

Deep learning approach for denoising Monte Carlo

dose distribution in proton therapy

Promotor: John Lee

Jorge Ricardo Asensi Madrigal

2018, June.

Document delivered on: 10 June, 2018

Acknowledgments

 The current thesis is the result of a semester of daily work. Almost five months

ago I came to Brussels from my lands. A semester of adventures, making new friends and

learning about biomedical stuff and even about myself.

 It was a Tuesday when I arrived to MIRO’s laboratory and I met John and Umair

for my first time. From that very moment I felt comfortable there. They told me

everything about Deep Learning and the project Umair was developing. They offer me a

plenty of different projects, but two weeks after, I chose Kevin’s offer, and I started this

thesis.

 This acknowledgment should refer such a huge number of people that it is

technically impossible to mention everyone. But I would like to mention my supervisors,

John Lee, Kevin Souris and Umair Javaid.

 I would like to thank the new friends I made in Brussels: Elena Escudero, Ana,

Nahia, Rubén, Paula; but specially thanks to Roger and Elena. I will never forget the days

we spent travelling, visiting Brussels, trying new beers and enjoying our conversations

and salseos.

 My Valencia friends deserve a mention here too. From Rubén, Paco, Richi, Sonia,

Carmen, Heura, Oscar, Claudia and Cristina; to Fernando, Carlos, Toni, Pablo, Pedro

Miguel, Juanfer, Alberto, Ryan, Mari, Laura, and Marta. Every one of you gave me the

proper thing even in the bad and the good moments.

 To La Resistencia for our marvelous summer trip I will ever remember, and for

every incredible single moment we spent before and after that trip.

 To my parents and my grandparents, both those who are and those who are not.

 To my cousin Antonio and his beautiful family.

 To my girlfriend Mónica.

 And to Martina.

ABSTRACT

 Radiation therapy planning requires to simulate the dose distribution on a CT

patient image. It is used an algorithm based on Monte Carlo to generate that simulation,

but this algorithm produces some noise that need to be removed.

 Convolutional Neural Networks (CNN) have improved the state-of-the-art in the

recent years by recognizing hierarchical features on an image. The purpose of the current

work is to build a Neural Network that take a 3D Monte Carlo Dose Distribution as an

input and denoise it through the different layers it includes, to use it in hospital practice.

The quality of Monte Carlo generated images depends on the number of particles

employed, consequently, improving the quality of the images involves an exponential

increase of the computing time. Simulations generated with 1e9 particles could be

considered as free-noisy because the residual noise they have does not compromise the

clinical application. We filtered distributions generated with 1e7 and 1e6 particles, what

result in one minute and 10 seconds of computing, respectively. Both networks

architectures are U-Net, commonly used in the segmentation task, both of them exceed

the state-of-the-art, achieving a signal-to-noise ratio of 73.03 and 35.69 respectively, and

they spend 45 seconds around on filtering the whole 3D-image.

RESUMEN

 La planificación en radioterapia requiere simular la distribución de la dosis basada

en la imagen del paciente, obtenida mediante Tomografía Axial Computarizada. La forma

de generar esta simulación es mediante algoritmos basados en Montecarlo, pero, estos

algoritmos producen un cierto ruido que debe ser eliminado.

 Las redes neuronales convolucionales (RNC) han revolucionado el state-of-the-

art en los últimos años mediante el reconocimiento de características de forma

jerarquizada. El propósito del presente trabajo es la construcción de una red neuronal que

tome por entrada una distribución de dosis tridimensional generada mediante algoritmos

Montecarlo y, mediante los diferentes parámetros que esta incluye, remover el ruido que

tenga para obtener una imagen perfectamente funcional en la práctica hospitalaria. La

calidad de las imágenes generadas por Montecarlo depende del número de partículas que

se modelicen, por lo que, mejorar la calidad de las mismas implica un aumento

exponencial del tiempo de cálculo. Las distribuciones de dosis consideradas “libres de

ruido”, requieren el uso de 1e9 partículas, lo que implica una hora de computación.

Nosotros hemos filtrado imágenes generadas con 1e7 y 1e6, que conllevan,

respectivamente, un minuto y 10 segundos de computación. Ambas redes neuronales se

corresponden a la arquitectura U-Net, ampliamente usada en el área de segmentación de

imágenes. Ambas redes superan el state-of-the-art actual, obteniendo un signal-to-noise

ratio de 73.03 y 35.69 respectivamente, y empleando, aproximadamente 45 segundos en

filtrar la imagen 3D.

CONTENTS

Table of figures……………………………………………………………………… p. 1

 Figures

 Tables

 Graphs

Introduction…………………………………………………………………………. p. 5

Chapter 1. Radiation therapy background……………………………………….. p. 7

1.1. Radiotherapy and proton therapy

1.2. Radiation dose

1.2.1. Photon and proton dose distribution

1.3.Radiotherapy planning

1.3.1. Segmentation

1.3.2. Monte Carlo´s algorithm

Chapter 2. Artificial Neural Networks (ANN)………………………………...…. p. 15

 2.1. Machine Learning system

 2.1.1. Types of learning

 2.1.2. Applications

 2.2. Components of an ANN

 2.2.1. Perceptron

 2.2.2. Layer

 2.2.3. Multilayer perceptron

 2.3. Training

 2.3.1. Backpropagation algorithm

 2.3.2. Training issues

 2.3.3. ReLU function

 2.4. Convolutional Neural Networks

 2.4.1. Common uses of ConvNets

 2.4.2. U-Net architecture

 2.5. State-of-the-art

Chapter 3. Image preprocessing……………………………………………...…… p. 29

 3.1. General features

 3.1.1. Intensity/Dose

 3.1.2. Image dimension

 3.1.3. Anatomy

 3.2. Standardization

 3.2.1. Batch selection

 3.3. Data augmentation

 3.3.1. Issues

Chapter 4. Methods ……………………………………………………………..… p. 37

 4.1. Architectures

 4.1.1. U-Net

 4.1.2. DenseNet

 4.2. Fine-tuning

 4.2.1. Loss function

 4.2.2. Optimizer

 4.2.3. Callback

 4.2.4. Other parameters

 4.3. Volume generation

 4.4. Metrics

Chapter 5. Results ..………………………………………………………………... p. 53

 5.1. U-Net

 5.2. DenseNet

Discussion ………………………………………………………………………….. p. 65

Conclusion ……………………………………………………………………...….. p. 75

References……………………………………………………………...…………... p. 77

1

Table of figures

Figures

1. Lineal accelerator scheme

2. Photon generated by the electronic deceleration

3. Representation of a gamma decay

4. Percent Depth Dose for 6 MV photon beam.
5. Comparation of dose distribution curves
6. Segmented brain tumor
7. Example of Monte Carlo dose distribution
8. Different Monte Carlo simulations
9. Noise level comparison for different simulations.
10. "Traditional" programming way scheme
11. MNIST dataset
12. Supervised learning scheme
13. Perceptron scheme

14. Multilayer perceptron scheme

15. Gradient of backpropagation

16. Decision frontiers of Machine Learning systems

17. ReLU function graph

18. ConvNet scheme

19. MaxPooling operation

20. Segmented brain tumor

21. Autoencoder scheme

22. U-Net architecture scheme

23. Shape and intensity variability

24. High dose slice

25. Low dose slice

26. Patches of 3, 5 and 7 axial slices.

27. Different transformations of one image

28. U-Net architecture scheme

29. Dilated kernel scheme

30. DenseNet scheme

31. Common DenseNet scheme

32. DenseNet and Dense block scheme

33. Gradient Descent graph

34. Different optimizers effect on the number of iterations

35. Complete dataset (red) and Minibatch

36. Scheme of denoising process

37. Comparison between the reference and the input

38. DVH graph

39. Training and validation loss curves for U-Net (1 slice and 1e7 particles input)

40. Training and validation loss curves for U-Net (3 slice and 1e7 particles input)

41. Training and validation loss curves for U-Net (5 slice and 1e7 particles input)

42. Training and validation loss curves for U-Net (7 slice and 1e7 particles input)

43. Training and validation loss curves for U-Net (1 slice and 1e6 particles input)

44. Training and validation loss curves for U-Net (3 slice and 1e6 particles input)

45. Training and validation loss curves for U-Net (5 slice and 1e6 particles input)

2

46. Training and validation loss curves for U-Net (7 slice and 1e6 particles input)

47. Training and validation loss curves for DenseNet (1 slice and 1e7 particles input)

48. Training and validation loss curves for DenseNet (3 slice and 1e7 particles input)

49. Training and validation loss curves for DenseNet (5 slice and 1e7 particles input)

50. Training and validation loss curves for DenseNet (1 slice and 1e6 particles input)

51. Training and validation loss curves for DenseNet (5 slice and 1e6 particles input)

52. Training and validation loss curves for U-Net and DenseNet

53. DVH comparison of the reference dose, the 1e7 dose and the denoised one

54. DVH comparison of the reference dose, the 1e6 dose and the denoised one

55. Comparison of the 1e7 simulation, the denoised 1e7 simulation and the reference dose.

56. Comparison between the denoised image, the reference and the 1e7

57. Comparison of the 1e6 simulation, the denoised 1e6 simulation and the reference dose.

58. Comparison between the denoised image, the reference and the 1e6

Tables

1. U-Net structures
2. DenseNet summary
3. U-Net summary

4. DenseNet summary
5. Callbacks summary
6. U-Net (1e7) metrics summary
7. U-Net (1e6) training summary
8. U-Net (1e6) metrics summary
9. DenseNet (1e7) training summary

10. DenseNet (1e7) metrics summary
11. DenseNet (1e6) training summary
12. DenseNet (1e6) metrics summary

Graphs

1. Comparison between the computational time and the ISNR of U-Net and DenseNet.

2. Comparison between the computational time and the ISNR of U-Net and DenseNet fed

with patches of three slices
3. ISNR and PSNR comparison between 1e6 and 1e7 particles images filtered with U-Net

(patches of one slice)

4. ISNR and PSNR comparison between 1e6 and 1e7 particles images filtered with

DenseNet (patches of one slice)
5. Computational time and PSNR comparison of DenseNets (1e7)

6. Computational time and PSNR comparison of DenseNets (1e6)
7. U-Net and DenseNet global comparison
8. U-Net 512x512x3 analysis

3

4

5

INTRODUCTION

 Cancer is a major public health problem in the world. Only in United States,

1,688,780 people suffered cancer last year, and 600,920 deaths were projected to occur

[1]. That very year, the number of tumor deaths in Europe was 1,373,500. These statistics

show us cancer is the second most common illness in Europe, behind cardiovascular

problems [2].

 Common treatments for cancer are surgery, chemotherapy and radiation therapy.

The area of this project is radiation therapy, which consists in applying ionizing beams to

the tumor with the aim to destroy every cancer cell, but preventing non tumor cells of any

damage. Furthermore, there are three main types of radiation therapy, the one made with

photons, other one made with electrons, and the one made with protons. The first option

is the most used technique in the world, and it has been developed for years, but, recently,

proton therapy has been revealed as a more precise and safe technique [3], because the

beam dispersion is lower than photons one due to its distribution, called Bragg Peak. This

distribution has three different parts: Firstly, there is a constant low dose area where

protons do not interact much with the matter. Afterwards, there is the Bragg peak itself.

It is a narrow area where all the protons interact with the environment and release their

energy. Finally, behind the Bragg peak, no energy is delivered.

 For keeping safe healthy cells, physicists try different beams on a patient CT-

model, seeking the best angles, intensities and dimensions. They attempt to minimize the

dose out of the tumor and maximize it inside the tumor. There are two class of algorithms

to model the behavior of real beams: one of them is based on analytical calculations,

which is fast but approximate, not exact, and other one based on Monte Carlo method [4].

This last method is more accurate, but it requires a lot of time to do a good prediction,

what is not assumable for clinical practice. Modeling protons behavior is more

complicated than photons, because the Bragg Peak is very sensitive to little changes, and

there is a necessity of having good simulations as we are applying protons for preventing

damaging healthy tissues. We can spend less computational time to generate dose

distributions, but it results in a noisy image that cannot be used.

 The main problem of these dose distribution is that the noise distribution is

completely unknown. Best noise filters have been made by discovering the distribution

of that noise and considering it. Obviously, we cannot apply these filters to our dose

distributions. That is the reason why we are going to use Deep Learning filters.

