or more such tokens is a visual expression… When a

programming language’s (semantically significant) syntax includes visual expressions, the

programming language is a visual programming language (VPL)” [17], M. Burnett (1999), Visual

Programming, Wiley Encyclopedia of Electrical and Electronics Engineering.

A layman’s explanation of the purpose of Visual Programming is given by Matthew Revell

(2017), he affirms that “Visual programming lets humans describe processes using illustration.

Whereas a typical text-based programming language makes the programmer think like a

computer, a visual programming language lets the programmer describe the process in terms

that make sense to humans” [18]. It is important to understand that visual programming does

not represent a unique way to describe the “process” but a set of different techniques and

paradigms such as [17]:

1) Imperative Visual Programming by Demonstration: the programmer demonstrates

the desired actions.

2) Form/Spreadsheet Based Visual Programming: A programmer programs by creating a

form and specifying its contents.

3) Dataflow Visual Programming: The dataflow paradigm is currently the approach to

visual programming used most widely in industry; Dataflow paradigm distinguishes

itself through its explicitness about the dataflow relationships in the program.

Implementing an IDE in the
IoT Generation of Visual Programming Tools

22

4) Rule-Based Visual Programming: the programmer specifies the rules by

demonstrating a post-condition on a pre-condition.

VPLs are currently used for educational, multimedia, video games, system

development/simulation, automation, and data warehousing/business analytics purposes [12].

A recent survey conducted by Partha Pratim Ray (2016) presents the percentagewise

distribution of VPLs in the illustrated domains (Figure III). Out of 89 differently surveyed VPLs,

system simulation and multimedia hold 60% of the market, marking 35% and 25%,

respectively.

Figure III. Distribution of VPLs across domains

 Source: P. Pratim Ray,2016 [12]

Visual Programming is particularly interesting in the IoT context due to the easy visualization of

the programming logic (e.g., flow chart), the benefits for naïve users to get associated with the

concept of interactions among the logical structures, its finality for rapid development of IoT

products, its better handling of the “syntax error,” or its portability on a tablet (or hand held

smart phone/device) or in situations where no physical keyboard is present [12]. The presence

of these advantages has promoted the creation of new IoT environments based on visual

programming as “Visuino” (Using blocks to program Arduino boards. It is based on the drag-

and-drop paradigm that is used to control sensors and peripherals [19]), “Wia” (cloud platform

that simplifies the IoT app development connecting devices together and with external

services [20]) or “Node-RED” (Chapter 2.2.1. Node-RED). However, they still have to overcome

great challenges as the ones identified by Partha Pratim Ray (2016) [12]:

1) Extensibility. VPLs allow developer/user to perform a limited set of operations (things)

easily, but precise edge cases are too far difficult (even impossible) to achieve in

practice. These VPLs should give user more power, instead of constricting. This might

give an opportunity for the IoT enabled application development process where

extensibility is a fundamental need.

2) Slow Code Generation. Performance diagnosis is a key part of any developer’s testing

phase, especially in IoT where lots of devices are engaged into the system. But, in case of

Implementing an IDE in the
IoT Generation of Visual Programming Tools

23

VPLs, it seems that they work on leaky abstractions, resulting in slow code generation

which is nearly impossible to optimize by a developer.

3) Integration. Developers live in Integrated Development Environments (IDEs) and

simulators world. If the IDEs and simulators are poor in effort and performance, the

whole system results prejudice, decreasing developers productivity.

4) Standard Model. This is another serious challenge in VPLs of IoT; Different service

professionals like scientists, electrical engineers, IT industry programmers, and so on are

taught and trained how to model the problem statement in different manner. There is a

strong need of a standard modular structure so that a well-trained developer would be

able to build any sort of applications on different genre of platforms.

5) User Interface. VPLs in IoT are well modeled by appropriate data-flows between self-

contained logical boxes that essentially mimic the physical world.

By the development and implementation of an Integrated Development Environment with

Node-RED, issues related with the extensibility and especially the integration of this program

will be tackled.

2.1.1. Node-RED

Node-RED is a programming tool for wiring together hardware devices, APIs and online

services in new and interesting ways [21]. Node-RED is a dataflow visual programming tool

based on the concept of “nodes” that are black box elements that perform specific tasks. The

data flows through the nodes according to the node’s connections [22].

Node-RED started life in early 2013 as a side-project by Nick O’Leary and Dave Conway-Jones

of IBM’s Emerging Technology Services group. It was open-sourced in September 2013 and has

been developed in the open ever since, culminating in it being one of the founding projects of

the JS Foundation in October 2016 [22]. The decision to be built on Node.js and developed in

the open has lead Node-RED to have over 225,000 modules in Node's package repository,

being easy to extend the range of palette nodes to add new capabilities [21].

One of the modules recently created (2017), that is particularly relevant for the development

of this project is the Python module [23]. Since the beginning of the Node-RED project,

JavaScript functions could be created within the editor using a rich text editor, however a vast

number of knowledge extraction libraries that offer an API for the Python language were not

directly accessible from the Node-RED environment, and of course, in IoT systems that manage

large amounts of data is interesting to make use of those libraries. The Python module solved

the problem, allowing the user to create Python functions inside a node in the flow. However,

it automatically generated a new area of improvement, since the development environment of

these functions does not provide a way to detect in which line an error is made or what is the

actual reason of the error, being frustrating to develop complex applications that are prone to

errors.

The new integrated development environment, just as was established in the objectives

subchapter (1.2 Objectives), should facilitate users the creation of complex IoT systems using

the new Python module (extensibility), programming with more productivity (integration).

Implementing an IDE in the
IoT Generation of Visual Programming Tools

24

2.2. INTEGRATED DEVELOPMENT ENVIRONMENTS (IDEs)

An Integrated Development Environment is defined by M. Kerrigan, et al. (2007) as: “a type of

computer software that assists computer programmers to develop software. The main aim of

an IDE is to improve the productivity of the developer by seamlessly integrating tools for tasks

like editing, file management, compilation, debugging and execution” [24]. In the same article

it is underlined the need for adequate tool support for working with semantic technologies

and how IDEs like the Eclipse Java Development Toolkit have proven that good tool support

can improve the productivity of engineers [24].

There are a huge variety of different IDEs. There are IDEs that are designed to work with one

specific language, cloud-based IDEs, IDEs customized for the development of mobile

applications or for HTML, and IDEs meant specifically for Apple or Microsoft development [25]:

1) Multi-Language IDEs

• Eclipse: Supports C, C++, Python, Perl, PHP, Java, Ruby and more. This free and open

source editor is the model for many development frameworks. Eclipse began as a

Java development environment and has expanded through plugins. Eclipse is

managed and directed by the Eclipse.org Consortium.

• NetBeans: Supports Java, JavaScript, PHP, Python, Ruby, C, C++ and more. This

option is also free and open source. All the functions of the IDE are provided by

modules that each provide a well-defined function. Support for other programming

languages can be added by installing additional modules.

2) IDEs for Mobile Development

• There are IDEs specifically for mobile development, including PhoneGap and

Appcelerator's Titanium Mobile.

3) HTML IDEs

• Some of the most popular IDEs are those for developing HTML applications. For

example, IDEs such as HomeSite, DreamWeaver or FrontPage automate many tasks

involved in web site development.

4) Cloud-Based IDEs

• Cloud IDEs give developers access to their code from anywhere. For example,

Nitrous is a cloud-based development environment platform that supports Ruby,

Python, Node.js and more.

5) IDEs Specific to Microsoft or Apple

• Visual Studio: Supports Visual C++, VB.NET, C#, F# and others. Visual Studio is

Microsoft's IDE and is designed to create applications for the Microsoft platform.

• Xcode: Supports the Objective-C and Swift languages, and Cocoa and Cocoa Touch

APIs. This IDE is just for creating iOS and Mac applications and includes an

iPhone/iPad simulator and GUI builder.

6) IDEs for Specific Languages

• Some IDEs cater to developers working in a single language. These include CodeLite

and C-Free for C/C++, Jikes and Jcreator for Java, Idle for Python, and RubyMine for

Ruby/Rails.

Implementing an IDE in the
IoT Generation of Visual Programming Tools

25

The IDE proposed for development, pursues an improvement in the programming experience

of the new Python module of Node-RED. Because of that reason, the new IDE will be

categorized as Cloud-based (the code needs to be on the cloud in order to be accessible to

Node-RED) IDE for Specific Language (Python).

Regarding the functionalities, an IDE can include all kind of features with the objective of

improving the developer’s productivity such us code editors, debuggers (tool used during

testing to help debug application programs), compilers (tool that translates the whole program

into machine code before the program is run), interpreters (tool that translates code into

machine code, instruction by instruction, being easier to debug and detect the error than in a

compiler), build automation tools (tools to automate common developer tasks) ... In our case,

a code editor, an interactive code editor (editor that shows if an error appears after writing

each line), a debugger, an output screen that allows the user to visualize if he receives the

expected result after running the code, and one interpreter will be present on the IDE.

2.3. INTERPRETERS

In computer science, an interpreter is a computer program that directly executes, i.e.

performs, instructions written in a programming or scripting language, without requiring them

previously to have been compiled into a machine language program [26]. Interpreters are

usually confused with compilers since both are language translators, both translate the

programs from a source language that are in human readable form into an equivalent program

in an object language, usually a machine language. However, they present significant

differences [27]:

1) Input: While a compiler takes the entire program at a time, the interpreter takes only one

line at a time.

2) Speed: Compilers are comparatively faster than interpreters.

3) Memory: Interpreters require less memory since they do not create intermediate object

code.

4) Errors: Interpreters display errors line by line, being easier to detect them than in the

compiler case, where all the errors of the program are displayed at the same time.

5) Programing Languages: C++, C or Scala requires the use of compilers and PHP, Python or

Java normally use interpreters.

As the IDE that is decided to be developed requires a Python implementation in browser to be

accessible to Node-RED, an interpreter that translates the Python code to a language as

JavaScript that can be run in the browser is needed.

Currently there are different options that may be used to achieve this goal:

1) Brython: Brython is an open source project, which main goal is to replace JavaScript with

Python, as the scripting language for web browsers. In order for the Python script to be

processed, “it is necessary to include brython.js and to run the brython() function upon

page load (using the onload attribute of the <BODY> tag). While in the development

phase, it is possible to pass an argument to the brython() function: 1 to have the error

messages displayed to the web browser console, 2 to also get the JavaScript code

Implementing an IDE in the
IoT Generation of Visual Programming Tools

26

displayed along with the error” [28]. The biggest disadvantage of Brython is actually its

objective or general purpose, Brython is not created to write Python code in web in an

efficient and user-friendly environment, it is developed to be able to use the Python code

as a substitute of JavaScript to develop webpages.

2) Repl: Repl represents a project that pursues to make programming more accessible.

Building powerful yet simple tools and platforms for educators, learners, and developers

[29]. Basically, is an online Read-Eval-Print Loop environment that takes single user inputs

(i.e., single expressions), evaluates them, and returns the result to the user for different

programming languages including Python. Repl presents great advantages since provides

quite feedback when a mistake is made, but the fact that is not completely open sourced

limits its applicability to this thesis.

3) Pypy.js: Experiment in building a fast and compliant python environment for the web

using the PyPy python interpreter [30]. Pypy.js represents a possible Python interpreter

for the project since it is totally open sourced and provides a code editor that allows the

user to write its Python code and visualize the results. Some points that discourage the

use of Pypy.js are the absence of a debugger, the impossibility to import some modules

and especially the state of the project that is currently (November 2018) in pause [31].

4) Skulpt: Skulpt is an entirely in-browser implementation of Python. Its main objective is

providing the possibility to use Python on both the server and on the client and sharing

code between them, creating a translation from Python to JavaScript directly in the

browser so that there isn’t a pre-compile step required to improve iteration time [32].

Skulpt represents a great opportunity since it is a completely open source project with a

lot of documentation, providing not only a code editor, but also an interactive screen that

displays errors line by line, or a debugger; the biggest limitation is that some python

modules are not implemented yet, but in contrast with the Pypy.js, the Skulpt project is

very active, providing improvements and new modules implementations with high

frequency.

5) Transcrypt: Transcrypt is a tool to compile a fairly extensive subset of Python into

compact, readable JavaScript. It has the following characteristics: It’s lightweight, it offers

the semantic essence of Python along with the clean syntax that the language is famous

for, it cooperates flawlessly with the JavaScript universe of web-oriented libraries, it

translates Python into highly readable, easy to debug JavaScript [33]. The problem with

Transcrypt is similar to Brython, despite it provides a possible translation from Python to

JavaScript, its mission is using the Python code as a substitute of JavaScript to develop

webpages, not to help the user to write and run Python code in the browser.

Taking into account all these considerations and the requirements demanded by the IDE, it is

decided to create the Integrated Development Environment based on the Skulpt interpreter.

2.3.1. Skulpt

Skulpt is idea of Scott Graham, but Brad Miller has been shepherding the development since

2010 [34]. Currently (November 2018) Skulpt project has more than 2800 commits (the last

commit dated in October 2018) distributed in 23 branches and 63 different contributors [34].

This data gives us an idea about the level of commitment of developers and contributors with

the project.

Implementing an IDE in the
IoT Generation of Visual Programming Tools

27

Skulpt is already implemented in different projects with success:

1) How to Think like a Computer Scientist: Interactive Book that as its name indicates try to

teach how computer scientist thinks, using an interactive editor for Python based on

Skulpt [35].

2) Trinket: Learning webpage of Python with different features for students and schools.

Trinket lets you run and write code in any browser, on any device, thanks to the Skulpt

based interface [36].

3) CodeSkulptor: Integrated Development Environment based on Skulpt consisting basically

of a Code Editor [37].

As it has been previously discussed, the biggest limitation of Skulpt, from the point of view of

this project, is the impossibility to import some Python modules; however, this limitation is

considered by Skulpt developers and contributors, who are actually working in its solution. In

fact, different modules have been recently developed as the numpy module (April 2018), the

pygal module (October 2018), or mathplotlib (October 2018) by Trinket developers [38].

In conclusion, and considering the existence of limitations, which are expected to be reduced,

the possibility to write Python code in the browser due to its translation mechanism to

JavaScript, the presence of different tools as code editors, debugger… and the existence of

other projects who have already implemented it, make Skulpt the option chosen to develop

the IDE, object of this Master Thesis.

2.4. DATABASES

 “One of the most important outcomes of the IoT field is the creation of an unprecedented

amount of data. Storage, ownership and expiry of the data become critical issues… The data

have to be stored and used intelligently for smart monitoring and actuation” [39]. This

fragment of the article: Internet of Things (IoT): A vision, architectural elements, and future

directions written by J.Gubby, et al. (2013), represents in a clearly manner the importance of

data storage in the Internet of Things Generation. Hence databases, defined as structured set

of data held in computer storage and typically accessed or manipulated by means of

specialized software [40], are expected to have a major role in this era.

Some of the challenges that the databases will have to overcome in the IoT generation, are

identified by J. Cooper and A. James (2009) in the article: Challenges for database

management in the internet of things, such as Size and Scale (high volumes of data),

Heterogeneity (Different structures), Speed of transactions (High speed requirements) or Data

Protection (Personal Information needs to stay secure) [41].

Databases are often divided in relational databases based on SQL (Structured Query Language)

and NoSQL databases that provides a mechanism for storage and retrieval of data that is

modeled in means other than the tabular relations used in relational databases. NoSQL

databases are gaining greater presence to storage the IoT data due to the heterogeneity and

speed requirements, SQL databases performs worse when the data is not “structured”

(regularly segmented portions designed to fit into particular [schema] columns, slots and

repositories) [42].

Implementing an IDE in the
IoT Generation of Visual Programming Tools

28

A comparison of the performance of SQL and NoSQL databases is made by Y. Li and S.

Manoharan (2013), their objective was to “independently investigate the performance of

some NoSQL and SQL databases in the light of key-value stores”. Concluding that “not all

NoSQL databases perform better than SQL databases” and highlighting that “Couchbase and

MongoDB are the fastest two overall for read, write and delete operations. Couchbase,

however, does not support fetching all the keys (or values)” [43].

In base to this conclusion, seems interesting when it comes to testing the implementation of

the IDE with Node-RED, to use a MongoDB database for storing and analyzing the data

received in the application case scenarios.

2.4.1. MongoDB

The basic features of MongoDB are [44]:

1) MongoDB stores data in flexible, JSON-like documents, meaning fields can vary from

document to document and data structure can be changed over time.

2) The document model maps to the objects in your application code, making data easy to

work with.

3) Ad hoc queries, indexing, and real time aggregation provide powerful ways to access and

analyze the data.

4) MongoDB is a distributed database at its core, so high availability, horizontal scaling, and

geographic distribution are built in and easy to use.

5) MongoDB is free and open-source.

These features provide clear advantages in the IoT era, since this system can manage data of

any structure, no matter how often it changes. MongoDB is built to scale out on commodity

hardware, serves millions of users and billions of sensors without complex hardware or extra

software. As sensor data grows, so does MongoDB. Finally, MongoDB can analyze data of any

structure. It can do so directly within the database, giving results in real time and without

expensive data warehouse loads [45].

Moreover, MongoDB is already being used by different companies to store data, just as it is

showed on Figure IV, providing certain guarantee when it comes to using it on the application

case scenarios.

Figure IV. MongoDB Customers

Source: MongoDB

Implementing an IDE in the
IoT Generation of Visual Programming Tools

29

2.5. DEVOPS

DevOps does not have a unique and totally accepted definition, since it represents a large

enough concept that requires some nuances to fully understand; some of the most

representative ones are provided by Len Bass et al. (2015) affirming that “DevOps is a set of

practices intended to reduce the time between committing a change to a system and the

change being placed into normal production, while ensuring high quality” [46], and M.

Huttermann (2012) defining DevOps as “a set of practices that advocate the collaboration

between software developers and IT operations where the aim is to shorten the feedback loop

while aligning the goals of both the development and IT operations departments” [47]. In base

to these definitions, some conclusions can be drawn:

1) The importance of DevOps does not reside in the set of practices, any of the authors

focused on that, but in the goal that it pursues. In fact, other authors as C. Boettiger,

defined DevOps as a philosophy or a set of principles focused on meeting particular goals

[48].

2) Right interaction between Development and Operations/Production phases must be

provided.

3) The aim that is pursued by the application of the set of practices is obtaining high

efficiency, reducing times and ensuring quality.

Figure V: DevOps

 Source: ShutterStock

DevOps practices are categorized in five different categories according to Len Bass et al. (2015)

[46]:

1) High requirements to ensure high quality.

2) Development directly responsible for errors in production. (reduce time to solve errors)

3) Enforce deployment process used by both Development and Operations. (reduce

misconfigurations)

4) Continuous deployment and automation of processes.

5) Quality Control Practices during the whole process.

To get a better understanding of the DevOps relevance nowadays, a study conducted by

Gartner in 2016 showed that DevOps tools (IT tools directly align with the DevOps practices

and principles, such as Docker, Jenkins, Git…) reached $2.3 billion in 2015 and that “DevOps

Implementing an IDE in the
IoT Generation of Visual Programming Tools

30

will evolve from a niche to a mainstream strategy employed by 25 percent of Global 2000

organizations” [49].

DevOps philosophy and concepts are particularly important in the development phase of this

project since they are applied continuously in order to reduce errors and failures, time of

development and to increase the overall quality of the final solution. These concepts are

further developed on Chapter 4.1.2. Methodology.

Implementing an IDE in the
IoT Generation of Visual Programming Tools

31

CHAPTER 3. TECHNOLOGIES

Following with the proposed actions to accomplish the objectives of the project, a study of the

different technologies required for the development phase is conducted, emphasizing on their

fundamentals, and their current applications.

In order to develop the Python Integrated Development Environment under the DevOps

philosophy different tools and programming languages are required, these technologies

needed for the development are presented and briefly described on the following scheme

(Figure VI):

Figure VI. Technologies for Development

3.1. DOCKER

Docker is an open platform for developing, shipping, and running applications. Docker enables

the separation of the applications from the infrastructure, so that software can be delivered

quickly [50].

Implementing an IDE in the
IoT Generation of Visual Programming Tools

32

Docker provides the ability to package and run an application in a loosely isolated environment

called a container. The isolation and security allow the user to run many containers

simultaneously on a given host. Containers are lightweight because they don’t need the extra

load of a hypervisor but run directly within the host machine’s kernel. This means more

containers can be run on a given hardware combination than using virtual machines. Docker

containers can be run within host machines that are actually virtual machines [50].

Basically, a container is a standard unit of software that packages up code and all its

dependencies, so the application runs quickly and reliably from one computing environment to

another. A Docker container image is a lightweight, standalone, executable package of

software that includes everything needed to run an application: code, runtime, system tools,

system libraries and settings [51].

Docker provides tooling and a platform to manage the lifecycle of the containers [50]:

1) Developing applications and its supporting components using containers.

2) The container becomes the unit for distributing and testing the application.

3) Deploying the application in the production environment, as a container or an

orchestrated service. This works the same whether the production environment is a local

data center, a cloud provider, or a hybrid of the two.

According to C. Boettiger (2015): “Docker combines several areas from systems research - such

as operating system virtualization, cross-platform portability, modular re-usable elements,

versioning, and a ‘DevOps’ philosophy” [48]. In fact, Docker has become one of the most

representative tools of DevOps [52], Clark et al. (2014) affirmed that: “technologies that allow

efficient usage of available hardware, like Docker, stand to provide substantial savings and

potential for re-use by researchers with less direct access to capital” [53]. Docker provides a

faster time to market (development and operational agility due to containerization), higher

development productivity (eliminating dependencies issues), a reduction of IT infrastructure

(better utilization of the server compute density) and a higher IT operational efficiency

(automating management of different applications into a uniform operating model) [54].

These features have lead international companies to develop some of their services using

docker [55]:

1) GSK (GlaxoSmithKline): “Docker allows GSK to support a multitude of tools and

technologies and interfaces so that scientists can run data analysis at scale”. Ranjith

Raghunath (GSK Director of Big Data Solutions).

2) PayPal: 200,000 Containers are managed in the Cloud to speed transactions and

productivity of PayPal.

3) Lindsay Corporation: leverages Docker to connect 450,000 of its IoT-enabled FieldNET

pivot irrigation systems globally to save over 700 billion gallons of water.

In conclusion, Docker will provide the environment to develop, test and deploy our service.

Thanks to its technology based on containers, Node-RED and the Integrated Development

Environment will be built with all the dependencies needed to be run and deployed in any

infrastructure.

Implementing an IDE in the
IoT Generation of Visual Programming Tools

33

3.2. GIT

Git is a free and open source distributed version control system designed to handle everything

from small to very large projects with speed and efficiency [56]. Git was created in 2005 by

Linus Torvalds, (the creator of Linux) as a distributed system that needed to satisfy some

requirements as speed, simple design, strong support for non-linear development, fully

distributed and able to handle large projects [57]. Since its birth, Git has evolved to be easy to

use and yet retain these initial qualities [57].

One of the nicest features of any Distributed Source Code Management (SCM), Git included, is

that it's distributed (Figure VII). This means that instead of doing a "checkout" of the current

tip of the source code, you do a "clone" of the entire repository. This means that even in a

centralized workflow, every user essentially has a full backup of the main server. Each of these

copies could be pushed up to replace the main server in the event of a crash or corruption. In

effect, there is no single point of failure with Git unless there is only a single copy of the

repository [57].

Figure VII. Distributed SCM

Source: PRO Git 2014 [57]

Other particular features of Git are the existence of an “Staging Area” (An intermediate area

where commits can be formatted and reviewed before completing the commit), the Branching

and Merging (The possibility to divide the project in “branches” that can be developed

separately and also merging them into one that contains all the information) or the Data

assurance (ensures the cryptographic integrity of the whole project) [58].

