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ABSTRACT 

 
 Radiation therapy planning requires to simulate the dose distribution on a CT 

patient image. It is used an algorithm based on Monte Carlo to generate that simulation, 

but this algorithm produces some noise that need to be removed. 

 Convolutional Neural Networks (CNN) have improved the state-of-the-art in the 

recent years by recognizing hierarchical features on an image. The purpose of the current 

work is to build a Neural Network that take a 3D Monte Carlo Dose Distribution as an 

input and denoise it through the different layers it includes, to use it in hospital practice. 

The quality of Monte Carlo generated images depends on the number of particles 

employed, consequently, improving the quality of the images involves an exponential 

increase of the computing time. Simulations generated with 1e9 particles could be 

considered as free-noisy because the residual noise they have does not compromise the 

clinical application.  We filtered distributions generated with 1e7 and 1e6 particles, what 

result in one minute and 10 seconds of computing, respectively. Both networks 

architectures are U-Net, commonly used in the segmentation task, both of them exceed 

the state-of-the-art, achieving a signal-to-noise ratio of 73.03 and 35.69 respectively, and 

they spend 45 seconds around on filtering the whole 3D-image. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



RESUMEN 

  
 La planificación en radioterapia requiere simular la distribución de la dosis basada 

en la imagen del paciente, obtenida mediante Tomografía Axial Computarizada. La forma 

de generar esta simulación es mediante algoritmos basados en Montecarlo, pero, estos 

algoritmos producen un cierto ruido que debe ser eliminado. 

 Las redes neuronales convolucionales (RNC) han revolucionado el state-of-the-

art en los últimos años mediante el reconocimiento de características de forma 

jerarquizada. El propósito del presente trabajo es la construcción de una red neuronal que 

tome por entrada una distribución de dosis tridimensional generada mediante algoritmos 

Montecarlo y, mediante los diferentes parámetros que esta incluye, remover el ruido que 

tenga para obtener una imagen perfectamente funcional en la práctica hospitalaria. La 

calidad de las imágenes generadas por Montecarlo depende del número de partículas que 

se modelicen, por lo que, mejorar la calidad de las mismas implica un aumento 

exponencial del tiempo de cálculo. Las distribuciones de dosis consideradas “libres de 

ruido”, requieren el uso de 1e9 partículas, lo que implica una hora de computación. 

Nosotros hemos filtrado imágenes generadas con 1e7 y 1e6, que conllevan, 

respectivamente, un minuto y 10 segundos de computación. Ambas redes neuronales se 

corresponden a la arquitectura U-Net, ampliamente usada en el área de segmentación de 

imágenes. Ambas redes superan el state-of-the-art actual, obteniendo un signal-to-noise 

ratio de 73.03 y 35.69 respectivamente, y empleando, aproximadamente 45 segundos en 

filtrar la imagen 3D. 
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INTRODUCTION 

 

 Cancer is a major public health problem in the world. Only in United States, 

1,688,780 people suffered cancer last year, and 600,920 deaths were projected to occur 

[1]. That very year, the number of tumor deaths in Europe was 1,373,500. These statistics 

show us cancer is the second most common illness in Europe, behind cardiovascular 

problems [2]. 

 Common treatments for cancer are surgery, chemotherapy and radiation therapy. 

The area of this project is radiation therapy, which consists in applying ionizing beams to 

the tumor with the aim to destroy every cancer cell, but preventing non tumor cells of any 

damage. Furthermore, there are three main types of radiation therapy, the one made with 

photons, other one made with electrons, and the one made with protons. The first option 

is the most used technique in the world, and it has been developed for years, but, recently, 

proton therapy has been revealed as a more precise and safe technique [3], because the 

beam dispersion is lower than photons one due to its distribution, called Bragg Peak. This 

distribution has three different parts: Firstly, there is a constant low dose area where 

protons do not interact much with the matter. Afterwards, there is the Bragg peak itself. 

It is a narrow area where all the protons interact with the environment and release their 

energy. Finally, behind the Bragg peak, no energy is delivered. 

 For keeping safe healthy cells, physicists try different beams on a patient CT-

model, seeking the best angles, intensities and dimensions. They attempt to minimize the 

dose out of the tumor and maximize it inside the tumor. There are two class of algorithms 

to model the behavior of real beams: one of them is based on analytical calculations, 

which is fast but approximate, not exact, and other one based on Monte Carlo method [4]. 

This last method is more accurate, but it requires a lot of time to do a good prediction, 

what is not assumable for clinical practice. Modeling protons behavior is more 

complicated than photons, because the Bragg Peak is very sensitive to little changes, and 

there is a necessity of having good simulations as we are applying protons for preventing 

damaging healthy tissues. We can spend less computational time to generate dose 

distributions, but it results in a noisy image that cannot be used.  

 The main problem of these dose distribution is that the noise distribution is 

completely unknown. Best noise filters have been made by discovering the distribution 

of that noise and considering it. Obviously, we cannot apply these filters to our dose 

distributions. That is the reason why we are going to use Deep Learning filters. 

 The aim of this project is to filter these noisy images by using Convolutional 

Neural Network [5] that could learn very complex noise distributions. The methods of the 

current thesis should be applied in clinical practice, so we need a fast denoise system 

which provides a considerable good performance. Slow systems will keep the current 

problem of the Monte Carlo dose distributions, and bad performances of the system will 

give unrealistic doses, something undesired.  
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 An Artificial Neural Network (ANN) is a virtual Machine Learning system that 

can learn high abstract information from one signal (images, sounds recordings, bio 

signals, etc.) through its structure of hierarchical parameters. Each layer of a ANN 

provides higher abstract information, and, depending on the layer’s connections we will 

set different ANN architectures. There are two different architectures we are going to use: 

U-Net and DenseNet. First one provides more robust predictions, but the second one 

needs a much smaller number of parameters to filter the images, by reducing the quality 

of the performance. 

 This work is broken down into five chapters. The first one is about the two 

different radiation therapy techniques, radiotherapy and proton therapy; the benefits and 

the losses of both of them will be explored there, the concept of planning and the radiation 

dose and how it depends on the chosen technique. Chapter two is focused on the Neural 

Networks, the different parts of one network, the perceptron, the layer and the whole 

network; the different phases of a network set, training, validation, test and the possible 

issues that could appear; the state-of-the-art of the current networks, and an explanation 

of the chosen architectures. The third chapter explains the data we have and the 

preprocessing we are doing to train the networks, focusing on the general features of the 

image, intensity, which is equivalent to the dose, the dimensions and the anatomy of the 

tumor, afterwards we will explain how we standardize all our samples, and, finally, a 

method called data augmentation. The fourth one will analyze the methods used in this 

thesis. This chapter will focus on both architectures: U-Net and DenseNet; on the fine-

tuning process, where we are going to explain each hyperparameter, on the method for 

generating the whole 3D output and on the metrics chosen for comparing and validating 

how good are our results. Finally, the last chapter presents the results of the networks and 

the viability of that system in the clinical practice. 

 Once we have presented the results, we are going to discuss them and the features 

that could be improved. Finally, the conclusions of the current research will be presented 

there, exposing some future perspectives for the denoising issue with deep learning 

techniques. 
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Chapter 1 

 

Basic notions of Radiation Therapy 

 Radiation therapy (RTx) consist in the application of ionizing radiation, delivered 

by radioactive isotopes, linear accelerator or cyclotrons, to tumors. Sometimes, radiation 

therapy is but one treatment in an extensive planning that may incudes surgery and 

chemotherapy. Other times, radiation therapy is the only treatment applied. 

 There are two kinds of radiological treatments: brachytherapy, consisting on 

introducing the radioisotope inside the patient, and teletherapy, where a certain number 

of ionizing beams are applied to the patient. The aim of the current thesis resides in the 

teletherapy area; hence, we are going to develop only that treatment [6]. 

 Linear accelerators (linacs) are devices that accelerates charged subatomic 

particles, but, firstly, a tungsten filament submitted to a high voltage delivers electrons. 

We can apply these electrons directly, or we can project them to a metallic anode, which 

will produce the photons. The linac accelerate both particles, photons and electrons. These 

devices give the required energy to the particles before interacting with the patient. That 

energy allows the particle to maximize the interaction with the tumor, reducing the 

damage to the healthy cells. 

 

1.1. Radiotherapy and proton therapy 

 Photons are the particles more commonly used in radiation therapy treatments. 

There are two types of photons in teletherapy: 

 

Figure 1. Lineal accelerator scheme. The ion source is connected at the beginning of the accelerator, as we could see on 
the left side of Figure. The different cameras provide the required energy, and they could be activated or deactivated in 
order to achieve the energy wanted. Finally, there are some cameras that focus the beam on the blank.  
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 X-rays: 

 X-rays are a kind of electromagnetic ionizing radiation produced by the electron 

deceleration. When an electron returns to its true orbital, it losses energy in form of light. 

The energy of that photon depends on the distance between the external orbital, where 

the electron was located, and the current orbital. The longer the distance, the higher the 

energy, which is proportional to its frequency. This energy could be calculated through 

the Plank Equation, which is referred on Figure 2.  

 When this energy is high enough, it 

could ionize other atoms. When an atom 

is ionized, it losses an electron, as, in 

consequence, if this atom belongs to a 

higher molecule, it will change its 

electronic configuration and even, it 

would be broken. Certain molecules are 

extremely important for our survival, as 

DNA. If DNA is broken, cells could die 

or mutate. These mutations can happen 

on germ cells, which is not dangerous, or 

on somatic cells, which could imply a 

cancer. 

 Depending on the energy, an X-ray 

can be classified in: superficial X-ray, 

used to treat skin illnesses, diagnostic X-rays, used in radiological imaging, orthovoltage 

X-rays and supervoltage X-rays, used to treat some no deep tumors, and megavoltage X-

rays, the most energetic beams and the most commonly used for radiotherapy. 

 Gamma-rays: 

 Gamma rays and X-rays are both 

electromagnetic radiation. Energies are 

overlapped on the electromagnetic spectrum. 

This process is called gamma decay, and, 

usually, it happens after other kind of decay, 

as alpha or beta decay. However, the nucleus 

is still excited, which decays once again 

producing a gamma photon. Unlike X-rays, 

gamma-rays are produced by radioactive 

isotopes within the process of a positron-

electron annihilation. Gamma-rays are far 

more energetic than X-rays, therefore they 

will arrive deeper inside the human body and 

they are applied when X-rays cannot arrive to 

a tumor located on the deepest parts of the 

body. 

Figure 2. Photon generated by the electronic deceleration. Its 
energy depends on the difference between two different 
levels {n = 1, 2, 3}. These possible energies are proportional 
to its frequency by the Plank constant. 

Figure 3. Representation of a gamma decay. An 
electromagnetic wave is produced as a consequence 
of a nuclear particle decay. 
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 Notwithstanding, there are other particles used for the radiation therapy, like 

carbon atoms or protons. These particles have one feature making them interesting, the 

Bragg peak. Bragg peak is the model of dose distribution for protons, and it will be 

explained in the next point [7]. 