 The aim of this project is to filter these noisy images by using Convolutional

Neural Network [5] that could learn very complex noise distributions. The methods of the

current thesis should be applied in clinical practice, so we need a fast denoise system

which provides a considerable good performance. Slow systems will keep the current

problem of the Monte Carlo dose distributions, and bad performances of the system will

give unrealistic doses, something undesired.

6

 An Artificial Neural Network (ANN) is a virtual Machine Learning system that

can learn high abstract information from one signal (images, sounds recordings, bio

signals, etc.) through its structure of hierarchical parameters. Each layer of a ANN

provides higher abstract information, and, depending on the layer’s connections we will

set different ANN architectures. There are two different architectures we are going to use:

U-Net and DenseNet. First one provides more robust predictions, but the second one

needs a much smaller number of parameters to filter the images, by reducing the quality

of the performance.

 This work is broken down into five chapters. The first one is about the two

different radiation therapy techniques, radiotherapy and proton therapy; the benefits and

the losses of both of them will be explored there, the concept of planning and the radiation

dose and how it depends on the chosen technique. Chapter two is focused on the Neural

Networks, the different parts of one network, the perceptron, the layer and the whole

network; the different phases of a network set, training, validation, test and the possible

issues that could appear; the state-of-the-art of the current networks, and an explanation

of the chosen architectures. The third chapter explains the data we have and the

preprocessing we are doing to train the networks, focusing on the general features of the

image, intensity, which is equivalent to the dose, the dimensions and the anatomy of the

tumor, afterwards we will explain how we standardize all our samples, and, finally, a

method called data augmentation. The fourth one will analyze the methods used in this

thesis. This chapter will focus on both architectures: U-Net and DenseNet; on the fine-

tuning process, where we are going to explain each hyperparameter, on the method for

generating the whole 3D output and on the metrics chosen for comparing and validating

how good are our results. Finally, the last chapter presents the results of the networks and

the viability of that system in the clinical practice.

 Once we have presented the results, we are going to discuss them and the features

that could be improved. Finally, the conclusions of the current research will be presented

there, exposing some future perspectives for the denoising issue with deep learning

techniques.

7

Chapter 1. Basic notions of Radiation Therapy

 1.1. Radiotherapy and proton therapy

 1.2. Radiation dose

 1.2.1. Photon and proton dose distribution

 1.3. Radiotherapy planning

 1.3.1. Segmentation

 1.3.1. Monte Carlo algorithm

8

9

Chapter 1

Basic notions of Radiation Therapy

 Radiation therapy (RTx) consist in the application of ionizing radiation, delivered

by radioactive isotopes, linear accelerator or cyclotrons, to tumors. Sometimes, radiation

therapy is but one treatment in an extensive planning that may incudes surgery and

chemotherapy. Other times, radiation therapy is the only treatment applied.

 There are two kinds of radiological treatments: brachytherapy, consisting on

introducing the radioisotope inside the patient, and teletherapy, where a certain number

of ionizing beams are applied to the patient. The aim of the current thesis resides in the

teletherapy area; hence, we are going to develop only that treatment [6].

 Linear accelerators (linacs) are devices that accelerates charged subatomic

particles, but, firstly, a tungsten filament submitted to a high voltage delivers electrons.

We can apply these electrons directly, or we can project them to a metallic anode, which

will produce the photons. The linac accelerate both particles, photons and electrons. These

devices give the required energy to the particles before interacting with the patient. That

energy allows the particle to maximize the interaction with the tumor, reducing the

damage to the healthy cells.

1.1. Radiotherapy and proton therapy

 Photons are the particles more commonly used in radiation therapy treatments.

There are two types of photons in teletherapy:

Figure 1. Lineal accelerator scheme. The ion source is connected at the beginning of the accelerator, as we could see on
the left side of Figure. The different cameras provide the required energy, and they could be activated or deactivated in
order to achieve the energy wanted. Finally, there are some cameras that focus the beam on the blank.

10

 X-rays:

 X-rays are a kind of electromagnetic ionizing radiation produced by the electron

deceleration. When an electron returns to its true orbital, it losses energy in form of light.

The energy of that photon depends on the distance between the external orbital, where

the electron was located, and the current orbital. The longer the distance, the higher the

energy, which is proportional to its frequency. This energy could be calculated through

the Plank Equation, which is referred on Figure 2.

 When this energy is high enough, it

could ionize other atoms. When an atom

is ionized, it losses an electron, as, in

consequence, if this atom belongs to a

higher molecule, it will change its

electronic configuration and even, it

would be broken. Certain molecules are

extremely important for our survival, as

DNA. If DNA is broken, cells could die

or mutate. These mutations can happen

on germ cells, which is not dangerous, or

on somatic cells, which could imply a

cancer.

 Depending on the energy, an X-ray

can be classified in: superficial X-ray,

used to treat skin illnesses, diagnostic X-rays, used in radiological imaging, orthovoltage

X-rays and supervoltage X-rays, used to treat some no deep tumors, and megavoltage X-

rays, the most energetic beams and the most commonly used for radiotherapy.

 Gamma-rays:

 Gamma rays and X-rays are both

electromagnetic radiation. Energies are

overlapped on the electromagnetic spectrum.

This process is called gamma decay, and,

usually, it happens after other kind of decay,

as alpha or beta decay. However, the nucleus

is still excited, which decays once again

producing a gamma photon. Unlike X-rays,

gamma-rays are produced by radioactive

isotopes within the process of a positron-

electron annihilation. Gamma-rays are far

more energetic than X-rays, therefore they

will arrive deeper inside the human body and

they are applied when X-rays cannot arrive to

a tumor located on the deepest parts of the

body.

Figure 2. Photon generated by the electronic deceleration. Its
energy depends on the difference between two different
levels {n = 1, 2, 3}. These possible energies are proportional
to its frequency by the Plank constant.

Figure 3. Representation of a gamma decay. An
electromagnetic wave is produced as a consequence
of a nuclear particle decay.

11

 Notwithstanding, there are other particles used for the radiation therapy, like

carbon atoms or protons. These particles have one feature making them interesting, the

Bragg peak. Bragg peak is the model of dose distribution for protons, and it will be

explained in the next point [7].

1.2. Radiation dose

 The most important parameter in radiation therapy is the delivered dose. The dose

is the amount of energy released in a certain area of a tissue by the ionizing beam. Dose

is proportional to the number of ionizations occurred in this area. Doctors decide what

amount of radiation must be given to the tumor, and physicists have to study how to apply

the beams for minimizing the dose in no cancerous areas. The unit of dose is the Gray

(Gy), equivalent to energy per mass unit (J/kg)

 Moreover, it is important to know how the different particles interact with the

environment, and how the energy is distributed along the body.

1.2.1. Photon and proton dose distribution

 Photons and protons differ in

how their energy is distributed along

their depth. Photons have a peak

near to the surface of the skin, and,

gradually, the energy deposit

decrease. Consequently, the most of

the dose is delivered next to the skin,

even if the tumor is deeper than that.

This is a problem because the most

radiated area is a healthy tissue.

 Nevertheless, these kind of

beams are currently applied because

healthy cells are not so sensitive to

radiation than tumor cells. This

happens because healthy cells have

their reparation mechanisms totally functional, and tumor cells have not. In addition,

physicists explore how to apply different beams to increase the dose on the tumor and

minimize it on the healthy areas.

 Photons are not a charged particle, but electrons, protons, etc. they are. This charge

is which results in a completely different distribution, what is explained in the following

paragraph.

Figure 4. Percent Depth Dose for 6 MV photon beam. At the
beginning of the distribution, the delivered energy is maximal, and,
afterwards, that energy decreases linearly.

12

 Protons spread their energy in

a different way. They deliver a

nearly constant low dose to the

tissues, but, suddenly, the dose

delivered increase, reaching a

peak called Bragg peak, and the

dose disappears. This is

completely useful, because the

delivered dose is minimum in

healthy tissues, but, if the Bragg

peak is located in the tumor

region, those cancerous cells

receive a high energy depose.

 Considering the Bragg peak

depth depends on the energy of

protons, we can translate the

tumor depth to a required energy for arriving to the blank, and we can give that energy to

the beam by the cyclotron or the synchrotron [8].

1.3. Radiotherapy planning

 The search of the best beam configuration is called the radiotherapy planning. It

is made by physicists, and it consist in testing different numbers of beams, angles,

intensities and sizes on a simulator. This simulator must be precise and make no error on

the dose estimation.

 Having good simulation requires two things: firstly, a patient scanning image

(tomography scan) with the region of interest correctly segmented, and, secondly, a robust

estimator algorithm of the dose distribution

1.3.1. Segmentation

 Segmentation is the process of

partitioning an image in regions of interest. In

the biomedical imaging issue, segmentation is

commonly used to delimit tumors for the

radiotherapy service. With a partitioned image,

physicists could manage the ionizing beams and

estimate its distribution in the simulator system.

 Nowadays, CT-images are manually

segmented. One physician seeks in the different

slices of the 3D-image to find which pixels

Figure 5. Comparation of dose distribution curves. Pink curve shows the
same information than figure 4, and red curve shows the behavior of the
proton delivered dose. This distribution is almost the same than the high
energy carbon atoms.

Figure 6. Segmented brain tumor. Each image
corresponds to a different perspective: axial,
sagittal and coronal.

13

belong to the tumor and which others do not. This takes a considerable time, and there

are a lot of approaches to automatize this process. Machine Learning experts are

developing systems based on Artificial Neural Networks to do it automatically [9].

1.3.2. Monte Carlo algorithm

 There are two kinds of algorithms that

provide an estimation of the dose distribution.

There is the analytic method, quicker, and less

accurate and more precise [10]. This kind of

algorithms can be used for fast estimations of

the dose distribution within the search of the

better beams on the simulator. However, being

sure of the real dose is impossible with those

methods, we require something more

powerful.

 The Monte Carlo method is based on

random samples of the physical process.

Firstly, we need to introduce all the possible

interactions in the model, with an associated likelihood. Each interaction depends on

several parameters: position, energy, mass, voxel value, etc.

 Each proton interaction will be defined by the distribution of probabilities

resulting of the combination of all the physical possible interactions. The core of Monte

Carlo success is the fact that, repeating the process enough times, the distribution of

interactions and energy deposit will converge to what actually happens. The higher the

number of simulated particles, the more realistic the model is.

 One problem of Monte Carlo algorithms is that the improvement of the

performance, the noise reduction (nR), is proportional to the squared root of the number

of simulated particles:

𝑛𝑅 ∝ √𝑁

 Consequently, doubling the quality of the estimation requires four times more

time, and logically, that means time required is quadratic for improving the performances.

 Furthermore, performances whose noise does not compromise the clinical practice

require 1e9 particles, which means one computing hour, what is extremely slow. That is

the reason why we need to denoise doses generated with a lower number of particles.

Simulating 1e7 particles requires one minute of computation, and the simulation of 1e6

particles spends a few seconds [11].

Figure 7. Example of Monte Carlo dose distribution
provided with 1e9 particle interactions. High dose
corresponds to the green-yellow core, and blue
areas correspond to the beams.

14

 We are going to filter those two simulations in order to obtain a reasonable

simulation, similar to the one of 1e9 particles. The mainly problem is that the noise

distribution is still unknown. There are “intelligent” denoising filters that, provided with

the noise distribution, could make a really good performance. Unfortunately, as we do

not know that distribution, we cannot apply that filters. This is the scenario in which deep

learning appears.

 Theoretically, deep learning systems could learn by themselves high complex

patterns by a hierarchical procedure. That is the reason why we are going to use Artificial

Neural Networks for denoising.

Figure 8. Different Monte Carlo simulations. The first one is produced with 1e6 particles, and, as we can see, there
is a lot of Noise. The second one is produced with 1e7 particles, and, although is less noisy than the 1e6 image, it
has a visible noise too. Finally, the last simulation is generated with 1e9 interactions, and we can consider it as a
free noise image, so we define it as the reference.

Figure 9. Noise level comparison for different simulations. Blue line corresponds to the noisiest image, generated with
1e6 interactions on Monte Carlo simulator. Orange line corresponds to 1e7 interactions image, which is less noisy than
the previous one, but is still noisy. The green one is the reference, the result we would like to achieve by out neural
network. On the left side we have the enlarged image, where we can see the difference between the three images.
Blue noise is clearly higher, and green noise does not exist.