While it’s not a direct part of the Git open source project, it is important to mention the

existence of GitHub, GitHub is the single largest host for Git repositories, and is the central

point of collaboration for millions of developers and projects. A large percentage of all Git

repositories are hosted on GitHub, and many open-source projects use it for Git hosting, issue

tracking or code reviewing [57].

Implementing an IDE in the
IoT Generation of Visual Programming Tools

34

Git along with GitHub, currently, represent one of the most relevant DevOps tools [52], since

they provide developers and operations teams a platform to collaborate, monitor and control

changes in the project, improving the efficiency and reducing the risk to failure. Companies as

Facebook, Google or Microsoft made use of Git [56].

Through the development of this Master Thesis, Git technology is used constantly to save,

monitor and track the progress of the project.

3.3. PROGRAMMING AND MARKUP LANGUAGES

As part of the development of this project, the use of different programming languages is

needed to meet the defined objectives. These programming languages are JavaScript for IDE

development and Python for automating processes and completing the application case

scenarios. HTML is used as a markup language to allow the IDE’s implementation on browser.

3.3.1. JavaScript

JavaScript is a lightweight, interpreted programming language with object-oriented

capabilities. The general-purpose core of the language has been embedded in Netscape,

Internet Explorer, and other web browsers and embellished for web programming with the

addition of objects that represent the web browser window and its contents. Client-side

JavaScript allows executable content to be included in web pages -- it means that a web page

need no longer be static HTML, but can include programs that interact with the user, control

the browser, and dynamically create HTML content [59].

The origin of JavaScript dates back to 1995 when Brendan Eich began developing a scripting

language called LiveScript for the upcoming release of Netscape Navigator 2.0, with the

intention of using it both on the browser and on the server. Just before Netscape Navigator 2.0

was officially released, Netscape changed the name to JavaScript in order to capitalize on Java

as a new Internet buzzword. Netscape’s gamble paid off and JavaScript became a must-have

from that point on [60].

A complete JavaScript implementation is made up of three distinct parts [60]:

1) The Core (ECMAScript): ECMAScript is simply a description, defining all the properties,

methods, and objects of a scripting language. “ECMAScript can provide core scripting

capabilities for a variety of host environments, and therefore the core scripting language

is specified...apart from any particular host environment” [60].

2) The Document Object Model (DOM): The Document Object Model (DOM) is an

application programming interface (API) for HTML as well as XML. The DOM maps out an

entire page as a document composed of a hierarchy of nodes. Each part of an HTML or

XML page is a derivative of a node. It describes methods and interfaces for working with

the content of a Web page.

3) The Browser Object Model (BOM): describes methods and interfaces for interacting with

the browser. Using the BOM, developers can move the window, change text in the status

bar, and perform other actions that do not directly relate to the page content. What

makes the BOM truly unique, and often problematic, is that it is the only part of a

JavaScript implementation that has no related standard.

Implementing an IDE in the
IoT Generation of Visual Programming Tools

35

According to Web Technology Surveys, JavaScript is used by 95% of all the websites

(November 2018) [61] due to its capability to add behavior; different sites as Google, Facebook

or YouTube make use of JavaScript programming language.

Since the Integrated Development Environment requires dynamic functionalities (the user

should be able to write, save, load and run Python code), this project employs JavaScript

programming language because it presents the right features to develop the required

functionalities on the client side.

3.3.2. Python

Python is an interpreted, open source, object-oriented programming language. It incorporates

modules, exceptions, dynamic typing, very high level dynamic data types, and classes. Python

combines remarkable power with very clear syntax. It has interfaces to many systems calls and

libraries, as well as to various window systems, and is extensible in C or C++. It is also usable as

an extension language for applications that need a programmable interface. Finally, Python is

portable: it runs on many Unix variants, on the Mac, and on Windows 2000 and later [62].

Three of the most important features of Python are that is easy to learn, easy to use and with a

maturing ecosystem of scientific libraries and modules:

1) Easy to Learn: “Most developers in the CMS experiment are physics students looking for

new physics in the data. Usually they don’t have any formal IT training. Python allows

them to be productive from the very start and to dedicate most of their time on the

research they want to carry out.” [63] Benedikt Hegner – CERN. In fact, when its creator,

Guido van Rossum, began to develop the Python programming language in the 1980s, he

worked at the Centrum voor Wiskunde en Informatica in Amsterdam (Netherlands) in the

ABC Working Group. ABC was a programming language that had been designed to teach

IT students, so he took advantage of this situation to create a new programming language

with similar characteristics [63].

2) Easy to Use: Python executes programs immediately; there are no intermediate

compilers or link steps, which makes for an interactive programming experience and rapid

turnaround after changes in the programs. But also, Python eliminates much of the

complexity of other programming languages with a deliberately simple syntax and

powerful built-in tools.

3) Libraries and Modules: “The Python ecosystem is very rich and well-developed. Our

developers can incorporate existing libraries into their projects and only need to develop

the new functions that they need” [63] Tarek Ziadé – Mozilla Service Team.

The Python programming language is establishing itself as one of the most popular languages

for scientific computing [64]. Python libraries and modules include some of the most powerful

tools in the Industry 4.0 as Scikit-learn (“Scikit-learn harnesses this rich environment to provide

state-of-the-art implementations of many well-known machine learning algorithms, while

maintaining an easy-to-use interface tightly integrated with the Python language”) [64],

Numpy (“Input data is presented as numpy arrays, thus integrating seamlessly with other

scientific Python libraries. It also provides basic arithmetic operations”) [64], or Scipy

(“efficient algorithms for linear algebra, sparse matrix representation, special functions and

basic statistical functions”) [64].

Implementing an IDE in the
IoT Generation of Visual Programming Tools

36

These characteristics make Python an important technology for this project. Python scripts will

be used for automating processes and commands in the command line (easy to learn and easy

to use). Moreover, Python functions, that include external modules as numpy, will be

developed to test the IDE performance in the application cases.

3.3.3. HTML

In order to publish information for global distribution, exists the need for a universally

understood language, a kind of publishing language that all computers may potentially

understand. The publishing language used by the World Wide Web is HTML [65], which stands

for HyperText Markup Language.

HTML was originally developed by Tim Berners-Lee at CERN and popularized by the Mosaic

browser developed at NCSA. During the course of the 1990s it has blossomed with the

explosive growth of the Web. During this time, HTML has been extended in several ways, until

its last release HTML 5.2 on December 2017, giving authors the means to [65]:

1) Publish online documents with headings, text, tables, lists, photos, etc.

2) Retrieve online information via hypertext links, at the click of a button.

3) Design forms for conducting transactions with remote services, for use in searching for

information, making reservations, ordering products, etc.

4) Include spread-sheets, video clips, sound clips, and other applications directly in their

documents

Since, the IDE needs to be displayed on web, results pretty obvious to develop part of the

client-side interface using HTML as a universal language in the World Wide Web.

3.4. NODE.JS

The official website defines Node as “a platform built on Chrome’s JavaScript runtime for easily

building fast, scalable network applications. Node.js uses an event-driven, non-blocking

Input/Output model that makes it lightweight and efficient, perfect for data-intensive real-

time applications that run across distributed devices” [66]. One of these applications based on

Node.js technology, as it has previously introduced, is Node-RED, which takes full advantage of

its event-driven, non-blocking model, making it ideal to run at the edge of the network on low-

cost hardware as well as in the cloud [21].

Node uses V8, the virtual machine that powers Google Chrome, for server-side programming.

V8 gives Node a huge boost in performance, preferring straight compilation into native

machine code over executing bytecode or using an interpreter [67]. Because Node uses

JavaScript on the server, other benefits are also observed by M. Cantelon et al. (2011), on their

book Node.js in action [67]:

1) Developers can write web applications in one language, which helps by reducing the

context switch between client and server development, and allowing for code sharing

between client and server, such as reusing the same code for form validation or game

logic.

Implementing an IDE in the
IoT Generation of Visual Programming Tools

37

2) Using JSON, which a very popular data interchange format today, since it is native to

JavaScript.

3) JavaScript is the language used in various NoSQL databases (such as CouchDB and

MongoDB), so interfacing with them is a natural fit.

4) JavaScript is a compilation target, and there are a number of languages that compile to it

already.

5) Node uses one virtual machine (V8) that keeps up with the ECMAScript standard. In other

words, browsers do not have to catch up to use new JavaScript language features in

Node.

In definitive, Node.js’s architecture makes it easy to use a highly expressive, functional

language for server programming, without sacrificing performance and stepping out of the

programming mainstream [68]. Hence, these advantages are exploited in this project due to

the fact that some functionalities of the IDE require access to the server side (saving the code

written in the IDE into a new file or loading the content from one file of the server into the

IDE).

3.5. AJAX

Asynchronous JavaScript And XML (AJAX) is the primary method for enabling asynchronous

communication over the Web [69]. Actually, important tools as Google Maps or Gmail make

use of Ajax technology.

Ajax isn’t just a technology, but several of them coming together in a powerful new way.

Summarizing, Ajax incorporates [70]:

1) Standards-based presentation (XHTML and CSS).

2) Dynamic display and interaction (Document Object Model).

3) Data interchange and manipulation (XML).

4) Asynchronous data retrieval (XMLHttpRequest).

5) JavaScript binding everything together.

A layman’s explanation of how Ajax works is made by w3schools.com [71]:

1) An event occurs in a web page (the page is loaded, a button is clicked)

2) An XMLHttpRequest object is created by JavaScript

3) The XMLHttpRequest object sends a request to a web server

4) The server processes the request

5) The server sends a response back to the web page

6) The response is read by JavaScript

7) Proper action (like page update) is performed by JavaScript

In definitive, Ajax provides a simple and efficient way to interconnect the client with the

server side without reloading the webpage.

Implementing an IDE in the
IoT Generation of Visual Programming Tools

38

Figure VIII. Ajax working example

Source: W3Schools

Regarding this Master Thesis, Ajax technology is used to take advantage of the great possibility

that it offers as it is providing the connection between the client side and the server side. For

example, when the user loads a file in the Integrated Development Environment, a request

asking to read the contents of a file on the server side will be sent, the server will process the

request and afterwards those contents will be sent back as a response to a JavaScript function

that will write the contents in the editor.

Implementing an IDE in the
IoT Generation of Visual Programming Tools

39

CHAPTER 4. DEVELOPMENT PHASE

4.1. STAGE 1: DEFINITION

In this subchapter, it is presented not only the basic structure and methodology to follow

during the development phase but also the needed requirements that must be accomplished

and the most important tasks that must be performed. This stage has a vital importance for

the development since it provides the foundations where the rest of the development will be

built on.

4.1.1. Methodology

The methodology followed during the development phase is based on the Iterative

Development Model. Iterative Development is an approach to building software in which the

overall lifecycle is composed of several iterations on sequence, each iteration is composed for

activities such as requirements analysis, designing, programming and testing [72] (Figure IX).

Figure IX. Iterative Development Model

Source: WebSiteDesign

In definitive, the development phase requires an initial planning that defines methodology,

structure and initial requirements; however, they will evolve as the development advances.

Then, in order to fulfil the requirements an analysis of the tasks needed will be conducted;

once the tasks are performed, the resultant environment is tested, if the result is not

satisfactory a debugging of the errors proceeds, then the cycle begins again with the definition

of new requirements that may be identified. The iterations will finish when no more

requirements are identified and the rest of them are fulfilled, ensuring that the environment is

ready to be deployed in the real case scenarios.

Implementing an IDE in the
IoT Generation of Visual Programming Tools

40

In parallel with the Iterative Development Model proposed, different practices and tools

aligned with the DevOps principles are used. As it has been previously stated, DevOps

philosophy is applied in order to reduce failures, time of development and to increase quality.

The first measure adopted related with DevOps is the decision to work on a virtual machine

during the whole development phase. A virtual machine is a computer file, typically called an

image that behaves like an actual computer [73]. With a virtual machine a total isolation from

the host system is achieved, meaning that the software inside a virtual machine can’t escape

or tamper with the computer itself. This feature is interesting since allows us to test and get

used to the technologies used in the project, preventing damages in the host operating system

that would entail in more developing time.

The second important DevOps practice is making use of Git. The methodology defined is clear,

each significant change or development in the project must be committed to Git; once a

requirement is fulfilled, the change will be “committed” (picture of the actual state of the

project) and after that “pushed” on GitHub (saved on the GitHub repository), assuring that all

the advances are protected even if the system breaks down. Also, Git technology allows the

control and the monitoring of the state project, providing a way to go back to a previous state

if something is not working as it should.

Another DevOps practice is the use of Docker. Docker and its technology based on containers

permits the utilization of the developed environment in any infrastructure but also installing

just the needed dependencies; providing faster time to deployment (development and

operational agility due to containerization), higher development productivity (eliminating

dependencies issues), and a reduction of the IT infrastructure (better utilization of the server

compute density).

The last measure adopted regarding DevOps philosophy is the creation of a Python file to

automate commands, this file can be visualized in the Annex section (Annex IX. Automated

Docker Commands); but the idea behind it is to speed up the execution of highly-used

sequences of commands as building a docker image or stopping a container. In this way,

anytime that these sequences of operations need to be performed, only one command that

executes the Python file is used.

4.1.2. Requirements

The initial requirements are defined attending to the problem that is pursued to solve. This

problem is presented in the introduction chapter, it is needed an Integrated Development

Environment that facilitates the creation of more complicated IoT applications in Node-RED;

helping users to write Python code with more productivity by the existence of tools like a code

editor, a debugger or functionalities that allow loading or saving files to be used in Node-RED.

Therefore, the initial requirements that need to be fulfilled in the development phase are:

1) Node-RED connection: The developed solution should provide a connection to the Node-

RED environment. The creation of a new environment that improves user productivity

Implementing an IDE in the
IoT Generation of Visual Programming Tools

41

writing Python code along does not satisfy the objective of facilitating the creation of IoT

systems in Node-RED.

• Node-RED and the developed IDE should be run as a unique service to establish the

connection.

• Cloud-based IDE, data must be in the cloud to be accessible.

2) Python Code Editor: Providing a platform where Python code could be written and

executed in order to inform users about where an error is made or about the real output

of the executed code.

• Interpreter (Python/JavaScript) to allow the Python code to be run in the browser.

• Output screen that displays errors or the text exit after executing the code

3) Debugger: The new environment will have a debugger tool that facilitates the depuration

of errors using different commands.

4) Functionalities Saving and Loading: The new IDE must allow users to load Python files in

order to visualize the errors, make changes or consult if they obtain the expected results.

The developed IDE will also allow saving the code written in the code editor into external

files that will connect with Node-RED.

• Dynamic site, the user decides when he wants to load or save by clicking a button.

• Access to the server side to read and write in external files.

• Interconnection between the server and the client side.

5) User-Friendly interface and Simplicity: Apart from the technical aspects, the new

environment has to be adequate to the purpose that need to accomplish from the design

point of view, avoiding the presence of elements that do not add value to the site and

highlighting the presence of the main functionalities to the users, explaining how they

work.

Moreover, following with the methodology proposed, new requirements are identified as the

project advances in a second iteration. The new requirements identified are:

6) Being able to import Python modules: Numpy, Pygal, Matplotlib: Directly related with

the requirement of creating a Python Code Editor, it is identified a new requirement.

Developers of Trinket have designed a possible implementation of these modules in

Skulpt. Taking advantage of this opportunity, the new modules will be implemented on

the new environment.

7) Capacity to represent graphs: As the project advances, it is detected the necessity to

represent the graphs that are result of the execution of the code. These graphs should

appear in a pop-up window in order to prevent misconfigurations on the Python site.

8) Google iframe: Following with the idea of facilitating the creation of Python code, a

google iframe that allows users to search for more information or solving doubts in a fast

and efficient way must be provided.

4.1.3. Tasks

In this subchapter, it is intended to present the most important tasks that need to be

performed in the development phase. A differentiation is made between the tasks required to

define the development and the tasks needed to fulfil the requirements.

1) Definition tasks:

Implementing an IDE in the
IoT Generation of Visual Programming Tools

42

• Defining methodology, requirements, structure and scheduling

2) Requirement tasks (1st Iteration):

• Building Skulpt: Forking Skulpt site, eliminating features that add no value, redesign

of the interface, including project documentation. These actions are related with the

requirements 2), 3) and 5).

• Developing JavaScript functions: Coding of functions that allow loading and saving on

the client side. Related with requirement 4).

• Creating Node.js files: Coding of functions that allow writing and reading files on the

server side. Related with requirement 4).

• Connecting the server side with the client side: Using Ajax to provide connection.

Related with requirement 4).

• Getting Node-RED with its last improvements: Cloning from GitHub the Node-RED

environment with the last functionalities. Related with requirement 1).

• Integrating the IDE with Node-RED: Dockerizing as a unique service using volumes.

Related with requirement 1).

3) Requirement tasks (2nd Iteration):

• Implementing Python Modules: Downloading JavaScript files, defining variables

inside Sk.externalLibraries. Requirement 6).

• Configuring Graphs: JavaScript function, designing pop-up window. Requirement 7).

• Developing Google iframe: Javascript function. Requirement 8).

Note: It is important to underline the idea exposed in the methodology chapter; once each of

this task is performed, the resultant environment is tested, if the result is not satisfactory (the

requirements related with the task are not fulfilled) a debugging of the errors proceeds.

Meaning that testing or debugging do not represent different tasks, they are integrated in the

completion of the tasks. Similarly, actions as building the docker images or committing

changes using git are also included in the tasks proposed above.

4.1.4. Structure and Scheduling

The development phase is divided into three clearly differentiated stages depending on their

main purpose:

1) Definition: Include all the actions related with understanding the basics of the

development phase like requirements, tasks, structure or methodology to follow during

the development.

2) Building a Python Development Environment based on Skulpt: Tasks needed to create

the new Development Environment as building Skulpt, developing JavaScript functions,

creating Node.js files, connecting the client with the server side, implementing Python

modules, configuring graphs or developing the Google iframe.

3) Implementation with Node-RED: Establishing the connection between Node-RED and the

Integrated Development Environment. This stage includes the tasks getting Node-RED

with its last improvements and integrating the IDE with Node-RED.

In accordance with all the information exposed (methodology, tasks, structure), the schedule

followed during the development phased is presented in Figure X, Figure XI and Figure XII:

Implementing an IDE in the
IoT Generation of Visual Programming Tools

43

Figure X. Development Scheduling: Phases

Figure XI. Development Scheduling: Initial Iteration

Implementing an IDE in the
IoT Generation of Visual Programming Tools

44

Figure XII. Development Scheduling: Iteration 2 + Deployment

4.2. STAGE 2: BUILDING A PYTHON DEVELOPMENT ENVIRONMENT BASED ON SKULPT

As it has been previously introduced, the second stage involves all the activities needed to

create the new Development Environment as building Skulpt, developing JavaScript functions,

creating Node.js files, connecting the client with the server side, implementing Python

modules, configuring graphs or developing the Google iframe.

4.2.1. Building Skulpt

Skulpt provides not only the translation of the Python code into JavaScript in order to allow its

execution in the browser (Chapter 2.3. Interpreters), but also other tools as a debugger or a

code editor directly related with the satisfaction of some of the requirements defined.

As an open source project, Skulpt creators invite other users to build Skulpt and develop their

own projects based on it, facilitating a set of steps to build it. The set of steps consist of [35]:

1) Cloning the repository from GitHub.

2) Installing node.js, Java, and Python 2.

3) Installing dependencies using npm install

4) Navigating to the repository and running npm run build

After, completing these steps, some dependencies were still missing, evidencing that the set of

steps do not guaranteed building Skulpt on any infrastructure. The rest of the dependencies

are then installed without much problem, allowing the building of Skulpt just as it was

developed. However, an issue is open on their GitHub repository to ensure that they have not

Implementing an IDE in the
IoT Generation of Visual Programming Tools

45

developed any docker container that builds Skulpt on any infrastructure. The issue received

responses from different Skulpt developers, including its leader Brad Miller that confirmed

that no docker container was developed but that “definitely would be beneficial” for their

project [74]. In base to their responses and with the objective to familiarize with the docker

technology (fundamental for the development of this project), a docker service that builds

Skulpt on any infrastructure is developed. This docker service is built by a docker-compose.yml

and a Dockerfile that can be visualized in the Annex document (Annex IV. Docker-Building

Skulpt). Summarizing, the Dockerfile downloads all the dependencies needed, clones the

Skulpt repository, changes the directories of some files to the directories where the new

dependencies are installed and lastly builds Skulpt. Meanwhile, the docker-compose.yml

executes the docker container as a service, extracting the new files built to the host system.

This docker service is then shared with the Skulpt community that so much contributes to the

development of the present Master Thesis.

Once Skulpt is built, an adaptation to our needs is required. In the first place, Skulpt provides

some functionalities that do not add any value to this project and that need to be eliminated.

The idea is to identify first which features add value to this project and eliminate the rest of

them from the index.html file. The features that add value are related with the objectives and

requirements identified, they include the code editor along with the output screen, the

debugger, the interactive code editor (it allows detecting errors in the code at the same time

that the user is writing it, line by line) and some examples of Python code already written to

help users to understand how the environment works. The reminded parts of the code were

eliminated.

The second measure related with adapting the environment to our needs has to do with its

design. This project is much more focused on functionality than on an esthetical, polished and

innovative design, for this reason, the modifications made try to improve user-experience

rather than its image. A logo is added that defines what the environment is intended for (“Your

Python IDE”), the linear structure of Skulpt is modified to a two-column structure making a

better use of the space and allowing the user to visualize all the functionalities without

scrolling down. Another action performed related with the design, is the addition of titles and

paragraphs above each functionality, facilitating its understanding for first users.

As this development is part of an open source project, a link to a markdown document that

summarizes the fundamentals of the development is presented. The intention is that any user

could understand how the project was developed or even helping them to develop new

projects with similar properties or technologies. This document may be found on the Annex

section (Annex VIII. Project Documentation.md).

After the consecution of the generic task: Building Skulpt, the requirements defined as the

incorporation in the Integrated Development Environment of a debugger tool and a code

editor or having a user-friendly interface are satisfied; however, the process was not that

simple and multiple stages of testing and debugging were needed.

In order to check that the code editor worked as expected, different pieces of Python code

with different characteristics (different operations performed, with different errors…) were

executed, getting some bugs and errors that had to be corrected. The first bug detected was

Implementing an IDE in the
IoT Generation of Visual Programming Tools

46

encountered after running two successful Python programs in a row, the output screen

displayed the results of both programs; it was decided to modify the function that executes

the program, including some lines that remove the result of the previous program, allowing

the user to visualize just the result of the code that is actually written in the code editor.

Another error related with the code editor was discovered after running a Python function

with multiple errors, since it did not show anything on the output screen; it was discovered

that the function on charge of executing the code contained an if sentence that removed the

exit when an error was encountered, removing the conditional, the error appeared in the

output screen.

Regarding the debugger, only one issue was identified. Using the help command, a good

explanation appears of how the different debugger commands work, however, when they

were used any of them seemed to have any effect; after reviewing the code it was noticed that

the debugger was pointing to one of the screens removed from Skulpt, changing the scope of

the debugger to the code editor screen, it was checked that all of the commands worked as

they should.

In relation with the user-friendly interface and simplicity requirements; testing and debugging

consisted of loading and visualizing the developed environment, modifying everything that

could have room for improvement. The resultant file with the last modifications that meet

these requirements can be found on the Annex section (Annex I. Index.html).