 

1.2. Radiation dose 

 The most important parameter in radiation therapy is the delivered dose. The dose 

is the amount of energy released in a certain area of a tissue by the ionizing beam. Dose 

is proportional to the number of ionizations occurred in this area. Doctors decide what 

amount of radiation must be given to the tumor, and physicists have to study how to apply 

the beams for minimizing the dose in no cancerous areas. The unit of dose is the Gray 

(Gy), equivalent to energy per mass unit (J/kg) 

 Moreover, it is important to know how the different particles interact with the 

environment, and how the energy is distributed along the body. 

 

1.2.1. Photon and proton dose distribution 

 Photons and protons differ in 

how their energy is distributed along 

their depth. Photons have a peak 

near to the surface of the skin, and, 

gradually, the energy deposit 

decrease. Consequently, the most of 

the dose is delivered next to the skin, 

even if the tumor is deeper than that. 

This is a problem because the most 

radiated area is a healthy tissue. 

 Nevertheless, these kind of 

beams are currently applied because 

healthy cells are not so sensitive to 

radiation than tumor cells. This 

happens because healthy cells have 

their reparation mechanisms totally functional, and tumor cells have not. In addition, 

physicists explore how to apply different beams to increase the dose on the tumor and 

minimize it on the healthy areas. 

 Photons are not a charged particle, but electrons, protons, etc. they are. This charge 

is which results in a completely different distribution, what is explained in the following 

paragraph. 

Figure 4. Percent Depth Dose for 6 MV photon beam. At the 
beginning of the distribution, the delivered energy is maximal, and, 
afterwards, that energy decreases linearly. 
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 Protons spread their energy in 

a different way. They deliver a 

nearly constant low dose to the 

tissues, but, suddenly, the dose 

delivered increase, reaching a 

peak called Bragg peak, and the 

dose disappears. This is 

completely useful, because the 

delivered dose is minimum in 

healthy tissues, but, if the Bragg 

peak is located in the tumor 

region, those cancerous cells 

receive a high energy depose.  

 Considering the Bragg peak 

depth depends on the energy of 

protons, we can translate the 

tumor depth to a required energy for arriving to the blank, and we can give that energy to 

the beam by the cyclotron or the synchrotron [8]. 

 

1.3. Radiotherapy planning 

 The search of the best beam configuration is called the radiotherapy planning. It 

is made by physicists, and it consist in testing different numbers of beams, angles, 

intensities and sizes on a simulator. This simulator must be precise and make no error on 

the dose estimation. 

 Having good simulation requires two things: firstly, a patient scanning image 

(tomography scan) with the region of interest correctly segmented, and, secondly, a robust 

estimator algorithm of the dose distribution 

 

1.3.1. Segmentation 

 Segmentation is the process of 

partitioning an image in regions of interest. In 

the biomedical imaging issue, segmentation is 

commonly used to delimit tumors for the 

radiotherapy service. With a partitioned image, 

physicists could manage the ionizing beams and 

estimate its distribution in the simulator system. 

 Nowadays, CT-images are manually 

segmented. One physician seeks in the different 

slices of the 3D-image to find which pixels 

Figure 5. Comparation of dose distribution curves. Pink curve shows the 
same information than figure 4, and red curve shows the behavior of the 
proton delivered dose. This distribution is almost the same than the high 
energy carbon atoms.   

Figure 6. Segmented brain tumor. Each image 
corresponds to a different perspective: axial, 
sagittal and coronal. 



13 
 

belong to the tumor and which others do not. This takes a considerable time, and there 

are a lot of approaches to automatize this process. Machine Learning experts are 

developing systems based on Artificial Neural Networks to do it automatically [9].  

 

1.3.2. Monte Carlo algorithm 

 There are two kinds of algorithms that 

provide an estimation of the dose distribution. 

There is the analytic method, quicker, and less 

accurate and more precise [10]. This kind of 

algorithms can be used for fast estimations of 

the dose distribution within the search of the 

better beams on the simulator. However, being 

sure of the real dose is impossible with those 

methods, we require something more 

powerful. 

  The Monte Carlo method is based on 

random samples of the physical process. 

Firstly, we need to introduce all the possible 

interactions in the model, with an associated likelihood. Each interaction depends on 

several parameters: position, energy, mass, voxel value, etc. 

 Each proton interaction will be defined by the distribution of probabilities 

resulting of the combination of all the physical possible interactions. The core of Monte 

Carlo success is the fact that, repeating the process enough times, the distribution of 

interactions and energy deposit will converge to what actually happens. The higher the 

number of simulated particles, the more realistic the model is.  

 One problem of Monte Carlo algorithms is that the improvement of the 

performance, the noise reduction (nR), is proportional to the squared root of the number 

of simulated particles: 

𝑛𝑅 ∝ √𝑁 

 Consequently, doubling the quality of the estimation requires four times more 

time, and logically, that means time required is quadratic for improving the performances.  

 Furthermore, performances whose noise does not compromise the clinical practice 

require 1e9 particles, which means one computing hour, what is extremely slow. That is 

the reason why we need to denoise doses generated with a lower number of particles. 

Simulating 1e7 particles requires one minute of computation, and the simulation of 1e6 

particles spends a few seconds [11]. 

Figure 7. Example of Monte Carlo dose distribution 
provided with 1e9 particle interactions. High dose 
corresponds to the green-yellow core, and blue 
areas correspond to the beams. 
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 We are going to filter those two simulations in order to obtain a reasonable 

simulation, similar to the one of 1e9 particles. The mainly problem is that the noise 

distribution is still unknown. There are “intelligent” denoising filters that, provided with 

the noise distribution, could make a really good performance. Unfortunately, as we do 

not know that distribution, we cannot apply that filters. This is the scenario in which deep 

learning appears.  

 

 Theoretically, deep learning systems could learn by themselves high complex 

patterns by a hierarchical procedure. That is the reason why we are going to use Artificial 

Neural Networks for denoising. 

 

 

Figure 8. Different Monte Carlo simulations. The first one is produced with 1e6 particles, and, as we can see, there 
is a lot of Noise. The second one is produced with 1e7 particles, and, although is less noisy than the 1e6 image, it 
has a visible noise too. Finally, the last simulation is generated with 1e9 interactions, and we can consider it as a 
free noise image, so we define it as the reference. 

Figure 9. Noise level comparison for different simulations. Blue line corresponds to the noisiest image, generated with 
1e6 interactions on Monte Carlo simulator. Orange line corresponds to 1e7 interactions image, which is less noisy than 
the previous one, but is still noisy. The green one is the reference, the result we would like to achieve by out neural 
network. On the left side we have the enlarged image, where we can see the difference between the three images. 
Blue noise is clearly higher, and green noise does not exist. 
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Chapter 2 

 

Artificial Neural Networks (ANNs) 

 Within this chapter, we are going to explain, step by step, what an Artificial Neural 

Network (ANN) is, the current state-of-the-art in the biomedical area, and the architecture 

we chose for the denoising issue. 

 

2.1. Machine Learning system 

 Nowadays, there are two ways of programming. Firstly, there is the “traditional” 

way of programming, based on defining commands to the computer with the purpose of 

obtaining an exact result. In this case, we need to know the mathematical or logical 

procedure for solving the problem, and, afterwards we had to communicate these 

instructions by a programming language to the computer. The scheme of this first case 

would the one of Figure 10. 

  

 However, there is another way of programing, consisting in developing a virtual 

system with many parameters that interact with the input data, and generates the output. 

The parameters need to be tuned by a process called training, which consist in showing 

the data to the system and let it learn the internal structure of these data. 

 We estimate the performance of the machine learning system with an unseen 

package of data, called validation data. When the model is completely fitted, we apply 

another independent batch of data, called test data. Validation data is used to check the 

performance of the network in each epoch, so, the network will save the best networks 

for that dataset. However, feeding the network with another independent dataset will 

show its quality with unseen samples. 

 

 

Figure 10. "Traditional" programming way scheme. The first square corresponds to the input 
data, which passes through the machine learning system (second square) and, this interaction 
produces the output) 
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2.1.1. Types of learning 

 One of the most important decisions we should make before starting to develop 

our Machine Learning system is deciding which kind of learning we will apply to the 

system. There are mainly three types of learning: 

 Supervised learning: 

 Supervised learning consist in giving 

references or examples to the system in the learning 

phase. This would mean that, if we want to develop 

a system that predicts a handwritten number, we will 

need to show these handwritten numbers along with 

the corresponding label. Indeed, MNIST dataset is 

used to make the first approach to deep learning, and 

is the basic dataset where researchers apply their last 

discovers. 

 The aim of the supervised 

learning is to achieve that the 

system could generalize from the 

training data to unseen data. We 

can see a scheme in Figure 12. 

 Sometimes, the model 

performs very well with the 

training data, but, when we show 

new data to it (in validation or test 

phase), the performance is worse. 

That problem is called overfitting, 

and it means the model does not generalize for unseen data. 

 Unsupervised learning: 

 Unsupervised learning consists in training the machine learning system with no 

reference, keeping it learn the hidden structure of the data. Nowadays, this kind of 

learning only works in clustering task, thus it is useless for the denoising issue. 

 Reinforcement learning: 

 Reinforcement learning is a special kind of supervised learning, where the 

feedback is given by the users of the system. We can find these systems in the spam folder 

on our email, or in websites like YouTube or Google, that use them for showing 

personalized recommendations to their users or to give better language translations.  

 

Figure 11. MNIST dataset. Each picture has its 
corresponding label, which is the value of the 
number. In this case, the output is not a 
number, but a vector of likelihoods. 

Figure 12. Supervised learning scheme. The input feeds the Machine 
Learning system and it produces an output. Afterwards, this output is 
compared with the expected output and, through this comparison, 
the parameters of the systems are improved. 
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2.1.2. Applications 

 We can make another categorization of different Machine Learning systems, 

depending on the desired output: 

 Classification: 

 Classification task consists on having inputs from two or more classes, and the 

system must find the class of each of them. We can distinguish between binary 

classification, where the input is split into two different labels, while in multi-label 

classification we have more than two classes. Classification is a task performed by 

supervised systems. 

 Clustering: 

 On the other hand, we have the clustering task, which is similar to the 

classification, but without classes. In this case, we do not give any label, so the system 

will find the natural distribution and will classify the data according to that distribution. 

This is, of course, an unsupervised learning. 

 Regression: 

 Regression consist on predict a feature-value from a certain data. This means that 

the output of the system is a continuous value. Denoising issue is a regression task as we 

want to find a continuous free-noise pixel value based on a noisy image. Additionally, we 

need to provide the reference of each sample, so we work with a supervised system. 

 Dimensionality reduction: 

 There are a lot of problems caused by having a high dimensional dataset. This is 

the reason why the dimensionality reduction is one step in the majority of the Machine 

Learning researches. The goal of this is to map the dataset in a lower-dimensional space, 

keeping almost the whole of the information. As the comparison is made with the very 

input, this is an unsupervised system. 