15

2. Artificial Neural Network (ANN)

 2.1. Machine Learning system

 2.1.1. Types of learning

 2.1.2. Applications

 2.2. Components of an ANN

 2.2.1. Perceptron

 2.2.2. Layer

 2.2.3. Multilayer perceptron

 2.3. Training

 2.3.1. Backpropagation algorithm

 2.3.2. Training issues

 2.3.3. ReLU function

 2.4. Convolutional Neural Networks (ConvNets)

 2.4.1. Common uses of ConvNets

 2.4.2. U-Net architecture

 2.5. State-of-the-art

16

17

Chapter 2

Artificial Neural Networks (ANNs)

 Within this chapter, we are going to explain, step by step, what an Artificial Neural

Network (ANN) is, the current state-of-the-art in the biomedical area, and the architecture

we chose for the denoising issue.

2.1. Machine Learning system

 Nowadays, there are two ways of programming. Firstly, there is the “traditional”

way of programming, based on defining commands to the computer with the purpose of

obtaining an exact result. In this case, we need to know the mathematical or logical

procedure for solving the problem, and, afterwards we had to communicate these

instructions by a programming language to the computer. The scheme of this first case

would the one of Figure 10.

 However, there is another way of programing, consisting in developing a virtual

system with many parameters that interact with the input data, and generates the output.

The parameters need to be tuned by a process called training, which consist in showing

the data to the system and let it learn the internal structure of these data.

 We estimate the performance of the machine learning system with an unseen

package of data, called validation data. When the model is completely fitted, we apply

another independent batch of data, called test data. Validation data is used to check the

performance of the network in each epoch, so, the network will save the best networks

for that dataset. However, feeding the network with another independent dataset will

show its quality with unseen samples.

Figure 10. "Traditional" programming way scheme. The first square corresponds to the input
data, which passes through the machine learning system (second square) and, this interaction
produces the output)

18

2.1.1. Types of learning

 One of the most important decisions we should make before starting to develop

our Machine Learning system is deciding which kind of learning we will apply to the

system. There are mainly three types of learning:

 Supervised learning:

 Supervised learning consist in giving

references or examples to the system in the learning

phase. This would mean that, if we want to develop

a system that predicts a handwritten number, we will

need to show these handwritten numbers along with

the corresponding label. Indeed, MNIST dataset is

used to make the first approach to deep learning, and

is the basic dataset where researchers apply their last

discovers.

 The aim of the supervised

learning is to achieve that the

system could generalize from the

training data to unseen data. We

can see a scheme in Figure 12.

 Sometimes, the model

performs very well with the

training data, but, when we show

new data to it (in validation or test

phase), the performance is worse.

That problem is called overfitting,

and it means the model does not generalize for unseen data.

 Unsupervised learning:

 Unsupervised learning consists in training the machine learning system with no

reference, keeping it learn the hidden structure of the data. Nowadays, this kind of

learning only works in clustering task, thus it is useless for the denoising issue.

 Reinforcement learning:

 Reinforcement learning is a special kind of supervised learning, where the

feedback is given by the users of the system. We can find these systems in the spam folder

on our email, or in websites like YouTube or Google, that use them for showing

personalized recommendations to their users or to give better language translations.

Figure 11. MNIST dataset. Each picture has its
corresponding label, which is the value of the
number. In this case, the output is not a
number, but a vector of likelihoods.

Figure 12. Supervised learning scheme. The input feeds the Machine
Learning system and it produces an output. Afterwards, this output is
compared with the expected output and, through this comparison,
the parameters of the systems are improved.

19

2.1.2. Applications

 We can make another categorization of different Machine Learning systems,

depending on the desired output:

 Classification:

 Classification task consists on having inputs from two or more classes, and the

system must find the class of each of them. We can distinguish between binary

classification, where the input is split into two different labels, while in multi-label

classification we have more than two classes. Classification is a task performed by

supervised systems.

 Clustering:

 On the other hand, we have the clustering task, which is similar to the

classification, but without classes. In this case, we do not give any label, so the system

will find the natural distribution and will classify the data according to that distribution.

This is, of course, an unsupervised learning.

 Regression:

 Regression consist on predict a feature-value from a certain data. This means that

the output of the system is a continuous value. Denoising issue is a regression task as we

want to find a continuous free-noise pixel value based on a noisy image. Additionally, we

need to provide the reference of each sample, so we work with a supervised system.

 Dimensionality reduction:

 There are a lot of problems caused by having a high dimensional dataset. This is

the reason why the dimensionality reduction is one step in the majority of the Machine

Learning researches. The goal of this is to map the dataset in a lower-dimensional space,

keeping almost the whole of the information. As the comparison is made with the very

input, this is an unsupervised system.

2.2. Components of an ANN

 An Artificial Neural Network is a Machine Learning system based on the structure

and behavior of the human brain (Pitts, 1942). This system is composed by neurons

(called perceptrons in the computational world) grouped in layers, which, in turn, are

grouped in different ways. These neurons are connected through parameters called

weighs, which assess the importance of each data for the output. A huge number of

connected neurons form an Artificial Neural Network.

20

2.2.1. Perceptron

 The perceptron is the minimal structure of an Artificial Neural Network, and it is

split into three different parts [12], as we can see in Figure 13. However, the perceptron

per se is a system that can work in simple classification tasks.

 Weights:

 Weights are the parameters of

the perceptron, they are multiplied by

each data, in order to assess the

importance of every data. These

weights can have any value, but we

use to initialize it with random values

next to zero. Furthermore, we have a

bias term.

 Summation:

 The next step of the

perceptron is a sum of every weighted

data and the bias term.

 Activation function:

 Once we have made the weighted sum, we have an input the network can use. The

activation function works like an activation threshold in the biological neurons. There are

a lot of activation functions, which we will focus on afterwards.

2.2.2. Layer

 A neuron is the smallest part of an ANN. We use to group perceptrones in layers

that act on the same dataset. Each neuron of the same layer is connected to each previous

data, with its own weights what will be trained in a different way.

 One perceptron adapts itself for detecting one feature of the dataset, and its

activation function intensifies the output depending on what clearly that feature is. So, a

layer that contains a lot of neurons detects a lot of features, and, consequently, is able to

catch more information from the data.

2.2.3. Multilayer perceptron

 The last step for building an Artificial Neural Network is to join different layers

in order to increase the abstract dimension of the information. The network starts with a

simple layer called input layer, which acts on the dataset. Afterwards, there are the hidden

Figure 13. Perceptron scheme. The different weights are
multiplied by the dataset. Additionally, there is a bias term that
gives more robustness to the system. These multiplications are
summed afterwards, and the result of this sum is applied on an
activation function.

21

layers, which act on the output of the previous one.

So, if the first layer detects hidden features on the

dataset, the second layer detects certain

combinations of features, the third one detects

combinations of combinations of features, etc.

Finally, we have the output layer, that takes the

abstract information and produces the desired

output. The more layers we put, the more abstract

information the network can learn [13].

 But we do not need to make a sequential

multilayer perceptron. State-of-the-art networks

make a huge number of complex concatenations, like

DenseNet, which is based on connect each layer to

all the others. Additionally, we have U-Net or

Capsule Networks [14], that, by the moment, provide the best performance.

2.3. Training

 Within every single Machine Learning, the parameters are tune in the learning

phase. In the case of Neural Networks, these parameters are adjusted by a process called

Backpropagation.

2.3.1. Backpropagation algorithm

 Firstly, it is mandatory to clarify that Neural Network are a Machine Learning

system with supervised learning, so we need to show it a label or a reference with the

sample.

 The process of training for

ANN has two parts: first, the

forward propagation phase, in

which we take one sample and

we pass it through the network.

As the weight values have been

randomly initialized, we obtain a

random output. Afterwards, we

compute the error between the

output and the reference.

 The second phase is the

backpropagation, we take that

error and we calculate the

derivative of that error. Then, we

Figure 15. Gradient of backpropagation. Green lines represent the forward
propagation, the process of generating one output from the input. At the
beginning, the weights are randomly set, son the output will be random
too. Red lines represent the backpropagation phase, which consist in
calculating the derivatives of the error in each weight and correct the value
of those weights by applying a step in the direction of the gradient.

Figure 14. Multilayer perceptron scheme. We
can see three different layers on this scheme.
First one is called input layer, which takes the
data and transforms it through the unitary
structure seen before, the neuron. Each circle
corresponds to a different one. The output
layer gives the solution we are looking for.

22

apply the chain rule from the output layer to every single weight of the network. With the

derivative of the error in each weight we compute the gradient descent and we tune them

by applying a certain step [15].

 There are a lot of hyperparameters here (a hyperparameter is an external parameter

not tuned by the training): the cost function we apply, the size of the step, the size of the

batch, and even, we can improve the step size by applying ADAM algorithm, which

decrease the size of the step and even improves its orientation [16].

2.3.2. Training issues

 We exposed the core of the Neural Networks, but it is common to find some

problems while the building of the network. There are two main issues we can find in

every Machine Learning system, and one extra that appears only in ANN environment.

 Underfitting:

 Underfitting appears when the model is limited by its complexity, and,

consequently, there are some samples it cannot classify or regress. In this case, we need

to increase the number of neurons and even to change the layer’s configuration.

 Overfitting:

 Overfitting is just the opposite thing than underfitting. It is produced when the

system focuses on the training subsample and cannot generalize to the validation and test

samples. In this case, we can do two different things. Firstly, we can increase the number

of different samples. If there are more samples, the system cannot learn a particular

structure, so it will generalize by force. Secondly, we can simplify the model in order not

to catch every detail of the training samples. Additionally, we can add layer as called

Dropout [17], which “kills” every neuron with an output under a certain threshold, or

Batch Normalization [18], which assumes that outputs follow a Gaussian distribution and

normalizes the average and the standard deviation. These two layers remove less

important details of the network, however, they add some noise to the final result.

Figure 16. Example. Decision frontiers of Machine Learning systems. A) The decision frontier is not
adjusted to the shape of the data, so the classification or regression will be bad. B) The decision frontier
is perfectly adjusted to the data shape, so the model is robust. C) The decision frontier is over adjusted
to the data, thus, the prediction will be imperfect.

23

 Gradient vanishing:

 Gradient vanishing was a main problem in Neural Network area until the year

2012. It occurred that, when experts in Artificial Intelligence were trying to train deep

networks (networks with more than two hidden layers), only the last layers tuned its

weights. The gradient of the error tended to zero for the first layers, and, as the

improvement of the weight depends on that gradient, these layers remained randomized.

2.3.3. ReLU function

 In the year 2012, AlexNet applied a new activation function called Rectified

Lineal Units (ReLU), which was defined as:

𝑅𝑒𝐿𝑈(𝑥) = max(0, 𝑥)

 This simple function works like a

thresholder function, because if the weighted sum

result in a number lower than zero, the output is

zero too; but if the number is positive, the output

is a linear function. With this activation function,

AlexNet overcome the gradient vanishing issue

[5].

 Nowadays, there are a lot of ReLU based

functions, like Flexible ReLU (FReLU), which

have an origin under zero [19], Parametric ReLU

(PReLU), which, instead of outputting a zero

with inputs under zero, outputs a fraction of it

[20], etc.

2.4. Convolutional Neural Networks (ConvNets)

 Convolutional Neural Networks are based on the convolutional operation between

an image and a kernel. They are used in the image context, where they have shown their

power in detecting hierarchies of features [21]. The main idea of ConvNets is to replace

the scalar weights by matrix or kernels. Each neuron has a number of weights equivalent

to the indexes of the kernel, and each kernel is applied, not only to a located part of the

image, but to the whole of it. The weights, instead of being connected to only one data,

are shared by everyone. The idea remains in that every kernel detects a concrete feature,

but, this feature is interesting in the whole picture, not only in a reduced region, so, this

kernel is convolved with the entire image.

 Every single kernel produces an activation map, a kind of image resulting from

the convolution of the image by the kernel.

Figure 17. ReLU function graph. Input values over
zero are equally outputted, but values under zero
are outputted as a zero.

24

 In the following layers, the input of every neuron is a bunch of activation maps,

so the kernels of these layers will be 3-dimensional, convolving all the batch and

producing a new one activation map.

 We use to define 3x3 kernels, so there is repeated information in the successive

layers. Furthermore, all these convolution layers have a lot of parameters, so the memory

capacity be at stake. These are the reasons why we apply maxpooling layers.

