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SUMMARY

An approach based on sliding mode is proposed in this work for reference tracking in robot visual servoing.
In particular, two sliding mode controls are obtained depending on whether the joint accelerations or the
joint jerks are considered as the discontinuous control action. Both sliding mode controls are extensively
compared in 3D simulated environment to their equivalent well-known continuous controls, which can
be found in the literature, in order to highlight their similarities and differences. The main advantages
of the proposed method are smoothness, robustness and low computational cost. The applicability and
robustness of the proposed approach is substantiated by experimental results using a conventional 6R
industrial manipulator (the KUKA KR6 R900 sixx, Agilus) for positioning and tracking tasks. Copyright
c© 2017 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Robot visual feedback control or visual servoing (VS) [1–3], has been being studied along the last
four decades by many researchers, mostly from the areas of control and computer science. It is a
viable method for robot control based on the utilization of visual information extracted from images
to close the control loop. For this purpose, a computer vision algorithm must be used to obtain the
visual features of the target object present in the scene and observed by the camera. This information
is used to compute the robot control law in order to achieve the desired robot pose.

Taking into consideration the workspace in which the control law is computed, the following
classification can be made [2]: position-based VS (PBVS), in which the control law is carried out in
the operational space, and image-based VS (IBVS), in which the control law is directly computed
in the image space.

Independently of the workspace in which the control is carried out, another classification can be
done focusing on the control law nature: continuous or discontinuous control laws [4].

On the one hand, the most typical continuous control law used in VS applications for positioning
or tracking tasks is based on computing a continuous joint velocity [2] to be commanded to the
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2 PAU MUÑOZ-BENAVENT, LUIS GRACIA, ET AL.

joint actuators in order to obtain an exponential decrease of the error signal. In this respect, we can
find in the literature a vast number of approaches, as for instance: classic PID controllers [5–9];
optimal [10–13] and robust controllers [14–17]; based on learning [18–20]; etc. However, other
continuous approaches that are based on computing the joint accelerations to be commanded to the
joint actuators can be found, either in PBVS [21] or IBVS [22].

On the other hand, discontinuous control laws have been deeply studied in the context of sliding
mode control (SMC) [23]. In particular, several works have studied the use of SMC for the main
control law† of the VS system, mainly to increase its robustness against errors: authors in [25] used
sliding mode (SM) theory to design a 3D vision based controller that is robust to bounded parametric
estimation errors; in [26] and [27], a SMC strategy based on a switching scheme and monitoring
function was developed to deal with the uncertainties in the camera calibration parameters; authors
in [28] proposed a visual controller and a robot joint controller based on the SMC theory for a
camera-in-hand planar two-link robot visual servo system in order to achieve strong robustness
against parameter variations and external disturbances; in [29], the SMC was applied to IBVS in
order to increase the robustness on the parametric uncertainties; in [30], a SMC together with an
estimator based on unscented Kalman observer cascading with Kalman filter demonstrated to be
a stable and robust structure in PBVS, considering system uncertainties existing in the estimation
model and observation noise; in [31], a second order SMC for PBVS was presented in order to
control the end effector pose of a 7 DoF robot arm in eye-to-hand configuration; in [32] and [33],
a robust tracking control law under image noise and uncertainty of parameters was designed on
the basis of SM theory for mobile robots using epipolar geometry in IBVS; in [34], the SMC was
integrated with kernel-based visual servoing to improve the tracking error and expand the stability
region; in [35], rotation and translation SMC using SIFT features were designed to solve the robot
visual servoing problem; in [36], a two stage control scheme based on sliding surfaces was proposed
for path-following and accurate positioning in PBVS for a robotic riveting system.

All works mentioned above use the joint velocities as the discontinuous control action for the
SMC. Therefore, the objective of this work is to develop a SMC for VS that uses a high-order
discontinuous control signal, i.e., joint accelerations or joint jerks, in order to obtain a smoother
behavior and ensure the robot system stability. The proposed SMC approach is equivalent, in some
sense, to the continuous control strategy mentioned above but has two main advantages: robustness
and low computational cost; while its main limitation is the chattering drawback, although this
problem becomes negligible for reasonable fast sampling rates.