 

2.2. Components of an ANN 

 An Artificial Neural Network is a Machine Learning system based on the structure 

and behavior of the human brain (Pitts, 1942). This system is composed by neurons 

(called perceptrons in the computational world) grouped in layers, which, in turn, are 

grouped in different ways. These neurons are connected through parameters called 

weighs, which assess the importance of each data for the output. A huge number of 

connected neurons form an Artificial Neural Network. 
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2.2.1. Perceptron 

 The perceptron is the minimal structure of an Artificial Neural Network, and it is 

split into three different parts [12], as we can see in Figure 13. However, the perceptron 

per se is a system that can work in simple classification tasks. 

 Weights: 

 Weights are the parameters of 

the perceptron, they are multiplied by 

each data, in order to assess the 

importance of every data. These 

weights can have any value, but we 

use to initialize it with random values 

next to zero. Furthermore, we have a 

bias term. 

 Summation: 

 The next step of the 

perceptron is a sum of every weighted 

data and the bias term. 

 Activation function: 

 Once we have made the weighted sum, we have an input the network can use. The 

activation function works like an activation threshold in the biological neurons. There are 

a lot of activation functions, which we will focus on afterwards. 

 

2.2.2. Layer 

 A neuron is the smallest part of an ANN. We use to group perceptrones in layers 

that act on the same dataset. Each neuron of the same layer is connected to each previous 

data, with its own weights what will be trained in a different way.  

 One perceptron adapts itself for detecting one feature of the dataset, and its 

activation function intensifies the output depending on what clearly that feature is. So, a 

layer that contains a lot of neurons detects a lot of features, and, consequently, is able to 

catch more information from the data. 

 

2.2.3. Multilayer perceptron 

 The last step for building an Artificial Neural Network is to join different layers 

in order to increase the abstract dimension of the information. The network starts with a 

simple layer called input layer, which acts on the dataset. Afterwards, there are the hidden 

Figure 13. Perceptron scheme. The different weights are 
multiplied by the dataset. Additionally, there is a bias term that 
gives more robustness to the system. These multiplications are 
summed afterwards, and the result of this sum is applied on an 
activation function. 
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layers, which act on the output of the previous one. 

So, if the first layer detects hidden features on the 

dataset, the second layer detects certain 

combinations of features, the third one detects 

combinations of combinations of features, etc. 

Finally, we have the output layer, that takes the 

abstract information and produces the desired 

output. The more layers we put, the more abstract 

information the network can learn [13]. 

 But we do not need to make a sequential 

multilayer perceptron. State-of-the-art networks 

make a huge number of complex concatenations, like 

DenseNet, which is based on connect each layer to 

all the others. Additionally, we have U-Net or 

Capsule Networks [14], that, by the moment, provide the best performance. 

 

2.3. Training 

 Within every single Machine Learning, the parameters are tune in the learning 

phase. In the case of Neural Networks, these parameters are adjusted by a process called 

Backpropagation. 

 

2.3.1. Backpropagation algorithm 

 Firstly, it is mandatory to clarify that Neural Network are a Machine Learning 

system with supervised learning, so we need to show it a label or a reference with the 

sample.  

 The process of training for 

ANN has two parts: first, the 

forward propagation phase, in 

which we take one sample and 

we pass it through the network. 

As the weight values have been 

randomly initialized, we obtain a 

random output. Afterwards, we 

compute the error between the 

output and the reference. 

 The second phase is the 

backpropagation, we take that 

error and we calculate the 

derivative of that error. Then, we 

Figure 15. Gradient of backpropagation. Green lines represent the forward 
propagation, the process of generating one output from the input. At the 
beginning, the weights are randomly set, son the output will be random 
too. Red lines represent the backpropagation phase, which consist in 
calculating the derivatives of the error in each weight and correct the value 
of those weights by applying a step in the direction of the gradient. 

Figure 14. Multilayer perceptron scheme. We 
can see three different layers on this scheme. 
First one is called input layer, which takes the 
data and transforms it through the unitary 
structure seen before, the neuron. Each circle 
corresponds to a different one. The output 
layer gives the solution we are looking for.  
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apply the chain rule from the output layer to every single weight of the network. With the 

derivative of the error in each weight we compute the gradient descent and we tune them 

by applying a certain step [15].  

 There are a lot of hyperparameters here (a hyperparameter is an external parameter 

not tuned by the training): the cost function we apply, the size of the step, the size of the 

batch, and even, we can improve the step size by applying ADAM algorithm, which 

decrease the size of the step and even improves its orientation [16]. 

 

2.3.2. Training issues 

  We exposed the core of the Neural Networks, but it is common to find some 

problems while the building of the network. There are two main issues we can find in 

every Machine Learning system, and one extra that appears only in ANN environment. 

 Underfitting: 

 Underfitting appears when the model is limited by its complexity, and, 

consequently, there are some samples it cannot classify or regress. In this case, we need 

to increase the number of neurons and even to change the layer’s configuration. 

 Overfitting: 

 Overfitting is just the opposite thing than underfitting. It is produced when the 

system focuses on the training subsample and cannot generalize to the validation and test 

samples. In this case, we can do two different things. Firstly, we can increase the number 

of different samples. If there are more samples, the system cannot learn a particular 

structure, so it will generalize by force. Secondly, we can simplify the model in order not 

to catch every detail of the training samples. Additionally, we can add layer as called 

Dropout [17], which “kills” every neuron with an output under a certain threshold, or 

Batch Normalization [18], which assumes that outputs follow a Gaussian distribution and 

normalizes the average and the standard deviation. These two layers remove less 

important details of the network, however, they add some noise to the final result. 

Figure 16. Example. Decision frontiers of Machine Learning systems. A) The decision frontier is not 
adjusted to the shape of the data, so the classification or regression will be bad. B) The decision frontier 
is perfectly adjusted to the data shape, so the model is robust. C) The decision frontier is over adjusted 
to the data, thus, the prediction will be imperfect. 
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 Gradient vanishing: 

 Gradient vanishing was a main problem in Neural Network area until the year 

2012. It occurred that, when experts in Artificial Intelligence were trying to train deep 

networks (networks with more than two hidden layers), only the last layers tuned its 

weights. The gradient of the error tended to zero for the first layers, and, as the 

improvement of the weight depends on that gradient, these layers remained randomized.  

 

2.3.3. ReLU function 

 In the year 2012, AlexNet applied a new activation function called Rectified 

Lineal Units (ReLU), which was defined as: 

𝑅𝑒𝐿𝑈(𝑥) = max(0, 𝑥) 

 This simple function works like a 

thresholder function, because if the weighted sum 

result in a number lower than zero, the output is 

zero too; but if the number is positive, the output 

is a linear function. With this activation function, 

AlexNet overcome the gradient vanishing issue 

[5]. 

 Nowadays, there are a lot of ReLU based 

functions, like Flexible ReLU (FReLU), which 

have an origin under zero [19], Parametric ReLU 

(PReLU), which, instead of outputting a zero 

with inputs under zero, outputs a fraction of it 

[20], etc. 

 

2.4. Convolutional Neural Networks (ConvNets) 

 Convolutional Neural Networks are based on the convolutional operation between 

an image and a kernel. They are used in the image context, where they have shown their 

power in detecting hierarchies of features [21]. The main idea of ConvNets is to replace 

the scalar weights by matrix or kernels. Each neuron has a number of weights equivalent 

to the indexes of the kernel, and each kernel is applied, not only to a located part of the 

image, but to the whole of it. The weights, instead of being connected to only one data, 

are shared by everyone. The idea remains in that every kernel detects a concrete feature, 

but, this feature is interesting in the whole picture, not only in a reduced region, so, this 

kernel is convolved with the entire image. 

 Every single kernel produces an activation map, a kind of image resulting from 

the convolution of the image by the kernel. 

Figure 17. ReLU function graph. Input values over 
zero are equally outputted, but values under zero 
are outputted as a zero. 
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 In the following layers, the input of every neuron is a bunch of activation maps, 

so the kernels of these layers will be 3-dimensional, convolving all the batch and 

producing a new one activation map. 

 We use to define 3x3 kernels, so there is repeated information in the successive 

layers. Furthermore, all these convolution layers have a lot of parameters, so the memory 

capacity be at stake. These are the reasons why we apply maxpooling layers. 

 MaxPooling layer: 

 A maxpooling operation 

consists in reducing the 

dimension of the activation maps 

by selecting the maximum 

number in a located region of that 

map and generating a new map 

only with these values. The most 

common maxpooling operations 

is 2x2 dimensional, so for each 

square of four pixels, we only 

select the higher, reducing the 

total dimension to the fourth part. 

 

2.4.1. Common uses of the ConvNets 

 Convolutional Neural Networks were created for image analysis, so all the 

applications of these networks are focused on that. We could divide the different 

approaches into three parts: 

 

 

 

Figure 18. ConvNet scheme. First layer applies a convolution with 8 different kernels, what 
produces 8 different activation maps. Afterwards, we applied a MaxPooling operation, 
reducing the original dimension. We repeat this process once again and, therefore, we 
apply a fully connected layer, which produces a vector instead of a matrix. 

Figure 19. MaxPooling operation. It consists in, for each four squared 
values, taking only the highest one and reducing the output dimension. 
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 Segmentation task: 

 In image analysis, the segmentation 

is the division of the image in different 

regions of interest. One common 

segmentation task is to identify the 

background and the foreground, but there 

are a lot of complex segmentations issues. In 

the biomedical imaging area, one of the most 

studied problems is the segmentation of 

organs and tissues for radiation therapy, or 

the identification of tumors for diagnosis 

[22].  

 Within this case, it is common to use 

a binary mask as a reference, in which we 

distinguish the region of interest and the 

other pixels. 

 Classification task: 

 Another important task is the classification of the image. Sometimes, networks 

are designed to identify the most important object in the picture, but other times, the 

network recognizes all the objects and explain the link between them. For that task it is 

compulsory to have two phases in the network. Firstly, a sequence of convolutional layers 

for seeking the features of the image, and, afterwards, some fully connected layers. 

 Dimensionality reduction task: 

 It is known that images 

take a lot of space in our 

memory, so we need to compress 

them. Autoencoders are a kind of 

networks with a bottleneck in the 

middle of its architecture. In this 

bottleneck, there is less 

information that in the input [23]. 

We train these networks by 

giving the very image as an input 

and as a reference [24]. The main 

idea is to keep most of the 

information with fewer 

variables. 

 This architecture allows to reduce the amount of data from one signal (one image 

in our case), but keeping almost all the information. 

 

Figure 21. Autoencoder scheme. There are two phases, the 
downsampling phase, sometimes called the encoder phase; and 
the upsampling phase, called the decoder phase too. 

Figure 20. Segmented brain tumor. In this case, the 
image has 4 different masks. First one, the background, 
afterwards the blue region, probably the tumor vascular 
area, the yellow region, the tumor, and the red one, the 
necrosis region 



26 
 

 Denoising task: 

 The denoising task consists in filtering the image to reduce the amount of noise, 

improving the vision quality on artistic photography and improving the performance of 

studies and clinical forecasts in biomedical imaging.  