To conclude this task, following with the methodology proposed, all the changes are included

in the git repository of GitHub, making use of the commands git add * (adding all the files and

folders of the current directory to the “Staging Area”), git commit -m (committing changes of

the staging area to git), git push origin master (pushing to the GitHub repository). Also, a

docker image that can be run in any infrastructure with all the dependencies is built, creating a

basic Dockerfile (Annex IV. Docker-Building New Environment-Dockerfile IDE) that copies all the

documents present in the host directory of the dockerfile to the Docker container and exposes

a port in order to be run and deployed later on the browser.

4.2.2. Developing JavaScript Functions

One of the tasks defined to satisfy the requirement of having functionalities on the IDE that

allow users to load their own files and also to save the text written in the code editor into a

new file, is developing new JavaScript functions. These functionalities are not included in the

Skulpt environment and due to the fact that they require dynamic properties (is the user who

decides which file has to be load, or when the text written in the editor has to be saved) it is

decided to develop them using JavaScript. It is important to highlight that these features

cannot be achieved just by developing JavaScript functions since the require access to the

server side to write or read the text of external files.

Even though they require similar actions, it is needed to distinguish between the JavaScript

function that pursues loading files and the one that pursues saving the text:

1) Loading external files: In the first place, it is created a button with the text “Load”,

facilitating the understanding to the user, and an input area just right beside the button,

Implementing an IDE in the
IoT Generation of Visual Programming Tools

47

where the user can write which file must be loaded. When the button is clicked, it is

immediately call the JavaScript function Loading. This function performs a set of actions:

Firstly, the text written in the input area is read, then it is used the ajax technology to

send the contents to the server side and a response is received (This step will be

explained deeper in the subchapter 4.2.4 Ajax Connection), ultimately, the response is

written in the code editor removing any contents that may be already there.

2) Saving Text into a File: Similarly to “Loading external files”, a button with the text “Save

Text to File” is created along with an input area where the user can write the name of the

new file. If the button is clicked, a JavaScript function is called, performing different

actions as reading the contents of the code editor, reading the contents of the input area

with the name of the new file wrote by the user, sending all these contents to the server

side using Ajax or initializing a download with the title of the input area and the contents

of the code editor.

Different actions related with testing and debugging were also needed. The general idea was

to ensure that all the steps defined where executed successfully; for example to ensure that

the contents of the different parts were correctly read or sent, it was included in the JavaScript

function some commands to display the contents on the console, identifying errors as reading

only the initial contents of the code editor without identifying the changes, sending the text in

unreadable formats… etc. The errors were solved changing different commands, for example

using .getValue() instead of .getElementByID().value. The final result can be observed on

AnnexII. JavaScript Functions.

When the functions accomplished their objective, the changes were committed to Git.

Regarding Dockers, not so many actions were needed, these functions do not represent

another container since they work directly integrated with the site already developed based on

Skulpt. For that reason, it was only required to include the file with the functions in the

directory of the previous Dockerfile and building it again to automatically copy the functions to

the docker container.

4.2.3. Creating Node.js Files

Following with the requirement of developing an IDE that allow users to load their own files

and also to save the text written in the code editor into a new file, the Node.js technology

based on JavaScript is employed due to its highly expressive, functional language for server

programming. In definitive Node.js, provides us with the way to access the server side to write

and read external files.

Two Node.js files were created, one attempting to read the contents of a file and send them

back using Ajax (Load.js), and the other one attempting to write some contents on a new file

(Storage.js):

1) Load.js: This file uses Ajax to receive some text, this text is then processed to obtain as a

result exactly the text written by the user on the input area beside the loading button but

adding the extension .py to search for files with the python format. If the file exits, its

contents are read and then sent back to the client side using Ajax. Most of the errors,

Implementing an IDE in the
IoT Generation of Visual Programming Tools

48

during the creation of the load.js file, were detected when the processed text was

displayed on the command line. It was needed to JSON.stringify the text received, and

then find a way to subtract just the part of the text that include the name of the file

specified by the user in any possible case.

2) Storage.js: In this case a similar procedure is followed, a set of lines that includes the title

and the contents that must be written in the new file is received using Ajax, then a

processing stage is needed, lastly a new file is created in a location accessible to Node-

RED with the body and the title specified by the user plus the extension (.py). Again, most

of the errors identified appeared on the processing stage, it was required to

JSON.stringify the text received, subtracting for both, the title and the body the parts that

were relevant, then, creating a function that eliminates the counterbars (\) created by the

use of the quotation marks (“) and that adds a new line when a determined combination

is found (\n).

The final Load.js and final Storage.js files may be encountered in the Annex document

(AnnexIII. Node.js Files).

Related with Docker, a new docker container had to be created (Annex IV. Docker-Building

New Environment-Dockerfile Node.js), since these files required different dependencies and

had to be executed in different ports. A new Dockerfile meet with these problems installing

the dependencies and exposing two ports, that allows the execution of both files with only one

container. This container and the one developed to build Skulpt run as a unique service thanks

to the development of a docker-compose.yml; the docker-compose just need the name of the

images of the containers, along with their ports exposed to deploy the application as a unique

service.

4.2.4. Ajax Connection

Ajax technology provides the last tool needed to fulfill the requirement associated with the

presence in the Integrated Development Environment of the functionalities that allow saving

the code written in the code editor into external files that will connect with Node-RED and

loading Python files in order to visualize the errors, make changes or consult if they produce

the expected results.

For each one of these functionalities an Ajax connection between the client and the server side

is required:

1) Loading File to the IDE: As it has been already presented, the Ajax connection sends the

title written by the user of the file to load that was read by a JavaScript function from the

client side to the server side, where the title is processed by the Load.js file that reads the

contents of the file that correspond with the title. Again, Ajax would provide the

connection, allowing the sending back of the contents of the file (server side) as a

response to the JavaScript function (client) that writes the contents in the code editor.

2) Saving Text to File: In this case, the Ajax connection is unidirectional, the contents of the

code editor with the title present in the input area are sent to the server side but no

Implementing an IDE in the
IoT Generation of Visual Programming Tools

49

response is required. The server side represented by Node.js, then, creates the file with

the contents provided by Ajax in a location accessible to Node-RED.

A practical detail about Ajax that results beneficial to the project is that not reloading of the

browser is needed to execute their actions. When the user decides to save the text written in

the code editor into a file, the action is performed automatically, if afterwards, the user

decides to load the file that have just created, he would not have any problem to find it and

display it on the editor again without reloading the page.

Achieving the interconnection was not instantaneous, several problems appeared on the

console of the environment before the right behavior defined on the requirements, they were

finally overcome by providing an open url, specifying headers (“Content-Type”, ”Accept”),

crossDomain: “True” and type: “POST” on the JavaScript function. Besides, on the Node.js

files, it was required to start listening (app.listen) to the port where the JavaScript function was

pointing out, providing access to different origins, methods, credentials or headers and

sending back the response with response.send().

As the Ajax connection only requires some lines extra on the JavaScript functions and Node.js

files, it is not necessary to create any docker imager, just building the images already created

to include the last changes. An important consideration regarding the dockerfiles is that their

ports exposed for the Node.js files must coincide with the ports specified on the Ajax

connection, on the contrary the connection would not be established when they are run as a

service.

4.2.5. Implementing Python Modules

The biggest limitation of Skulpt is the impossibility to import some Python modules because its

developers have not yet provided a translation of their functionalities into JavaScript. During

the second iteration of the definition of requirements, it was identified that developers of

Trinket had translated some of these modules as Numpy, Pygal or Matplotlib. In base to that, it

was decided to include them on the Integrated Development Environment allowing users to

make use of them.

Implementing those Python modules required to include the JavaScript files created by the

Trinket developers in the docker container and providing a connection within the files when

the user employs one of the modules. As Trinket project is also open sourced, their files are

cloned to the directory of the dockerfile, assuring that they will be copied to the docker

container.

The second step, providing the connection between the files and the development

environment, was achieved including a JavaScript function inside the index.html file. In this

function, the different modules were defined as new variables by indicating their path to the

JavaScript files and to their dependencies; when the modules are used and executed in a

Python program these variables are accessible because they are included in the

Sk.externalLibraries, a mechanism provided by Skulpt to add easily new modules and libraries

to the project.

Implementing an IDE in the
IoT Generation of Visual Programming Tools

50

Several Python programs that made use of these modules were executed in order to validate

the implementation. At the beginning the result was disappointing because some errors were

made like forgetting a parenthesis, not expressing correctly the path (it is important to express

the path of the different files in a relative way since it is going to be run in a docker container

that does not understand about the absolute path of the local system), or not including all the

dependencies required. When the different modules could be used without any problem in the

Integrated Development Environment, the requirement was satisfied and the changes were

committed to the GitHub repository of the project.

4.2.6. Configuring Graphs

As the development advanced, it was identified that when the Python program had as a result

a graph, it was presented in the first place where it has space to be built on, being even more

frustrating when several graphs needed to be represented, leading to misconfigurations in the

development environment. In order to solve this problem a modification of the JavaScript

functions provided by Skulpt was performed to display the exit graphs in pop-up windows,

easy to visualize by the users, avoiding misconfigurations in the environment.

The first step taken was designing the pop-up window, configuring it with dimensions that

allow displaying graphs of different sizes but not that big to complicate users working with the

IDE. A new variable with the configuration of the pop-up window is created under the

command window.open(height, width, toolbar,status, …).

The second step consisted of modifying the JS function provided by Skulpt: Sk.domOutput,

responsible of representing the different graphs. The final solution only required to indicate in

the return statement the new variable defined that opens the window appending the contents

generated after executing.

4.2.7. Developing Google iframe

In order to provide the users with a fast and efficient way to solve doubts and search for more

information, a Google iframe is added in the inferior part of the environment, since it does not

represent a fundamental part of the project, but a helping tool aligned with the objectives

proposed.

To develop the iframe, it is only needed to define its dimensions, its style and a source that in

this case refers to the Google site. However, after testing its implementation, a couple of

problems were detected:

1) When the iframe was loaded in the page, it scrolled down the page to the iframe. Since,

the most important features of the environment are in the superior part, it was not

comfortable to the user to scroll up every time the page was loaded. The decision taken

consisted in building a JavaScript function on the Index.html file that automatically

scrolled up the page after loading the iframe.

2) In the second place, a button that invokes another JS function was developed to allow the

user to directly come back to the google site, when a search was already carried out. It

was identified that when the user searched for something in the iframe the only possible

solution to perform another search was to use the navigation arrows as many times as

needed. The new button avoids this inconvenience.

Implementing an IDE in the
IoT Generation of Visual Programming Tools

51

After completing this task, another iteration began looking for more requirements, however, in

this occasion no more requirements were identified and since the rest of them were fulfilled

the environment was prepared for deployment in the application case scenarios.

4.3. STAGE 3: IMPLEMENTATION WITH NODE-RED

All the activities related with establishing the connection between Node-RED and the new

Integrated Development Environment are included in the third stage of the development

phase. These activities involve getting Node-RED with its last improvements (essentially the

Python module) and integrating everything as a unique service, in order to facilitate the

connection and execution of the different containers by the user.

4.3.1. Node-RED Service

The Node-RED official site provides different ways to get Node-RED, well using commands on

the command line or well making use of a docker container already created by them [21].

Although these were possible options, latest improvements as the Python module realized by

other developers were still no implemented. The Python Function Node enables the execution

of knowledge discovery libraries from the Node-RED's visual programming interface. As a

result, most of the scientific computing and data science libraries that offer a Python API

become accessible in a unified manner [23].

This particular improvement is found on the GitHub repository of one of the members of the

bIoTope project [23]. In concrete, on the GitHub repository, it is not only implemented the

Python module with Node-RED, but also a docker-compose.yml is found that allows running as

a unique service Node-RED with the MongoDB database which may be particularly useful

during the deployment on the application cases.

As an open source project, there is not any problem to use git clone to get the repository into

the local system. Once, this action is performed it is only needed to provide the integration

with the IDE developed.

4.3.2. Integration

Proceeding with the integration, it was needed only one docker-compose.yml that integrates

both Node-RED and MongoDB containers and the docker-compose developed that contained

the resultant IDE. The main difficulty found to complete this operation was that the docker-

compose that executed Node-RED and MongoDB was developed using a prior version of

docker, so that some of the dependencies needed to run the container could not be

downloaded. At the end, a new way to get the dependencies was encountered and the

different containers could be run as a unique service.

This task did not finalize there, even though the containers could be run at the same time,

there was not a connection between them, meaning that the code saved for example in the

IDE could not be used by the Node-RED environment. To satisfy this fundamental requirement

some actions were performed:

Firstly, a new structured of the folders on the local system was required, a new folder that

contains all the files and folders of the Master Thesis was created. This folder consisted of the

Implementing an IDE in the
IoT Generation of Visual Programming Tools

52

docker-compose along with the folders of the different containers (Node-RED, MongoDB…),

each one of these folders include all the information to make the container run like Dockerfile,

executables… etc.

The next and most relevant step was making use of volumes on the docker-compose. Volumes

are an important feature of Docker since they allow persisting data [75], the idea behind it is to

provide a connection with the local system; volumes are used between two folders (one of the

local system, and the other from Dockers) that automatically shared they contents when the

container is run, but when the container stops the contents are not removed. Following with

this idea, volumes are used in this project to connect different containers making use of one

folder of the local system. For example, if one file is generated in one container when the

service is running it is saved on one folder of the container but with the use of volumes it may

also be saved in one folder of the local system, what happens if another container uses

volumes with the same folder of the local system? The response is that the file generated by

the first container would also appear on the second one. That is exactly what is done in this

project, the container that executes Node-RED and the container that involves the new IDE use

volumes to the same folder of the local system, in this way when the user decides to save the

Python function that he has developed on the IDE, it get also get stored on the Node-RED

container, then it is possible to make use of the new Python function in Node-RED to generate

more powerful IoT applications.

Obviously, establishing the connection was not immediate, and different errors were detected

while trying to employ the IDE functions on Node-RED, most of them because of volumes. They

were solved by understanding completely the volumes behavior and the different paths inside

the docker containers. The final docker-compose.yml that establishes the connection and

meets the requirement specified may be found on the Annex section (Annex IV. Docker-

Building New Environment-Docker-compose.yml).

4.3.3. Example of Use

This subchapter attempts to present the reader a basic example of how the IDE works along

with the Node-RED environment in order to provide a basic understanding before coping with

the real application case scenarios. A common mathematical problem will be detailed and then

solved by the creation of a Python function on the IDE developed and its later usage on a

Node-RED flow.

The problem studied is the denominated “Josephus problem”; this problem is named after

Flavius Josephus, a Jewish historian living in the 1st century. According to Josephus' account of

the siege of Yodfat, he and his 40 soldiers were trapped in a cave by Roman soldiers. They

chose suicide over capture, and settled on a serial method of committing suicide, they were

situated on a circle, and every time the person situated on the position number seventh to the

right should be killed. Josephus studied the situation and with great mathematical skills placed

himself in the position that should commit suicide in the last position, in order to surrender

rather than killing himself [76].

In this case, the user can define how many soldiers are trapped and which is the suicidal

sequence to follow in Node-RED, then a Python function developed using the IDE will be

Implementing an IDE in the
IoT Generation of Visual Programming Tools

53

employed on the flow to inform the user in which position should be placed if he wants to

surrender to the Romans.

This problem results useful to provide information about how the whole system works, since it

requires the IDE function to understand how to use the data that comes from a previous node,

and also how to send the data back to the following node to get the result on screen.

The resultant Python function that solves the Josephus problem is found on Figure XIII. The

code is not completely relevant here, what it is important is to visualize that the function is

called josephus and that the file is saved as example.py (.py is added automatically when the

button Save Text to file is pressed) in order to understand its implementation on Node-RED.

Figure XIII. Josephus IDE Function

How can it be integrated in the Node-RED environment? The response is using the Python

module just as it is showed on Figure XIV. It is only needed to indicate from which file and

which function is imported. Besides, it is good to comment that both for receiving and sending

a response it is needed to use the Node-RED construction msg [‘payload’].

Figure XIV. Using IDE Function on Node-RED

Implementing an IDE in the
IoT Generation of Visual Programming Tools

54

The Node-RED flow that solves the Josephus problem is displayed on Figure XV. Basically, the

user can decide which combination of soldiers trapped and “suicidal” sequence is going to be

followed pressing the blue button or changing its contents. The information arrives to the

Python module that makes use of the function developed on the IDE to provide a response,

finally the information is showed on the debug console of Node-RED.

Figure XV. Josephus Node-RED Flow

In spite of the fact that this is an initial and simple problem with nothing to do with connecting

smart objects and getting information from them, a first positive aspect about the behavior of

the Integrated Development Environment must be highlighted, it is really easy to implement

its Python functions on the Node-RED environment, just using a single sentence (from

modules.file import function).

Implementing an IDE in the
IoT Generation of Visual Programming Tools

55

CHAPTER 5. APPLICATION CASE SCENARIOS

In this chapter, the implementation will be tested over two different case scenarios to get

some insights about its utility and effectiveness. To get a full image of the case scenarios, they

will be divided into five parts: problematic, justification of the case, possible solution, IDE

functions and final Node-RED flow.

5.1. CASE 1: HEAT WAVE MITIGATION, GREATER LYON

5.1.1. Case 1: Problem

Heat waves are defined by the Word Meteorological Organization as “a marked unusual hot

weather (Max, Min and daily average) over a region persisting at least two consecutive days

based on local climatological conditions, with thermal conditions recorded above given

thresholds” [77]. According to John R. Nairn (2012), heat waves have been responsible for

more deaths in Australia, Europe and the United States of America than any other natural

hazard, including bushfires, storms, tropical cyclones and floods [78]. In fact, this phenomenon

could even be aggravated by climate change effects, another study conducted by Camilo Mora

in the journal Nature Climate Change (2017), affirmed that “around 30% of the world’s

population is currently exposed to climatic conditions exceeding this deadly threshold for at

least 20 days a year. By 2100, this percentage is projected to increase to ∼48% under a

scenario with drastic reductions of greenhouse gas emissions and ∼74% under a scenario of

growing emissions… An increasing threat to human life from excess heat now seems almost

inevitable” [79].

But, heat waves not only can have dramatic consequences to humans, they are important

events that can cause rapid changes in maritime biodiversity patterns and ecosystem structure

like widespread mortality of benthic invertebrates, loss of seagrass meadows, shift biomass

allocation or increase in plants and trees mortality [80], [81].

This particular case, it is developed to the city of Greater Lyon. The population of Greater

Lyon—59 municipalities with an area of 538 km2—is expected to increase up to 1.5 million

inhabitants by 2030 [82]. This growth is accompanied by a rapid change in climatic conditions.

In order to cope with this situation, Greater Lyon has drawn up a climate adaptation plan,

along five strategic development and innovation axes [83]:

1) Preserving water resources: Developing water management systems that improve supply

efficiency.

2) Reducing urban heat-island (UHI) effects: Increasing the planting of new trees in the

region. (Urban Heat Island (UHI) refers to the elevation of air temperature in the urban

Implementing an IDE in the
IoT Generation of Visual Programming Tools

56

area compared to the rural periphery. In large cities; the temperature difference due to

this phenomenon is on average 3 to 4°C, but it can reach 8°C in a heat wave period… [84])

3) Better assisting the population: by planning for heat waves with follow-up indicators.

4) Adaptation of agricultural structures and practices: accompanying measures to move

towards conservational agriculture.

5) Improving local knowledge: by better understanding the impact of climate change on

local scales, understanding the local biodiversity/species and the needs of the territory

and its inhabitants.

The case scenario is directly related with this climate adaptation plan, especially with points 1),

2) and 3); the new trees planted in Lyon are equipped with temperature sensors and irrigation

actuators, being needed a system that informs about when a heatwave is present on the city

allowing the actuators to irrigate the right amount of water to prevent mortality of the new

trees.

The first question that needs to be answered, is what conditions must be present to announce

a heatwave? There are different possible answers to this question, because it actually depends

on the purpose of the application; for humans’ mortality for example, it is particularly

important the highest temperature, being not really transcendental heat waves that appears

on the winter season. However, in this case, trees will require a percentage more of water if a

heatwave is present even if it is winter, allowing to do not irrigate too much water when these

conditions are not reached. For this reason, in this case, the working definition selected is

provided by John R. Nairn, which is based on the concept of the Excess Heat Factor (EHF):

“The EHF is a new measure of heatwave intensity, incorporating two ingredients. The first

ingredient (EHIsig) is a measure of how hot a three-day period (TDP) is with respect to a

monthly temperature threshold. If the daily mean temperature (DMT) averaged over the TDP

is higher than the climatological 95th percentile for DMT (hereafter T95), then the TDP and

each day within in it are deemed to be in heatwave conditions… The second ingredient (EHIacc1)

is a measure of how hot the TDP is with respect to the recent past (specifically the previous 30

days), taking into account the idea of acclimatization to their local climate” [78]. Following with

this explanation, the formulas that allow the calculation are provided below [78]:

������ = 	
�	
��	
��
� − ��� (1)

������� = 	
�	
��	
��
� − 	
���...�	
���

�� (2)

EHF =  EHI� ! × max &1,  EHI)**�+ (3)

Hence, a heatwave will be announced if three consecutive days the Excess Heat Factor is

superior to cero. This definition adapts perfectly to our case because it not only compares the

temperatures with the monthly threshold that will detect heatwaves even on the winter

Implementing an IDE in the
IoT Generation of Visual Programming Tools

57

season, but also with the temperatures of the last month, providing an idea if an abrupt

change is produced, which is quite interesting because the trees are more sensible to abrupt

changes of temperature than if high temperatures are reached progressively.

5.1.2. Case 1: Justification

There are several reasons that justify why this particular case is developed. Firstly, it requires

the development of an IoT application, providing some ideas about how the Integrated

Development Environment may respond to a real problem and giving insights about its

effectiveness or limitations.

Secondly, because of the existence of real data that is directly accessible to the author. Greater

Lyon in order to become an innovative, sustainable and vibrant smart city; works actively with

the bIoTope Project and the ICT for Sustainable Manufacturing Group of the École

Polytechnique Fédérale de Lausanne, where this Master Thesis has been developed. The

opportunity to work with real sensor data, in concrete with the temperature sensors of eleven

trees distributed by the city of Lyon that informs about the temperature each half an hour, is

extremely appealing since it closes the gap between the case scenario and the real conditions.

Finally, the topic is also interesting due to the fact that it addresses really contemporary issues

as the climate change and how cities have to adapt to the new conditions to provide its citizen

the best conditions of life possible.

5.1.3. Case 1: Possible Solution

Following with the strategic plan of Greater Lyon that involves preserving water resources,

reducing urban heat-island (UHI) effects by planting trees or assisting the population with heat

waves indicators, an IoT system must be developed.

The IoT system would acquire the data that comes from the temperature sensors that are

situated in different trees distributed around Lyon, once the data arrives it will be converted to

the right format in order to allow posterior processing and calculations. The different

temperatures will be then stored on a MongoDB database.

Storing the temperatures on a database is the simplest way to be able to use them later. In our

case, it is extremely important, because the calculation of the EHF requires the information of

the temperatures of the previous days. Once the EHF is calculated using just the temperatures

of a time range, it will also be stored on the database, then the EHF of the last three says are

evaluated to state whether the metropolis of Lyon is immersed on a heat wave.

The results obtained could be used by the different actuators to irrigate more water just the

days in which the conditions are reached, resulting on a preservation of water without

compromising the integrity of the trees planted to reduce the urban heat-islands effects.

Moreover, the Excess Heat Factor may be provided to the population since it informs about

the intensity of the heat wave.

In order to draw conclusions about the IDE’s behavior, all the functions required to complete

the IoT application will be created in the Integrated Development Environment and then

implemented in the Node-RED flow considering which would be the differences if it had not

been developed.