 MaxPooling layer:

 A maxpooling operation

consists in reducing the

dimension of the activation maps

by selecting the maximum

number in a located region of that

map and generating a new map

only with these values. The most

common maxpooling operations

is 2x2 dimensional, so for each

square of four pixels, we only

select the higher, reducing the

total dimension to the fourth part.

2.4.1. Common uses of the ConvNets

 Convolutional Neural Networks were created for image analysis, so all the

applications of these networks are focused on that. We could divide the different

approaches into three parts:

Figure 18. ConvNet scheme. First layer applies a convolution with 8 different kernels, what
produces 8 different activation maps. Afterwards, we applied a MaxPooling operation,
reducing the original dimension. We repeat this process once again and, therefore, we
apply a fully connected layer, which produces a vector instead of a matrix.

Figure 19. MaxPooling operation. It consists in, for each four squared
values, taking only the highest one and reducing the output dimension.

25

 Segmentation task:

 In image analysis, the segmentation

is the division of the image in different

regions of interest. One common

segmentation task is to identify the

background and the foreground, but there

are a lot of complex segmentations issues. In

the biomedical imaging area, one of the most

studied problems is the segmentation of

organs and tissues for radiation therapy, or

the identification of tumors for diagnosis

[22].

 Within this case, it is common to use

a binary mask as a reference, in which we

distinguish the region of interest and the

other pixels.

 Classification task:

 Another important task is the classification of the image. Sometimes, networks

are designed to identify the most important object in the picture, but other times, the

network recognizes all the objects and explain the link between them. For that task it is

compulsory to have two phases in the network. Firstly, a sequence of convolutional layers

for seeking the features of the image, and, afterwards, some fully connected layers.

 Dimensionality reduction task:

 It is known that images

take a lot of space in our

memory, so we need to compress

them. Autoencoders are a kind of

networks with a bottleneck in the

middle of its architecture. In this

bottleneck, there is less

information that in the input [23].

We train these networks by

giving the very image as an input

and as a reference [24]. The main

idea is to keep most of the

information with fewer

variables.

 This architecture allows to reduce the amount of data from one signal (one image

in our case), but keeping almost all the information.

Figure 21. Autoencoder scheme. There are two phases, the
downsampling phase, sometimes called the encoder phase; and
the upsampling phase, called the decoder phase too.

Figure 20. Segmented brain tumor. In this case, the
image has 4 different masks. First one, the background,
afterwards the blue region, probably the tumor vascular
area, the yellow region, the tumor, and the red one, the
necrosis region

26

 Denoising task:

 The denoising task consists in filtering the image to reduce the amount of noise,

improving the vision quality on artistic photography and improving the performance of

studies and clinical forecasts in biomedical imaging.

 A huge number of denoising networks are considered to be autoencoders, but the

core of this research is a network that is not an autoencoder, but improves the state-of-

the-art.

2.4.2. U-Net architecture

 Researchers discovered that, when using ConvNets for predicting the segmented

area, the more abstract the information was, the less located it was. That was an actual

probleme, because the key of segmentation is to identify which exactly pixels belong to

the region of interest. That is the reason why they developed U-Net, an architecture that,

through its concatenate layers, preserve the located information with the abstract one [25].

 Standard U-Net architecture is structured in batches of two convolutional layers

and a 2x2 maxpooling layer. It is divided in two phases, the downsampling phase, where

the network learns the noise model by its hierarchical behavior, and the upsampling

phase, where the network recomposes the abstract information with the help of the

concatenated layers (what appears in Figure 22 as a copy line [9].

 This architecture cannot be considered as autoencoder due to the concatenated

layers, which provide information from the encoder phase to the decoder one. Therefore,

autoencoder references are the very inputs, and, in this case, the reference is a free-noise

version of the input.

Figure 22. U-Net architecture scheme. Firstly, we have the downsampling phase, with three parts which includes two
Convolutional layers and a MaxPooling layer. Afterwards, we have the upsampling phase with three parts including
two Convolutional layers and an UpSampling layer. Additionally, we copy the last feature map of each downsampling
part to the upsampling one.

27

2.5. State-of-the-art

 Nowadays, there are papers that explains how to denoise medical images by using

wavelet transforms, intelligent filters and neural networks. We are describing the

following results with metrics we are explaining in Chapter 4.

 In 2017, Kaur et al. achieved a mean squared error under 0.01 by using a wavelet

approach. Nevertheless, this approach was applied on MR images with artificial noise.

Noise was generated by NUMPY algorithms with a Gaussian model [26].

 In 2017, Ali achieved a PSNR over 66 with an adaptive median filter, but he used

normal MR images with Salt and Pepper noise. When he used Gaussian noise, the

performance decreased to 39. For this kind of noise, he achieved a PSNR of 51.98 with a

normal median filter. Nonetheless, all these noises had a low intensity. Higher noises

worsen the performances [27].

 In 2017, Bai et al. applied Machine Learning techniques for denoising MR images

with artificial Gaussian noise. They get a PSNR of 36.77 in male brain images with a

10% of noise amplitude. However, their results worsen with the augmentation of those

intensities [28].

 In 2017, Jifara et al. applied a Convolutional Network for denoising CT images.

They used artificial noise with σ = 15 and 25; and they achieved a PSNR of 41 and 38.6

respectively [29].

 In 2018, Yang et al. achieved a PSNR of 24.25 using Adversarial Networks for

denoising Low Dose CT images. Adversial Networks are two different networks where,

one of them produces the output and the other one tries to identify if the output is a

denoised image or a reference. The main idea is to make extremely good outputs that the

second network cannot difference. Nevertheless, a CNN used before achieved a better

result in 2016 [30].

 In 2016, Dong et al. denoised CT images by using standard Convolutional Neural

Network, learning an end-to-end mapping between low resolution images and high

resolution ones. They achieved a PSNR of 24.48 [31]

28

29

Chapter 3. Image preprocessing

 3.1. General features of Monte Carlo doses

 3.1.1. Intensity/Dose

 3.1.2. Image dimension

 3.1.3. Anatomy

 3.2. Standardization

 3.2.1. Batch selection

 3.3. Data augmentation

 3.3.1. Issues

30

31

Chapter 3.

Image preprocessing

 In this chapter, we are going to explain the necessity of preprocess the image we

are using to feed the Neural Networks and we are going to detail how we are

preprocessing those images with the tools given by the DICOM format and the NUMPY

python library.

 Artificial Neural Networks are very sensitive to little changes in the input dataset

because weights are tuned for a determined input. However, if these inputs change (in

terms of dimensions, sizes, etc.) the different weights cannot match with them.

Consequently, we need a robust normalization all these features.

Figure 23. Shape and intensity variability. Blue color represents low doses areas and yellow one represents
high dose areas (a) and (b) images are liver dose distributions. We could see thin beams with no noise.
Intensities varies around 50-80 Grays. (c) image corresponds to a lung dose distribution, which implies
larger beams with big areas affected by them and a very intensive noise. (d) image is a brain tumor dose
distribution. It is thinner than the previous one but with a complex shape.

32

 Firstly, we will describe the images we are working with and their main features

(dimensions, size, intensities and shape). We are going to clarify how these features

influence the final performance of the network, and how the changes on them could

seriously affect the quality of the final result.

 Furthermore, memory is a limiting factor for the training phase, so we cannot filter

the whole image at once. We need to reduce the size of the 3D image or training different

batches that will be rejoined afterwards.

 Our dataset growths slowly, so the number of samples is another limit we could

fight with data augmentation. Data augmentation consists in making the very

transformations to the input and to the reference, so, that increases the geometrical

robustness of the network. However, 3D data augmentation involves some issues

commented on this chapter.

3.1. General features of Monte Carlo doses

 Dose distributions images are featured by their size and their variability of

intensities, which depend on the patient size and the treatment requirements. Images

intensities are split in two different parts: low dose areas and high dose areas. These two

different areas appear in every single image, even in reference images. Reference images

are those simulated with 1e9 particles because they are considered free-noise.

3.1.1. Intensity/Dose

 High dose areas:

 There are other parts of the image where the proton beams appear themselves.

Those areas have pixel values over 1 Gray, and the noise level is lower than in low dose

areas. However, these noise levels are enough important to be considered, as they distort

the estimation of the dose that will be delivered in the patient.

Figure 24. High dose slice. (a) 1e7 simulation, we could appreciate the noise in the beams. (b) 1e9 simulation,
completely free-noise. We could see that the beams are homogeneous, thus, this is the reference image, the model
we want to replicate with the input image (1e7)

33

 The noise in these areas is neglectible on the reference image, so, theoretically,

the network could discover the noise distribution and remove almost all of them from the

input image.

 Low dose areas:

 These are the areas out of the beam focus.

They are characterized, even in 1e9 particles

images, by a dose lower than the 1% of the

maximum dose for that patient.

 Notwithstanding, as the dose here is lower

than the 1% of the maximum dose, the noise

effects are almost unimportant and any

improvement here will be fine, but not essential.

 It can be deduced from the previous point

that, considering low and high dose areas, there is

a lot of variability within the model in terms of

intensities and shapes. That is not a problem,

considering the robustness of neural networks,

because a good performance on low dose areas is not essential. All of this will be

explained in Chapter 4. The real problem is the variability between different patients, and,

furthermore, the no normalization of the dimensions of the images.

 Fortunately, intensities of those dose distributions are normalized through a

parameter called DoseGridScaling, which belongs to the DICOM file. DoseGridScaling

adjust the input intensities of each realization because, depending on the Monte Carlo

performance, it could be different. That parameter depends not only on the patient, but on

the realization.

 The dose given to the patient depends on the dose prescription made by the doctor,

so there is a variability from 30 Gy to 90 Gy for different patients.

3.1.2. Image dimension

 Dose distributions image sizes are partially standardized. On the one hand, height

and width are totally normalized, every slice is 512x512. On the other hand, depth

dimension is variable in order to standardize the pixel size.

 Neural Networks must be provided with constant dimensional signals, so we have

to standardize the dimensions. There are two options:

 Normalization of the third dimension:

 There is a plenty of techniques to normalize a certain dimension, for instance, the

reshape function from NUMPY library. These techniques imply a problem, the pixel size

is denormalize, which involves a distortion of the noise model. Distorting the noise

models could mean that the network would not be able to learn it, so the performance will

be worsened.

Figure 25. Low dose slice (1e7 simulation). We
should see a homogenous image, but we see set of
high intensity points with no rapport between
them.

34

 Additionally, GPU’s memories cannot allow a whole 3D image, so we cannot deal

with the entire images. We will apply different patches from the volume in order to make

possible the training process.

 Patch training:

 The other thing we can do is to feed the network with subsamples of the original

image. These subsamples are different parts of the original image, for instance, the first

three slices. In this case, the patch will have 512x512x3 pixels. The dimensions of that

applied patches will be discussed afterwards, in the next chapter.

 Subsampling the original image preserves pixel size and noise distribution, but the

network is fed with fewer pixels, and, consequently, with less information. A whole

volume provides all the geometrical and shape information, with the organs perfectly

define, or, in this case, the beam shapes. With all this information it is easier to keep the

original shape with no deformities. However, applying subsamples means not feeding the

network with a global picture of the whole body, so not all the beam shape is watches by

the system at the same time, which results in a worse performance.

3.1.3. Anatomy

 Another important difference between patients is the location of their tumors and

their size. Some of them are located on liver or on lung, but there are others from neck,

brain and prostate. These changes imply different shapes and different beams.

 The beam model is another thing the network has to adapt to. There are different

angles the beams could incise in the tumor, which adds more variability to the model.

Unusual beam shapes will reduce the quality of the network performance, but this could

be addressed by increasing the variability within the training dataset. That means to

include the highest number of patients we can.

3.2. Standardization

 As we have said in the previous point, it is necessary to standardize the data

because the neural networks need to be fed with normalized samples: in terms of

dimensional size and intensities. Here we are going to define how that intensity

standardization will be made.

 Firstly, we are going to normalize pixel intensities by multiplying each one by

DoseGridScaling parameter. This parameter belongs to each realization, so we will read

the sample from the dataset and, afterwards, we will normalize pixel value.

35

3.2.1. Patch selection

 Image dimensions must be the same for

every sample, so, we are going to select

subsamples of the same dimension from the data.

The dimension of those subsamples is a very

important hyperparameter, because it will define

the architecture of the network, the memory limit

and the computational time.