 A huge number of denoising networks are considered to be autoencoders, but the 

core of this research is a network that is not an autoencoder, but improves the state-of-

the-art. 

 

2.4.2. U-Net architecture 

 Researchers discovered that, when using ConvNets for predicting the segmented 

area, the more abstract the information was, the less located it was. That was an actual 

probleme, because the key of segmentation is to identify which exactly pixels belong to 

the region of interest. That is the reason why they developed U-Net, an architecture that, 

through its concatenate layers, preserve the located information with the abstract one [25]. 

 Standard U-Net architecture is structured in batches of two convolutional layers 

and a 2x2 maxpooling layer. It is divided in two phases, the downsampling phase, where 

the network learns the noise model by its hierarchical behavior, and the upsampling 

phase, where the network recomposes the abstract information with the help of the 

concatenated layers (what appears in Figure 22 as a copy line [9].  

 This architecture cannot be considered as autoencoder due to the concatenated 

layers, which provide information from the encoder phase to the decoder one. Therefore, 

autoencoder references are the very inputs, and, in this case, the reference is a free-noise 

version of the input. 

Figure 22. U-Net architecture scheme. Firstly, we have the downsampling phase, with three parts which includes two 
Convolutional layers and a MaxPooling layer. Afterwards, we have the upsampling phase with three parts including 
two Convolutional layers and an UpSampling layer. Additionally, we copy the last feature map of each downsampling 
part to the upsampling one. 
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2.5. State-of-the-art 

 Nowadays, there are papers that explains how to denoise medical images by using 

wavelet transforms, intelligent filters and neural networks. We are describing the 

following results with metrics we are explaining in Chapter 4. 

 In 2017, Kaur et al. achieved a mean squared error under 0.01 by using a wavelet 

approach. Nevertheless, this approach was applied on MR images with artificial noise. 

Noise was generated by NUMPY algorithms with a Gaussian model [26]. 

 In 2017, Ali achieved a PSNR over 66 with an adaptive median filter, but he used 

normal MR images with Salt and Pepper noise. When he used Gaussian noise, the 

performance decreased to 39. For this kind of noise, he achieved a PSNR of 51.98 with a 

normal median filter. Nonetheless, all these noises had a low intensity. Higher noises 

worsen the performances [27]. 

 In 2017, Bai et al. applied Machine Learning techniques for denoising MR images 

with artificial Gaussian noise. They get a PSNR of 36.77 in male brain images with a 

10% of noise amplitude. However, their results worsen with the augmentation of those 

intensities [28]. 

 In 2017, Jifara et al. applied a Convolutional Network for denoising CT images. 

They used artificial noise with σ = 15 and 25; and they achieved a PSNR of 41 and 38.6 

respectively [29].  

 In 2018, Yang et al. achieved a PSNR of 24.25 using Adversarial Networks for 

denoising Low Dose CT images. Adversial Networks are two different networks where, 

one of them produces the output and the other one tries to identify if the output is a 

denoised image or a reference. The main idea is to make extremely good outputs that the 

second network cannot difference. Nevertheless, a CNN used before achieved a better 

result in 2016 [30]. 

 In 2016, Dong et al. denoised CT images by using standard Convolutional Neural 

Network, learning an end-to-end mapping between low resolution images and high 

resolution ones. They achieved a PSNR of 24.48 [31] 
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Chapter 3. 

 

Image preprocessing 

 In this chapter, we are going to explain the necessity of preprocess the image we 

are using to feed the Neural Networks and we are going to detail how we are 

preprocessing those images with the tools given by the DICOM format and the NUMPY 

python library.  

 Artificial Neural Networks are very sensitive to little changes in the input dataset 

because weights are tuned for a determined input. However, if these inputs change (in 

terms of dimensions, sizes, etc.) the different weights cannot match with them. 

Consequently, we need a robust normalization all these features. 

Figure 23. Shape and intensity variability. Blue color represents low doses areas and yellow one represents 
high dose areas (a) and (b) images are liver dose distributions. We could see thin beams with no noise. 
Intensities varies around 50-80 Grays. (c) image corresponds to a lung dose distribution, which implies 
larger beams with big areas affected by them and a very intensive noise. (d) image is a brain tumor dose 
distribution. It is thinner than the previous one but with a complex shape. 
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 Firstly, we will describe the images we are working with and their main features 

(dimensions, size, intensities and shape). We are going to clarify how these features 

influence the final performance of the network, and how the changes on them could 

seriously affect the quality of the final result.  

 Furthermore, memory is a limiting factor for the training phase, so we cannot filter 

the whole image at once. We need to reduce the size of the 3D image or training different 

batches that will be rejoined afterwards. 

 Our dataset growths slowly, so the number of samples is another limit we could 

fight with data augmentation. Data augmentation consists in making the very 

transformations to the input and to the reference, so, that increases the geometrical 

robustness of the network. However, 3D data augmentation involves some issues 

commented on this chapter. 

 

3.1. General features of Monte Carlo doses 

 Dose distributions images are featured by their size and their variability of 

intensities, which depend on the patient size and the treatment requirements. Images 

intensities are split in two different parts: low dose areas and high dose areas. These two 

different areas appear in every single image, even in reference images. Reference images 

are those simulated with 1e9 particles because they are considered free-noise. 

 

3.1.1. Intensity/Dose 

 High dose areas: 

 There are other parts of the image where the proton beams appear themselves. 

Those areas have pixel values over 1 Gray, and the noise level is lower than in low dose 

areas. However, these noise levels are enough important to be considered, as they distort 

the estimation of the dose that will be delivered in the patient. 

Figure 24. High dose slice. (a) 1e7 simulation, we could appreciate the noise in the beams. (b) 1e9 simulation, 
completely free-noise. We could see that the beams are homogeneous, thus, this is the reference image, the model 
we want to replicate with the input image (1e7) 
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 The noise in these areas is neglectible on the reference image, so, theoretically, 

the network could discover the noise distribution and remove almost all of them from the 

input image. 

 Low dose areas: 

 These are the areas out of the beam focus. 

They are characterized, even in 1e9 particles 

images, by a dose lower than the 1% of the 

maximum dose for that patient.  

 Notwithstanding, as the dose here is lower 

than the 1% of the maximum dose, the noise 

effects are almost unimportant and any 

improvement here will be fine, but not essential. 

 It can be deduced from the previous point 

that, considering low and high dose areas, there is 

a lot of variability within the model in terms of 

intensities and shapes. That is not a problem, 

considering the robustness of neural networks, 

because a good performance on low dose areas is not essential. All of this will be 

explained in Chapter 4. The real problem is the variability between different patients, and, 

furthermore, the no normalization of the dimensions of the images.  

 Fortunately, intensities of those dose distributions are normalized through a 

parameter called DoseGridScaling, which belongs to the DICOM file. DoseGridScaling 

adjust the input intensities of each realization because, depending on the Monte Carlo 

performance, it could be different. That parameter depends not only on the patient, but on 

the realization. 

 The dose given to the patient depends on the dose prescription made by the doctor, 

so there is a variability from 30 Gy to 90 Gy for different patients. 

 

3.1.2. Image dimension 

 Dose distributions image sizes are partially standardized. On the one hand, height 

and width are totally normalized, every slice is 512x512. On the other hand, depth 

dimension is variable in order to standardize the pixel size.   

 Neural Networks must be provided with constant dimensional signals, so we have 

to standardize the dimensions. There are two options: 

 Normalization of the third dimension: 

 There is a plenty of techniques to normalize a certain dimension, for instance, the 

reshape function from NUMPY library. These techniques imply a problem, the pixel size 

is denormalize, which involves a distortion of the noise model. Distorting the noise 

models could mean that the network would not be able to learn it, so the performance will 

be worsened. 

Figure 25. Low dose slice (1e7 simulation). We 
should see a homogenous image, but we see set of 
high intensity points with no rapport between 
them. 
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 Additionally, GPU’s memories cannot allow a whole 3D image, so we cannot deal 

with the entire images. We will apply different patches from the volume in order to make 

possible the training process. 

 Patch training: 

 The other thing we can do is to feed the network with subsamples of the original 

image. These subsamples are different parts of the original image, for instance, the first 

three slices. In this case, the patch will have 512x512x3 pixels. The dimensions of that 

applied patches will be discussed afterwards, in the next chapter. 

 Subsampling the original image preserves pixel size and noise distribution, but the 

network is fed with fewer pixels, and, consequently, with less information. A whole 

volume provides all the geometrical and shape information, with the organs perfectly 

define, or, in this case, the beam shapes. With all this information it is easier to keep the 

original shape with no deformities. However, applying subsamples means not feeding the 

network with a global picture of the whole body, so not all the beam shape is watches by 

the system at the same time, which results in a worse performance. 

 

3.1.3. Anatomy 

 Another important difference between patients is the location of their tumors and 

their size. Some of them are located on liver or on lung, but there are others from neck, 

brain and prostate. These changes imply different shapes and different beams.  

 The beam model is another thing the network has to adapt to. There are different 

angles the beams could incise in the tumor, which adds more variability to the model. 

Unusual beam shapes will reduce the quality of the network performance, but this could 

be addressed by increasing the variability within the training dataset. That means to 

include the highest number of patients we can. 

 

3.2. Standardization 

 As we have said in the previous point, it is necessary to standardize the data 

because the neural networks need to be fed with normalized samples: in terms of 

dimensional size and intensities. Here we are going to define how that intensity 

standardization will be made. 

 Firstly, we are going to normalize pixel intensities by multiplying each one by 

DoseGridScaling parameter. This parameter belongs to each realization, so we will read 

the sample from the dataset and, afterwards, we will normalize pixel value. 
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3.2.1. Patch selection 

 Image dimensions must be the same for 

every sample, so, we are going to select 

subsamples of the same dimension from the data. 

The dimension of those subsamples is a very 

important hyperparameter, because it will define 

the architecture of the network, the memory limit 

and the computational time. 

 We can take simple 2D slices, which will 

provide less information to the network, but will 

be faster. 2D images imply 2D convolutions with 

2D kernels. These 2D kernels have l2 parameters, 

but 3D kernels have l3. As we used to apply 3x3 

kernels (or 3x3x3). The number of parameters 

increases from working in 2D to work in 3D, but 

it remains constant for all 3D images, even the 

ones of the full volume. Nevertheless, we must 

notice that going from 2D to 3D implies an 

increase of the memory requirement 

 Therefore, we will define different 

networks for different patches. First, we are going 

to create a network provided with 512x512 

images; but we are creating others networks 

provided with 512x512x3, 512x512x5 and 512x512x7 batches. These networks will 

improve the performance as they consider more information, but training and operational 

time growths considerably. 

 

3.3. Data augmentation 

 One of the most important problems for our research is the lack of data. Overfitting 

problem appear when the amount of data is not enough. In our case, Monte Carlo 

algorithm spends more than one hour on generating the simulation and upload to the store. 