Implementing an IDE in the
IoT Generation of Visual Programming Tools

58

5.1.4. Case 1: IDE Functions

Several functions were needed to get to the solution proposed. In this subchapter, a basic

description of each one of them is presented:

1) Working function: This function assesses if the node is receiving data from the

temperature sensors, informing about the state of the connection.

2) Extraction of the code: This is a fundamental function, basically in charge of retrieving

just the useful information that comes from the temperature sensors under the proper

format (i.e. dates are retrieved in the format YYYY/MM/DD for querying, or temperatures

in number format not string for calculations). The data provided by Greater Lyon informs

about different characteristics, like the model of the sensor or the person responsible of

its maintenance. In our case, it is needed the temperature sensed to posterior

calculations, date and time of measurement or name of the sensor to facilitate querying

and latitude/longitude to allow maps representation.

3) Connecting MongoDB: Python function provided by the official site of MongoDB to make

use of the database.

4) Insert Mongo: This function stores the data received in one collection and database

predefined. The same function is used for storing the data that comes from both, the

Extraction of the code and the Excess Heat Factor functions.

5) Read Mongo Temperatures: Another important function for the correct solution of the

case. This function, in the first place, waits two seconds to be able to read from Mongo

even information that has just been introduced, then it is developed a mechanism to get

the following date of the day of the execution and the date 34th day before with the

format YYYY/MM/DD that allows querying with the use of less than ($lt) and greater than

($gt); afterwards, it is possible to perform a query that shows all the temperatures during

this range of dates for a sensor and range of time determined by the user. In this case, it

is being used the sensor number 8, in the range of time from 8:00 and 8:20 am. The

function will return the temperatures along with dates and times of measurement.

6) Excess Heat Factor: This function performs the calculations needed to obtain the Excess

Heat Factor of the day. This is achieved by organizing the temperatures received after

reading from MongoDB, comparing the temperatures of the last three days first with the

95th percentile of temperatures during this month in the last twenty years, already

defined by the KNMI Climate Explorer [85], and also with the temperatures of the prior

thirty days. Lastly, it multiplies the results, just as it was defined by formulas (1), (2), (3).

The function returns the value of the EHIsig, EHIacc1, EHF and the date.

7) Read Mongo EHF: Similarly, to the Read Mongo Temperatures function, an initial wait is

performed and a mechanism to get the dates of the last three days is created. Then a

query is performed to return the EHF of the last three days along with the dates.

8) Heatwave: The last IDE function receives the Excess Heat Factor from the last three dates

and assesses the values, if all the values are bigger than cero the system informs that a

heat wave is present, allowing the control of the respective actuator.

This set of functions can be found on Annex VI (Application Case 1: Heat Wave Mitigation,

Greater Lyon-IDE Functions).

Implementing an IDE in the
IoT Generation of Visual Programming Tools

59

After developing these functions, some initial ideas can be extracted about the real utility of

the IDE. The first important thing to notice is how it facilitates the detection of errors; once an

error is made on the IDE, the information about the error and the line where it can be found is

displayed. To get an idea, the same error is made using the python module of Node-RED, the

result was more than 10 messages with no sense that did not inform about where the error

was committed.

Another advantage detected is that the error is decoupled. When the Node-RED flows

incorporate different elements as a MongoDB database, sensor data with different formats or

Python functions, they are prone to get errors from different nodes. Without the existence of

the IDE it is needed to deploy the whole flow to visualize if the Python function is developed

correctly, finding maybe another error that has nothing to do with the Python function. Using

the new IDE, it is easy to assure that the function works correctly.

Regarding the inconveniences, it is also needed to comment one that was already known.

There are different modules that are not yet implemented in the IDE. When the function Insert

Mongo was tested on the IDE, the output displayed that the module pymongo was not yet

implemented. Meaning that even that it is possible to write the function on the IDE it cannot

be tested normally. However, and expressing clearly that this is a limitation, it does not have a

vital importance in this case, since the contents of the function can also be tested outside the

Node-RED flow accessing MongoDB from the command line.

5.1.5. Case 1: Node-RED Flow

The Node-RED flow that provides the solution to the first case scenario is presented in two

figures to facilitate visualization and explanation of each of the nodes developed.

Figure XVI. Case1: Node-RED Flow I

Implementing an IDE in the
IoT Generation of Visual Programming Tools

60

The description of the nodes of Figure XVI, is presented below:

1) Execute UIaaS Request Morning: The first node, executes the flow automatically every

single day at 8:00 am.

2) Read O-Mi Node Lyon Heat Wave Mitigation: This node is able to read the objects of the

specified web site. In this case, involves the information provides by the sensors.

3) Lyon O-DF Structure to JSON, json: Node already predefined by Node-RED to convert

objects of different formats to the JSON format.

4) Extract Response O-MI Node Lyon HW: This node imports the IDE functions 1) and 2),

confirming the data is received and extracting just the useful data received by the

sensors.

5) Timestamp: Alternative solution to execute the flow manually to visualize the results at

any moment.

6) Msg.payload: Shows in the console, the information extracted (temperatures of the

different sensors with their latitude/long, date and time of measurement.

7) World map: Represents in a map the position of the sensors indicating the temperatures.

8) Store on MongoDBTEMP: This node uses the IDE functions 3) and 4) to store in a

MongoDB collection the extracted data.

9) ReadFromMongoTEMP: Imports IDE functions 3) and 5) to read from the database the

information of the temperatures of the last 33 days of a determined sensor, including the

one that has just been added.

Figure XVII. Case1: Node-RED Flow II

Regarding Figure XVII:

10) Msg.payload1: Displays in the Node-RED console the temperatures of the last 33 days

with the date and time of the different measures.

Implementing an IDE in the
IoT Generation of Visual Programming Tools

61

11) Excess Heat Factor: In this node, the 95th percentile of the temperatures of the different

months in the last 20 years is defined [85], and then makes use of the IDE function 6) to

perform the needed calculations to obtain the corresponding EHF to the particular day.

12) Msg.payload2: Displays the different values obtained for the day, that may be interesting

for the citizens as the EHF, EHIsig (difference respect 95th percentile), EHIacc1 (difference

with the mean temperature of the previous 30 days).

13) Store on MongoDBEHF: This node uses the IDE functions 3) and 4) to store in a MongoDB

collection the different values calculated.

14) ReadFromMongoEHF: Imports IDE functions 3) and 7) to read from the database the EHF

values of the last 3 days, including the one that has just been added.

15) Msg.payload3: Assures that the reading from the database has been completed with

success.

16) Warning Preprocessor: This node imports the IDE function number 8), to evaluate the

different EHF values to determine if there is a heatwave and the actuator of the

corresponding tree should irrigate more water.

17) Heatwave?: The last node of the flow informs about the result obtained through the

Node-RED console.

The contents of each one of these nodes can be visualized on Annex VI (Application Case 1:

Heat Wave Mitigation, Greater Lyon-NodeRED Flow). After, the execution of the flow on 3rd of

December of 2018, the following result (Figure XVIII) of the Case 1 is obtained:

Figure XVIII. Case 1: Node-RED Result

Implementing an IDE in the
IoT Generation of Visual Programming Tools

62

5.2. CASE 2: SMART PARKING SYSTEM, FIFA WORLD CUP QATAR 2022

5.2.1. Case 2: Problem

The second case scenario is framed on the context of the future football world cup that will

take place on Qatar in 2022 organized by the Fédération Internationale de Football Association

(FIFA) [86]. Although hosting a tournament of these characteristics may not be worth the

investment, it is clear, that it is not completely pointless, in accordance with the World

Economic Forum article (2018): Does hosting a World Cup make economic sense?, “hosting a

World Cup, or any other major sporting event, can boost a nation’s economy by attracting

tourists, initiating important infrastructure projects and showcasing countries and cities as

good places to do business” [87].

Qatar, the country with the highest income per capita in 2017, according to the International

Monetary Fund [88], has started to develop the infrastructure necessary to host the event with

the most advanced technologies; for example new transportation initiatives as the

construction of new roads, metro lines or a national long-distance rail [89], or the

implementation of a district cooling system in the stadiums to fight against the high

temperatures with lower energy consumption [90].

Under this situation, Qatar has also developed a Parking Master Plan 2017, since the Qatar

World Cup 2022 will require adequate smart parking systems and facilities around the

stadiums and world cup facilities that maximizes user experience [91]. One idea to solve this

problem was presented by K. Främling et al. (2017) in the article: Open IoT Ecosystem for

Sporting Event Management, explaining how an IoT system could be beneficial for large sport

events that may require the assistance of emergency units [92].

Through this case scenario, the idea presented by K. Främling et al. will be developed as an IoT

system on Node-RED. In particular, it is addressed the Ras Abu Aboud stadium that is being

constructed closed to the port of Doha, directly from ship containers and that will have a

capacity of 40.000 spectators and 6.000 parking places [93]. In order to continue with the case,

some considerations have to be done:

1) The stadium will have three access gates with sensors able to read the plate of the

vehicles that will also lead to three zones of 2000 parking places, situated on the sides

south, east and west of the stadium. Their coordinates (longitude/latitude) are static and

well known.

2) The stadium tickets may be categorized in five zones according to their geographical

location.

3) For simplicity, this case is developed considering only three emergency units as

(firefighters, police, and ambulances) and two different vehicles of each unit apart from

the ones that are already occupied.

4) The different emergency vehicles are considered smart objects, since they have location

sensors. The data provided by the vehicles that are available to go, will be accessible to

the stadium gates when an alarm occurs.

5) It is also considered that the parking place can be bought at the same time that the ticket

for the stadium, or at least, that when it is time to get the parking place the system can

access to the data of the stadium ticket.

Implementing an IDE in the
IoT Generation of Visual Programming Tools

63

6) In order to get a response of the gate, it is simulated that the World Cup has taken place

on December 2018 and that this stadium is hosting two matches of the groups phase, one

quarterfinal and one semifinal.

The solution proposed by K. Främling et al. (2017) is focused on leveraging not only user

experience by allocating the parking closely to the seating position in the stadium and

incrementing the speed at the entrance and exit of the stadium, but also improving emergency

management by reducing times to action.

5.2.2. Case 2: Justification

The second case implies an IoT solution of even more complexity to test the behavior of the

Integrated Development Environment with Node-RED. In concrete, it will be needed the

development of several flows to differentiate the entrance of the different kind of vehicles.

Moreover, it will require the use of Python functions to perform more complicated

mathematical calculations.

This case is also interesting since the point of view of how different units can work along with

each other to provide a better service. This is one of the biggest challenges of IoT, being able

to provide an open environment where the data can be accessed not only by a few, breaking

the denominated vertical silos [7]. This is especially plausible in smart cities, like in this case,

the data that provides for example an ambulance, normally to the hospital, can be used by

another unit (the stadium) to improve one service as important as it is reducing the time to

action when an emergency occurs.

Ultimately, the idea of a smart parking system is applied in the context of the FIFA World Cup,

one of the most important sport events, giving it a purpose and a background particularly

motivating for the author of the project.

5.2.3. Case 2: Possible Solution

The solution proposed may be structured in two parts. The first one is focused on leveraging

the spectator experience, while the second one is related with improving emergency

management.

In order to improve the spectator experience; if one spectator decided to have a parking place

for a determined match, he would indicate it by paying the associated price and would add his

plate number, then the parking system would read the information about its stadium ticket

using his personal information as name or identity document. According to the category (place

of the stadium) a parking spot in the closest zone is reserved to the spectator, informing him to

which gate he should go. When the day of the match comes, and the spectator goes to the

specified gate, the gate opens automatically reading the contents of the car plate, without

spending time showing the ticket to one guard or equivalent. The process is repeated when

the spectator leaves the stadium. The same spectator will not have access any other day to the

stadium or to any other match if he has not buy another parking place.

The second part is related with the emergency units; the idea is that when an emergency

happens in the stadium and an emergency vehicle needs to access, it may be done in the

fastest way. So, when an alarm sounds, the stadium gets the info of the different vehicles

Implementing an IDE in the
IoT Generation of Visual Programming Tools

64

operatives of the related emergency unit and selects which one is closest, this vehicle would

receive the information of the gate that is closest to their position. When the vehicle arrives to

the stadium a sensor reads the plate of the vehicle and as the stadium already has the info of

that vehicle it can get in.

Note: Even though the case has been developed trying to represent in the most accurately way

the reality of the problem, the solution provided cannot assure the complete achievement of

these goals. It is important to underline, that the real objective of the case scenarios is testing

and draw conclusions about the new environment developed.

5.2.4. Case 2: IDE Functions

The second case scenario requires the use of IDE functions to deploy successfully the IoT

application. These IDE functions can be encountered on Annex VII (Application Case 2: Smart

Parking System, FIFA World Cup Qatar 2022-IDE Functions). Some of them have similar

resemblances to the ones developed on Case 1 as:

1) Working function: This function, as in the first case, assesses if the node is receiving data

from the sensors; in this occasion, the sensors from the different emergency units.

2) Extraction of the code: Although in this case there is not real sensor data, it has been

created a node that simulates the real conditions, following with the example of the Case

1. This function extracts just the relevant information as the longitude/latitude of the

different vehicles to evaluate the distances, the plate code or the date and time to allow

the access to the stadium just for that day, or information as the name of the responsible

person to facilitate communication.

3) Connecting MongoDB: Python function provided by the official site of MongoDB to make

use of the database.

4) Insert Mongo: This function stores the data received in one collection and database

predefined. In this case, another collection of the MongoDB database is used, both for

storing data like plate number or access gate from spectators and emergency units that

will have access to the stadium.

On the other side, the completely new functions developed for this particular case are:

5) Spectator Function: This function is in charge of assigning one parking spot to any

spectator that desires it, when parking places are still available. If these conditions are

met the function reads the contents of its ticket, returning the date according to the

respective match and the parking zone adequate to the category of the ticket, assuring

the proximity between the parking place and the respective seat in the stadium. The plate

of the car introduced by the user is returned as well.

6) Haversine: Compares the coordinates of the different emergency vehicles available with

the coordinates of the stadium, selecting and communicating which vehicle is closer. This

can be done making use of the haversine formulas (The haversine formula is an equation

important in navigation, giving great-circle distances between two points on a sphere

from their longitudes and latitudes. [94]):

, = -./� − -./0 (4)

1 = -23� − -230	 (5)

Implementing an IDE in the
IoT Generation of Visual Programming Tools

65

h = sin9� :sin0 ;  <
0  = + cos &lat�+ × cos &lat0+ × sin0 ;  C0  = (6)

DEF/.3GH = 2 × J × ℎ (7)

Where lat refers to latitude, lon to longitude, r represents the radius of the Earth (it is

considered the mean radius = 6371 km) and the sub-index differentiate the points in which the

distance is being calculated.

7) Right Gate: This function is responsible for communicating the different vehicles which

gate is closer to them and its coordinates. Again, the haversine formulas (4), (5), (6), (7),

are employed to calculate the distances that allow comparing the results.

8) Access Parking: Actually, this is not a single function but three of them, since there is one

function for each one of the gates. The functions evaluate the contents of the car plates

thanks to the sensor located on each of the gates, if the respective plate code has access

that particular day on that particular gate, then the gate is open, this is checked querying

for the plate number, day and gate number. If no result appears, the car will have to leave

by the exit provided to that concrete purpose. In the case of emergency units, it is

considered that they are able to access by any gate since the priority is the resolution of

the emergency.

Some new insights about the performance of the Integrated Development Environment can be

underlined. For example, during the development of the Haversine function, the employment

of the IDE and particularly the interactive editor resulted very beneficial because it allowed

displaying the results of the calculations automatically on the screen, visualizing if the result

makes sense, detecting in several occasions that even there was not an error on the code, the

formula was not correctly integrated and the results were far from the correct ones. Without

this tool, it would have been much more difficult to detect this kind of mistakes since the code

would run along with the rest of the flow proving just the final solution.

Another positive aspect to comment, it is how the python module working along with the IDE

can leverage the extensibility of Node-RED. In complex cases like this one that require

mathematical computations or arrange the data in specific ways, it is very useful to use Python

tools as the math or the numpy modules, which are already implemented on the IDE, instead

of developing a really complex JavaScript function.

It is possible to note as well, how the google iframe can facilitate the development of new

functions. In this case, it was very convenient to search for the haversine formulas in order to

implement them on the editor. It is true that another window of the browser could have been

used, but it would have been needed to be moving from one window to the other constantly.

Regarding negative insights, it is noticed that the performance of the IDE is affected when the

data that must be processed cannot be reproduced. For example, when it comes to extracting

the data of the different emergency vehicles, the function can be developed normally, and it

can be checked that no errors have been committed, however, it is difficult to know how it is

actually extracting the data until it is tested on Node-RED. That is because the data comes in a

format that complicates its reproduction, being impossible to get the output on the IDE site.

Implementing an IDE in the
IoT Generation of Visual Programming Tools

66

5.2.5. Case 2: Node-RED Flow

Following with the information described, the Node-RED flow that attempts to reduce the time

to action when an emergency not foreseen occurs is represented on Figure XIX:

Figure XIX. Case 2: Node-RED Flow I

1) Health, Fire, Safety Alarms: When an emergency occurs, the respective node is executed

providing the stadium with the information of the different emergency vehicles of the

unit. As in this case not real data is available, the information has been created from

scratch, indicating vehicles situated on different parts of Doha with a similar format to the

real data used in case 1.

2) Example to JSON: Node already predefined by Node-RED to convert objects of different

formats to the JSON format.

3) Extract Response FIFA Smart Parking: Node that includes IDE functions 1) and 2),

confirming that the data is received and extracting just the useful part.

4) World Map: Represents the information extracted on the map, thanks to the coordinates

of each vehicle.

5) Evaluate Distances: This node makes use of the longitude and latitude of the vehicles and

along with the Haversine IDE function calculates which vehicle is closer to the stadium.

Moreover, it assigns the emergency vehicles a code that allows its access by any gate.

6) Right Gate: Determines which access gate of the stadium (east, west or south) is closest

to the respective emergency vehicle importing the IDE function Right Gate.

7) Store on MongoParking: Although this node just stores the data to the database

importing IDE functions 3) and 4), it is fundamental for the correct performance of the

Implementing an IDE in the
IoT Generation of Visual Programming Tools

67

whole system, because it also provides the interconnection between the different flows,

since the data stored here can be used as well by the rest of the flows.

8) Msg.payload: Displays on the Node-RED console the message it receives. In this particular

flow, it is shown the information of the vehicles received, the vehicle that is closer to the

stadium and lastly, the gate that is closer to that vehicle with its coordinates. This last

message would be sent to the vehicle in order to facilitate its arrival.

Regarding the designation of a parking place, a Node-RED flow that makes uses of the

information of the tickets to assign a close parking spot is developed, just as it is represented

on Figure XX:

Figure XX. Case 2: Node-RED Flow II

9) Mateo, Robert, Romeo Nodes: These nodes simulate the state of different persons that

have bought a ticket for a match and are considering having a parking spot. It provides

information about match, category of the ticket, willingness to have a parking place and

plate number. In definitive, these nodes inform of different possibilities to see how the

system responds.

10) Spectator parking: This node imports IDE function 5), according to the information

received that is introduced by the user, it assigns a place on the parking zone that is

closest to the category for the day of the respective match, always, that the user wanted

a place and there were free spots. It returns the plate code introduced with the user

along with the gate and date when the spectator will have access.

11) Store on MongoParking: As node 7), this node stores the data on the MongoDB collection

in order to be accessible by the gates of the stadium when a vehicle wants to pass.

12) Msg.payload: Displays information of the tickets and the information about the

respective parking spot.

A final flow is developed to simulate the behavior of the gates in presence of different

vehicles (Figure XXI). The plate read by the sensor of the gate is contrasted with the codes

that have access for that determined match on that gate, opening well the gate or instead the

exit provided by that purpose. It is tested that plates that would have access for another

Implementing an IDE in the
IoT Generation of Visual Programming Tools

68

match cannot enter, or that emergency units only have access to any of the doors on the day

when the emergency occurs.

Figure XXI. Case 2: Node-RED Flow III

13) Name Plate: Node that is executed when a car goes to the gate and its plate number is

read by the sensor of the gate.

14) ReadFromMongoParking: Makes use of the IDE function 8), querying for the plate

number received, the respective gate and the day when the flow is executed, it is able to

decide if the gate opens or not.

15) Gate: Shows by console the decision.

This set of nodes can also be observed on the Annex Section (Annex VIII. Application Case 2:

Smart Parking System, FIFA World Cup Qatar 2022-NodeRED Flow).

To verify the right behavior of the system, a final simulation is performed. It is considered that

the day of the simulation, 5th of December of 2018, the first match of the groups phase is

disputed on the Ras Abu Aboud Stadium. Moreover, during the match is required the entrance

of more police and ambulance units.

In this way, Figure XXII shows the results of the flow related with the emergency units,

displaying where the different ambulances and police car are situated. In base to that, the flow

identifies which vehicles are closer and advised them about its closest access gate.

Meanwhile, Figure XXIII represents the action of the gate when different vehicles approach it,

According to Figure XIX, Romeo’s car has a parking place for that match on Zone 1, Mateo has

a ticket for that match but has not a parking place and Robert has a parking place on Zone 2

but for the semifinals. It can be observed that both the police and ambulance vehicles can

access the stadium by any of the gates, however the firefighters, that have no emergency into

Implementing an IDE in the
IoT Generation of Visual Programming Tools

69

the stadium, cannot access. Regarding the spectators, only Romeo who has a valid parking

place for that match could access by its respective gate.

Figure XXII. Case 2: Node-RED Result I

Figure XXIII. Case 2: Node-RED Result II

Implementing an IDE in the
IoT Generation of Visual Programming Tools

70

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

As it has been discussed through the project, the advances achieved on different technologies

has provided the unique opportunity to create a dynamic global network infrastructure where

a simple vending machine can inform users if it has cold drinks inside, the different trees of a

city may communicate if they need more water or a determined vehicle could provide its

location at every instant. This is what it is denominated as the Internet of Things, providing, if it

is managed correctly, great value to everyone; since people can avoid walking long distances

to get to an empty vending machine, water can be saved assuring that trees stay alive or even

facilitating that an emergency could be treated in a faster way. Just like these examples,

millions of quotidian “things” are connected to the Internet providing solutions on every

imaginable field, provoking that nowadays exist more connected devices than humans in the

world.

However, extracting the valuable information from these physical objects requires the creation

of IoT systems that can manage and process the data in an effective way. In order to provide

an open environment that facilitates the creation of these kinds of systems, an Integrated

Development Environment was designed and implemented with Node-RED. But, is the

resultant solution actually meeting its goal? Does it facilitate the creation of IoT applications,

increasing developer’s productivity?

Now it is exposed, in base to the experience gained and the results obtained during the

application case scenarios, the reasons that attempt to justify why the answer to these

questions presented should be in both cases affirmative.

In the first place, it is needed to comment how easy is to implement the developed solution.

Even great advances may not be adopted if they require a lot of effort or complex tasks to

make use of them. In our case, just as it is shown on Figure XIV. Using IDE Function on Node-

RED, a new function created on the IDE can be used on Node-RED just by writing one line that

imports the function to the node.

Secondly, it is remarkable how using the IDE facilitates the detection of errors and the

resolution of them. In order to justify this conclusion, Figure XXIV presents how a simple error

(x .=3) is treated without the use of the IDE (displaying more than ten messages that do not

provide any value) and making use of it (displaying one but effective message that informs

about which is the reason of the error and about the line where it is located), moreover, on the

code editor it is underlined with red signs that the use of the point makes no sense. Hence, can

be imaginable how adopting the IDE is beneficial when it comes to develop complex IoT

applications that are prone to the presence of minor errors like this one. Also, the utilization of

Implementing an IDE in the
IoT Generation of Visual Programming Tools

71

this new tool may be really interesting to naïve users that are introducing themselves to the

creation of IoT systems, to get some practice and solve their code errors.