 We can take simple 2D slices, which will

provide less information to the network, but will

be faster. 2D images imply 2D convolutions with

2D kernels. These 2D kernels have l2 parameters,

but 3D kernels have l3. As we used to apply 3x3

kernels (or 3x3x3). The number of parameters

increases from working in 2D to work in 3D, but

it remains constant for all 3D images, even the

ones of the full volume. Nevertheless, we must

notice that going from 2D to 3D implies an

increase of the memory requirement

 Therefore, we will define different

networks for different patches. First, we are going

to create a network provided with 512x512

images; but we are creating others networks

provided with 512x512x3, 512x512x5 and 512x512x7 batches. These networks will

improve the performance as they consider more information, but training and operational

time growths considerably.

3.3. Data augmentation

 One of the most important problems for our research is the lack of data. Overfitting

problem appear when the amount of data is not enough. In our case, Monte Carlo

algorithm spends more than one hour on generating the simulation and upload to the store.

 We are applying data augmentation, which means to make the very

transformations to the sample and to the reference, with the aim of increasing the samples.

We need to apply the same transformations to the reference because we are looking for

generating it, so, if the reference is not rotated, we are going to generate a rotated output,

and, when making the comparison between the output and the reference, it will appear an

error that will influence on the weight tuning.

 We are going to do rotations of 10 degrees and zooms of the 1% of the whole

image. There are a lot of methods that can be used, for example, non-linear deformations,

but, as the geometry of the dose images is very defined, it is not necessary to apply them,

and, furthermore, training with those methods could introduce some noise on the result.

 Figure 26. Patches of 3, 5 and 7 axial slices.
Apart from the 2D patches, we are applying
patches with 3, 5 and 7 axial slices.

36

 It is important to mention that these

transformations only improve the

performance in case of very similar images

with different orientations. Nevertheless,

these augmentations are important to give

more robustness against the network and to

avoid overfitting, because we are keeping

noise model but we are changing the

geometric of the image, so it cannot learn

the particular situation as every time it is

different.

 3.3.1. Issues

 Data augmentation is applied in 2D images. Our mainly problem is that we want

to fed some networks with 3D patches, and there is no method for that problem.

 We could do our own method to augment the 3D data, applying 3D

transformations or 2D transformations to each slice. However, that requires time we have

not, so we are not going to augment 3D data.

Figure 27. Different transformations of one image. All
these images are the original one with rotations and
zoom transformations.

37

Chapter 4. Methods

 4.1. Architectures

 4.1.1. U-Net

 4.1.2. DenseNet

 4.2. Fine-tuning of the hyperparameters

 4.2.1. Loss function

 4.2.2. Optimizer

 4.2.3. Callbacks

 4.2.4. Others parameters

 4.3. Volume generation

 4.4. Metrics

38

39

Chapter 4.

Methods

 In this chapter, we are going to develop the methods we applied in the research,

focusing on the exact architecture, the fine-tuning (improvement of the hyperparameters)

and the metrics we are applying in order to evaluate the results.

4.1. Architectures

 Artificial Neural Networks are a certain number of neural layers connected in a

proper way. There are a lot of architectures (different ways of connecting these layers,

activation functions, layer sizes, sharing or no sharing weights, etc.) for very different

purposes.

 Usually, the first step on deep learning research is connecting some consecutive

layers to have a fast picture on our minds. Those networks offer a primary idea of what

you can achieve with more complex ones.

 Indeed, it is impossible to mention anything about a certain architecture without

focusing on a task. For imaging, there are a lot of different architectures: from

Consecutive Convolutional Networks to Capsule Nets. In our research we will use U-Net

and DenseNet. These two networks are commonly used in the segmentation issue, but it

is uncommon to use it for the denoising issue.

 We are going to explore these two architectures in the current chapter, focusing

on the hyperparameters they have and how to tune them.

4.1.1. U-Net

 U-Net was introduced in Chapter 2, but here, we are going to define exactly how

the network we are using is.

 This network is based on three downsampling phases and three upsampling

phases. With the downsampling phases we are obtaining the noise distribution, and with

the upsampling phases we are using that abstract information to remove the noise from

the original image. These upsampling layers are provided with the symmetric activation

map. This information can be perfectly understood on the next figure.

40

 However, this figure does not represent our actual networks. We are working with

4 different U-Nets detailed on the next chart. All of those networks have some

hyperparameters in common.

 Kernel size:

 Every single network has different kernel sizes, because everyone works with a

different sample size. For the 2D dimensional images, we are working with 3x3 kernels

in all the networks, but the last layer, which has a single kernel of 1x1. Nevertheless, all

of the 3D images require 3D convolutions with 3D kernels (3x3x3), except the last layer,

that has a kernel of 1x1x1.

 Number of kernels:

 U-Net architecture use an increasing number of kernels, from the first layer to the

center of the network. Each block of convolutions has the double number of kernels than

the previous one. Afterwards, in the upsampling phase, there is a decreasing number of

kernels. Nonetheless, instead of starting with 32 kernels per layer we are using 8 kernels

because it provides better performance than the one with 32 due to that one has too much

parameters and it overfits. The details of that issue will be commented on the discussion.

 Dilation ratio:

 We are going to apply a dilation ratio in some networks. This dilated ratio is a way

to improve the feature map by making convolutions with dilated versions of the original

kernels. Dilated kernel is a larger kernel with zeros between the different weights. This

can be seen on Figure 30. We are applying 3x3(x3) kernels that will be dilated to 5x5(x5),

Figure 28. U-Net architecture scheme. Firstly, we have the downsampling phase, with three parts which includes two
Convolutional layers and a MaxPooling layer. Afterwards, we have the upsampling phase with three parts including
two Convolutional layers and an UpSampling layer. Additionally, we copy the last feature map of each
downsampling part to the upsampling one.

41

afterwards to 7x7(x7), etc. These dilated kernels could use information located further

than the one catch by no dilated kernels.

 Finally, the last layer consists of one kernel of 1x1 that compress the last feature

map in only one slice. In addition, for 3D patches, the third dimension of this kernel has

the size of the depth patch.

4.1.2. DenseNet

 DenseNet was introduced in Chapter 2

too. Nevertheless, we are going to focus on its

structure at this point.

 DenseNet is different than U-Net. Not

only in terms of concatenations, but in terms

of internal variability. DenseNet is not a

predetermined architecture, but a general

concept that focus on concatenating a huge

number of layers.

Figure 29. Dilated kernel scheme (a) image is the defect kernel. (b) image is a kernel with
a dilation ratio of 2, which results in the same kernel than the previous one with zeros
between its weights. (c) image is a dilated kernel by a factor of 3.

Figure 30. DenseNet scheme. Every layer is connected
to all the followings. Nevertheless, in our case, this will
be a patch of the whole network, where we are
applying three patches like this one but with three
convolutional layers instead of five.

Table 1. U-Net structures. The first column corresponds to the network we are working with, the second one shows
the kernel size, the third one shows the number of kernel per layer, from the first patch of convolutions to the central
one. The upsampling phase is just symmetric. The fourth column shows if we are applying a dilation kernel and the
last one corresponds to the number of parameters or weights we are using.

42

 As we can see in Figure 31, each layer is connected to all the following layers,

providing its information to all the network. Nonetheless, DenseNets are divided into

blocks where all the layers are densely connected, but there is no concatenation between

layers of different patches, as we can see in the next figure.

 The scheme we can observe in Figure 32 is the most common DenseNet applied

to image classification [32]. However, improving the result of a complete output image

requires taking the information from the abstract layers and use it for denoise the input.

Those concatenations are based on the U-Net structure, so we are going to mix both of

them.

 In our case, we are considering a three dense blocks network, starting with three

convolutional layers, doing a MaxPooling operation after, other three convolutional

layers, an UpSampling operation, and finally, other three convolutions. We can see this

architecture on the next figure.

 We are going to apply different DenseNet for providing better images or for being

faster in the denoising task. The most important feature of this architecture is that it

requires a much smaller number of parameters than U-Net. This could reduce memory

usage and the computational time, but all the concatenations demand more memory, so,

at the end, there is not a huge memory usage improvement.

Figure 31. Common DenseNet scheme. We apply three Dense blocks where we the layers are connected like in Figure
31. Dense blocks are connected by a MaxPooling operation, which downsamples the activation maps. Finally, there is
a fully connected layer in order to produce a likelihood vector.

Figure 32. DenseNet and Dense block scheme. Top image explains the Dense Blocks we are applying.
They have three convolutional layers. Each activation map is connected to the other layers.
Afterwards, we can see in the bottom part of the image the whole network. Three Dense blocks are
connected, between the first and the second one there is a downsampling layer and, between the
second and the third one there is an upsampling layer.

43

 We are applying three different networks. One fed with 2D patches and two others

provided with three dimensional patches of 512x512x3 and 512x512x5 pixels, each one

requires different specifications, which will be defined on the following lines.

 512x512x1 network:

 This network follows the scheme proposed on Figure 32. First patch has 3 layers

of only 4 kernels each one, the central patch has 4 kernels per layer, and the last one 4

too. That result in only 2,741 parameters, what allows to deal with a huge number of

samples without breaking the memory.

 512x512x3 network:

 This other network based on the scheme of Figure 5 has the same structure than

the previous one. Nevertheless, the number of parameters is higher because these 3D

kernels are larger than 2D kernels, which implies 14,649 parameters. However, this

number is very small too, comparing with the 3.000.000 parameters of U-Net.

 Furthermore, the last layer of the network only contains one kernel of 1x1x3,

which takes all the channels and compress it in the resulting image.

 512x512x5 network:

 This last network is based on the previous scheme. Nonetheless, the structure

changes as there are the double of kernels per layer. The first patch has 8 kernels per layer,

the second one has 16 kernels per layer, and the last one 8 per layer. This kernel

augmentation implies a great increase of parameters: 57,809. The last layer has one kernel

too, but in this case the dimensions are 1x1x5 because there are five channels instead of

three. All this information is summarizing in the following table.

4.2. Fine-tuning of the hyperparameters

 Fine-tuning is the process whereby the different hyperparameters are optimized

by training the network, looking at the results, and changing their values. Commonly,

these hyperparameters are tuned with low resolution images, for instance, with 64x64

pixels instead of 512x512, what implies a training phase much faster.

 Unfortunately, changing the dimensions of the images changes noise model

because the pixel dimension changes. The images third dimension is variable to keep the

Table 2. Dense Networks summary. Each network is fed with different patches. The first column corresponds to those
sizes, the second one to the kernels we are applying, the third one to the number of kernels. The forth column shows
the networks that will have a dilated kernel and the last one corresponds to the number of parameters the network
has.

44

same pixel size, so, if we change this size, the noise model will be variable depending on

the image. Then, we are working with the whole images for tuning the network, but not

with the 3D patch versions.

 There are a lot of hyperparameters that will be explained in the following points.

4.2.1. Loss function

 Training the different parameters implies computing the derivatives of the error

in each neuron of each layer. However, this error could be calculated with different

functions. All these functions are used in different contexts depending on the output we

are looking for.

 We are applying a function called Mean Squared Error, commonly used in the

denoising task because it is applied assuming the noise model is Gaussian. However, this

function performs well with our noise model too. There are other tasks when the output

is a binary mask and we should apply different functions, belonging to the categorical

group: as categorical crossentropy, sparse categorical crossentropy and binary

crossentropy.

𝑀𝑆𝐸 =
1

𝑁
∑(𝑓𝑖 − 𝑦𝑖)

2

𝑁

𝑖=1

4.2.2. Optimizer

 When we compute the

derivatives of the loss function in each

weight, we apply a step. Derivatives

indicate the directions in which the loss

is minimized, and the steps are the

distance we advance in that direction.

This method is called Gradient Descent,

because we are using the direction of the

gradient for descent to the lowest part of

the loss function, which is the solution

we are looking for.

 Nevertheless, this method has

several problems: gradient descent could

be stucked in local minima or in flat

zones. Considering the irregular surface

of the loss function, there are a lot of

 Figure 33. Gradient Descent graph. Blue arrows are the
different iterations the model is doing. Each one is directed
to the global minimum, which, using a loss function, is the
sought

45

minimizing directions that are not the propest one. Finally, if the step, also called learning

rate, is very small, the method will take a lot of time to find the solution; notwithstanding,

a large step will be faster, but it will not find the best solution, because finding the best

point of a function requires a small step which does not spin around it.