 We are applying data augmentation, which means to make the very 

transformations to the sample and to the reference, with the aim of increasing the samples. 

We need to apply the same transformations to the reference because we are looking for 

generating it, so, if the reference is not rotated, we are going to generate a rotated output, 

and, when making the comparison between the output and the reference, it will appear an 

error that will influence on the weight tuning. 

 We are going to do rotations of 10 degrees and zooms of the 1% of the whole 

image. There are a lot of methods that can be used, for example, non-linear deformations, 

but, as the geometry of the dose images is very defined, it is not necessary to apply them, 

and, furthermore, training with those methods could introduce some noise on the result. 

 Figure 26. Patches of 3, 5 and 7 axial slices. 
Apart from the 2D patches, we are applying 
patches with 3, 5 and 7 axial slices. 
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 It is important to mention that these 

transformations only improve the 

performance in case of very similar images 

with different orientations. Nevertheless, 

these augmentations are important to give 

more robustness against the network and to 

avoid overfitting, because we are keeping 

noise model but we are changing the 

geometric of the image, so it cannot learn 

the particular situation as every time it is 

different. 

 

 3.3.1. Issues 

 Data augmentation is applied in 2D images. Our mainly problem is that we want 

to fed some networks with 3D patches, and there is no method for that problem. 

 We could do our own method to augment the 3D data, applying 3D 

transformations or 2D transformations to each slice. However, that requires time we have 

not, so we are not going to augment 3D data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27. Different transformations of one image. All 
these images are the original one with rotations and 
zoom transformations. 
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Chapter 4. 

 

Methods 

 In this chapter, we are going to develop the methods we applied in the research, 

focusing on the exact architecture, the fine-tuning (improvement of the hyperparameters) 

and the metrics we are applying in order to evaluate the results.  

 

4.1. Architectures 

 Artificial Neural Networks are a certain number of neural layers connected in a 

proper way. There are a lot of architectures (different ways of connecting these layers, 

activation functions, layer sizes, sharing or no sharing weights, etc.) for very different 

purposes.  

 Usually, the first step on deep learning research is connecting some consecutive 

layers to have a fast picture on our minds. Those networks offer a primary idea of what 

you can achieve with more complex ones.  

 Indeed, it is impossible to mention anything about a certain architecture without 

focusing on a task. For imaging, there are a lot of different architectures: from 

Consecutive Convolutional Networks to Capsule Nets. In our research we will use U-Net 

and DenseNet. These two networks are commonly used in the segmentation issue, but it 

is uncommon to use it for the denoising issue. 

 We are going to explore these two architectures in the current chapter, focusing 

on the hyperparameters they have and how to tune them. 

 

4.1.1. U-Net 

 U-Net was introduced in Chapter 2, but here, we are going to define exactly how 

the network we are using is.  

 This network is based on three downsampling phases and three upsampling 

phases. With the downsampling phases we are obtaining the noise distribution, and with 

the upsampling phases we are using that abstract information to remove the noise from 

the original image. These upsampling layers are provided with the symmetric activation 

map. This information can be perfectly understood on the next figure. 
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 However, this figure does not represent our actual networks. We are working with 

4 different U-Nets detailed on the next chart. All of those networks have some 

hyperparameters in common. 

 Kernel size: 

 Every single network has different kernel sizes, because everyone works with a 

different sample size. For the 2D dimensional images, we are working with 3x3 kernels 

in all the networks, but the last layer, which has a single kernel of 1x1. Nevertheless, all 

of the 3D images require 3D convolutions with 3D kernels (3x3x3), except the last layer, 

that has a kernel of 1x1x1. 

 Number of kernels: 

 U-Net architecture use an increasing number of kernels, from the first layer to the 

center of the network. Each block of convolutions has the double number of kernels than 

the previous one. Afterwards, in the upsampling phase, there is a decreasing number of 

kernels. Nonetheless, instead of starting with 32 kernels per layer we are using 8 kernels 

because it provides better performance than the one with 32 due to that one has too much 

parameters and it overfits. The details of that issue will be commented on the discussion. 

 Dilation ratio: 

 We are going to apply a dilation ratio in some networks. This dilated ratio is a way 

to improve the feature map by making convolutions with dilated versions of the original 

kernels. Dilated kernel is a larger kernel with zeros between the different weights. This 

can be seen on Figure 30. We are applying 3x3(x3) kernels that will be dilated to 5x5(x5), 

Figure 28. U-Net architecture scheme. Firstly, we have the downsampling phase, with three parts which includes two 
Convolutional layers and a MaxPooling layer. Afterwards, we have the upsampling phase with three parts including 
two Convolutional layers and an UpSampling layer. Additionally, we copy the last feature map of each 
downsampling part to the upsampling one. 
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afterwards to 7x7(x7), etc. These dilated kernels could use information located further 

than the one catch by no dilated kernels. 

 Finally, the last layer consists of one kernel of 1x1 that compress the last feature 

map in only one slice. In addition, for 3D patches, the third dimension of this kernel has 

the size of the depth patch. 

 

4.1.2. DenseNet 

 DenseNet was introduced in Chapter 2 

too. Nevertheless, we are going to focus on its 

structure at this point.  

 DenseNet is different than U-Net. Not 

only in terms of concatenations, but in terms 

of internal variability. DenseNet is not a 

predetermined architecture, but a general 

concept that focus on concatenating a huge 

number of layers. 

Figure 29. Dilated kernel scheme (a) image is the defect kernel. (b) image is a kernel with 
a dilation ratio of 2, which results in the same kernel than the previous one with zeros 
between its weights. (c) image is a dilated kernel by a factor of 3. 

Figure  30. DenseNet scheme. Every layer is connected 
to all the followings. Nevertheless, in our case, this will 
be a patch of the whole network, where we are 
applying three patches like this one but with three 
convolutional layers instead of five. 

Table 1. U-Net structures. The first column corresponds to the network we are working with, the second one shows 
the kernel size, the third one shows the number of kernel per layer, from the first patch of convolutions to the central 
one. The upsampling phase is just symmetric. The fourth column shows if we are applying a dilation kernel and the 
last one corresponds to the number of parameters or weights we are using. 
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 As we can see in Figure 31, each layer is connected to all the following layers, 

providing its information to all the network. Nonetheless, DenseNets are divided into 

blocks where all the layers are densely connected, but there is no concatenation between 

layers of different patches, as we can see in the next figure. 

 The scheme we can observe in Figure 32 is the most common DenseNet applied 

to image classification [32]. However, improving the result of a complete output image 

requires taking the information from the abstract layers and use it for denoise the input. 

Those concatenations are based on the U-Net structure, so we are going to mix both of 

them. 

 In our case, we are considering a three dense blocks network, starting with three 

convolutional layers, doing a MaxPooling operation after, other three convolutional 

layers, an UpSampling operation, and finally, other three convolutions. We can see this 

architecture on the next figure. 

 We are going to apply different DenseNet for providing better images or for being 

faster in the denoising task. The most important feature of this architecture is that it 

requires a much smaller number of parameters than U-Net. This could reduce memory 

usage and the computational time, but all the concatenations demand more memory, so, 

at the end, there is not a huge memory usage improvement. 

Figure 31. Common DenseNet scheme. We apply three Dense blocks where we the layers are connected like in Figure 
31. Dense blocks are connected by a MaxPooling operation, which downsamples the activation maps. Finally, there is 
a fully connected layer in order to produce a likelihood vector. 

Figure 32. DenseNet and Dense block scheme. Top image explains the Dense Blocks we are applying. 
They have three convolutional layers. Each activation map is connected to the other layers. 
Afterwards, we can see in the bottom part of the image the whole network. Three Dense blocks are 
connected, between the first and the second one there is a downsampling layer and, between the 
second and the third one there is an upsampling layer. 
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 We are applying three different networks. One fed with 2D patches and two others 

provided with three dimensional patches of 512x512x3 and 512x512x5 pixels, each one 

requires different specifications, which will be defined on the following lines. 

 512x512x1 network: 

 This network follows the scheme proposed on Figure 32. First patch has 3 layers 

of only 4 kernels each one, the central patch has 4 kernels per layer, and the last one 4 

too. That result in only 2,741 parameters, what allows to deal with a huge number of 

samples without breaking the memory. 

 512x512x3 network: 

 This other network based on the scheme of Figure 5 has the same structure than 

the previous one. Nevertheless, the number of parameters is higher because these 3D 

kernels are larger than 2D kernels, which implies 14,649 parameters. However, this 

number is very small too, comparing with the 3.000.000 parameters of U-Net.  

 Furthermore, the last layer of the network only contains one kernel of 1x1x3, 

which takes all the channels and compress it in the resulting image. 

 512x512x5 network: 

 This last network is based on the previous scheme. Nonetheless, the structure 

changes as there are the double of kernels per layer. The first patch has 8 kernels per layer, 

the second one has 16 kernels per layer, and the last one 8 per layer. This kernel 

augmentation implies a great increase of parameters: 57,809. The last layer has one kernel 

too, but in this case the dimensions are 1x1x5 because there are five channels instead of 

three. All this information is summarizing in the following table.  

4.2. Fine-tuning of the hyperparameters 

 Fine-tuning is the process whereby the different hyperparameters are optimized 

by training the network, looking at the results, and changing their values. Commonly, 

these hyperparameters are tuned with low resolution images, for instance, with 64x64 

pixels instead of 512x512, what implies a training phase much faster.  

 Unfortunately, changing the dimensions of the images changes noise model 

because the pixel dimension changes. The images third dimension is variable to keep the 

Table 2. Dense Networks summary. Each network is fed with different patches. The first column corresponds to those 
sizes, the second one to the kernels we are applying, the third one to the number of kernels. The forth column shows 
the networks that will have a dilated kernel and the last one corresponds to the number of parameters the network 
has. 
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same pixel size, so, if we change this size, the noise model will be variable depending on 

the image. Then, we are working with the whole images for tuning the network, but not 

with the 3D patch versions. 

 There are a lot of hyperparameters that will be explained in the following points. 

 

4.2.1. Loss function 

 Training the different parameters implies computing the derivatives of the error 

in each neuron of each layer. However, this error could be calculated with different 

functions. All these functions are used in different contexts depending on the output we 

are looking for. 

 We are applying a function called Mean Squared Error, commonly used in the 

denoising task because it is applied assuming the noise model is Gaussian. However, this 

function performs well with our noise model too. There are other tasks when the output 

is a binary mask and we should apply different functions, belonging to the categorical 

group: as categorical crossentropy, sparse categorical crossentropy and binary 

crossentropy.  

𝑀𝑆𝐸 = 
1

𝑁
∑(𝑓𝑖 − 𝑦𝑖)

2

𝑁

𝑖=1

 

 

4.2.2. Optimizer 

 When we compute the 

derivatives of the loss function in each 

weight, we apply a step. Derivatives 

indicate the directions in which the loss 

is minimized, and the steps are the 

distance we advance in that direction. 