Figure XXIV. Allocating error

Another reason related with increasing the productivity of the developers detected, it is that

the error can be decoupled. In complex IoT systems that might incorporate several elements as

a MongoDB database, sensor data with different formats or Python functions, it is normal to

find errors from different nodes. Without the existence of the IDE, it is needed to deploy the

whole flow to visualize if the Python function is developed correctly, finding maybe another

error that has nothing to do with the Python function, without ensuring that is actually well

developed. Using the new IDE, the error is decoupled, it is possible to assure that the Python

Implementing an IDE in the
IoT Generation of Visual Programming Tools

72

function works correctly before including it on the Node-RED flow that may contain other

errors.

It is also well deserved to emphasize other features provided by the Integrated Development

Environment that facilitate the different tasks performed by the developers. For example, the

interactive code editor, which not only displays the errors line by line but also executes the

code, providing instant results of the calculations performed, indicating if errors not related

with the syntax are also committed (without the existence of the IDE, it would have been

much more difficult to detect this kind of mistakes since the code would run along with the

rest of the flow showing just the final solution, indicating maybe that one vehicle is closer than

the other, without noticing that the distances calculated have values around billions of

kilometers). Or how useful, may be to look for more information just by using the google

iframe already implemented on the site, this information searched can be easily introduced on

the code editor without moving from different browser windows.

Lastly, the different IDE functions get stored and can be accessible and used for different cases

and IoT applications. This is an important point, without the IDE, developers need to create

functions from scratch or, in the best case, to search for the Node-RED flow if they have it

saved, importing it in some way and, after that, copying and pasting the node to the new flow.

With the use of the IDE, things are quite easier, they just require to import again the function

in the new flow to get the results expected.

It is clear, attending to the set of reasons presented, that the new environment facilitates

(makes easier) the creation of IoT systems, increasing developers productivity (effectiveness of

productive effort), by facilitating the allocation and solution of errors, decoupling errors,

reducing times of deployment and providing a testing and searching platform on site, in an

effective and simple way.

Despite considering that the objective of the project is achieved, and that, from the general

perspective the resultant solution is very positive; there are still several areas that have room

for improvement, where the future work could be focused on.

One possible line of development is the translation of more Python modules to JavaScript in

order to be able to use them on the IDE. As it has been previously introduced, there are

several Python modules that are not yet implemented on the IDE, meaning that even that it is

possible to write functions that make use of these modules and take advantage of their

functionalities in Node-RED, they cannot be tested normally reducing some of the most

important benefits of the IDE. Skulpt developers are already working on this direction,

implementing more and more modules; however, it would be good to collaborate with them

to include modules that may be more relevant in the IoT framework, as for example, Pymongo

that provides the driver to make use of MongoDB, or maybe Scikit-learn that makes use of

state-of-the-art implementations of many well-known machine learning algorithms.

Another cool feature that could be interesting for the new environment is the denominated

intelligent code completion. This feature is already implemented on cutting-edge IDEs as

Eclipse, providing a powerful tool to speed up coding applications just by understanding the

Implementing an IDE in the
IoT Generation of Visual Programming Tools

73

context of the code and getting automated writing before actually typing the functions or

variables that are being used.

A third area for improvement has to do with the portability to tablets or mobiles of the new

service. Internet of Things is present everywhere at every moment, for that reason it would be

extremely appealing to provide the development service that is already totally integrated on

the cloud (no requires of any particular aspect related with the computer infrastructure) as an

application for mobile or tablets, allowing users to develop IoT applications on every device

with much more simplicity.

Summarizing, the future work should be related with the portability, the addition of new

features as intelligent code completion and with the implementation of Python modules useful

in the Internet of Things framework.

Ultimately, I would like to express some insights from a personal point of view about the

development of this Master Thesis, which has supposed both a challenge but also an incredible

opportunity to learn.

Despite this project has been developed far away from home, in Switzerland. I disposed of a

desk in one of the offices of the ICT for Sustainable Manufacturing Group at EPFL, providing

me with the great opportunity to treat every single day with an exceptional group of people

that made my life much easier, sharing all kind of experiences and making me feel as one more

of the group.

Moreover, the present Master Thesis has dealt with one of the fundamental pillars of the

denominated Industry 4.0, as it is the Internet of Things. Integrating and putting into practice

the knowledge acquired in previous courses such as project management, industrial control or

instrumentation along with new IT concepts and technologies that may also be valuable for my

future professional career. In definitive, I believe it represents a great epilogue for this

postgraduate stage that has provided me with the attitude and confidence necessary to start

my career with great enthusiasm.

Implementing an IDE in the
IoT Generation of Visual Programming Tools

74

CHAPTER 7. REFERENCES

 [1] P.Guillemin, P. Friess. 2009, “Internet of Things Strategic Research Roadmap”, The Cluster of

European Research Projects, accessed 27 Nov. 2018, from IoT European Research Cluster Database.

[2] The Carnegie Mellon University Computer Science Department n.d., The "Only" Coke Machine

on the Internet, The Carnegie Mellon University, accessed 27 Nov. 2018,

<https://www.cs.cmu.edu/~coke/history_long.txt>.

[3] J.Teicher 2018, The little-known story of the first IoT device, IBM, accessed 27 Nov. 2018,

<https://www.ibm.com/blogs/industries/little-known-story-first-iot-device/>.

[4] J.Manyika, M.Chui, et al. 2015, Unlocking the potential of the Internet of Things, McKinsey

Global Institute, accessed 28 Nov. 2018, <https://www.mckinsey.com/business-functions/digital-

mckinsey/our-insights/the-internet-of-things-the-value-of-digitizing-the-physical-world>.

[5] Miorandi, D., Sicari, et al. 2012, “Internet of Things: Vision, Applications and Research

Challenges”, Ad hoc networks, Volume 10, Pages 1497-1516, accessed 28 Nov. 2018, from Elsevier.

[6] European Commission 2017, Horizon 2020, accessed on 28 Nov. 2018,

<https://ec.europa.eu/programmes/horizon2020/en/what-horizon-2020>.

[7] European Commission 2015, ICT-30-2015 - Internet of Things and Platforms for Connected

Smart Objects, accessed on 28 Nov. 2018, <https://cordis.europa.eu/programme/rcn/664815_en.html>.

[8] Y. Dibrov 2018, The Internet of Things Is Going to Change Everything About Cybersecurity,

Harvard Business Review, accessed on 28 Nov. 2018, <https://hbr.org/2017/12/the-internet-of-things-

is-going-to-change-everything-about-cybersecurity>.

[9] European Commission 2017, Building an IoT OPen innovation Ecosystem for connected smart

objects, accessed on 28 Nov. 2018, <https://cordis.europa.eu/project/rcn/200391_en.html>.

[10] bIoTope Project 2018, bIoTope Project, accessed on 28 Nov. 2018, <https://biotope-

project.eu/> .

[11] M.L Corbin 2016, Node-RED: The fundamental, easy to use, open-source programming tool for

IoT, IBM Developers, accessed on 28 Nov. 2018, <https://developer.ibm.com/dwblog/2016/node-red-

programming-tool-open-source-iot/> .

[12] P. Pratim Ray 2017, “A Survey on Visual Programming Languages in Internet of Things”,

Scientific Programming, Volume 2017, Article ID 1231430, accessed on 28 Nov. 2018 from Hindawi.

[13] H. Boyes, B. Hallaq, et al. 2018, ‘‘The industrial internet of things (IIoT): An analysis framework’’

Computers in Industry, Volume 101, Pages 1-12, accessed on 28 Nov. 2018 from Elsevier.

[14] M. Rüßmann, P. Gerbert, et al. 2015, Industry 4.0: The Future of Productivity and Growth in

Manufacturing Industries, Pages 1-14, Boston Consulting Group, accessed on 28 Nov. 2018,

<https://www.bcg.com/publications/2015/engineered_products_project_business_industry_4_future_

productivity_growth_manufacturing_industries.aspx>.

Implementing an IDE in the
IoT Generation of Visual Programming Tools

75

[15] K.Schwab 2016, The Fourth Industrial Revolution: what it means, how to respond, World

Economic Forum, accessed on 28 Nov. 2018, < https://www.weforum.org/agenda/2016/01/the-fourth-

industrial-revolution-what-it-means-and-how-to-respond>.

[16] L. S. Dalenogare, G.Brittes 2018, “The expected contribution of Industry 4.0 technologies for

industrial performance”, International Journal of Production Economics, Volume 204, Pages 383-394,

accessed on 29 Nov. 2018, from Elsevier.

[17] M. Burnett 1999, ‘‘Visual Programming’’, Wiley Encyclopedia of Electrical and Electronics

Engineering, J. Webster (ed.).

[18] Matthew Revell 2017, What Is Visual Programming?, Outsystems, accessed on 29 Nov. 2018,

<https://www.outsystems.com/blog/what-is-visual-programming.html>

[19] Visuino 2017, Visuino, accessed on 29 Nov. 2018, <http://www.visuino.com/>.

[20] Wia 2018, Wia, accessed on 29 Nov. 2018, <https://www.wia.io/>.

[21] Node-RED 2018, Node-RED, accessed on 29 Nov. 2018, <https://nodered.org/>.

[22] Node-RED 2018, Node-RED about, accessed on 29 Nov. 2018, <https://nodered.org/about//> .

[23] GitHub 2018, bIoTope's KnaaS (Knowledge as a Service Framework in the IoT Era) and UIaaS

(User Interface as a Service), accessed on 28 Nov. 2018, <https://github.com/prokolyvakis/knaas-uiaas>.

[24] M. Kerrigan, A. Mocan, et al. 2007, ‘‘The Web Service Modeling Toolkit - An Integrated

Development Environment for Semantic Web Services’’, ESWC 2007: The Semantic Web: Research and

Applications, Pages 789-798, accessed on 29 Nov. 2018, from SpringerLink.

[25] Veracode 2018, What is an Integrated Development Environment (IDE)?, accesed on 29

Nov.2018, <https://www.veracode.com/security/integrated-development-environments>.

[26] Wikipedia 2018, Interpreter (computing), accessed on 29 Nov. 2018,

<https://en.wikipedia.org/wiki/Interpreter_(computing)>.

[27] Techdifferences 2017, Difference Between Compiler and Interpreter, accessed on 28 Nov. 2018,

<https://techdifferences.com/difference-between-compiler-and-interpreter.html>.

[28] Brithon 2018, Brithon Introduction, accessed on 29 Nov. 2018,

<https://brython.info/static_doc/en/intro.html>.

[29] Repl.it 2018, About Repl, accessed on 29 Nov. 2018, <https://repl.it/site/about>.

[30] PyPy.js 2018, Pypy.js Overview, accessed on 29 Nov. 2018, <https://pypyjs.org/>.

[31] GitHub 2018, PyPy compiled to JavaScript, accessed on 29 Nov. 2018,

<https://github.com/pypyjs/pypyjs>.

[32] Scott Graham 2018, Skulpt Project, accessed on 29 Nov. 2018, <http://h4ck3r.net/#Skulpt>.

[33] Transcrypt 2018, Transcrypt, What and Why, accessed on 29 Nov. 2018,

<http://www.transcrypt.org/docs/html/what_why.html#what-is-transcrypt>.

[34] GitHub 2018, Welcome to Skulpt, accessed on 29 Nov. 2018,

<https://github.com/skulpt/skulpt>.

[35] Interactive Python 2018, How to think like a Computer Scientist, accessed on 29 Nov. 2018,

<http://interactivepython.org/courselib/static/thinkcspy/GeneralIntro/intro-

TheWayoftheProgram.html>.

Implementing an IDE in the
IoT Generation of Visual Programming Tools

76

[36] Trinket 2018, Trinket, accessed on 29 Nov. 2018, <https://trinket.io/>.

[37] CodeSkulptor 2018, CodeSkulptor, accessed on 29 Nov. 2018, <http://www.codeskulptor.org/>.

[38] GitHub 2018, Trinket: The easiest way to teach with interactive examples, accessed on 29 Nov.

2018, <https://github.com/trinketapp>.

[39] J. Gubby, R. Buyya, et al. 2016, “Internet of Things (IoT): A vision, architectural elements, and

future directions”, Future Generation Computer Systems, Volume 29, Issue 7, Pages 1645-1660, accessed

28 Nov. 2018, from Elsevier.

[40] Oxford English Dictionary 2018, Database, accessed on 29 Nov. 2018

<http://www.oed.com/view/Entry/47411>.

[41] J. Cooper, A. James 2009, “Challenges for database management in the internet of

things”, IETE Technical Review, Volume 26, Issue 5, Pages 320-329, accessed 28 Nov. 2018, from

ResearchGate.

[42] A. Bridgwater 2016, The IoT needs a new kind of database, Internet of Business, accessed 30

Nov. 2018, <https://internetofbusiness.com/iot-needs-new-kind-database/>.

[43] Y. Lin, S. Manoharan 2013, “A performance comparison of SQL and NoSQL databases”, 2013

IEEE Pacific Rim Conference, accessed 28 Nov. 2018, from IEEE.

[44] MongoDB 2018, What is MongoDB, accessed on 30 Nov. 2018

<https://www.mongodb.com/what-is-mongodb>.

[45] MongoDB 2018, MongoDB Internet of Things, accessed on 30 Nov. 2018

<https://www.mongodb.com/use-cases/internet-of-things>.

[46] Len Bass, Ingo Weber, et al. 2015, “DevOps: A Software Architect's Perspective”, Pearson

Education Inc.

[47] M. Huttermann 2012, “DevOps for Developers”, Apress ed.

[48] C. Boettiger 2015, “An introduction to Docker for reproducible research, with examples from

the R environment”, ACM SIGOPS Operating Systems Review, Volume 49, Issue 1, accessed on 30 Nov.

2018, from ResearchGate

[49] Gartner 2016, DevOps Will Evolve From a Niche to a Mainstream Strategy Employed by 25

Percent of Global 2000 Organizations, media released, accessed on 28 Nov. 2018,

<https://www.gartner.com/newsroom/id/2999017>.

[50] Docker 2018, Docker Overview, accessed on 30 Nov. 2018

<https://docs.docker.com/engine/docker-overview/>.

[51] Docker 2018, What is a container?, accessed on 30 Nov. 2018

<https://www.docker.com/resources/what-container>.

[52] RayGun 2018, The 10 best DevOps tools for 2018, accessed on 30 Nov. 2018

<https://raygun.com/blog/best-devops-tools/>.

[53] Dav Clark, A. Culich, et al. 2014, “BCE: Berkeley’s Common Scientific Compute Environment for

Research and Education”, 13th PYTHON IN SCIENCE CONF. (SCIPY 2014), accessed 30 Nov. 2018, from

Research IT Berkeley.

[54] Docker 2018, Docker Containerization Unlocks the Potential for Dev and Ops, accessed on 30

Nov. 2018, <https://www.docker.com/why-docker>.

Implementing an IDE in the
IoT Generation of Visual Programming Tools

77

[55] Docker 2018, Companies from Every Industry Succeed with Docker Enterprise, accessed on 30

Nov. 2018, <https://www.docker.com/customers>.

[56] Git 2018, Git fast version control, accessed on 30 Nov. 2018, <https://git-scm.com/>.

[57] S. Chacon and B. Straub 2014, “Pro Git”, Apress Ed, 2
nd

 Edition.

[58] Git 2018, About Git, accessed on 30 Nov. 2018, <https://git-scm.com/about/>.

[59] D. Flanagan 2006, “JavaScript: The Definitive Guide”, 4th Edition

[60] N.C. Zachas 2005, “Professional JavaScript for Web Developers”, Wiley Publishing Inc.

[61] Web Technology Surveys 2018, Usage of JavaScript for Websites, accessed on 30 Nov. 2018

<https://w3techs.com/technologies/details/cp-javascript/all/all>.

[62] Python 2018, General Python FAQ, accessed on 30 Nov. 2018

<https://docs.python.org/3/faq/general.html#why-was-python-created-in-the-first-place>.

[63] A.C. Stross 2018, “Python: a programming language changes the world”, Python Brochure,

accessed on 30 Nov. 2018 from Python Support Website.

[64] F. Pedregosa, G. Varoquaux, et al. 2011, “Scikit-learn: Machine Learning in Python”, Journal of

Machine Learning, Volume 12, Pages 2825−2830, accessed 30 Nov. 2018, from JMLR.

[65] W3C 1999, “HTML 4.01 Specification”, World Wide Web Consortium, accessed 30 Nov. 2018,

<https://www.w3.org/TR/html401/>.

[66] Node.js 2018, About Node.js, accessed on 30 Nov. 2018 <https://nodejs.org/en/about/>.

[67] M. Cantelon, M. Harter, et al. 2011, “Node.js in action”, Manning Publications.

[68] S. Tilkov, S. Vinoski 2010, “Node.js: Using JavaScript to Build High-Performance Network

Programs”, IEEE Internet Computing, Volume 14, Issue 6, accessed 30 Nov. 2018, from IEEE Library.

[69] D.G. Puranik, D. Feiock, et al. 2013, “Real-Time Monitoring using AJAX and WebSockets”, 20th

IEEE International Conference and Workshops on Engineering of Computer Based Systems (ECBS),

accessed 30 Nov. 2018, from IEEE Library.

[70] J. J. Garrett 2005, “Ajax: A New Approach to Web Applications”, Adaptive path, accessed on 30

Nov. 2018 <http://adaptivepath.org/ideas/ajax-new-approach-web-applications/>.

[71] W3Schools 2018, Ajax Introduction, accessed on 30 Nov. 2018

<https://www.w3schools.com/xml/ajax_intro.asp>.

[72] C. Larman 2004, “Agile and Iterative Development: A Manager's Guide”, Addison-Wesley

Professional

[73] Microsoft Azure 2018, What is a virtual machine?, accessed on 30 Nov. 2018

<https://azure.microsoft.com/en-gb/overview/what-is-a-virtual-machine/>.

[74] GitHub 2018, Building Skulpt with Docker, accessed on 30 Nov. 2018

<https://github.com/skulpt/skulpt/issues/800>.

[75] Docker 2018, Docker Use Volumes, accessed on 30 Nov. 2018

<https://docs.docker.com/storage/volumes/>.

[76] Wikipedia 2018, Josephus Problem, accessed on 30 Nov. 2018

<https://en.wikipedia.org/wiki/Josephus_problem>.

Implementing an IDE in the
IoT Generation of Visual Programming Tools

78

[77] WMO 2015, “Guidelines on the Definition and Monitoring of Extreme Weather and Climate

Events”, World Meteorological Organization, accessed on 30 Nov. 2018,

<https://www.wmo.int/pages/>.

[78] J.R. Nairn, R. Fawcett 2015, “The Excess Heat Factor: A Metric for Heatwave Intensity and Its

Use in Classifying Heatwave Severity”, International Journal of Environmental Research and Public

Health, accessed on 30 Nov. 2018, from PMC US National Library of Medicine.

[79] C. Mora, B. Dousset, et al. 2017, “Global risk of deadly heat”, Nature Climate Change, Volume 7,

Pages 501–506, accessed on 30 Nov. 2018, from Nature Research Journal.

[80] A.J. Hobday, L. Alexander, et al. 2016, “A hierarchical approach to defining marine heatwaves”,

Progress in Oceanography, Volume 141, Pages 227-238, accessed on 30 Nov. 2018, from Elsevier.

[81] R.O. Teskey, T. Wertin, et al. 2014, “Responses of tree species to heat waves and extreme heat

events”, Plant Cell and Environment, Volume 38, Issue 9, accessed on 30 Nov. 2018, from Research Gate.

[82] Greater Lyon Business 2018, Lyon Smart City, accessed on 01 Dec. 2018,

<http://www.business.greaterlyon.com/smart-city-lyon-process-47.html>.

[83] J. Robert, S. Kubler, et al. 2016, “Open IoT Ecosystem for Enhanced Interoperability in Smart

Cities—Example of Métropole De Lyon”, Sensors, Volume 17, Issue 12, accessed on 01 Dec. 2018, from

MPDI Journals.

[84] A. Tzavali, J.P. Paravantis et al. 2015, “Urban Heat Island Intensity: A Literature Review”,

Fresenius Environmental Bulletin, accessed on 01 Dec. 2018, from Research Gate.

[85] European Climate KNMI 2018, Monthly Lyon Temperatures, accessed on 16 Nov. 2018

<https://climexp.knmi.nl/gettempall.cgi?id=someone@somewhere&WMO=7480&STATION=LYON>.

[86] FIFA 2018, FIFA World Cup Qatar, accessed on 01 Dec. 2018

<(https://www.fifa.com/worldcup/qatar2022/>.

[87] S. Hall 2018, Does hosting a World Cup make economic sense?, WEF, accessed on 01 Dec. 2018

<https://www.weforum.org/agenda/2018/06/world-cup-football-smart-investment-russia-host/>.

[88] IMF 2017, World Economic Outlook, accessed on 30 Nov 2018 <https://www.imf.org/external>.

[89] Oxford Business Group 2017, Major transport projects in preparation for 2022 FIFA World Cup

in Qatar?, accessed on 01 Dec. 2018 <https://oxfordbusinessgroup.com/overview/flurry-activity-major-

projects-prepare-2022-fifa-world-cup-and-meet-long-term-development-goals>.

[90] Rahul Bali 2017, 2022 World Cup: Cooling technology, Goal, accessed on 01 Dec. 2018

<https://www.goal.com/en/news/2022-world-cup-cooling-technology-all-you-need-to-

know/feh3ywch67c4100bnh8w83jjt>.

[91] L. Makdessi 2017, Identifying new opportunities in Qatar’s parking industry, Parking network,

accessed on 01 Dec. 2018 <http://www.parking-net.com/parking-news/qatars-parking-industry>.

[92] K. Främling, C. Cherifi 2018, “Open IoT Ecosystem for Sporting Event Management”, IEEE Access

Volume 5, accessed on 01 Dec. 2018 from IEEE Journals>.

[93] Portal Qatar Government 2018, World Cup Stadiums, accessed on 01 Dec. 2018

<https://portal.www.gov.qa/wps/portal/topics/Tourism+Sports+and+Recreation/worldcupstadiums>.

[94] Rosetta Code 2018, Haversine Formula, accessed on 01 Dec. 2018,

<https://rosettacode.org/wiki/Haversine_formula>.

Implementing an IDE in the
IoT Generation of Visual Programming Tools

79

Implementing an IDE in the
IoT Generation of Visual Programming Tools

80

BUDGET

IMPLEMENTING AN INTEGRATED

DEVELOPMENT ENVIRONMENT IN

THE INTERNET OF THINGS GENERATION

OF VISUAL PROGRAMMING TOOLS

AUTHOR: JOSÉ QUILES ALEMAÑ

SUPERVISED BY:

 DIMITRIS KYRITSIS (EPFL)

 PRODROMOS KOLYVAKIS (EPFL)

 LUIS JOSÉ SAIZ ADALID (UPV)

Implementing an IDE in the
IoT Generation of Visual Programming Tools

81

Implementing an IDE in the
IoT Generation of Visual Programming Tools

82

CHAPTER 1. INTRODUCTION

The budget document deals with the costs directly associated with the execution of this

project. It is clear, that as this thesis has been developed as a student in one office provided by

the university, the cost has not passed directly to the author of the project. However, it is

needed to determine which would have been the total cost of the project if it had been

developed without any kind of agreement, expressing how much would have cost to an

external company to carry it out.

The importance of this document is therefore evident, since it provides an idea to any external

person or company about how much can it cost to develop one project of similar

characteristics; moreover, elaborating a budget is a fundamental task to verify the viability of

any project, allowing the author to understand the reality of this particular one, as it has to be

presented to the senior manager of the company that needs to understand if the project may

be undertaken.