 We could apply a momentum to the

learning rate, which is a small

contribution of the previous derivative.

This momentum helps the gradient to

avoid local minimums and saddle points

because, even if the current derivative is

zero, it could leave from there. In

addition, applying a momentum decrease

the time it takes to find the absolute

minima. There are other mathematical

improvements that results in different

optimizers, as AdaGrad, which gives

more importance to the current gradient

by squaring it, RMSprop, which applies

a mix of AdaGrad and a learning rate

decay, explained in Callbaks point, and

Adam, which applies the momentum and

the RMSProp idea, and we are using it in

the current research.

4.2.3. Callbacks

 Callbacks are certain tools Keras, the Python library for deep learning, give us for

improving the training phase. These tools are all applied in the training phase, and we are

going to use three of them.

 Adam optimizer allows us to avoid local minima through the momentum, which

keep the gradient out the local directions. Nevertheless, irregular function surface slows

down the computation of the gradient because those local directions influence in the final

step.

 The original way of computing the gradient consist in calculating the learning rate

of each weight with each sample, and, afterwards, computing the average of all of them.

This average is robust against noise, but requires a lot of time, usually, high number of

samples implies a memory failure, so that is not practical.

 Reducing the computing time requires to estimate the gradient with less data, and

the simplest way of calculating this is the stochastic gradient descent, consisting in using

only one sample to make the estimation. This is faster, but it could not avoid irregular

surfaces, so, the number of epochs will increase.

Figure 34. Different optimizers effect on the number of
iterations. Adam is the best one, but AdaDelta,
SGDNesterov, RMSprop and AdaGrad improve the
basic performance.

46

 However, we could calculate a minibatch gradient descent. This gradient is

computed by the average of a sample batch, instead of compute the average of all the

dataset. Minibatches allows a good approximation of that average, is faster, and is less

memory expensive.

 The hyperparameter is the size of that batch. A bigger batch will estimate better

the gradient, but is slower. On the other hand, a smaller batch will perform worse, but

faster. This size will be different for each network, defined in the following table.

 There is also the problem of choosing the learning rate. It would be acceptable to

choose an intermediate learning rate, large enough to be fast, but small enough to find a

proper result. Notwithstanding, the best thing we could do is to use a variable learning

rate. We start with a large learning rate (2E-4) and, when its size is too large to improve

the performance, use a smaller one. We can adapt this learning rate with a callback called

ReduceLROnPlateau which needs as parameters the number of epochs without any

improvement necessary for reduce it, in our case 5 epochs, and the factor between the

Figure 35. Complete dataset (red) and Minibatch (green) gradient descent comparison.

Table 4. DenseNet summary. The different columns explain the size of the kernel, the number of kernels we are
applying, the dilated ratio, the number of parameters that the network has to improve and the size of the minibatch.

Table 3. U-Net summary. The different columns explain the size of the kernel, the number of kernels we are applying,
the dilated ratio, the number of parameters that the network has to improve and the size of the minibatch.

47

previous learning rate and the current one, in our case 0.2, which means a decrease of

80%.

 Furthermore, we are applying other callback methods for saving the best model,

ModelCheckpoint. This function saves the weight values in an archive ‘.h5’. The

parameter this callback needs to be provided with is the metric it must monitor to deduce

which epoch gives the best performance. We are choosing the one with the lowest

validation loss, in this case, the validation mean squared error. Additionally, we need to

write the name of the archive, but it is not an hyperparameter. This callback only saves

the weight value, so, each time we use the network we need to build it up and load the

correspondent file.

 Finally, the last callback we are using in this research is EarlyStopping. This

callback is used for ending the training up. EarlyStopping needs to be provided with the

number of consecutive epochs without any model improvement and the metric used for

monitoring it. Obviously, the number of epochs in this callback must be lower than the

one from ReduceLROnPlateau, because we need to give time to the model to improve

with the newest learning rate. In our case, these two parameters are: 11 epochs and

validation loss.

4.2.4. Other parameters

 We commented all the hyperparameters in the last points, but there are other

parameters that need to be set for developing a network. Firstly, we must define the

number of epochs in the training phase. We set an automatic saver and an early stopping,

but we need to specify a default number of epochs. EarlyStopping will apply under that

number of epochs. If this callback is not activated before arriving to that number, the

training will stop by itself.

 In our case, we are setting a maximum of 400 epochs.

 Furthermore, there is one parameter directly related to the batch size, the number

of steps per epoch. Steps per Epoch is the number of minibatches taken by the network

in each epoch. If we train the network without data augmentation, we could not define

that number, but, if we use that augmentation, we must set it. For those cases, we are

applying the number of training samples divided by the batch size. If that number is not

an integer, we ceil it.

Table 3. Callbacks summary. The first column explains the number of epochs for activate the
function, and, afterwards, we explain the details of each function: the learning rate decay and the
metrics we are applying for considering the best performance.

48

4.3. Volume generation

 Once we have obtained a denoised batch, we must generate a whole 3D image that

could be compared with the reference. This volume is generated by inputting the different

batches which are modified by the network in order to produce the very central slice

correspondent to the reference. All these slices are stocked in a 3D empty matrix with the

same dimensions as the reference. Nevertheless, if a networks produces the central

denoised slice provided with a batch of N slices (where N is an odd number), first
𝑁−1

2

original slices will not be denoised, and the last
𝑁−1

2
 either.

 Considering the first slices and last slices of the image have not critical

information, we are going to let it empty on the final volume, but we could apply a 2D

neural network to denoise those slices.

4.4. Metrics

 All these previous points focus on the best parameter setting for achieving our

goal. However, we must define some metrics to estimate how good are the different

performances and compare them. Metrics must clarify certain important features for the

sought goal, as the computational time and the intensity levels.

 Computational time:

 Computational time will measure the time spent on filtering every single batch

and generate the volume with them. Time units used are seconds, so, lower values of time

mean faster networks.

 Mean Squared Error:

 Mean Squared Error measures the pixel intensity difference between the denoised

image and the reference by summing all the squared differences. If this value is close to

Figure 36. Scheme of denoising process. The left side is the patch of 5 slices, and we want
to obtain the central one denoised, which we can see on the right side.

49

zero, there is no difference between the reference and the output. This is the metric we

are using to evaluate which weight configuration is the best in the training process.

𝑀𝑆𝐸 =
1

𝑁
∑(𝑓𝑖 − 𝑦𝑖)

2

𝑁

𝑖=1

 Signal-to-Noise ratio:

 This metric compares the amplitude of the noise and the signal by dividing the

second by the first one. We could compute the noise by subtracting denoised images and

reference. After, we must sum each squared noise value to estimate its amplitude,

followed by a squared root for normalizing it. Finally, we sum each value of the reference

and we divide it by the noise.

𝜎 = 𝐼𝑚𝑟𝑒𝑓 − 𝐼𝑚

|𝜎| = √∑(𝜎[𝑖])2

|𝛿| = √∑𝐼𝑚𝑟𝑒𝑓[𝑖]2

𝑆𝑁𝑅 =
|𝛿|

|𝜎|

 The symbols used in the previous equations are: σ, noise; |σ|, absolute value of the

noise; |δ|, absolute value of the reference, where 𝐼𝑚𝑟𝑒𝑓 = δ.

Figure 37. Comparison between reference and input. The first image is the comparison between the
reference and the 1e7 interactions image. The second one is the noise of the 1e7 image, obtained by
subtracting the reference to the input.

50

 We are looking for a high signal-to-noise ratio, what implies a practically

irrelevant noise. However, there is a huge variance between different patient dose

distributions, which implies a directly rapport with the noise distribution and the noise

amplitude. Furthermore, there are some patients whose reference images are still noisy,

due to the huge size of their tumors. So, there is another metric which provides a more

robust results.

 Improvement ratio (Signal-to-Noise):

 Considering signal-to-noise ratio depends on the quality of the original input, that

metric could not demonstrate the real performance of the network. Signal-to-noise ratio

shows the quality of the output, but that quality depends on the network and on the input

quality. But we can minimize the dependence on the input quality by calculating the

improvement ratio by dividing the signal-to-noise ratio of the output and the input, or, as

presented on the following equation.

𝐼𝑆𝑁𝑅 =
𝑆𝑁𝑅𝑜𝑢𝑡
𝑆𝑁𝑅𝑖𝑛

=

|𝛿|
|𝜎|𝑜𝑢𝑡
|𝛿|
|𝜎|𝑖𝑛

=
|𝜎|𝑖𝑛
|𝜎|𝑜𝑢𝑡

 All these metrics are applied to four patients who compose the test dataset. We

will compute the average of the four patients and the standard deviation, results that will

provide robustness and reliable data.

 Peak Signal-to-Noise ratio (PSNR):

 This is the most common parameter used for estimate the quality of a denoised

image. MPEG committee has established a threshold of 0.5 dB to determine if there is

improvement between two different samples. PSNR is calculated according to the

following equation:

𝑃𝑆𝑁𝑅 = 10 · log10 (
𝑀𝐴𝑋2

𝑀𝑆𝐸
) = 20 · log10 (

𝑀𝐴𝑋

𝑅𝑀𝑆𝐸
)

 Where MAX is the maximum pixel intensity, that use to be between 60 and 80

Grays in our case, MSE is the Mean Squared Error, which is defined on the previous

page, and RMSE, which is Root Mean Squared Error, the squared root of the MSE.

 Dose-volume histogram (DVH):

 This last metric is not scalar. It is an decumulative histogram relating the dose to

tissue volume. It is used in radiotherapy planning, and the idea is to compare the DVH

graph of the reference with the DVH of the output. One single parameter we can extract

from this histogram is the D95, which is the minimum dose given to the 95% of the tumor

volume, and its unities are Grays (Gy).

 The most important feature of this histogram is the slope, which must be as steeper

as possible for the target, what means that the dose delivered to the tumor is

51

homogeneous. In our case, we are trying to make a DVH similar to the reference, which,

theoretically, is the real behavior of the radiation beam.

 In our case, we could only perform the DVH on one lung tumor image because

we do not have the tumor contours of the other images. For this image, the reference has

a DVH95 of 65.45 Gy.

Figure 38. DVH graph. We can see a lot of lines of different colors, but the most
important is the red one, that shows the dose given to the tumor.

52

53

Chapter 5. Results

 5.1. U-Net

 5.2. DenseNet

54

55

Chapter 5.

Results

 In this chapter we are exposing the results of our research. Firstly, we are

describing the performance of U-Net, applied to doses generated by 1e7 particles and by

1e6 particles. Afterwards, the results of DenseNet for 1e7 and 1e6 particles images.

5.1. U-Net

 Firstly, we are going to expose the results of the 1e7 doses. We are applying 4

different networks, one fed with 2D images and the other ones fed wit 3D batches (depth:

3, 5, 7).

 1e7 particles doses:

 Firstly, the training of the networks was developed according to the chapter 4. The

first network was fitted during (105) epochs, what implied a validation MSE of (0.01502).

Figure 39. Training and validation loss curves for U-Net (1 slice and 1e7 particles input)

56

 The second network was trained for (117) epochs, and the validation MSE

achieved was (0.00957).

 Thirdly, the network fed with a patch of 5 slices achieved a MSE of (90) in

(0.01326) epochs.

 Finally, the last network achieved a MSE of (0.01486) within (25) epochs, as we

can see in the following graph.

Figure 40. Training and validation loss curves for U-Net (3 slices and 1e7 particles input)

Figure 41. Training and validation loss curves for U-Net (5 slices and 1e7 particles input)

57

 These networks were described on chapter 4, so, according to the metrics

described there, the performance is:

 1e6 particles doses:

 All these networks were trained as described on chapter 4, and the training process

is summarized in the following table:

Figure 42. Training and validation loss curves for U-Net (7 slices and 1e7 particles input)

Table 4. U-Net (1e7) metrics summary. This table contains seven different columns: first one corresponds to the patch
size we are using to feed the network, second one is the computational time (in seconds) required for denoising the
whole image, third column corresponds to the Mean Squared Error, fourth column corresponds to the Signal-to-Noise
ratio, fifth one is the Improvement ratio (ISNR), sixth one is the Peak-Signal-to-Noise ratio and last one corresponds to
the DVH95 (Gy), remembering than the reference DVH95 is 62.45 Gy. The numbers out of brackets corresponds to the
average of four test patients, and the numbers inside the brackets corresponds to the standard deviation. DVH95 is not
the average of several patients because it was only one contour patient available in our test dataset.