This method is called Gradient Descent, 

because we are using the direction of the 

gradient for descent to the lowest part of 

the loss function, which is the solution 

we are looking for. 

 Nevertheless, this method has 

several problems: gradient descent could 

be stucked in local minima or in flat 

zones. Considering the irregular surface 

of the loss function, there are a lot of 

 Figure 33. Gradient Descent graph. Blue arrows are the 
different iterations the model is doing. Each one is directed 
to the global minimum, which, using a loss function, is the 
sought 
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minimizing directions that are not the propest one. Finally, if the step, also called learning 

rate, is very small, the method will take a lot of time to find the solution; notwithstanding, 

a large step will be faster, but it will not find the best solution, because finding the best 

point of a function requires a small step which does not spin around it. 

 We could apply a momentum to the 

learning rate, which is a small 

contribution of the previous derivative. 

This momentum helps the gradient to 

avoid local minimums and saddle points 

because, even if the current derivative is 

zero, it could leave from there. In 

addition, applying a momentum decrease 

the time it takes to find the absolute 

minima. There are other mathematical 

improvements that results in different 

optimizers, as AdaGrad, which gives 

more importance to the current gradient 

by squaring it, RMSprop, which applies 

a mix of  AdaGrad and a learning rate 

decay, explained in Callbaks point, and 

Adam, which applies the momentum and 

the RMSProp idea, and we are using it in 

the current research. 

 

4.2.3. Callbacks 

 Callbacks are certain tools Keras, the Python library for deep learning, give us for 

improving the training phase. These tools are all applied in the training phase, and we are 

going to use three of them. 

 Adam optimizer allows us to avoid local minima through the momentum, which 

keep the gradient out the local directions. Nevertheless, irregular function surface slows 

down the computation of the gradient because those local directions influence in the final 

step. 

 The original way of computing the gradient consist in calculating the learning rate 

of each weight with each sample, and, afterwards, computing the average of all of them. 

This average is robust against noise, but requires a lot of time, usually, high number of 

samples implies a memory failure, so that is not practical.  

 Reducing the computing time requires to estimate the gradient with less data, and 

the simplest way of calculating this is the stochastic gradient descent, consisting in using 

only one sample to make the estimation. This is faster, but it could not avoid irregular 

surfaces, so, the number of epochs will increase. 

Figure 34. Different optimizers effect on the number of 
iterations. Adam is the best one, but AdaDelta, 
SGDNesterov, RMSprop and AdaGrad improve the 
basic performance. 
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 However, we could calculate a minibatch gradient descent. This gradient is 

computed by the average of a sample batch, instead of compute the average of all the 

dataset. Minibatches allows a good approximation of that average, is faster, and is less 

memory expensive. 

 The hyperparameter is the size of that batch. A bigger batch will estimate better 

the gradient, but is slower. On the other hand, a smaller batch will perform worse, but 

faster. This size will be different for each network, defined in the following table. 

 There is also the problem of choosing the learning rate. It would be acceptable to 

choose an intermediate learning rate, large enough to be fast, but small enough to find a 

proper result. Notwithstanding, the best thing we could do is to use a variable learning 

rate. We start with a large learning rate (2E-4) and, when its size is too large to improve 

the performance, use a smaller one. We can adapt this learning rate with a callback called 

ReduceLROnPlateau which needs as parameters the number of epochs without any 

improvement necessary for reduce it, in our case 5 epochs, and the factor between the 

Figure 35. Complete dataset (red) and Minibatch (green) gradient descent comparison. 

Table 4. DenseNet summary. The different columns explain the size of the kernel, the number of kernels we are 
applying, the dilated ratio, the number of parameters that the network has to improve and the size of the minibatch. 

Table 3. U-Net summary. The different columns explain the size of the kernel, the number of kernels we are applying, 
the dilated ratio, the number of parameters that the network has to improve and the size of the minibatch. 
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previous learning rate and the current one, in our case 0.2, which means a decrease of 

80%. 

 Furthermore, we are applying other callback methods for saving the best model, 

ModelCheckpoint. This function saves the weight values in an archive ‘.h5’. The 

parameter this callback needs to be provided with is the metric it must monitor to deduce 

which epoch gives the best performance. We are choosing the one with the lowest 

validation loss, in this case, the validation mean squared error. Additionally, we need to 

write the name of the archive, but it is not an hyperparameter. This callback only saves 

the weight value, so, each time we use the network we need to build it up and load the 

correspondent file.  

 Finally, the last callback we are using in this research is EarlyStopping. This 

callback is used for ending the training up. EarlyStopping needs to be provided with the 

number of consecutive epochs without any model improvement and the metric used for 

monitoring it. Obviously, the number of epochs in this callback must be lower than the 

one from ReduceLROnPlateau, because we need to give time to the model to improve 

with the newest learning rate. In our case, these two parameters are: 11 epochs and 

validation loss. 

 

 

 

 

 

4.2.4. Other parameters 

 We commented all the hyperparameters in the last points, but there are other 

parameters that need to be set for developing a network. Firstly, we must define the 

number of epochs in the training phase. We set an automatic saver and an early stopping, 

but we need to specify a default number of epochs. EarlyStopping will apply under that 

number of epochs. If this callback is not activated before arriving to that number, the 

training will stop by itself.  

 In our case, we are setting a maximum of 400 epochs. 

 Furthermore, there is one parameter directly related to the batch size, the number 

of steps per epoch. Steps per Epoch is the number of minibatches taken by the network 

in each epoch. If we train the network without data augmentation, we could not define 

that number, but, if we use that augmentation, we must set it. For those cases, we are 

applying the number of training samples divided by the batch size. If that number is not 

an integer, we ceil it. 

 

Table 3. Callbacks summary. The first column explains the number of epochs for activate the 
function, and, afterwards, we explain the details of each function: the learning rate decay and the 
metrics we are applying for considering the best performance. 
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4.3. Volume generation 

 Once we have obtained a denoised batch, we must generate a whole 3D image that 

could be compared with the reference. This volume is generated by inputting the different 

batches which are modified by the network in order to produce the very central slice 

correspondent to the reference. All these slices are stocked in a 3D empty matrix with the 

same dimensions as the reference. Nevertheless, if a networks produces the central 

denoised slice provided with a batch of N slices (where N is an odd number), first 
𝑁−1

2
 

original slices will not be denoised, and the last 
𝑁−1

2
 either. 

 Considering the first slices and last slices of the image have not critical 

information, we are going to let it empty on the final volume, but we could apply a 2D 

neural network to denoise those slices.  

 

4.4. Metrics 

 All these previous points focus on the best parameter setting for achieving our 

goal. However, we must define some metrics to estimate how good are the different 

performances and compare them. Metrics must clarify certain important features for the 

sought goal, as the computational time and the intensity levels. 

 Computational time: 

 Computational time will measure the time spent on filtering every single batch 

and generate the volume with them. Time units used are seconds, so, lower values of time 

mean faster networks. 

 Mean Squared Error: 

 Mean Squared Error measures the pixel intensity difference between the denoised 

image and the reference by summing all the squared differences. If this value is close to 

Figure 36. Scheme of denoising process. The left side is the patch of 5 slices, and we want 
to obtain the central one denoised, which we can see on the right side. 



49 
 

zero, there is no difference between the reference and the output. This is the metric we 

are using to evaluate which weight configuration is the best in the training process. 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑓𝑖 − 𝑦𝑖)

2

𝑁

𝑖=1

 

 Signal-to-Noise ratio: 

 This metric compares the amplitude of the noise and the signal by dividing the 

second by the first one. We could compute the noise by subtracting denoised images and 

reference. After, we must sum each squared noise value to estimate its amplitude, 

followed by a squared root for normalizing it. Finally, we sum each value of the reference 

and we divide it by the noise. 

𝜎 = 𝐼𝑚𝑟𝑒𝑓 − 𝐼𝑚 

|𝜎| = √∑(𝜎[𝑖])2 

|𝛿| = √∑𝐼𝑚𝑟𝑒𝑓[𝑖]2 

𝑆𝑁𝑅 =
|𝛿|

|𝜎|
 

 The symbols used in the previous equations are: σ, noise; |σ|, absolute value of the 

noise; |δ|, absolute value of the reference, where 𝐼𝑚𝑟𝑒𝑓 = δ. 

Figure 37. Comparison between reference and input. The first image is the comparison between the 
reference and the 1e7 interactions image. The second one is the noise of the 1e7 image, obtained by 
subtracting the reference to the input.  
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 We are looking for a high signal-to-noise ratio, what implies a practically 

irrelevant noise. However, there is a huge variance between different patient dose 

distributions, which implies a directly rapport with the noise distribution and the noise 

amplitude. Furthermore, there are some patients whose reference images are still noisy, 

due to the huge size of their tumors. So, there is another metric which provides a more 

robust results. 

 Improvement ratio (Signal-to-Noise): 

 Considering signal-to-noise ratio depends on the quality of the original input, that 

metric could not demonstrate the real performance of the network. Signal-to-noise ratio 

shows the quality of the output, but that quality depends on the network and on the input 

quality. But we can minimize the dependence on the input quality by calculating the 

improvement ratio by dividing the signal-to-noise ratio of the output and the input, or, as 

presented on the following equation. 

𝐼𝑆𝑁𝑅 =
𝑆𝑁𝑅𝑜𝑢𝑡
𝑆𝑁𝑅𝑖𝑛

=

|𝛿|
|𝜎|𝑜𝑢𝑡
|𝛿|
|𝜎|𝑖𝑛

=
|𝜎|𝑖𝑛
|𝜎|𝑜𝑢𝑡

 

 All these metrics are applied to four patients who compose the test dataset. We 

will compute the average of the four patients and the standard deviation, results that will 

provide robustness and reliable data. 

 Peak Signal-to-Noise ratio (PSNR): 

 This is the most common parameter used for estimate the quality of a denoised 

image. MPEG committee has established a threshold of 0.5 dB to determine if there is 

improvement between two different samples. PSNR is calculated according to the 

following equation: 

𝑃𝑆𝑁𝑅 = 10 · log10 (
𝑀𝐴𝑋2

𝑀𝑆𝐸
) = 20 · log10 (

𝑀𝐴𝑋

𝑅𝑀𝑆𝐸
) 

 Where MAX is the maximum pixel intensity, that use to be between 60 and 80 

Grays in our case, MSE is the Mean Squared Error, which is defined on the previous 

page, and RMSE, which is Root Mean Squared Error, the squared root of the MSE. 

 Dose-volume histogram (DVH): 

 This last metric is not scalar. It is an decumulative histogram relating the dose to 

tissue volume. It is used in radiotherapy planning, and the idea is to compare the DVH 

graph of the reference with the DVH of the output. One single parameter we can extract 

from this histogram is the D95, which is the minimum dose given to the 95% of the tumor 

volume, and its unities are Grays (Gy). 

 The most important feature of this histogram is the slope, which must be as steeper 

as possible for the target, what means that the dose delivered to the tumor is 
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homogeneous. In our case, we are trying to make a DVH similar to the reference, which, 

theoretically, is the real behavior of the radiation beam. 