This section is structured in four chapters; the first one attempts to express the necessity and

importance of elaborating the budget of the project, the second indicates all the measurement

units actually employed through the different phases, then the unitary cost of each

measurement unit is defined to finish calculating the total cost of the project.

Implementing an IDE in the
IoT Generation of Visual Programming Tools

83

CHAPTER 2. MEASUREMENT UNITS

In this chapter, it is presented the total number of measurement units employed in the

different phases of the project that actually incur in a cost. In concrete, this project required

seventy days of complete dedication that amount to a number of 560 working hours which

obviously incurs in labor cost, besides, some of the hours where dedicated to meetings with

experts that would also be paid. Moreover, during these days it was required the use of

electricity, in form of light and computer powering. It is also considered that the computer

system gets depreciated, and that the software and material expenses are directly associated

to this particular project.

Definition of the project

This phase considers the different actions required to define properly the project, including the

identification of an opportunity for improvement, the definition of objectives and

requirements or establishing the methodology and structure to follow during the

development.

Definition of the project

Description Measurement Unit

Electricity 10 days

Computer System Wear and Tear 10 days

Labor 80 hours

Building a Python Development Environment based on Skulpt

The second stage involves all the activities needed to create the new Development

Environment as building Skulpt, developing JavaScript functions, creating Node.js files,

connecting the client with the server side, implementing Python modules, configuring graphs

or developing the Google iframe.

Building a Python Development Environment based on Skulpt

Description Measurement Unit

Electricity 21 days

Computer System Wear and Tear 21 days

Labor 168 hours

Expert's consultation 10 hours

Implementing an IDE in the
IoT Generation of Visual Programming Tools

84

Implementation with Node-RED

Involves all the activities related with establishing the connection between Node-RED and the

new Integrated Development Environment.

Implementation with Node-RED

Description Measurement Unit

Electricity 5 days

Computer System Wear and Tear 5 days

Labor 40 hours

Expert's consultation 4 hours

Simulation in Application Case Scenarios

The set of actions directly related with testing in representative cases, consist basically in

researching real application possibilities, selecting and justifying two cases that represent a

good test for the IDE, defining problems and possible solutions for each case, developing an

IoT solution for each case, expressing the advantages and limitations of the new environment.

Simulation in Application Case Scenarios

Description Measurement Unit

Electricity 20 days

Computer System Wear and Tear 20 days

Labor 160 hours

Documenting

Tasks related with developing the technical documentation such as typing, editing text…

Documenting

Description Measurement Unit

Electricity 14 days

Computer System Wear and Tear 14 days

Labor 112 hours

Other Concepts

Apart from the costs that can be directly allocated to one of the phases, there are also other

expenses associated to the project that need to be accounted such as the purchase of software

licenses or desktop materials.

Other Concepts

Description Measurement Unit

Desktop material (paper, pen, reading lamp…) 1 units

Software Licenses (Ms. Office) 4 months

Book printing and binding 1 units

Implementing an IDE in the
IoT Generation of Visual Programming Tools

85

CHAPTER 3. DETAILED BUDGET

The third chapter illustrates the unitary costs of each of the units presented on the previous

one in order to calculate the cost associated to each of the phases defined. It has been

considered for simplicity and because of the better knowledge by the author that the project is

developed in Spain, not in Switzerland that would result in a higher cost.

The depreciation of the computer system is calculated linearly considering an initial cost of

1500€ with a depreciation lifespan of five years and a salvage value at the end of the lifespan

of 300€. In this way, the monthly depreciation can be calculated as:

Monthly depreciation =   Cost − Savage value
depreciation lifespan × months/year =   1500 − 300

5 × 12 = 20€	
Considering that in a month there are on average 22 working days, it is determined that the

computer system wear and tear is:

Computer system Wear and Tear =   Monthly depreciation
Working days/month = 20

22 = `, a`a	€/bcd 

Regarding the labor cost, it is estimated that the different task can be performed by an

Industrial Engineer without any experience, considering a base salary of 18.000€ (230

days/year), Social Security (28,3%), a food diet of 5 euros per day with and a daily dedication of

8 hours:

e.f2J g2F/ =   h.FH i.-.J1 × &1 + ii+
j2JkE3l m.1F/1H.J × ℎ2nJF/o2JkE3l D.1 + mEH//D.1

ℎ2nJF/o2JkE3l D.1 =

= 18.000 × &1 + 0,283+
230 ∗ 8 + 5

8 = rs. rtu €/vwxy

In relation with the meetings with the experts on the topic, it is supposed an agreement by

40€/hour. The license used during the development include the subscription to the Ms. Office

package with a cost of 10 €/month. The office material is rounded to 38 € since it involves a

reading lamp and writing tools such as paper or pens. It is also needed to print the final

documentation with more than one hundred pages with color and to bind it as a book in order

to be presented, 12€. Finally, it is considered an average cost of office electricity of 0,5 €/day.

According to these unitary costs and the measurement of each of the units determined on the

previous chapter, it is possible to calculate the cost associated to each one of the different

phases of the project.

Implementing an IDE in the
IoT Generation of Visual Programming Tools

86

Definition of the project

Definition of the project

Description Measurement Unit
Unitary

Cost Cost Activity/Phase

Electricity 10 days 0.5 5

Computer System Wear and Tear 10 days 0.909 9.09

Labor Cost 80 hours 13.176 1054.08

 Phase Cost 1068.17

Building a Python Development Environment based on Skulpt

Building a Python Development Environment based on Skulpt

Description Measurement Unit
Unitary

Cost Cost Activity/Phase

Electricity 21 days 0.5 10.5

Computer System Wear and Tear 21 days 0.909 19.089

Labor Cost 168 hours 13.176 2213.568

Expert's consultation 10 hours 40 400

Phase Cost 2643.157

Implementation with Node-RED

Implementation with Node-RED

Description Measurement Unit
Unitary

Cost Cost Activity/Phase

Electricity 5 days 0.5 2.5

Computer System Wear and Tear 5 days 0.909 4.545

Labor Cost 40 hours 13.176 527.04

Expert's consultation 10 hours 40 80

Phase Cost 614.085

Simulation in Application Case Scenarios

Simulation in Application Case Scenarios

Description Measurement Unit
Unitary

Cost Cost Activity/Phase

Electricity 20 days 0.5 10

Computer System Wear and Tear 20 days 0.909 18.18

Labor Cost 160 hours 13.176 2108.16

 Phase Cost 2136.34

Implementing an IDE in the
IoT Generation of Visual Programming Tools

87

Documenting

Documenting

Description Measurement Unit
Unitary

Cost Cost Activity/Phase

Electricity 14 days 0.5 7

Computer System Wear and Tear 14 days 0.909 12.726

Labor Cost 112 hours 13.176 1475.712

 Phase Cost 1495.438

Other Concepts

Other Concepts

Description Measurement Unit Unitary Cost Cost

Desktop material (paper, reading
lamp…) 1 units 38 38

Printing and Binding 1 units 12 12

Ms Office 4 months 10 40

 Phase Cost 90

Implementing an IDE in the
IoT Generation of Visual Programming Tools

88

CHAPTER 4. TOTAL COST

In base to the results obtained on the previous chapter and considering an industrial benefit of

6%, a ratio of 10% for unforeseen expenses, and a value-added tax of 21%, it is possible to

determine the total cost associated to the project.

PHASE COST

Definition of the project 1068.17 €

Building a Python Development Environment based on Skulpt 2643.157 €

Implementation with Node-RED 614.085 €

Simulation in Application Case Scenarios 2136.34 €

Documenting 1495.438 €

Other Concepts 90 €

Cost Material Execution 8047.19 €

Industrial Benefit (6%) 482.8314 €

Other Expenses (10%) 804.719 €

Cost without Value-Added Tax (VAT) 9334.7404 €

VAT (21%) 1960.295484 €

Project Total Cost 11295.03588 €

Hence, the budget for the project amounts to ELEVEN THOUSAND, TWO HUNDRED NINETY-

FIVE EUROS AND FOUR CENTS (11.295,036€).

The resultant cost does not represent a huge sum if it is considered that just the bIoTope

project received funding by the European Union of almost eight million euros to facilitate

companies the creation of new Platforms for Connected Smart Objects [9]; the reasons that

explain the relatively low final cost is that it was not needed to use much more than a good

computer system and the Microsoft Office license, since the rest of the software employed

was completely open sourced. It may be denoted that the distribution of cost by phases is

almost directly proportionate to the number of hours employed, just as it is shown below:

Phase Hours/Phase %hours Cost/Phase %Cost

Definition of the project 80 14.285 1068.17 13.423

Building a Python Development
Environment based on Skulpt 168 30 2643.157 33.217

Implementation with Node-RED 40 7.143 614.085 7.717

Simulation in Application Case Scenarios 160 28.571 2136.34 26.848

Documenting 112 20 1495.438 18.793

Implementing an IDE in the
IoT Generation of Visual Programming Tools

89

The little differences between the percentages may be related with the consulting hours that

are employed on phases 2 and 3, incrementing its relative cost. The definitive cost distribution

by phases, including other concepts, is represented on Figure XXV.

Figure XXV. Cost Distribution by Phases

Another interesting point to highlight is how the cost is distributed by activity, since it informs

clearly about the relevance of the labor cost in this project (92% of the cost), relegating to a

second level the consulting hours (6%) and far away from them, the rest of the costs that are

rounding the one percent of the total cost of material execution.

Activity Cost (€) %Cost

Electricity 35 0.434934431

Computer System Wear and Tear 63.63 0.790710795

Labor Cost 7378.56 91.69113691

Expert's consultation 480 5.964815047

Desktop material (paper, pen, reading lamp…) 50 0.621334901

Software Licenses 40 0.497067921

Implementing an IDE in the
IoT Generation of Visual Programming Tools

90

Figure XXVI. Cost Distribution by Activity

According to the results obtained some conclusions could be drawn in order to reduce the

total cost of the project. The first idea that would come to the reader’s mind, it is that the

labor cost should be attacked, and evidently it makes sense, since it represents most of the

project cost. Now, the question that must be asked is how it could be reduced.

One option is reducing the salary of the Industrial Engineer, which would incur in less cost per

hour, and considering that the hours stay inalterable would reduce the total cost. However,

this solution has some flaws (this project is part of a Master Thesis in which the student is

completely motivated to achieve the objectives, finishing his master’s degree and learning new

IT concepts) a reduction of that salary could result in the discontent of the engineer, reducing

his productivity and increasing the hours committed to the project, incrementing the total

cost. Moreover, reducing the salary could not only have a negative impact on the cost of the

project, but also on the quality of the developed solution.

For these reasons, the solution proposed to reduce the total cost of the project would be

reducing the total amount of hours. This could be achieved by different methods, like hiring an

engineer with more experience, of course it would increment the cost per hour, but it could

reduce the number of working hours and consulting hours with experts of the field.

Another possible solution has to do with the efficiency of the engineer. Of course, in this

project a clear methodology in order to boost the efficiency is followed, however, some other

aspects could be taken into account by a company as providing previous projects or user

handbooks to facilitate the launching of the project.

A last final idea would be related with the distribution of the tasks. Some tasks performed

during the development of the project does not require any technical background or specific

formation; for example, it could be positive to delegate documenting tasks to someone

specialized on that field, reducing not only the time associated to that task, but also reducing

the engineers hours that are more expensive and even increasing the satisfaction of the

engineer that would be more focused on the technical aspects of the project.

Implementing an IDE in the
IoT Generation of Visual Programming Tools

91

Implementing an IDE in the
IoT Generation of Visual Programming Tools

92

ANNEX

IMPLEMENTING AN INTEGRATED

DEVELOPMENT ENVIRONMENT IN

THE INTERNET OF THINGS GENERATION

OF VISUAL PROGRAMMING TOOLS

AUTHOR: JOSÉ QUILES ALEMAÑ

SUPERVISED BY:

 DIMITRIS KYRITSIS (EPFL)

 PRODROMOS KOLYVAKIS (EPFL)

 LUIS JOSÉ SAIZ ADALID (UPV)

Implementing an IDE in the
IoT Generation of Visual Programming Tools

93

Implementing an IDE in the
IoT Generation of Visual Programming Tools

94

CHAPTER 1. INTRODUCTION

The Annex document includes basically the pieces of code developed by the author for this

particular project. The code is presented on this section to provide the reader with all the

information relative to the Master Thesis, being particularly useful to developers considering

the possibility to create a similar solution or just to anybody who has curiosity about how

something is developed.

It is important to underline that these pieces of code are not included on the report section

since they do not provide any value to the complete understanding of the project, even

complicating the reading task.

It was thought to present the JavaScript and Python functions as pseudocode (in order to

provide any reader with the possibility to understand the code, even if they do not know the

specific programming language), however, it was finally decided to provide the reader with the

original code with additional comments (using #) to allow the understanding but also avoiding

the loss of information and presenting the real code that leads to the solution.

To conclude, the annex section is divided in an introduction chapter, the index.html, a chapter

that includes the JavaScript functions developed, other with the node.js files, another annex

chapter including the different dockerfiles and docker-composes elaborated, chapters that

include all the relative code with the application cases as IDE functions and nodes of Node-

RED, an annex with the markdown that provides more documentation for the users of the IDE

and finally a last annex with the Python file created to automate commands.

Implementing an IDE in the
IoT Generation of Visual Programming Tools

95

ANNEX I (INDEX.HTML)

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title>Your Python IDE</title>
 <link rel="stylesheet" type="text/css" media="all" href="static/codemirror.css">
 <link rel="stylesheet" type="text/css" media="all" href="static/solarized.css">
 <link rel="stylesheet" type="text/css" media="all" href="static/main.css">
 <script type="text/javascript"
src="https://ajax.googleapis.com/ajax/libs/jquery/2.2.0/jquery.min.js"></script>
 <script src="static/codemirrorepl.js" type="text/javascript"></script>
 <script src="static/repl.js" type="text/javascript"></script>
 <script src="static/python.js" type="text/javascript"></script>
 <script src="http://www.skulpt.org/support/jsbeautify/beautify.js" type="text/javascript"
></script>
 <script src="static/skulpt.min.js" type="text/javascript"></script>
 <script src="static/debugger/debugger.js" type="text/javascript"></script>
 <script src="static/skulpt-stdlib.js" type="text/javascript"></script>
 <script src="static/env/editor.js" type="text/javascript"></script>
 <script src="static/debugger/debugger_cm.js" type="text/javascript"></script>
 <script type="text/javascript">

JavaScript Function to represent graphs on a pop-up window.
 Sk.domOutput = function(html) {
 var newWindow = window.open("", '_blank',
 "height=350,width=450,status=yes,toolbar=no,menubar=no,location=no");
 return $(newWindow.document.body).append(html).children().last();
 };

Implementing New Modules, defining path and dependencies using Sk.externalLibraries method.
 Sk.externalLibraries = {
 pygal : {
 path : 'pygal/__init__.js',
 dependencies : [
 'https://cdnjs.cloudflare.com/ajax/libs/highcharts/6.0.2/highcharts.js',
 'https://cdnjs.cloudflare.com/ajax/libs/highcharts/6.0.2/js/highcharts-more.js'
]},
 numpy : {
 path : 'numpy/__init__.js',
 },
 random : {
 path : 'numpy/random.js',
 },
 matplotlib : {
 path : 'matplotlib/__init__.js',
 dependencies : [
 'matplotlib/d3.min.js',

Implementing an IDE in the
IoT Generation of Visual Programming Tools

96

]}
 };
 </script>
 </head>
 <body onLoad="scrollWin()";> # Calling Function that scrolls up the IDE on load.
 <img style="position: absolute;
 top: 0; left: 0; border: 0;"
 src="https://s3.amazonaws.com/github/ribbons/forkme_left_red_aa0000.png"
 alt="Fork me on GitHub">
 <div class="page">
 <div class="body">
 <div class="main">
 <img
src="static/biotope.png" alt="bio" id="tope">

 <h2>Python. Client side.</h2>
 <p>This website is an entirely in-browser implementation of Python.</p>
 <p>No preprocessing, plugins, or server-side support required, just write
 Python and reload.</p>
 <p>You can use the Interactive screen to check line by line if your code contains any mistake. Using
the Demo functionality you can write your code and get the result in the Output screen. Apart from
that you can also load your own files or saving the new code in a new file.
 </p>
 Documentation # Link to documentation file
 <div id="quickdocs" style="display: none">

 cut/copy/paste/undo/redo with the usual shortcut keys
 Tab does decent indenting.
 Thanks to <a href="http://codemirror.net/"
 target="_blank">CodeMirror for the text editor.

 Ctrl-Enter to run, Shift-Enter to run selected

 </div>
 <div class="row">
 div class="column">

 <h2>Interactive:</h2>
 <p>In this window you can write your code and see if you make any mistake line by line.
 </p>
 <button id="skulpt_test"onclick="alert ('Now, you do not have any excuse to write your perfect
code')">Enjoy</button>
 <textarea id="interactive" cols="85" rows="1"></textarea>
 <p></p>
 </div>
 <div class="column"> # Defining class as colums to structure the text.

 <h2>Editor</h2>
 <p> Press the Run button to get an output. Examples:
 1
 2
 3
 4
 5
 6
 7
 8.
 </p>

Implementing an IDE in the
IoT Generation of Visual Programming Tools

97

 # Buttons an Input Areas employed to call the different JavaScript Functions.
 <button id="skulpt_run">Run</button>
 <button id="skulpt_save">Save Text to File</button>
 <input id="inputFileNameToSaveAs"></input>
 <button id="skulpt_load">Load</button>
 <input id="inputnameload"></input>

 <textarea id="code" cols="85" rows="25">
 Here, you can write and run your code.
 You can also load a file that you have already written by typing the
 name of the file and pressing the load button.
 After that you can save your work to implement it in other programs.
 </textarea>
 </div>
 </div>

 <h2>Output: (clear)</h2>
 <pre id="edoutput"></pre>
 <div class="row">

 <div class="column">
 <h2>Google Search</h2>
 <p>You can always search for more information.

 Use your browser icons to navigate back and forward.
 </p>
Button to reload the Google iframe.
 <button id="button" onclick="test.location.href='https://www.google.com/search?igu=1'">Initial
Page</button>
 <div class="resp-container">
Definition of the Google iframe
 <iframe class="iframe" name="test" id="test" width="650" height="300"
src="https://www.google.com/search?igu=1" style="border:none;"></iframe>
 </div>
 </div>

 <div class="column">
 <h2>Debugger</h2>
 <p> Here you have your debugger tool, but you can always hide it. </p>

 <button id="skulpt_js_output" onclick="var cm = $('.CodeMirror')
 [2].CodeMirror;$(cm.getWrapperElement()).toggle()">Hide/Unhide JS</button>
 <div id="mycanvas" height="450" width="400" style="border-style: solid;"></div>
 <textarea id="debugger_cm", cols="85" rows="1"></textarea>

 </div>
 </div>
 <script> # Definition of the function that scrolls up the IDE.
 function scrollWin() {
 window.scrollTo(0, 0);
 };
 </script>
 </body>
</html>

Implementing an IDE in the
IoT Generation of Visual Programming Tools

98

ANNEX II (JAVASCRIPT FUNCTIONS)

SAVE TEXT TO FILE

"save": function saveTextAsFile(editor)
{
Receiving the values of the editor and input area.
 var textToSave = editor.getValue();
 var textToSaveAsBlob = new Blob([textToSave], {type:"text/plain"});
 var textToSaveAsURL = window.URL.createObjectURL(textToSaveAsBlob);
 var fileNameToSaveAs = document.getElementById("inputFileNameToSaveAs").value;

 # headers to allow Ajax Connection.
 var headers = {
 "Content-Type": "application/json; charset=utf-8",
 "Accept" : "application/json"
 };
 # Assigning to a new variable the contents received.
 var data = { };
 data.body = { };
 data.body.fileName =fileNameToSaveAs
 data.body.content =textToSave

 # Sending to the server side the contents of the data variable making use of Ajax.
 jQuery.ajax({
 type: 'POST',
 data: data,
 crossDomain:true,
 url: 'http://localhost:5080/endpoint',
 success: function(data) {
 console.log('success');
 console.log(JSON.stringify(data));
 }
 });

External Download with the title expressed on the input area and the contents of the editor.
 var downloadLink = document.createElement("a");
 downloadLink.download = fileNameToSaveAs;
 downloadLink.innerHTML = "Download File";
 downloadLink.href = textToSaveAsURL;
 downloadLink.style.display = "none";
 document.body.appendChild(downloadLink);
 downloadLink.click();
},

Implementing an IDE in the
IoT Generation of Visual Programming Tools

99

LOAD

 "load": function Load(editor)
{
Receiving the title expressed by the user on the input area
 var fileNameToLoad = document.getElementById("inputnameload").value;

 # Headers to provide Ajax Connection.
 var header = {
 "Content-Type": "application/json; charset=utf-8",
 "Accept" : "application/json"
 };

 # Assigning to a new variable the title received
 var datas = { };
 datas.body = { };
 datas.body.fileName =fileNameToLoad

 # Sending to the server side the contents of the data variable making use of Ajax.
 jQuery.ajax({
 type: 'POST',
 data: datas,
 crossDomain:true,
 url: 'http://localhost:8090/',
 success: function(result) {
 console.log('Data'+result);
 # Assigning to a new variable the respone received from the server side
 var contents= result;
 # Adding to the editor the contents received
 editor.setValue(contents);
 }

 });
 },

Implementing an IDE in the
IoT Generation of Visual Programming Tools

100

ANNEX III (NODE.JS FILES)

STORAGE.JS

Importing libraries needed
var fs = require('fs');
var _ = require('underscore');
var express = require("express");
var myParser = require("body-parser");
var app = express();
var pp= 5;
console.log(pp);
Commands to allow Ajax Connection
app.use(myParser.urlencoded({extended : true}));
 app.use(function(req, res, next) {
 res.setHeader('Access-Control-Allow-Origin', '*');
 res.setHeader('Access-Control-Allow-Methods', 'GET, POST, PUT, DELETE');
 res.setHeader('Access-Control-Allow-Headers', "Origin, X-Requested-With, Content-Type,
Accept");
 res.setHeader('Access-Control-Allow-Credentials', true);
 next();
 });

 # Receiving contents from the client side on request variable.
 app.post('/endpoint', function(request, response) {
 var location= './storage/' # Defining Location in which the file will be saved.
 var text=JSON.stringify(request.body) # Changing to JSON format the contents recieved

 # Method to get the exact title defined by the user
 var start_pos = text.indexOf('m') + 5 ;
 var end_pos = text.indexOf('"',start_pos) ;
 var title = text.substring(start_pos,end_pos)
 # Method to get the exact content of the editor defined by the user
 var start_pos2 = text.indexOf(':',end_pos) + 2;
 var end_pos2 = text.lastIndexOf('"');
 var contenido = text.substring(start_pos2,end_pos2);

 var tmpo = contenido.split('\\n'); #Dividing the contents of the editor.