58

Figure 43. Training and validation loss curves for U-Net (1 slice and 1e6 particles input)

Table 5. U-Net (1e6) training summary. This table has three columns,
the first one corresponds to the patch size, the second one corresponds
to the number of epochs until EarlyStopping was activated, and the
third column corresponds to the validation Mean Squared Error
achieved.

59

Figure 44. Training and validation loss curves for U-Net (3 slices and 1e6 particles input)

Figure 45. Training and validation loss curves for U-Net (5 slices and 1e6 particles input)

60

Figure 46. Training and validation loss curves for U-Net (7 slices and 1e6 particles input)

 According to the metrics described on chapter 4, the performance of all these

networks are:

Table 6. U-Net (1e6) metrics summary. This table contains seven different columns: first one corresponds to the patch
size we are using to feed the network, second one is the computational time (in seconds) required for denoising the
whole image, third column corresponds to the Mean Squared Error, fourth column corresponds to the Signal-to-Noise
ratio, fifth one is the Improvement ratio (ISNR), sixth one is the Peak-Signal-to-Noise ratio and last one corresponds to
the DVH95 (Gy), remembering than the reference DVH95 is 62.45 Gy. The numbers out of brackets corresponds to the
average of four test patients, and the numbers inside the brackets corresponds to the standard deviation. DVH95 is not
the average of several patients because it was only one contour patient available in our test dataset.

61

12.2.DenseNet

 This point will be developed as the previous one. It will be break down into 1e7

particles dose and 1e6 particles dose. In this case we are applying three networks, no 4.

 1e7 particles doses:

 The following table summarize the results of the training, in terms of number of

epochs and validation Mean Squared Error.

 Additionally, the curves of validation and training loss are attached below this

paragraph.

Figure 47. Training and validation loss curves for DenseNet (1 slice and 1e7 particles input)

Table 7. DenseNet (1e7) training summary. This table has
three columns, the first one corresponds to the patch size, the
second one corresponds to the number of epochs until
EarlyStopping was activated, and the third column
corresponds to the validation Mean Squared Error achieved.

62

Figure 48. Training and validation loss curves for DenseNet (3 slice and 1e7 particles input)

Figure 49. Training and validation loss curves for DenseNet (5 slice and 1e7 particles input)

63

 Moreover, the performances of the different networks are described on the table

below. Firstly, we can read the average and, secondly, the standard deviation.

 1e6 particles doses:

 Here, there are the table with all the training information and the graphs of the

training and validation loss curves.

Figure 50. Training and validation loss curves for DenseNet (1 slice and 1e6 particles input)

Table 8. DenseNet (1e7) metrics summary. This table contains seven different columns: first one corresponds to the
patch size we are using to feed the network, second one is the computational time (in seconds) required for denoising
the whole image, third column corresponds to the Mean Squared Error, fourth column corresponds to the Signal-to-
Noise ratio, fifth one is the Improvement ratio (ISNR), sixth one is the Peak-Signal-to-Noise ratio and last one
corresponds to the DVH95 (Gy), remembering than the reference DVH95 is 62.45 Gy. The numbers out of brackets
corresponds to the average of four test patients, and the numbers inside the brackets corresponds to the standard
deviation. DVH95 is not the average of several patients because it was only one contour patient available in our test
dataset.

Table 9. DenseNet (1e6) training summary. This table has three
columns, the first one corresponds to the patch size, the second
one corresponds to the number of epochs until EarlyStopping was
activated, and the third column corresponds to the validation
Mean Squared Error achieved.

64

Figure 51. Training and validation loss curves for DenseNet (5 slice and 1e6 particles input)

 Additionally, the results of the performances are the following ones:

Table 10. DenseNet (1e6) metrics summary. This table contains seven different columns: first one corresponds to the
patch size we are using to feed the network, second one is the computational time (in seconds) required for denoising
the whole image, third column corresponds to the Mean Squared Error, fourth column corresponds to the Signal-to-
Noise ratio, fifth one is the Improvement ratio (ISNR), sixth one is the Peak-Signal-to-Noise ratio and last one
corresponds to the DVH95 (Gy), remembering than the reference DVH95 is 62.45 Gy. The numbers out of brackets
corresponds to the average of four test patients, and the numbers inside the brackets corresponds to the standard
deviation. DVH95 is not the average of several patients because it was only one contour patient available in our test
dataset.

65

Discussion

 Proton therapy is a relative new treatment in oncology that is being used for

critical situations where the tumor is surrounded by sensitive tissues. The Bragg Peak

allows physicians to irradiate the blank without damaging healthy cells. Monte Carlo

algorithms make a very accurate estimation of the dose distribution of proton beams. This

accuracy is an extremely important feature because the exact area of the Bragg Peak is

very sensitive to little changes on the parameters (type of tissue, beam energy, etc.), and,

considering the high dose is delivered there, little movements implies a great pain to

healthy areas.

 However, Monte Carlo algorithms produces a little noise on its simulations, and,

the amount of particles that need to be simulated are too high, requiring more than one

hour to compute it. The alternative is generating a dose distribution with a fewer number

of particles, but the resultant image is noisier. The current thesis proposes two methods

based on deep learning algorithms for denoising the distributions:

 U-Network: based on a hierarchical structure, this architecture has been used

during several years for the segmentation task. Its similarity with the autoencoders

is the reason why they perform well for that issue.

 Dense Network: this architecture is based on hierarchical structure where all the

layers are connected to provide the most important information. These

concatenations reduce the number of parameters that we need.

 The details of the performance were described in Chapter 5, but the consequences

of that results are going to be discussed in the following paragraphs.

 Firstly, we are going to discuss the training curves, which represent the training

and the validation Mean Squared Error along every epoch.

Figure 52. Training and validation loss curves for U-Net and DenseNet. Graph (a) is U-Net fed with 1e6 particles and
512x512x1 slices, and graph (b) is DenseNet fed with 1e6 particles and 512x512x1 slices. The first one took 101 epochs
to achieve the best performance and the second one took 268 epochs to achieve the best result.

66

 As we can see in Figure 52, there is a huge difference between the training loss

curve and the validation one. Usually, validation curve is over the training loss, but, in

this case, that curve is under the training one. This is caused because the validation

dataset, which has four different patients, is simpler than the training dataset. This could

be solved with more data. If the available data was large enough, the complexity of the

datasets, the training and the validation, or even the test one, would be the same.

 Secondly, we are going to compare the computational time required for filtering

one 3D image and the ISNR, which give us information about the improvement of the

image.

 Considering the information provided by Graph 1, the little decrease of the

computational time is not worth attending on the great decrease of the performance.

Furthermore, taking into account the standard deviation of both times (0.665 and 0.638),

we cannot ensure there is statistic differences between them.

 Furthermore, we are going to compare both metrics in networks fed with patches

of three slices. Theoretically, these two networks must provide a better performance but

spending more time on filtering the dose distribution.

1,485 1,391

3,503

2,949

0

0,5

1

1,5

2

2,5

3

3,5

4

U-Net DenseNet

Computational time and ISNR comparison

Comp. Time ISNR

Graph 1.Comparison between the computational time and the ISNR of U-Net and DenseNet. This
comparison is made with the networks fed with patches of one slice only. We can see a little
diminution of the computational time for DenseNet, but, there is a great improvement of the ISNR
for U-Net.

67

 As we can see in the Graph 2, in this case we can consider to use DenseNet instead

of U-Net, but the standard deviations (1.142 and 0.916) do not allow us to discern if there

is an appreciable difference. Additionally, we must clarify that, this elevated standard

deviation is due to the size variability of the different images, there are images that have

90 slices around, and there are others with 140 slices around.

 Now, we are going to discuss about the differences between the images obtained

with 1e7 particles and 1e6 particles.

 First, we expect a better result on denoising 1e7 particles images because they are

less noisy than the ones generated with 1e6. However, these last images are computed

faster, so, if we achieve a result good enough on these data, useful images could be

generated in a few seconds.

 The following graph will compare ISNR and PSNR for outputs coming from 1e7

and 1e6 particles images. ISNR shows the improvement of the input, so, with the same

ISNR, 1e7 particles images will be better, as they come from a better starting point.

Nonetheless, PSNR shows the quality of the image by itself, so, the higher the PSNR, the

better the image is.

5,571
5,231

4,484
4,077

0

1

2

3

4

5

6

U-Net DenseNet

Computational time and ISNR
comparison

Comp. Time ISNR

Graph 2. Comparison between the computational time and the ISNR of U-Net and DenseNet fed with
patches of three slices. In this case, we realize the behavior is the same than in the previous one,
DenseNet spends less time but provide a limited result. Nevertheless, here time difference is higher
than the previous one, and the performances are more similar.

68

 As we can see in Graph 3, PSNR of 1e7 images is 6 points over 1e6 one. Maybe

this difference is too much important. However, doctors must decide if these 6 points

convolve an excessive decrease of quality for the clinical application.

 Secondly, we are going to analyze the performance of the Dense network on 1e6

and 1e7 particles images. We are comparing ISNR and PSNR as done before.

 Graph 4 shows us a very similar information than the previous one. PSNR is 6

points lower for 1e6 particles images, and doctors show decide if that quality difference

is too much for the clinical application.

3,503

57,985

5,051

51,888

0

10

20

30

40

50

60

70

ISNR PSNR

ISNR and PSNR comparison

1,00E+07 1,00E+06

Graph 3. ISNR and PSNR comparison between 1e6 and 1e7 particles images filtered with U-Net
(patches of one slice). The ISNR is higher for 1e6 images, but the 1e7 images PSNR is 6 points over
the first one.

2,949

56,377

4,17

49,962

0

10

20

30

40

50

60

ISNR PSNR

ISNR and PSNR comparison

1,00E+07 1,00E+06

Graph 4. ISNR and PSNR comparison between 1e6 and 1e7 particles images filtered with DenseNet
(patches of one slice). Here we can see an appreciable difference between the two performances.
ISNR of 1e6 particles images is higher, but, PSNR is 6 points under the 1e7 one.

69

 Otherwise, we are going to discuss the performance of the different networks

according to the patch size. Firstly, we are going to explain the results of DenseNets by

comparing the computational time and the PSNR.

 Graph 5 show us that the second network provides a better performance than the

first one. Additionally, the last network does not improve the performance, but requires

more time. The main explanation for this is the lack of data. Lack of data impedes us to

use more complex networks, so, models are not specific enough. More complex models

allow us to improve our performances, but there is a threshold we cannot cross due to our

issue.

 Furthermore, we cannot use larger networks due to the lack of memory, so the

network dimension has two limits: the memory and the amount of data.

 On the other hand, we have the summary of the U-Net performance.

1,391
5,231

12,326

56,377 59,226 59,492

0

10

20

30

40

50

60

70

512x512x1 512x512x3 512x512x5

Computational time and PSNR
comparison

Comp. Time PSNR

Graph 5. Computational time and PSNR comparison of DenseNets (1e7). There is an important increase
of the computational time according to the patch size. However, the quality of the performances does
not increase that much. We cannot appreciate any significant difference between the performance of
the second and the third one.

1,485 5,571
11,677

17,687

57,985 59,993 58,886 58,852

0

20

40

60

80

512x512x1 512x512x3 512x512x5 512x512x7

Computational time and PSNR
comparison

Comp. Time PSNR

Graph 6. Computational time and PSNR comparison of U-Nets (1e7). As we can see, computational time
increase significantly due to the size of the patch. However, PSNR does not increase so significantly,
achieving the best performance in the second case.

70

 As we can see in Graph 6, the best performance is achieved in the second network,

and this is due to the fact that third and fourth networks are very little complex to the

amount of information that 5 and 7 slices patches provide. This could be result increasing

the complexity of those networks, nevertheless, considering the amount of data we have,

this will result in overfitting. We considered those networks, and we added Dropout and

Batch Normalization layers for keep the overfitting at bay, but these layers added noise

to the final result, so, the final performance was worse than the one we show.

 Now, we are going to discuss about the best networks trained, the best U-Net and

the best DenseNet. We are comparing the computational time, the PSNR and the DVH95

for 512x512x3 U-Net and 512x512x5 DenseNet, both of them fed with 1e7 particles dose

simulations.

 Graph 7 shows that DenseNet is more limited than U-Net. The time it takes to

denoise the image is more than twice the DenseNet takes. However, DenseNet PSNR is

0.5 points under the U-Net one, and DVH95 is also worse.