 In our case, we could only perform the DVH on one lung tumor image because 

we do not have the tumor contours of the other images. For this image, the reference has 

a DVH95 of 65.45 Gy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 38. DVH graph. We can see a lot of lines of different colors, but the most 
important is the red one, that shows the dose given to the tumor. 
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Chapter 5. Results 

 5.1. U-Net 

 5.2. DenseNet 
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Chapter 5. 

 

Results 

 In this chapter we are exposing the results of our research. Firstly, we are 

describing the performance of U-Net, applied to doses generated by 1e7 particles and by 

1e6 particles. Afterwards, the results of DenseNet for 1e7 and 1e6 particles images. 

 

5.1. U-Net 

 Firstly, we are going to expose the results of the 1e7 doses. We are applying 4 

different networks, one fed with 2D images and the other ones fed wit 3D batches (depth: 

3, 5, 7). 

 1e7 particles doses: 

 Firstly, the training of the networks was developed according to the chapter 4. The 

first network was fitted during (105) epochs, what implied a validation MSE of (0.01502). 

 

Figure 39. Training and validation loss curves for U-Net (1 slice and 1e7 particles input) 
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 The second network was trained for (117) epochs, and the validation MSE 

achieved was (0.00957).  

 

 Thirdly, the network fed with a patch of 5 slices achieved a MSE of (90) in 

(0.01326) epochs. 

 

 Finally, the last network achieved a MSE of (0.01486) within (25) epochs, as we 

can see in the following graph. 

Figure 40. Training and validation loss curves for U-Net (3 slices and 1e7 particles input) 

Figure 41. Training and validation loss curves for U-Net (5 slices and 1e7 particles input) 
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 These networks were described on chapter 4, so, according to the metrics 

described there, the performance is: 

 1e6 particles doses: 

 All these networks were trained as described on chapter 4, and the training process 

is summarized in the following table: 

Figure 42. Training and validation loss curves for U-Net (7 slices and 1e7 particles input) 

Table 4. U-Net (1e7) metrics summary. This table contains seven different columns: first one corresponds to the patch 
size we are using to feed the network, second one is the computational time (in seconds) required for denoising the 
whole image, third column corresponds to the Mean Squared Error, fourth column corresponds to the Signal-to-Noise 
ratio, fifth one is the Improvement ratio (ISNR), sixth one is the Peak-Signal-to-Noise ratio and last one corresponds to 
the DVH95 (Gy), remembering than the reference DVH95 is 62.45 Gy. The numbers out of brackets corresponds to the 
average of four test patients, and the numbers inside the brackets corresponds to the standard deviation. DVH95 is not 
the average of several patients because it was only one contour patient available in our test dataset. 
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Figure 43. Training and validation loss curves for U-Net (1 slice and 1e6 particles input) 

Table 5. U-Net (1e6) training summary. This table has three columns, 
the first one corresponds to the patch size, the second one corresponds 
to the number of epochs until EarlyStopping was activated, and the 
third column corresponds to the validation Mean Squared Error 
achieved. 
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Figure 44. Training and validation loss curves for U-Net (3 slices and 1e6 particles input) 

 

 

 

 

 

Figure 45. Training and validation loss curves for U-Net (5 slices and 1e6 particles input) 
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Figure 46. Training and validation loss curves for U-Net (7 slices and 1e6 particles input) 

 

 According to the metrics described on chapter 4, the performance of all these 

networks are: 

 

 

 

Table 6. U-Net (1e6) metrics summary. This table contains seven different columns: first one corresponds to the patch 
size we are using to feed the network, second one is the computational time (in seconds) required for denoising the 
whole image, third column corresponds to the Mean Squared Error, fourth column corresponds to the Signal-to-Noise 
ratio, fifth one is the Improvement ratio (ISNR), sixth one is the Peak-Signal-to-Noise ratio and last one corresponds to 
the DVH95 (Gy), remembering than the reference DVH95 is 62.45 Gy. The numbers out of brackets corresponds to the 
average of four test patients, and the numbers inside the brackets corresponds to the standard deviation. DVH95 is not 
the average of several patients because it was only one contour patient available in our test dataset. 
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12.2.DenseNet 

 

 This point will be developed as the previous one. It will be break down into 1e7 

particles dose and 1e6 particles dose. In this case we are applying three networks, no 4. 

 1e7 particles doses: 

 The following table summarize the results of the training, in terms of number of 

epochs and validation Mean Squared Error. 

 Additionally, the curves of validation and training loss are attached below this 

paragraph. 

 

Figure 47. Training and validation loss curves for DenseNet (1 slice and 1e7 particles input) 

Table 7. DenseNet (1e7) training summary. This table has 
three columns, the first one corresponds to the patch size, the 
second one corresponds to the number of epochs until 
EarlyStopping was activated, and the third column 
corresponds to the validation Mean Squared Error achieved. 
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Figure 48. Training and validation loss curves for DenseNet (3 slice and 1e7 particles input) 

 

Figure 49. Training and validation loss curves for DenseNet (5 slice and 1e7 particles input) 
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 Moreover, the performances of the different networks are described on the table 

below. Firstly, we can read the average and, secondly, the standard deviation. 

 1e6 particles doses: 

 Here, there are the table with all the training information and the graphs of the 

training and validation loss curves. 

 

 

 

Figure 50. Training and validation loss curves for DenseNet (1 slice and 1e6 particles input) 

Table 8. DenseNet (1e7) metrics summary. This table contains seven different columns: first one corresponds to the 
patch size we are using to feed the network, second one is the computational time (in seconds) required for denoising 
the whole image, third column corresponds to the Mean Squared Error, fourth column corresponds to the Signal-to-
Noise ratio, fifth one is the Improvement ratio (ISNR), sixth one is the Peak-Signal-to-Noise ratio and last one 
corresponds to the DVH95 (Gy), remembering than the reference DVH95 is 62.45 Gy. The numbers out of brackets 
corresponds to the average of four test patients, and the numbers inside the brackets corresponds to the standard 
deviation. DVH95 is not the average of several patients because it was only one contour patient available in our test 
dataset. 

Table 9. DenseNet (1e6) training summary. This table has three 
columns, the first one corresponds to the patch size, the second 
one corresponds to the number of epochs until EarlyStopping was 
activated, and the third column corresponds to the validation 
Mean Squared Error achieved. 
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Figure 51. Training and validation loss curves for DenseNet (5 slice and 1e6 particles input) 

 Additionally, the results of the performances are the following ones: 

 

 

 

 

 

 

 

Table 10. DenseNet (1e6) metrics summary. This table contains seven different columns: first one corresponds to the 
patch size we are using to feed the network, second one is the computational time (in seconds) required for denoising 
the whole image, third column corresponds to the Mean Squared Error, fourth column corresponds to the Signal-to-
Noise ratio, fifth one is the Improvement ratio (ISNR), sixth one is the Peak-Signal-to-Noise ratio and last one 
corresponds to the DVH95 (Gy), remembering than the reference DVH95 is 62.45 Gy. The numbers out of brackets 
corresponds to the average of four test patients, and the numbers inside the brackets corresponds to the standard 
deviation. DVH95 is not the average of several patients because it was only one contour patient available in our test 
dataset. 
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Discussion 

 

 Proton therapy is a relative new treatment in oncology that is being used for 

critical situations where the tumor is surrounded by sensitive tissues. The Bragg Peak 

allows physicians to irradiate the blank without damaging healthy cells. Monte Carlo 

algorithms make a very accurate estimation of the dose distribution of proton beams. This 

accuracy is an extremely important feature because the exact area of the Bragg Peak is 

very sensitive to little changes on the parameters (type of tissue, beam energy, etc.), and, 

considering the high dose is delivered there, little movements implies a great pain to 

healthy areas. 

 However, Monte Carlo algorithms produces a little noise on its simulations, and, 

the amount of particles that need to be simulated are too high, requiring more than one 

hour to compute it. The alternative is generating a dose distribution with a fewer number 

of particles, but the resultant image is noisier. The current thesis proposes two methods 

based on deep learning algorithms for denoising the distributions: 

 U-Network: based on a hierarchical structure, this architecture has been used 

during several years for the segmentation task. Its similarity with the autoencoders 

is the reason why they perform well for that issue. 

 Dense Network: this architecture is based on hierarchical structure where all the 

layers are connected to provide the most important information. These 

concatenations reduce the number of parameters that we need. 

 The details of the performance were described in Chapter 5, but the consequences 

of that results are going to be discussed in the following paragraphs.    

 Firstly, we are going to discuss the training curves, which represent the training 

and the validation Mean Squared Error along every epoch. 

Figure 52. Training and validation loss curves for U-Net and DenseNet. Graph (a) is U-Net fed with 1e6 particles and 
512x512x1 slices, and graph (b) is DenseNet fed with 1e6 particles and 512x512x1 slices. The first one took 101 epochs 
to achieve the best performance and the second one took 268 epochs to achieve the best result. 
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 As we can see in Figure 52, there is a huge difference between the training loss 

curve and the validation one. Usually, validation curve is over the training loss, but, in 

this case, that curve is under the training one. This is caused because the validation 

dataset, which has four different patients, is simpler than the training dataset. This could 

be solved with more data. If the available data was large enough, the complexity of the 

datasets, the training and the validation, or even the test one, would be the same. 

 Secondly, we are going to compare the computational time required for filtering 

one 3D image and the ISNR, which give us information about the improvement of the 

image. 

 

 

 

 

 

 

 

 

 

 

 

 Considering the information provided by Graph 1, the little decrease of the 

computational time is not worth attending on the great decrease of the performance. 

Furthermore, taking into account the standard deviation of both times (0.665 and 0.638), 

we cannot ensure there is statistic differences between them. 

 Furthermore, we are going to compare both metrics in networks fed with patches 

of three slices. Theoretically, these two networks must provide a better performance but 

spending more time on filtering the dose distribution. 
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Graph 1.Comparison between the computational time and the ISNR of U-Net and DenseNet. This 
comparison is made with the networks fed with patches of one slice only. We can see a little 
diminution of the computational time for DenseNet, but, there is a great improvement of the ISNR 
for U-Net. 
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 As we can see in the Graph 2, in this case we can consider to use DenseNet instead 

of U-Net, but the standard deviations (1.142 and 0.916) do not allow us to discern if there 

is an appreciable difference. Additionally, we must clarify that, this elevated standard 

deviation is due to the size variability of the different images, there are images that have 

90 slices around, and there are others with 140 slices around. 

 Now, we are going to discuss about the differences between the images obtained 

with 1e7 particles and 1e6 particles. 

 First, we expect a better result on denoising 1e7 particles images because they are 

less noisy than the ones generated with 1e6. However, these last images are computed 

faster, so, if we achieve a result good enough on these data, useful images could be 

generated in a few seconds.  