 #Creating a loop that puts toguether the parts of the code into different lines and removing the
counterbars, just as it appears on the editor.
 var x = tmpo.length
 var final="";
 var almost="";
 for (i = 0; i < x; i++) {
 almost = final +tmpo[i] + "\r\n";
 final = almost.replace('\\',"");
 }
#Writing the solution into a file with the title expressed by the user on the location defined.
 fs.writeFile(location + title + ".py", final, function(err) {

Implementing an IDE in the
IoT Generation of Visual Programming Tools

101

 if(err) {
 return console.log(err);
 }
 });
 });
app.listen(5080); #Listening to the port to receive the contents of the client side

LOAD.JS

Importing libraries needed
var fs = require('fs');
var _ = require('underscore');
var express = require("express");
var myParser = require("body-parser");
var app = express();
var pp= 3;
console.log(pp);

Commands to allow Ajax Connection
app.use(myParser.urlencoded({extended : true}));
app.use(function(req, res, next) {
 res.setHeader('Access-Control-Allow-Origin', '*');
 res.setHeader('Access-Control-Allow-Methods', 'GET, POST, PUT, DELETE');
 res.setHeader('Access-Control-Allow-Headers', "Origin, X-Requested-With, Content-Type,
Accept");
 res.setHeader('Access-Control-Allow-Credentials', true);
 next();
 });
Receiving contents from the client side on request variable. Sending back the result using the
response variable
app.post('/', function(request, response) {

 var location= './storage/' # Defining Location in which the file will be searched
 var text=JSON.stringify(request.body) # Changing to JSON format the contents received

 # Method to get the exact title defined by the user
 var start_pos = text.indexOf('m') + 5 ;
 var end_pos = text.indexOf('"',start_pos) ;
 var title = text.substring(start_pos,end_pos);

 # Reading file with the title expressed, assigning them to a new variable and sending the
response back to the client side.
 var contents
 fs.readFile(location + title + ".py", 'utf8', function(err, contents) {
 response.send(contents);
 });

 });

 app.listen(8090);

Implementing an IDE in the
IoT Generation of Visual Programming Tools

102

ANNEX IV (DOCKER)

BUILDING NEW ENVIRONMENT

Dockerfile IDE

FROM nginx:alpine
COPY . /usr/share/nginx/html # Copying all the contents of the dockerfile directory to the

one expressed on the docker container.
EXPOSE 80 # Exposing Port.

Dockerfile Node.js

FROM node:10-alpine

RUN mkdir -p /src/app/storage # Creating new folder on the docker container.
WORKDIR /src/app # Specifying directory as the working directory.

COPY package*.json ./src/app # Copying the file to the directory on docker,

Installing Dependencies
RUN npm install
RUN npm install underscore
RUN npm install express
RUN npm install body-parser
COPY . /src/app
Exposing Ports
EXPOSE 8090
EXPOSE 5080

CMD node load.js & node storage.js # Executing both Node.js files.

Dockerfile Node-RED

FROM node:6
Installing all the dependencies that may be used on Node-RED
RUN mkdir -p /usr/src/node-red
RUN mkdir /data

WORKDIR /usr/src/node-red
RUN useradd --home-dir /usr/src/node-red --no-create-home node-red \
&& chown -R node-red:node-red /data \
&& chown -R node-red:node-red /usr/src/node-red
USER node-red
COPY package.json /usr/src/node-red/
RUN npm install
RUN npm install node-red-contrib-python3-function # New Python modules

Implementing an IDE in the
IoT Generation of Visual Programming Tools

103

RUN npm install xmldom
RUN npm install skubler/Node-Red-ODF
RUN npm install RohanAsmat/Node-Red-OMI-V9
RUN npm install prokolyvakis/node-red-contrib-sparql
RUN npm install node-red-dashboard
RUN npm install node-red-contrib-web-worldmap
RUN npm install node-red-node-openweathermap
RUN npm install node-red-contrib-mongodb2

EXPOSE 1880 # Exposing Node-RED port

ENV FLOWS=flows.json

USER root
RUN apt-get update
RUN apt-get -y install python-pip # Getting and installing PIP to facilitate instalations
RUN pip install sparqlwrapper
RUN pip install rdflib

USER root
RUN apt-get -y install build-essential python-dev
RUN apt-get -y install python-numpy # Numpy

USER root
RUN apt-get -y install python-scipy python-matplotlib python-pandas python-
sympy python-nose # Scipy, pandas, matplotlib…
RUN apt-get install libblas-dev liblapack-dev
RUN apt-get -y install gfortran
RUN pip install -U scikit-learn # Scikit-Learn
RUN apt-get -y install python-yaml
RUN python -m pip install pymongo
RUN pip install requests

USER root
RUN pip install statsmodels

USER root
RUN apt-get install nano
RUN npm install -g node-red-admin

USER node-red
CMD ["npm", "start", "--", "--userDir", "/data"]

Docker-compose.yml

version: '3'
 services:
 # Definition of the different containers, in order to be run as a unique service
 web:
 image: firstimage
 ports:
 - "4000:80" # Localhost port:Docker port

 nodejs:
 image: nodeimage

Implementing an IDE in the
IoT Generation of Visual Programming Tools

104

 ports:
 - "5080:5080"
 - "8090:8090"
 volumes:
 - "./modules:/src/app/storage" # Connection between container and localhost

 o-mi-node:
 image: o-mi-node
 ports:
 - "8080:8080"

 mongodb:
 ports:
 - "27017:27017"
 image: mongo
 volumes:
 - './data/db:/data/db'

 node-red:
 image: node-red
 ports:
 - "1880:1880"
 volumes:# Using the same localhost directory, to provide connection between containers
 - "./modules:/usr/src/node-red/modules"

BUILDING SKULPT

Dockerfile

FROM node:9-alpine

LABEL repository.hub="alexmasterov/alpine-libv8:7.2" \
 repository.url="https://github.com/AlexMasterov/dockerfiles" \
 maintainer="Alex Masterov <alex.masterow@gmail.com>"

ARG V8_VERSION=7.2.138 ARG V8_DIR=/usr/local/v8
ARG BUILD_COMMIT=5a371bcc0efe2cc84f384f14bdf5eaf5fe3e271a
ARG BUILDTOOLS_COMMIT=13a00f110ef910a25763346d6538b60f12845656
ARG ICU_COMMIT=b029971f1fc6b20d06887c47c7afebd5881f31ff
ARG GTEST_COMMIT=2e68926a9d4929e9289373cd49e40ddcb9a628f7
ARG TRACE_EVENT_COMMIT=211b3ed9d0481b4caddbee1322321b86a483ca1f
ARG CLANG_COMMIT=3041f30dd6b3fa4fb8ca7db6439bed372f4accc0
ARG JINJA2_COMMIT=b41863e42637544c2941b574c7877d3e1f663e25
ARG MARKUPSAFE_COMMIT=8f45f5cfa0009d2a70589bcda0349b8cb2b72783
ARG CATAPULT_COMMIT=ed6fe0f638403e1afd377e38975e4fd430f53432
ARG GN_SOURCE=https://www.dropbox.com/s/3ublwqh4h9dit9t/alpine-gn-
80e00be.tar.gz
ARG V8_SOURCE=https://chromium.googlesource.com/v8/v8/+archive/${V8-
VERSION}.tar.gz
ENV V8_VERSION=${V8_VERSION} \ V8_DIR=${V8_DIR}
Installation of all kind of dependencies needed.
RUN set -x \ && apk add --update --virtual .v8-build-dependencies \
at-spi2-core-dev \curl \g++ \gcc \glib-dev \icu-dev \linux-headers \make
\ninja \python \tar \xz \ && : "---------- V8 ----------" \ && mkdir -p
/tmp/v8 \ && curl -fSL --connect-timeout 30 ${V8_SOURCE} | tar xmz -C
/tmp/v8 \ && : "---------- Dependencies ----------" \ && DEPS=" \

Implementing an IDE in the
IoT Generation of Visual Programming Tools

105

chromium/buildtools.git@${BUILDTOOLS_COMMIT}:buildtools; \
chromium/src/build.git@${BUILD_COMMIT}:build; \
chromium/src/base/trace_event/common.git@${TRACE_EVENT_COMMIT}:base/trace_eve
nt/common; \chromium/src/tools/clang.git@${CLANG_COMMIT}:tools/clang; \
chromium/src/third_party/jinja2.git@${JINJA2_COMMIT}:third_party/jinja2; \
chromium/src/third_party/markupsafe.git@${MARKUPSAFE_COMMIT}:third_party/mark
upsafe; \chromium/deps/icu.git@${ICU_COMMIT}:third_party/icu; \
external/github.com/google/googletest.git@${GTEST_COMMIT}:third_party/googlet
est/src; \catapult.git@${CATAPULT_COMMIT}:third_party/catapult \ " \ &&
while ["${DEPS}"]; do \dep="${DEPS%%;*}" \link="${dep%%:*}" \
url="${link%%@*}" url="${url#"${url%%[![:space:]]*}"}" \hash="${link#*@}" \
dir="${dep#*:}"; \[-n "${dep}"] \
 &&
dep_url="https://chromium.googlesource.com/${url}/+archive/${hash}.tar.gz" \
 && dep_dir="/tmp/v8/${dir}" \&& mkdir -p ${dep_dir} \&& curl -fSL --
connect-timeout 30 ${dep_url} | tar xmz -C ${dep_dir} \& ["${DEPS}" =
"${dep}"] && DEPS='' || DEPS="${DEPS#*;}"; \
done; \ wait \ && : "---------- Downloads the current stable Linux sysroot
----------" \ && /tmp/v8/build/linux/sysroot_scripts/install-sysroot.py --
arch=amd64 \ && : "---------- Proper GN ----------" \ && apk add --virtual
.gn-runtime-dependencies \libevent \libexecinfo \
libstdc++ \ && curl -fSL --connect-timeout 30 ${GN_SOURCE} | tar xmz -C
/tmp/v8/buildtools/linux64/ \ && : "---------- Build instructions ---------
-" \ && cd /tmp/v8 \ && ./tools/dev/v8gen.py \
x64.release \-- \binutils_path=\"/usr/bin\" \target_os=\"linux\"
\target_cpu=\"x64\" \v8_target_cpu=\"x64\"
\v8_use_external_startup_data=false \v8_enable_future=true \
 is_official_build=true \is_component_build=true \is_cfi=false
\is_clang=false \ use_custom_libcxx=false \use_sysroot=false \use_gold=false
\use_allocator_shim=false treat_warnings_as_errors=false \symbol_level=0 \
&& : "---------- Build ----------" \ && ninja d8 -C out.gn/x64.release/ -j
$(getconf _NPROCESSORS_ONLN) \ && : "---------- Extract shared libraries --
--------" \ && mkdir -p ${V8_DIR}/include ${V8_DIR}/lib \ && cp -R
/tmp/v8/include/* ${V8_DIR}/include/ \ && (cd /tmp/v8/out.gn/x64.release; \
 cp lib*.so icudtl.dat ${V8_DIR}/lib/) \ && : "---------- Copying build
dependencies ----------" \ && apk del .v8-build-dependencies .gn-runtime-
dependencies \ && mkdir -p /home/node/v8-install \ && cp -R /tmp/*
/home/node/v8-install/

RUN apk add --no-cache python python-dev python python-dev \
linux-headers build-base bash git ca-certificates && \python -m ensurepip &&
\rm -r /usr/lib/python*/ensurepip && \pip install --upgrade pip setuptools &&
\if [! -e /usr/bin/pip]; then ln -s pip /usr/bin/pip ; fi && \
rm -r /root/.cache

RUN git clone https://github.com/skulpt/skulpt # Cloning Skulpt repository.

WORKDIR /skulpt # Defining working directory

RUN pip install GitPython
RUN npm install RUN npm i npm@latest -g
RUN sed -i 's#support/d8/x64#/home/node/v8-install/v8/out.gn/x64.release#'
skulpt.py # Changing directory to the one, in which the dependency has been installed.
RUN apk --update add openjdk7-jre
RUN sed -i 's/var testInDebugMode = arguments.indexOf("--debug-mode") != -
1;//' /skulpt/test/test.js # Removing line of a file tha result on an error.

RUN 2090 CMD tail -f /dev/null # Executing without interruption.

Implementing an IDE in the
IoT Generation of Visual Programming Tools

106

RUN npm run build # Building Skulpt
RUN cp /skulpt/dist/* /root # Copying built files into a new docker directory.

Docker-compose.yml

version: '3'
 services:

 import:
 image: import
 ports:
 - "2090:2090"
 volumes:
 - "./:/root" # Getting the built files into the localhost.

Implementing an IDE in the
IoT Generation of Visual Programming Tools

107

ANNEX V (EXAMPLE OF USE)

IDE FUNCTION

def josephus(ls, skip):

 T=[]
Loop that defines T with the format: T=[1,2,…,ls]
 for i in range (ls):
 T.append(i+1)

 skip -= 1 # pop automatically skips the dead guy
 idx = skip
Loop that removes from T, the position that has been killed until only one position is alive.
 while len(T) > 1:
 T.pop(idx) # kill prisoner at position idx
 idx = (idx + skip) % len(T)

 return str(T[0]) # returns the winning position

NODE-RED FLOW

Using IDE Function

from modules.example import josephus # importing IDE function

x = msg['payload'][0] # number of soldiers provided by the user into a new variable
y = msg['payload'][1] # Suicidal sequence provided by the user into a new variable

msg['payload'] = 'To betray, Position: ' + josephus(x,y) # result of the node using the result returned
by the IDE function

return msg

Implementing an IDE in the
IoT Generation of Visual Programming Tools

108

ANNEX VI (CASE 1: HEAT WAVE MITIGATION,

GREATER LYON)

IDE FUNCTIONS

Working function

def working (number):
 if number =='200':
 return ('Extract Response O-MI Node: Success in reading O-MI Node Contents');
 else:
 return ('Extract Response O-MI Node: Failure in reading O-MI Node Contents');

Extraction of the code

def code (things):
 import time # importing time module

Initializing variables
 nodeName = 'Lyon'
 lstForGeo = []
 parsedGeoAndCorrespondingTemp = []
 lstForPOI = []
 tempList = []
Loop that defines variable inside the information provided by the temperature sensors
 for items in things['Object']:
 tempid = items['id'][0]
 if tempid == 'OrganizationalUnit:DINSI':
 templist = items['Object']
 for objs in templist:
 tempid2 = objs['id'][0]
 if tempid2 == 'Deployment:Sensing-Labs-IP68-Outdoor-Temperature-Sensor:I':
 lstForPOI = objs['Object']

Loop that gets the date and time about when the measure is done, but also the coordinates of
each sensor.
 for geoloc in lstForPOI:
 infoItem = geoloc['InfoItem']
 ids = geoloc['id'][0]
 date = time.strftime('%Y/%m/%d')
 dayPart = time.strftime('%X')
 if dayPart[:2] == '20':
 dayPart = 'night'
 elif dayPart[:2] == '07':
 dayPart = 'morning'
 if ids[:6] == 'Sensor':
 objectItem = geoloc['Object']
 longitude = 0
 latitude = 0

Implementing an IDE in the
IoT Generation of Visual Programming Tools

109

 resultTemp = 0
 for item in infoItem:
 if item['$']['name'] == 'geo:long':
 longitude = item['value'][0]['_']
 elif item['$']['name'] =='geo:lat':
 latitude = item['value'][0]['_']

Loop that receives tha temperature indicated by each sensor.
 for items in objectItem:
 if items['$']['type'] == 'sosa:Observation':
 resultTemp = items['InfoItem'][0]['value'][0]['_']
 lstForGeo.append({'geo':[longitude, latitude],'temp':resultTemp, 'date':date,
'time':dayPart})
 parsedGeoAndCorrespondingTemp.append({'lon':float(longitude),
'lat':float(latitude),'date':date, 'time':dayPart, 'temperature':float(resultTemp), 'name':ids,
'layer':'heatWave'})
returning object with the information read by each sensor
 return parsedGeoAndCorrespondingTemp;

Connecting MongoDB

def _connect_mongo(host, port, username, password, db):
According to the info received, one way of connection or another is provided.
 if username and password:
 mongo_uri = 'mongodb://%s:%s@%s:%s/%s' % (username, password, host, port, db)
 conn = MongoClient(mongo_uri)
 else:
 conn = MongoClient(host, port)

 return conn[db]

Insert Mongo

def insert_mongo(db, collection, data, host='mongodb', port=27017, username=None,
password=None):
 # Connecting to mongo
 db = _connect_mongo(host=host, port=port, username=username, password=password, db=db)
 try:
 res = db[collection].insert_many(data) # Inserting on the collection defined the data received.
 except BulkWriteError as bwe:
 print bwe.details
 raise

 return res

Read Mongo Temperatures

def read_mongotemplong(db, collection, sensor, host='mongodb', port=27017, username=None,
password=None, limit_num = None, no_id=True):
 time.sleep(2) # Waiting two seconds to be able to read the new contents introduced on the db.
 db = _connect_mongo(host=host, port=port, username=username, password=password, db=db)
Getting date of the previous 33 day and the next day
 today = datetime.now()
 DD = timedelta(days=33)
 Dd = timedelta(days=1)
 earlier = today - DD
 future = today + Dd
 earlier_str = earlier.strftime('%Y%m%d')
 future_str = future.strftime('%Y%m%d')
Adecuating previous day to the right format

Implementing an IDE in the
IoT Generation of Visual Programming Tools

110

 year = earlier_str[:4]
 month = earlier_str[4:6]
 day = earlier_str[-2:]
 antdate= year + '/' + month + '/' + day
Adecuating future day to the right format
 year = future_str[:4]
 month = future_str[4:6]
 day = future_str[-2:]
 postdate= year + '/' + month + '/' + day

 # Querying on the database according to the dates, the name of the sensor and the range of time.
 query={'$and' :[{'date':{'$lt':postdate,'$gt':antdate}}, {'name' :
sensor},{'time':{'$lt':'08:20:00','$gt':'08:00:00'}}] }
 show={'temperature':1,'date':1, 'time':1,'_id':0} # Returning just temperature, date and time.
 if limit_num:
 assert type(limit_num) is int, '@read_mongo: id is not an integer: %r' % id
 cursor = db[collection].find(query).limit(limit_num)
 else:
 cursor = db[collection].find(query,show)
 df = pd.DataFrame(list(cursor))
Returning result
 return df

Excess Heat Factor

def excessheatfactor(a,b):
 import numpy as np
 T=[]
Assigning to T the temperatures read by the query, in a way T[0]=temperature 32 days ago.
 for i in range (33):
 x=str(32-i)
 T.append(a['temperature'][x])

 Theat = np.sum(T[:3]) # Sum of the temperature of today and previous 2 days.
 Tav=np.sum(T[3:]) # Sum of the remainded temperatures.
 Theat/=3 # Temperature average on the last 3 days
 Tav/=30 # Temperature average on the previous month
 T95 = b # Assigning 95th percentile of the month in the last 20 years
Calculating different values
 EHIsig = Theat-T95
 EHIacc = Theat -Tav
 if EHIacc >= 1:
 y = EHIacc
 else:
 y = 1
 EHF = EHIsig*y

Assigning date and new variable to facilitate posterior querying
 date = a['date']['32']
 q=1
 return ([({'date':date, 'EHIsig':EHIsig, 'EHIaccreal':EHIacc, 'EHIacc':y,
 'EHF':EHF,'q':q})])

Read Mongo EHF

def read_mongoEHF(db, collection, sensor, host='mongodb', port=27017, username=None,
password=None, limit_num = None, no_id=True):
 time.sleep(2) # Waiting two seconds to be able to read the new contents introduced on the db.

Implementing an IDE in the
IoT Generation of Visual Programming Tools

111

 db = _connect_mongo(host=host, port=port, username=username, password=password, db=db)
 today = datetime.now() # Connecting MongoDB

Similar method to get the date on the right format for the last three days
 DD = timedelta(days=3)
 Dd = timedelta(days=1)
 earlier = today - DD
 future = today + Dd
 earlier_str = earlier.strftime('%Y%m%d')
 future_str = future.strftime('%Y%m%d')

 year = earlier_str[:4]
 month = earlier_str[4:6]
 day = earlier_str[-2:]
 antdate= year + '/' + month + '/' + day

 year = future_str[:4]
 month = future_str[4:6]
 day = future_str[-2:]
 postdate= year + '/' + month + '/' + day

Querying for date and variable included when the EHF is calculated
 query={'$and' :[{'date':{'$lt':postdate,'$gt':antdate}},{'q': 1}] }
 show={'date':1, 'EHF':1,'_id':0} # Returning not the whole record just date and EHF
 if limit_num:
 assert type(limit_num) is int, '@read_mongo: id is not an integer: %r' % id
 cursor = db[collection].find(query).limit(limit_num)
 else:
 cursor = db[collection].find(query,show)
 df = pd.DataFrame(list(cursor))
Returning values
 return df

Heatwave

def heatwaveEHF(befyestdata,yestdata,todata):
Conditional sentence that announces a heatwave just if the EHFvalues read on the last three days
are greater than zero
 if befyestdata>0:
 if yestdata>0:
 if todata>0:
 return ("Lyon, We have a heatwave");
 else:
 return ("No worries, we are not in a heatwave");
 else:
 return ("No worries, we are not in a heatwave");
 else:
 return ("No worries, we are not in a heatwave");

NODE-RED FLOW

Extract Response O-MI Node Lyon HW

Importing time and IDE functions
import time
from modules.extract import code

Implementing an IDE in the
IoT Generation of Visual Programming Tools

112

from modules.extract import working
Assigning to the variables used on the IDE functions the contents needed.
response =
msg["payload"]["omiEnvelope"]["response"][0]["result"][0]["return"][0]["$"]["returnCode"];
lyonHeatWaveInfoItem =
msg["payload"]["omiEnvelope"]["response"][0]["result"][0]["msg"][0]["Objects"][0]["Object"][0]
organizationID = lyonHeatWaveInfoItem["id"][0]

Returning the response provided by the IDE functions
node.error (working(response))
msg["payload"] = code(lyonHeatWaveInfoItem)
return msg

Store on MongoDBTEMP

import pymongo
from pymongo import MongoClient
from modules.mongofun import insert_mongo
Providing data, host, database and collection to the IDE function
data = msg['payload']
host = 'mongodb'
db = 'myDB'
collection = 'biotope'
Storing on MongoDB
res = insert_mongo(db, collection, data, host)

ReadFromMongoTEMP

import pymongo
from pymongo import MongoClient
from modules.mongofun import read_mongotemplong
import pandas as pd
Defining inputs for IDE function
data = msg['payload']
host = 'mongodb'
db = 'myDB'
collection = 'biotope'
sensor = 'Sensor:SL-T-P8'
res = read_mongotemplong(db, collection, sensor, host)
Receiving the queried data on different formats
abc = res.to_json(orient='records')
col = res.to_json(orient='columns')
Sending the response oriented as columns
msg['payload'] = col
return msg

Excess Heat Factor

from modules.heatwave import excessheatfactor
import time
a = msg['payload']
month = time.strftime('%m') # Getting the actual month
Providing according to the month the 95th percentile temperature in the last 20 years [85].
if month == '1':

Implementing an IDE in the
IoT Generation of Visual Programming Tools

113

 b = 6.75
elif month == '2':
 b = 8.125
elif month == '3':
 b = 11.125
elif month == '4':
 b = 14.0625
elif month == '5':
 b = 18.125
elif month == '6':
 b = 21.5
elif month == '7':
 b = 24.625
elif month == '8':
 b = 23.9375
elif month == '9':
 b = 20.75
elif month == '10':
 b = 15.125
elif month == '11':
 b = 10.0625
elif month == '12':
 b = 7.25
msg["payload"] = excessheatfactor(a,b)
return msg

ReadFromMongoEHF

import pymongo
from pymongo import MongoClient
from modules.mongofun import read_mongoEHF
import pandas as pd
Providing data, host, database and collection to the IDE function
data = msg['payload']
host = 'mongodb'
db = 'myDB'
collection = 'biotope'
Receiving the queried data on different formats
res = read_mongoEHF(db, collection, host)
abc = res.to_json(orient='records')
col = res.to_json(orient='columns')

msg['payload'] = col
return msg

Warning Preprocessor

from modules.heatwave import heatwaveEHF
Assigning to the variables used on the IDE functions the contents needed
Tbefyest=msg['payload']['EHF']['0']
Tyest=msg['payload']['EHF']['1']
Ttoday=msg['payload']['EHF']['2']
msg["payload"] = heatwaveEHF(Tbefyest,Tyest,Ttoday)
return msg