 We expected than DenseNet provided a little worse performance but reducing the

computational time, but results have shown than it is worse than U-Net in all the aspects.

Nevertheless, these limited results could be caused by the reduced complexity of the

network, which is also caused by the lack of data, which would impede the overfitting

issue. We considered DenseNet as faster because it has a much smaller number of

parameters, but all the concatenations result in an increase of the memory requirement

and, consequently, an increase of the spent on denoising the image.

5,571

59,993 62,73

12,326

59,492 62,79

0

10

20

30

40

50

60

70

Comp. Time PSNR DVH(95)

U-Net and DenseNet comparison

U-Net DenseNet

Graph 7. U-Net and DenseNet global comparison. We can observe, DenseNet requires
more time and provides a worse PSNR and DVH95 than U-Net. DVH95 is worse because
we want the closer one to the reference (62.45).

71

 Finally, we are going to discuss about the best network, U-Net fed with

512x512x3 slices per patch. We will analyze the Mean Squared Error, the Signal-to-

Noise ratio, the Peak-Signal-to-Noise ratio, and the DVH95.

 According to the results, this network is the best one. It achieved the higher SNR,

which means that the noise has the lower level compared with the signal, in this case, the

dose distribution. The PSNR achieved is also the highest one, that, instead of comparing

the noise with the signal, compares it with the highest pixel value. The difference between

the DVH95 from the reference and the one from the denoised image is 0.28 Grays, and

this is not the lowest difference. Figure 53 shows the DVH of the reference and the

denoised image together.

 As we can see in this figure, the three curves are similar, but the reference and the

denoised are almost the same curve. Nevertheless, the results show that the doses

5,571

64,018
59,993

62,73

0

10

20

30

40

50

60

70

Comp. Time SNR PSNR DVH(95)

U-Net 512x512x3

Graph 8. U-Net 512x512x3 analysis. The first bar corresponds to the average of the computational
time, the second bar corresponds to the average of the Signal-to-Noise ratio, the third one
corresponds to the one of the Peak-Signal-to-Noise ratio and the last one to the DVH95.

Figure 53. DVH comparison of the reference dose, the 1e6 dose and the denoised one. The DVH95 corresponds to the
value of the histogram for the volume 95.

Figure 54. DVH comparison of the reference dose, the 1e7 dose and the denoised one. The DVH95 corresponds to the
value of the histogram for the volume 95.

72

generated with 1e6 particles and denoised are more similar than the ones generated with

1e7 particle in terms of DVH. The Figure 54 shows that result.

 This DVH shows that the denoised image coming from the Monte Carlo

simulation, made with 1e6 particles is almost the same than the one generated with 1e7

particles and denoised. There is a huge difference between the one made with 1e6 and

1e7 particles before the denoising, so, maybe, considering this metric there is not

difference between filter those two simulations for the clinical application.

 The following figure shows the difference between a 1e6 and a 1e7 denoised

image.

Figure 55. Comparison of the 1e7 simulation (a), the denoised 1e7 simulation (b) and the reference dose (c). These
images correspond to the 50 slice of a lung tumor.

73

 Figure 55 shows the image before denoising, the denoised one and the reference.

Visually, images (b) and (c) are very similar, what is confirmed for the results of the

metrics like DVH. Furthermore, we are going to compare the pixel intensities of the row

350.

 Figure 56 shows the difference between the signal of the 350 row from the 1e7

distribution, the reference and the denoised image. We can see in these profiles that the

noise is significantly reduced.

Figure 56. Comparison between the denoised image, the reference and the 1e7. Image (a) compares the
350 rom from the denoised distribution (orange) and the reference (blue). Image (c) is the first one
aggrandized. Image (b) is the comparison between the denoised image and the 1e7. Image (d) is image
(b) aggrandized.

Figure 57. Comparison of the 1e6 simulation (a), the denoised 1e7 simulation (b) and the reference dose (c). These
images correspond to the 50 slice of a lung tumor.

74

 Figure 57 shows the image before denoising, the denoised one and the reference.

There is a larger difference between this performance and the last one, due to the noise of

the 1e6 simulations, which is higher here. We can see a small difference between the

denoised and the reference image.

 As we can see in Figure 58, the noise of the original signal is higher than the one

of the 1e7 particles simulation, and, the filtered image has some differences with the

reference, but it is quite similar.

Figure 58. Comparison between the denoised image, the reference and the 1e6. Image (a) compares the
350 rom from the denoised distribution (orange) and the reference (blue). Image (c) is the first one
aggrandized. Image (b) is the comparison between the denoised image and the 1e6. Image (d) is image (b)
aggrandized.

75

Conclusion

 The current thesis has expose two different methods based on deep learning for

denoising fast Monte Carlo dose distribution simulations, achieving distributions similar

to the 1e9 particles ones. These two networks have largely improved the denoising state-

of-the-art, and they are fast methods which takes no more than 14 seconds to filter a whole

3D image.

 Nevertheless, these networks could be improved with several changes we are

going to describe in the following lines, including training different networks, more

complex ones or using different data.

 Firstly, we discovered the great variability due to the tumor location. The anatomy

implies different sizes according to the exactly place in the human body. Lung and liver

tumors, for instance, are larger than brain ones, and the 3D image has more than 110

slices, implying an increase of the computing time. Additionally, larger tumors are treated

with larger beams which are more complex to model and are noisier. On the other hand,

neck or prostate tumors are smaller and less noisy, and the 3D images have around 90

slices, which implies a smaller computational time. We could build different organ-

specialized networks, reducing the variability in the input dataset and improving the

general performance, but the amount of data is a huge problem, because we need enough

data of each tumor, which implies 5-10 time the data we currently have.

 Secondly, there are more complex networks that could provide better

performances, as Generative Adversarial Networks, where two different networks are

trained, one is the denoiser, which takes the input and produces a free-noise image, and

the other one must discover if the output of the first one is an original or a denoised image.

Both networks are connected to ease information to the other network. At the end, the

first network will produce almost free-noise images that the Adversial Network cannot

recognize. Recently, researchers discovered Capsule Networks, which have shown a huge

power, reducing the needed data. These networks are based on detecting the image

objects, their location and their rotations, so we do not need to provide the network with

different rotated images.

 Thirdly, we can feed the networks with different information. We can work with

the frequency domain instead of spatial domain, or even both of them. There are a lot of

domains that could be used for improving the results. Several current denoisers use

parameters like albedo to enhance the performance, making uncommon connections in

their networks. All these parameters could perform together to find the best

approximation of the noise model.

 Fourthly, we could build very simple networks for making softs improvements.

Assuming each output has a random noise, we can calculate the average of all those

outputs for enhance the final image. Those networks must be simple and fast for having

a large number of outputs to calculate a robust average.

 Finally, we could create a special network, that, instead of denoising a Monte

Carlo dose distribution, generates that distribution. This would be the hardest

76

improvement to do, but, as neural networks are applied on several issues, we could

provide the system with all the required parameters (beam angles, beam energy, beam

position, CT image, etc.). Those networks will achieve a good result in terms of

computational time, but it would be hard to achieve a quality performance as the one

obtained by Monte Carlo algorithms.

 To conclude, there are a lot of techniques that could improve the images generated

by a Monte Carlo algorithm. Reducing the computational time of dose distributions to a

few seconds, joint to the automatized segmentation of tumors and organs, is going to

increase the radiation therapy process.

77

References

[1] R. L. Siegel, K. D. Miller and A. Jemal. Cancer Statistics. January 2017.

[2] M. Malvezzi, G. Carioli, P. Bertuccio, P. Boffetta, F. Levi, C. La Vecchia and E.

Negri. European cancer mortality predictions for the year 2017, with focus on lung

cancer. May 2017.

[3] V. Verma, C. Shah, J. M. Rwigema, T. Solberg, X. Zhu,C and B.Simone II. Cost-

comparativeness of proton versus photon therapy. February 2016.

[4] I. Kawrakow, M. Fipple and K. Friedrich. 3D electron dose calculation using a Voxel

based Monte Carlo algorithm. April 1996.

[5] A. Krizhevsky, I. Sutskever and G. E. Hinton. ImageNet Classification with Deep

Convolutional Neural Networks. 2012.

[6] R. Symonds, C. Deehan, C. Meredith and J. Mills. Walter and Miller’s Textbook of

Radiotherapy: Radiation Physics, Therapy and Oncology, pages 311-313. May 2012.

[7] M. L’Annunziata. Radioactivity: Introduction and History, pages 55-58. July 2007.

[8] R. N. Kjellberg, T. Hanamura, K. R. Davis, S. L. Lyons, et al. Bragg-Peak Proton-

Beam Therapy for Arteriovenous Malformations of the Brain. August 1983.

[9] O. Ronnenberger, P. Fischer and T. Brox. U-Net: Convolutional Networks for

Biomedical Image Segmentation. May 2015.

[10] C. Geng, J. Daartz, K. Lam-Tin-Cheung, M. Bussiere, HA. Shih, H. Paganetti and J.

Schuemann. Limitations of analytical dose calculations for small field proton

radiosurgery. January 2017.

[11] K. Souris. Accurate assessment of proton therapy treatments: Fast Monte Carlo dose

engine and extensive robustness tests, pages 22, 77 and 105.

[12] F. Rosenblatt. The perceptron: a probabilistic model for information storage and

organization in the brain. 1958.

[13] H. Ramchoun, M Amine, Y. Ghanou and M. Ettaouil. Multilayer Perceptron:

Architecture Optimization and Training. 2016

[14] S. Sabour, N. Froost and G. E. Hinton. Dynamic Routing Between Capsules.

November 2017.

[15] Y. le Cun. A Theoretical Framework for Back-Propagation. 1988.

[16] D. P. Kingma and J. Lei Ba. Adam: A Method for Stochastic Optimization. 2015.

78

[17] N. Srivastava, G. Hinton, A. Krizhevshy, I. Sutskever and R. Salakhutdinov.

Dropout: A Simple Way to Preven Neural Networks from Overfitting. June 2014.

[18] S. Ioffe and C. Szegedy. Batch Normalization: Accelerating Deep Network Training

by Reducing Internal Covariate Shift. March 2015.

[19] S. Quo, X. Xu and B. Cai. FReLU: Flexible Rectified Linear Units for Improving

Convolutional Neural Networks. January 2018.

[20] K. He, X. Zhang, S. Ren and J. Sun. Delving Deep into Rectifiers: Surpassing

Human-Level Performance on ImageNet Classification. February 2015.

[21] J. Long, E. Shelhamer and T. Darrell. Fully Convolutional Networks for Semantic

Segmentation. 2015.

[22] P. F. Christ, M. Ezzeldin, A. Elshaer, F. Ettlinger, S. Tatavarty, et al. Automatic

Liver and Lesion Segmentation in CT Using Cascaded Fully Convolutional Neural

Networks and 3D Conditional Random Fields. October 2016.

[23] G. E. Hinton and R. R. Salakhutdinov. Reducing the Dimensionality of Data with

Neural Networks. July 2006.

[24] P. Baldi. Autoencoders, Unsupervised Learning and Deep Architectures. 2012.

[25] B. Kayahbay, G. Jensen and P. van der Smagt. CNN-based Segmentation of Medical

Imaging Data. July 2017.

[26] G. Kaur, R. Choudhary and A. Vats. A Wavelet Approach for Medical Image

Denoising. October 2017.

[27] H. M. Ali. MRI Medical Image Denoising by Fundamental Filters. 2017.

[28] J. Bai, S. Song, T. Fan and L. Jiao. Medical image denoising based on sparse

dictionary learning and cluster ensemble. 2018.

[29] W. Jifara, F. Jiang, S. Rho, M. Cheng and S. Liu. Medical image denoising using

convolutional neural network: a residual learning approach. 2017

[30] Q. Yang, P. Yan, Y. Zhang, H. Yu, Y. Shi, X. Mou et al. Low Dose CT Image

Denoising Using Generative Adversarial Network with Wasserstein Distance and

Perceptual Loss. April 2018.

[31] C. Dong, C. C. Loy, K. He, and X. Tang. Image Super-Resolution Using Deep

Convolutional Networks. July 2015.

[32] G. Huang, Z. Liu, L. van der Maaten and K. Q. Weinberger. Densely Connected

Convolutional Networks. January 2018.