 The following graph will compare ISNR and PSNR for outputs coming from 1e7 

and 1e6 particles images. ISNR shows the improvement of the input, so, with the same 

ISNR, 1e7 particles images will be better, as they come from a better starting point. 

Nonetheless, PSNR shows the quality of the image by itself, so, the higher the PSNR, the 

better the image is. 
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Graph 2. Comparison between the computational time and the ISNR of U-Net and DenseNet fed with 
patches of three slices. In this case, we realize the behavior is the same than in the previous one, 
DenseNet spends less time but provide a limited result. Nevertheless, here time difference is higher 
than the previous one, and the performances are more similar. 
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 As we can see in Graph 3, PSNR of 1e7 images is 6 points over 1e6 one. Maybe 

this difference is too much important. However, doctors must decide if these 6 points 

convolve an excessive decrease of quality for the clinical application. 

 Secondly, we are going to analyze the performance of the Dense network on 1e6 

and 1e7 particles images. We are comparing ISNR and PSNR as done before.  

 

 

 

 

 

 

 

 

 

 

 Graph 4 shows us a very similar information than the previous one. PSNR is 6 

points lower for 1e6 particles images, and doctors show decide if that quality difference 

is too much for the clinical application. 
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Graph 3. ISNR and PSNR comparison between 1e6 and 1e7 particles images filtered with U-Net 
(patches of one slice). The ISNR is higher for 1e6 images, but the 1e7 images PSNR is 6 points over 
the first one. 
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Graph 4. ISNR and PSNR comparison between 1e6 and 1e7 particles images filtered with DenseNet 
(patches of one slice). Here we can see an appreciable difference between the two performances. 
ISNR of 1e6 particles images is higher, but, PSNR is 6 points under the 1e7 one. 
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 Otherwise, we are going to discuss the performance of the different networks 

according to the patch size. Firstly, we are going to explain the results of DenseNets by 

comparing the computational time and the PSNR. 

 Graph 5 show us that the second network provides a better performance than the 

first one. Additionally, the last network does not improve the performance, but requires 

more time. The main explanation for this is the lack of data. Lack of data impedes us to 

use more complex networks, so, models are not specific enough. More complex models 

allow us to improve our performances, but there is a threshold we cannot cross due to our 

issue. 

 Furthermore, we cannot use larger networks due to the lack of memory, so the 

network dimension has two limits: the memory and the amount of data. 

 On the other hand, we have the summary of the U-Net performance. 
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Graph 5. Computational time and PSNR comparison of DenseNets (1e7). There is an important increase 
of the computational time according to the patch size. However, the quality of the performances does 
not increase that much. We cannot appreciate any significant difference between the performance of 
the second and the third one. 
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Graph 6. Computational time and PSNR comparison of U-Nets (1e7). As we can see, computational time 
increase significantly due to the size of the patch. However, PSNR does not increase so significantly, 
achieving the best performance in the second case. 



70 
 

 As we can see in Graph 6, the best performance is achieved in the second network, 

and this is due to the fact that third and fourth networks are very little complex to the 

amount of information that 5 and 7 slices patches provide. This could be result increasing 

the complexity of those networks, nevertheless, considering the amount of data we have, 

this will result in overfitting. We considered those networks, and we added Dropout and 

Batch Normalization layers for keep the overfitting at bay, but these layers added noise 

to the final result, so, the final performance was worse than the one we show. 

 Now, we are going to discuss about the best networks trained, the best U-Net and 

the best DenseNet. We are comparing the computational time, the PSNR and the DVH95 

for 512x512x3 U-Net and 512x512x5 DenseNet, both of them fed with 1e7 particles dose 

simulations.  

 Graph 7 shows that DenseNet is more limited than U-Net. The time it takes to 

denoise the image is more than twice the DenseNet takes. However, DenseNet PSNR is 

0.5 points under the U-Net one, and DVH95 is also worse.  

 We expected than DenseNet provided a little worse performance but reducing the 

computational time, but results have shown than it is worse than U-Net in all the aspects. 

Nevertheless, these limited results could be caused by the reduced complexity of the 

network, which is also caused by the lack of data, which would impede the overfitting 

issue. We considered DenseNet as faster because it has a much smaller number of 

parameters, but all the concatenations result in an increase of the memory requirement 

and, consequently, an increase of the spent on denoising the image. 
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Graph 7. U-Net and DenseNet global comparison. We can observe, DenseNet requires 
more time and provides a worse PSNR and DVH95 than U-Net. DVH95 is worse because 
we want the closer one to the reference (62.45). 



71 
 

 Finally, we are going to discuss about the best network, U-Net fed with 

512x512x3 slices per patch. We will analyze the Mean Squared Error, the Signal-to-

Noise ratio, the Peak-Signal-to-Noise ratio, and the DVH95.  

  According to the results, this network is the best one. It achieved the higher SNR, 

which means that the noise has the lower level compared with the signal, in this case, the 

dose distribution. The PSNR achieved is also the highest one, that, instead of comparing 

the noise with the signal, compares it with the highest pixel value. The difference between 

the DVH95 from the reference and the one from the denoised image is 0.28 Grays, and 

this is not the lowest difference. Figure 53 shows the DVH of the reference and the 

denoised image together. 

 As we can see in this figure, the three curves are similar, but the reference and the 

denoised are almost the same curve. Nevertheless, the results show that the doses 
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Graph 8. U-Net 512x512x3 analysis. The first bar corresponds to the average of the computational 
time, the second bar corresponds to the average of the Signal-to-Noise ratio, the third one 
corresponds to the one of the Peak-Signal-to-Noise ratio and the last one to the DVH95.  

Figure 53. DVH comparison of the reference dose, the 1e6 dose and the denoised one. The DVH95 corresponds to the 
value of the histogram for the volume 95. 

Figure 54. DVH comparison of the reference dose, the 1e7 dose and the denoised one. The DVH95 corresponds to the 
value of the histogram for the volume 95. 
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generated with 1e6 particles and denoised are more similar than the ones generated with 

1e7 particle in terms of DVH. The Figure 54 shows that result. 

 This DVH shows that the denoised image coming from the Monte Carlo 

simulation, made with 1e6 particles is almost the same than the one generated with 1e7 

particles and denoised. There is a huge difference between the one made with 1e6 and 

1e7 particles before the denoising, so, maybe, considering this metric there is not 

difference between filter those two simulations for the clinical application. 

 The following figure shows the difference between a 1e6 and a 1e7 denoised 

image. 

 

Figure 55. Comparison of the 1e7 simulation (a), the denoised 1e7 simulation (b) and the reference dose (c). These 
images correspond to the 50 slice of a lung tumor. 
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 Figure 55 shows the image before denoising, the denoised one and the reference. 

Visually, images (b) and (c) are very similar, what is confirmed for the results of the 

metrics like DVH. Furthermore, we are going to compare the pixel intensities of the row 

350. 

 Figure 56 shows the difference between the signal of the 350 row from the 1e7 

distribution, the reference and the denoised image. We can see in these profiles that the 

noise is significantly reduced. 

Figure 56. Comparison between the denoised image, the reference and the 1e7. Image (a) compares the 
350 rom from the denoised distribution (orange) and the reference (blue). Image (c) is the first one 
aggrandized. Image (b) is the comparison between the denoised image and the 1e7. Image (d) is image 
(b) aggrandized. 

Figure 57. Comparison of the 1e6 simulation (a), the denoised 1e7 simulation (b) and the reference dose (c). These 
images correspond to the 50 slice of a lung tumor. 
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 Figure 57 shows the image before denoising, the denoised one and the reference. 

There is a larger difference between this performance and the last one, due to the noise of 

the 1e6 simulations, which is higher here.  We can see a small difference between the 

denoised and the reference image.  

 As we can see in Figure 58, the noise of the original signal is higher than the one 

of the 1e7 particles simulation, and, the filtered image has some differences with the 

reference, but it is quite similar. 

 

 

 

 

 

 

 

Figure 58. Comparison between the denoised image, the reference and the 1e6. Image (a) compares the 
350 rom from the denoised distribution (orange) and the reference (blue). Image (c) is the first one 
aggrandized. Image (b) is the comparison between the denoised image and the 1e6. Image (d) is image (b) 
aggrandized. 
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Conclusion 

 The current thesis has expose two different methods based on deep learning for 

denoising fast Monte Carlo dose distribution simulations, achieving distributions similar 

to the 1e9 particles ones. These two networks have largely improved the denoising state-

of-the-art, and they are fast methods which takes no more than 14 seconds to filter a whole 

3D image. 

 Nevertheless, these networks could be improved with several changes we are 

going to describe in the following lines, including training different networks, more 

complex ones or using different data. 

 Firstly, we discovered the great variability due to the tumor location. The anatomy 

implies different sizes according to the exactly place in the human body. Lung and liver 

tumors, for instance, are larger than brain ones, and the 3D image has more than 110 

slices, implying an increase of the computing time. Additionally, larger tumors are treated 

with larger beams which are more complex to model and are noisier. On the other hand, 

neck or prostate tumors are smaller and less noisy, and the 3D images have around 90 

slices, which implies a smaller computational time. We could build different organ-

specialized networks, reducing the variability in the input dataset and improving the 

general performance, but the amount of data is a huge problem, because we need enough 

data of each tumor, which implies 5-10 time the data we currently have. 

 Secondly, there are more complex networks that could provide better 

performances, as Generative Adversarial Networks, where two different networks are 

trained, one is the denoiser, which takes the input and produces a free-noise image, and 

the other one must discover if the output of the first one is an original or a denoised image. 

Both networks are connected to ease information to the other network. At the end, the 

first network will produce almost free-noise images that the Adversial Network cannot 

recognize. Recently, researchers discovered Capsule Networks, which have shown a huge 

power, reducing the needed data. These networks are based on detecting the image 

objects, their location and their rotations, so we do not need to provide the network with 

different rotated images. 

 Thirdly, we can feed the networks with different information. We can work with 

the frequency domain instead of spatial domain, or even both of them. There are a lot of 

domains that could be used for improving the results. Several current denoisers use 

parameters like albedo to enhance the performance, making uncommon connections in 

their networks. All these parameters could perform together to find the best 

approximation of the noise model. 

 Fourthly, we could build very simple networks for making softs improvements. 

Assuming each output has a random noise, we can calculate the average of all those 

outputs for enhance the final image. Those networks must be simple and fast for having 

a large number of outputs to calculate a robust average. 

 Finally, we could create a special network, that, instead of denoising a Monte 

Carlo dose distribution, generates that distribution. This would be the hardest 
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improvement to do, but, as neural networks are applied on several issues, we could 

provide the system with all the required parameters (beam angles, beam energy, beam 

position, CT image, etc.). Those networks will achieve a good result in terms of 

computational time, but it would be hard to achieve a quality performance as the one 

obtained by Monte Carlo algorithms. 

 To conclude, there are a lot of techniques that could improve the images generated 

by a Monte Carlo algorithm. Reducing the computational time of dose distributions to a 

few seconds, joint to the automatized segmentation of tumors and organs, is going to 

increase the radiation therapy process. 
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