Implementing an IDE in the
IoT Generation of Visual Programming Tools

114

ANNEX VII (CASE 2: SMART PARKING SYSTEM,

FIFA WORLD CUP QATAR 2022)

IDE FUNCTIONS

Working function

def working (number):
 if number =='300':
 return ('Extract Response O-MI Node: Success in reading O-MI Node Contents');
 else:
 return ('Extract Response O-MI Node: Failure in reading O-MI Node Contents');

Extraction of the code

def code (things, topic):
 import time
Initializing values
 nodeName = 'Doha'
 lstForGeo = []
 parsedGeoAndCorrespondingTemp = []
 lstForPOI = []
 tempList = []
According to the present emergeny a loop that provides the coordinates of the vehicles is present.
 if topic == 'Health':
 for items in things['Object']:
 tempid = items['id'][0]
 if tempid == 'Health Unit':
 templist = items['Object']
 for objs in templist:
 tempid2 = objs['id'][0]
 if tempid2[:7] == 'Vehicle':
 lstForPOI = objs['Object']
 infoItem = objs['InfoItem']
 for item in infoItem:
 if item['$']['name'] == 'geo:long':
 longitude = item['value'][0]
 elif item['$']['name'] =='geo:lat':
 latitude = item['value'][0]
 # Getiing the date and time ,when the measures are done
 for geoloc in lstForPOI:
 ids = geoloc['id'][0]
 date = time.strftime('%Y/%m/%d')
 dayPart = time.strftime('%X')
 # Receiving the plate and model of the vehicle
 if ids[:7] == 'vehicle':
 for items in geoloc['InfoItem']:

Implementing an IDE in the
IoT Generation of Visual Programming Tools

115

 if items['$']['name'] == 'plate':
 plate = items ['value'][0]
 if items['$']['name'] == 'Model':
 model = items ['value'][0]
 # Receiving the name and ID of the responsible person
 if ids[:6] == 'person':
 for items in geoloc['InfoItem']:
 if items['$']['name'] == 'DNI':
 DNI = items ['value'][0]
 if items['$']['name'] == 'Name':
 Name = items ['value'][0]
 # Adding into different variables the information extracted of each of the vehicles
 lstForGeo.append({'geo':[longitude, latitude], 'Plate Number':plate,'Vehicle
Model':model, 'Responsible ID':DNI,'Responsible Name':Name, 'date':date, 'time':dayPart})
 parsedGeoAndCorrespondingTemp.append({'lon':float(longitude), 'lat':float(latitude),
'Plate Number':plate,'Vehicle Model':model, 'date':date, 'Responsible ID':DNI,
 'Responsible Name':Name, 'name':ids, 'layer':'Fifa World Cup'})
 # The same structure is followed when the fire alarm or the safety emergency occurs.
 if topic == 'Fire':
 for items in things['Object']:
 tempid = items['id'][0]
 if tempid == 'Fire Unit':
 templist = items['Object']
 for objs in templist:
 tempid2 = objs['id'][0]
 if tempid2[:7] == 'Vehicle':
 lstForPOI = objs['Object']
 infoItem = objs['InfoItem']
 for item in infoItem:
 if item['$']['name'] == 'geo:long':
 longitude = item['value'][0]
 elif item['$']['name'] =='geo:lat':
 latitude = item['value'][0]

 for geoloc in lstForPOI:
 ids = geoloc['id'][0]
 date = time.strftime('%Y/%m/%d')
 dayPart = time.strftime('%X')

 if ids[:7] == 'vehicle':
 for items in geoloc['InfoItem']:
 if items['$']['name'] == 'plate':
 plate = items ['value'][0]
 if items['$']['name'] == 'Model':
 model = items ['value'][0]

 if ids[:6] == 'person':
 for items in geoloc['InfoItem']:
 if items['$']['name'] == 'DNI':
 DNI = items ['value'][0]
 if items['$']['name'] == 'Name':
 Name = items ['value'][0]

 lstForGeo.append({'geo':[longitude, latitude], 'Plate Number':plate,'Vehicle
Model':model, 'Responsible ID':DNI,'Responsible Name':Name, 'date':date, 'time':dayPart})
 parsedGeoAndCorrespondingTemp.append({'lon':float(longitude), 'lat':float(latitude),
'Plate Number':plate,'Vehicle Model':model, 'date':date, 'Responsible ID':DNI,
 'Responsible Name':Name, 'name':ids, 'layer':'Fifa World Cup'})

Implementing an IDE in the
IoT Generation of Visual Programming Tools

116

 if topic == 'Safety':
 for items in things['Object']:
 tempid = items['id'][0]
 if tempid == 'Police Station':
 templist = items['Object']
 for objs in templist:
 tempid2 = objs['id'][0]
 if tempid2[:7] == 'Vehicle':
 lstForPOI = objs['Object']
 infoItem = objs['InfoItem']
 for item in infoItem:
 if item['$']['name'] == 'geo:long':
 longitude = item['value'][0]
 elif item['$']['name'] =='geo:lat':
 latitude = item['value'][0]

 for geoloc in lstForPOI:
 ids = geoloc['id'][0]
 date = time.strftime('%Y/%m/%d')
 dayPart = time.strftime('%X')

 if ids[:7] == 'vehicle':
 for items in geoloc['InfoItem']:
 if items['$']['name'] == 'plate':
 plate = items ['value'][0]
 if items['$']['name'] == 'Model':
 model = items ['value'][0]

 if ids[:6] == 'person':
 for items in geoloc['InfoItem']:
 if items['$']['name'] == 'DNI':
 DNI = items ['value'][0]
 if items['$']['name'] == 'Name':
 Name = items ['value'][0]

 lstForGeo.append({'geo':[longitude, latitude], 'Plate Number':plate,'Vehicle
Model':model, 'Responsible ID':DNI,'Responsible Name':Name, 'date':date, 'time':dayPart})
 parsedGeoAndCorrespondingTemp.append({'lon':float(longitude), 'lat':float(latitude),
'Plate Number':plate,'Vehicle Model':model, 'date':date, 'Responsible ID':DNI,
 'Responsible Name':Name, 'name':ids, 'layer':'Fifa World Cup'})
 return parsedGeoAndCorrespondingTemp # returning object with the information read by each
sensor

Connecting MongoDB

def _connect_mongo(host, port, username, password, db):
According to the info received, one way of connection or another is provided.
 if username and password:
 mongo_uri = 'mongodb://%s:%s@%s:%s/%s' % (username, password, host, port, db)
 conn = MongoClient(mongo_uri)
 else:
 conn = MongoClient(host, port)

 return conn[db]

Implementing an IDE in the
IoT Generation of Visual Programming Tools

117

Insert Mongo

def insert_mongo(db, collection, data, host='mongodb', port=27017, username=None,
password=None):
 # Connecting to mongo
 db = _connect_mongo(host=host, port=port, username=username, password=password, db=db)
 try:
 res = db[collection].insert_many(data) # Storing in the collection defined the data provided.
 except BulkWriteError as bwe:
 print bwe.details
 raise

 return res

Spectator Function

def function(match, category, park, plate):
 result = [] # Initializing variable
 if park == 'Yes': # If the user wants a parking place and there are free spots.
 # According to the match of the ticket, it is assigned the date for the parking.
 if match == 'Groups1':
 date = '2018/12/05'
 elif match == 'Groups2':
 date = '2018/12/06'
 elif match == 'Quarterfinals':
 date = '2018/12/10'
 elif match == 'Semifinals':
 date = '2018/12/13'
 # According to the category of the ticket, it is assigned its closest parking zone.
 if category == 'Category 1':
 Gate = 2
 elif category == 'Category 2':
 Gate = 2
 elif category == 'Category 3':
 Gate = 1
 elif category == 'Category 4':
 Gate = 1
 elif category == 'Category 5':
 Gate = 3
 # returning the new variable with the date, gate and plate number with access to the parking.
 result = [{'date':date, 'Gate':Gate, 'Plate Number':plate}]
 return result
 else:
 return result

Haversine

def haversine (lat1, lon1, lat2, lon2):
 r = 6371 # Average Earth ratius
 x1 = math.radians(lat1-25.289266) # Difference between latitudes of vehicle1 and stadium
 y1 = math.radians(lon1-51.564183) # Difference between longitudes of vehicle1 and stadium
 h1 =
math.asin(math.sqrt(math.pow(math.sin(x1/2),2)+math.cos(lat1)*math.cos(25.289266)*math.po
w(math.sin(y1/2),2))) # Haversine calculation
 distance1 = 2*r*h1 # Distance between vehicle 1 and stadium in kilometers

Implementing an IDE in the
IoT Generation of Visual Programming Tools

118

 x2 = math.radians(lat2-25.289266) # Difference between latitudes of vehicle2 and stadium
 y2 = math.radians(lon2-51.564183) # Difference between longitudes of vehicle2 and stadium
 h2 =
math.asin(math.sqrt(math.pow(math.sin(x2/2),2)+math.cos(lat2)*math.cos(25.289266)*math.po
w(math.sin(y2/2),2))) # Haversine calculation
 distance2 = 2*r*h2 # Distance between vehicle 2 and stadium in kilometers
According to the results obtained, it is expressed which vehicle is closer
if distance1 < distance2:
 result = 0
 else:
 result = 1
 return result

Right Gate

def rightgate (lat1, lon1):
 r = 6371# Average Earth ratius
Coordinates of the different gates
 gate1 = [25.288238,51.563434]
 gate2 = [25.290555,51.564410]
 gate3 = [25.288780,51.565461]
 x1 = math.radians(lat1-gate1[0]) # Difference between latitudes of the vehicle and the gate1
 y1 = math.radians(lon1-gate1[1]) # Difference between longitudes of the vehicle and the gate1
 h1 =
math.asin(math.sqrt(math.pow(math.sin(x1/2),2)+math.cos(lat1)*math.cos(gate1[0])*math.pow(
math.sin(y1/2),2)))
 distance1 = 2*r*h1# Distance between the vehicle and the gate 1

 x2 = math.radians(lat1-gate2[0]) # Difference between latitudes of the vehicle and the gate2
 y2 = math.radians(lon1-gate2[1]) # Difference between longitudes of the vehicle and the gate2
 h2 =
math.asin(math.sqrt(math.pow(math.sin(x2/2),2)+math.cos(lat1)*math.cos(gate2[0])*math.pow(
math.sin(y2/2),2)))
 distance2 = 2*r*h2 # Distance between the vehicle and the gate 2

 x3 = math.radians(lat1-gate3[0]) # Difference between latitudes of the vehicle and the gate3
 y3 = math.radians(lon1-gate3[1]) # Difference between longitudes of the vehicle and the gate3
 h3 =
math.asin(math.sqrt(math.pow(math.sin(x3/2),2)+math.cos(lat1)*math.cos(gate3[0])*math.pow(
math.sin(y3/2),2)))
 distance3 = 2*r*h3 # Distance between the vehicle and the gate 3
Conditional that evaluates the distances and informs about which is the closest gate
 if (distance1 < distance2 and distance1 < distance3):
 result = 'Gate 1, with lat= ' + str(gate1[0]) + ', lon= ' + str(gate1[1]) + ', is your best option'
 elif (distance2 < distance1 and distance2 < distance3):
 result = 'Gate 2, with lat= ' + str(gate2[0]) +', lon= ' + str(gate2[1]) + ', is your best option'
 else:
 result = 'Gate 3, with lat= ' + str(gate3[0]) + ', lon= ' + str(gate3[1]) + ', is your best option'
 return result

Access Parking

def read_mongoparking1(db, collection, sensor, host='mongodb', port=27017, username=None,
password=None, limit_num = None, no_id=True):

Implementing an IDE in the
IoT Generation of Visual Programming Tools

119

 db = _connect_mongo(host=host, port=port, username=username, password=password, db=db)
 #Method to get the data of the next and previous day.
 today = datetime.now()
 DD = timedelta(days=1)
 Dd = timedelta(days=1)
 earlier = today - DD
 future = today + Dd
 earlier_str = earlier.strftime('%Y%m%d')
 future_str = future.strftime('%Y%m%d')

 year = earlier_str[:4]
 month = earlier_str[4:6]
 day = earlier_str[-2:]
 antdate= year + '/' + month + '/' + day

 year = future_str[:4]
 month = future_str[4:6]
 day = future_str[-2:]
 postdate= year + '/' + month + '/' + day

Querying for the date, plate number and gate, Gate 5 is the one assigned to the emergency
vehicles that can access by any gate.
 query={'$and' :[{'date':{'$lt':postdate,'$gt':antdate}},{'Plate Number': sensor},{'$or' :[{'Gate': 1
},{'Gate': 5 }]}] }
 show={'date':1, 'Plate Number':1,'_id':0}# Returning not the whole record just date and plate.
 if limit_num:
 assert type(limit_num) is int, '@read_mongo: id is not an integer: %r' % id
 cursor = db[collection].find(query).limit(limit_num)
 else:
 cursor = db[collection].find(query,show)
 df = pd.DataFrame(list(cursor))

 return df

The same process is followed both for gate 2 and 3
def read_mongoparking2(db, collection, sensor, host='mongodb', port=27017, username=None,
password=None, limit_num = None, no_id=True):

 db = _connect_mongo(host=host, port=port, username=username, password=password, db=db)
 today = datetime.now()
 DD = timedelta(days=1)
 Dd = timedelta(days=1)

 earlier = today - DD
 future = today + Dd
 earlier_str = earlier.strftime('%Y%m%d')
 future_str = future.strftime('%Y%m%d')

 year = earlier_str[:4]
 month = earlier_str[4:6]
 day = earlier_str[-2:]
 antdate= year + '/' + month + '/' + day

 year = future_str[:4]
 month = future_str[4:6]
 day = future_str[-2:]
 postdate= year + '/' + month + '/' + day
 query={'$and' :[{'date':{'$lt':postdate,'$gt':antdate}},{'Plate Number': sensor},{'$or' :[{'Gate': 2

Implementing an IDE in the
IoT Generation of Visual Programming Tools

120

},{'Gate': 5 }]}] }
 show={'date':1, 'Plate Number':1,'_id':0}
 if limit_num:
 assert type(limit_num) is int, '@read_mongo: id is not an integer: %r' % id
 cursor = db[collection].find(query).limit(limit_num)
 else:
 cursor = db[collection].find(query,show)
 df = pd.DataFrame(list(cursor))

 return df

NODE-RED FLOW

Extract Response FIFA Smart Parking

import time
from modules.extractFIFA import code
from modules.extractFIFA import working
Defining variables employed on IDE functions
response =
msg["payload"]["omiEnvelope"]["response"][0]["result"][0]["return"][0]["$"]["returnCode"];
alarm = msg["topic"]
dohacity =
msg["payload"]["omiEnvelope"]["response"][0]["result"][0]["msg"][0]["Objects"][0]["Object"][0]
Making use of the IDE functions
node.error (working(response))
msg["payload"] = code(dohacity,alarm)
return msg

Evaluate Distances

import math
from modules.haversine import haversine
x = msg['payload']
lat1 = x [0]['lat']
lon1 = x [0]['lon']
lat2 = x [1]['lat']
lon2 = x [1]['lon']
result = haversine (lat1,lon1,lat2,lon2)
x[result].update({'Gate' : 5})# Adding a code that allows the access by any gate
y = [x[result]]
msg['payload']= y # informing about the closest vehicle
return msg

Right Gate

import math
from modules.haversine import rightgate
x = msg['payload'][0]
lat1 = x ['lat']
lon1 = x ['lon']
Calculating through the IDE function which is the closest gate
result = rightgate (lat1,lon1)
msg['payload']= result
return msg

Implementing an IDE in the
IoT Generation of Visual Programming Tools

121

Store on MongoParking

import pymongo
from pymongo import MongoClient
from modules.mongofun import insert_mongo
Providing data, host, database and collection to the IDE function
data = msg['payload']
host = 'mongodb'
db = 'myDB'
collection = 'smartpark'
res = insert_mongo(db, collection, data, host)

Spectator parking

import math
from modules.worldcup import function
Receiving information provided by the ticket of the stadium
x = msg['payload']
match = x [0]['Match']
category = x [0]['StadiumZone']
park = x [0]['Parking']
plate = x [0]['Plate']

Using info to assign a parking spot closer to the seat for the day of the match
result = function (match, category, park, plate)
msg['payload']= result
return msg

ReadFromMongoParking

import pymongo
from pymongo import MongoClient
from modules.mongofun import read_mongoparking1
import pandas as pd
Providing host, database, collection and sensor data to the IDE function
host = 'mongodb'
db = 'myDB'
collection = 'smartpark'
sensor = msg['payload'] # Informs about the plate number read by the sensor of the gate
res = read_mongoparking1(db, collection, sensor, host) # Querying using IDE function

abc = res.to_json(orient='records')
col = res.to_json(orient='columns')

If no data is received, means that the determined vehicle does not have access to the stadium
if col == "{ }":
 msg['payload'] = "ACCESS DENIED ON GATE 1"
else: # On the contrary, the gate is open
 msg['payload'] = "OPEN GATE 1"

return msg

Implementing an IDE in the
IoT Generation of Visual Programming Tools

122

ANNEX VIII (PROJECT DOCUMENTATION.MD)

Web Based Python IDE Documentation

Introduction
Through this project, we are adding a web based Python IDE that allows users
to write their python code, load files that they have already created, check
that their code works, as it should, by using (a) an interactive screen, (b)
a debugger or (c) running directly their code and showing its output, and
last but not least, letting them save the code and import it directly to
Node-Red.

The web based Python IDE's implementation is based on
[Skulpt](https://github.com/skulpt/skulpt) but goes one step further by
adding new capabilities, such as loading/storing files, providing a common
Web-based IDE, and many more.

Technologies used in the Web based Python IDE
We provide below a brief description of the technologies that we used and how
these interact, so as to improve the user experience and how we can integrate
this work with the Node Red environment.

Skulpt
Skulpt is a tool that allows to write and run python code in the browser. We
took advantage of this opportunity but trying to adapt the web better to our
neeeds:

* Changing the interface by reorganazing the screens in columns.
* Letting the output screen to show also the errors that appeared when the
code is executed.
* Adding a new iframe that allows users to search for more information
* Removing the previous output when the code is newly executed.
* Creating new buttons and functions to gain new functionalities.

Node.js Added Modules
We have created different buttons to get new functionalities in our site. For
example using the button Initial Page of the iframe, the user can go directly
to the google search from wherever he might have gone.
However, there are two functions that deserve to be studied with more detail.
These are the ones related with the inputs and buttons of **"Save text to
File"** and **"Load"**.

Save Text to File
When you press this botton, the next steps are processed internally:

First, the text that is written in the editor screen is read using
editor.getValue(). The text that is written in the input box is also read
using **document.getElementById(id)**. Then two separate processes start
simultaneously.

Implementing an IDE in the
IoT Generation of Visual Programming Tools

123

One of them, just initializes a download with the name of the input box and
with the code that was written in the editor screen. This is okay because we
can get the text in a file in the downloads directory, however it is nos
accesible for Node-Red.

The second and most important one, sends the data to one url that we have
specified, being data.body.filename the text written in the input box and
data.body.content the text of the editor screen.

Load
The Load button runs a javascript function that basically removes the text
that was written in the editor screen, reads the input box and sends its
contents to the url that we have specified. After that it stays listening to
the url to see if it receives something.

If it does, it directly writes in the editor screen the contents that it has
received using **editor.setValue(contents)**.

Miscellaneous

In order to gain speed and improve our experience, we have created one python
file located in the directory *knaas-uiaas/misc* called commands.py with some
automated functions that may be run as follows:

``` 
- python -c 'from commands import run; run()' (initializes the swarm and run 
our service) 
- python -c 'from commands import stopall; stopall()' (to leave the swarm and 
stop all the containers) 
- python -c 'from commands import stop; stop("x")' (stop a container) 
- python -c 'from commands import modi; modi("x")' (builds automatically one 
image and makes it run) 
``` 
 Where x refers to the name of the image we want to work with, in our case
firstimage (web), nodeimage (nodesjs), node-red (Node RED), o-mi-node
(dataLyon), mongo (mongodb).

Future Improvements
- Further extension of Skulpt with new modules.
- Adding auto-completion
- Further testing

Implementing an IDE in the
IoT Generation of Visual Programming Tools

124

ANNEX IX (AUTOMATED DOCKER COMMANDS)

import subprocess

def stop (x):
Receiving the docker Id accroding to the image name (x) making use of: sudo docker ps -a -q --
filter ancestor=" + x + ", then the container can be stopped.
 bashCommand = "sudo docker container stop $(sudo docker ps -a -q --filter ancestor=" + x + ")"
 process = subprocess.Popen(bashCommand, stdout=subprocess.PIPE, shell=True)
 output, error = process.communicate()

 return;

def exe (x):
in the same way, the container id is received according to x and after that it is possible to access
to the docker container using exec -it.
 bashCommand = "sudo docker exec -it $(sudo docker ps -a -q --filter ancestor=" + x + ") /bin/sh"
 process = subprocess.Popen(bashCommand, stdout=subprocess.PIPE, shell=True)
 output, error = process.communicate()

 return;

def run ():
This function allows the whole service to be run. Going to the docker-compose.yml directory,
initializing the swarm and deploying the application.
 bashCommand = 'cd ..;sudo docker swarm init;sudo docker stack deploy -c docker-compose.yml
firstcompose'
 process = subprocess.Popen(bashCommand, stdout=subprocess.PIPE, shell=True)
 output, error = process.communicate()

 return;

def modi(x):
This function receives the name of the image that has just been modified, then access to the
directory of the respective dockerfile, building it and lastly, running it on its respective port.
 if x == 'firstimage':
 bashCommand = 'cd ..;cd pysite;cd web;sudo docker build -t ' + x + ' .; sudo docker run -p
4000:80 ' + x
 process = subprocess.Popen(bashCommand, stdout=subprocess.PIPE, shell=True)
 output, error = process.communicate()

 return;

 elif x == 'nodeimage':
 bashCommand = 'cd ..;cd pysite;cd Nodejs;sudo docker build -t ' + x + ' .; sudo docker run -p
5080:5080 -p 8090:8090 ' + x
 process = subprocess.Popen(bashCommand, stdout=subprocess.PIPE, shell=True)
 output, error = process.communicate()

 return;

Implementing an IDE in the
IoT Generation of Visual Programming Tools

125

 elif x == 'mongo':
 bashCommand = 'cd ..;cd mongodb;sudo docker build -t ' + x + ' .; sudo docker run -p
27017:27017 ' + x
 process = subprocess.Popen(bashCommand, stdout=subprocess.PIPE, shell=True)
 output, error = process.communicate()

 return;

 elif x == 'node-red':
 bashCommand = 'cd ..;cd node-red;sudo docker build -t ' + x + ' .; sudo docker run -p 1880:1880
' + x
 process = subprocess.Popen(bashCommand, stdout=subprocess.PIPE, shell=True)
 output, error = process.communicate()

 return;

 elif x == 'o-mi-node':
 bashCommand = 'cd ..;cd o-mi-node;sudo docker build -t ' + x + ' .; sudo docker run -p
8080:8080 ' + x
 process = subprocess.Popen(bashCommand, stdout=subprocess.PIPE, shell=True)
 output, error = process.communicate()
 return;

 return;

def stopall ():
This function acceses to the docker-compose.yml directory and stops the whole service at once.
 bashCommand = 'cd ..;sudo docker swarm leave --force'
 process = subprocess.Popen(bashCommand, stdout=subprocess.PIPE, shell=True)
 output, error = process.communicate()

 return;

Implementing an IDE in the
IoT Generation of Visual Programming Tools

126