The structure of the paper is as follows. Next section introduces some preliminaries, while
Sec. 3 presents the basic SM theory used in this work. The proposed method for reference
tracking is developed in Sec. 4, while it is theoretically compared to the classical VS strategy
for reference tracking in Sec. 5. Subsequently, the main advantages of the proposed approach are
discussed in Sec. 6, while some additional remarks are given in Sec. 7. Next, Sec. 8 presents the
conditions considered for the simulations and experiments. Sec. 9 and Sec. 10 compare in simulation
the proposed approach to its equivalent continuous counterpart to highlight the similarities and
differences. The applicability, effectiveness and robustness of the proposed approach is substantiated
by experimental results in Sec. 11 using a conventional 6R industrial manipulator (the KUKA KR6
R900 sixx, AGILUS) for positioning and tracking tasks. Finally, some concluding remarks are given.

2. PRELIMINARIES

Coordinate frames. Fig. 1 shows the coordinate frames involved in the VS problem: F base robot
frame; E end-effector robot frame; C current camera frame; C∗ desired camera frame; O object
frame; C2 camera frame for eye-to-hand configuration (in this case the camera does not move with
the robot, i.e., it is static, and frame C∗ would be replaced by E∗).

†SMC has also been used in VS for other purposes. For instance, authors in [24] presented an approach in which a SM
observer is applied to estimate the joint velocities of the VS system.

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2017)
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SLIDING MODE CONTROL FOR TRACKING IN VISUAL SERVOING 3

Figure 1. Frames involved in visual servoing.

Kinematics. Following the standard notation [2], the VS application is characterized by the visual
feature vector s that depends on the robot configuration q and also explicitly on time for the general
case of a moving target, that is:

s = l(q, t), (1)
where the nonlinear function l is called the kinematic function of the robot.

The first-order kinematics of the feature vector s results in:

ṡ =
∂l(q, t)

∂q
q̇ +

∂l(q, t)

∂t
= Jsq̇ + ∂s/∂t, (2)

where ∂s/∂t is due to the target motion and Js is the resulting Jacobian matrix, which can be
expressed as a concatenation of three different Jacobian matrices:

Js(q, t) = Ls(q, t)
cVe

eJe(q), (3)

where Ls is the image Jacobian, also known as interaction matrix, related to the visual feature vector
s; cVe is the constant twist transformation matrix from the camera frame C to the robot end-effector
frame E; and eJe is the robot Jacobian expressed in the end-effector frame. For more details about
matrix Js see [2].

The second- and third-order kinematics of the feature vector s result in:

s̈ = Jsq̈ + J̇sq̇ + ∂ṡ/∂t. (4)
...
s = Js

...
q + 2J̇sq̈ + J̈sq̇ + ∂s̈/∂t. (5)

Reference. The robot system should carry out a task, which in VS applications refers to achieving
a reference value for the visual feature vector s and is given by the following equation:

s(q, t) = sref (t), (6)

where sref (t) is the reference trajectory for the visual feature vector.

Computer vision algorithm. This algorithm is composed of three parts: the first part consists of
the image processing for obtaining the image plane coordinates (ui, vi) of all the feature points; the
second part consists of the coordinate transformation for converting the pixel coordinates (ui, vi)
to the corresponding value in the normalized image plane using the matrix of the camera intrinsic
parameters; and the third part, which only applies for PBVS, consists of the pose estimation of the
camera (eye-in-hand) or robot (eye-to-hand) from the feature points of the second part. The output
of the computer vision algorithm, both for PBVS and IBVS, is the visual feature vector s. This work
assumes existence of this computer vision algorithm.

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2017)
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4 PAU MUÑOZ-BENAVENT, LUIS GRACIA, ET AL.

Robot control. This work also assumes the existence of an underlying robot control in charge of
achieving a particular joint velocity, joint acceleration or joint jerk (depending on the control case)
from a command. Nevertheless, the actual joint value will not be exactly the commanded one due to
the dynamics of the low-level control loop and the inaccuracies because of disturbances. However,
in this work it is assumed that the dynamics of the low-level control loop is fast enough compared
to that of the joint commanded variable so that the relationships below hold approximately true,
avoiding the need of including extra state variables. Therefore, depending on the control application
(velocity, acceleration or jerk) the following equations are considered:

q̇ = q̇c + dcv (7)
q̈ = q̈c + dca (8)
...
q =

...
qc + dcj , (9)

where subscript c is used for the commanded variable and {dcv,dca,dcj} represent the inaccuracies
of the low-level control loop for each case.

Note that, the dynamic model of the robot system should be taken into account to properly design
the mentioned underlying joint controller. Obviously, for stability reasons, the bandwidth of this
underlying robot control should be faster than that of the used kinematic control.

3. SLIDING MODE CONTROL THEORY

3.1. Sliding mode control action

Theorem 1
Consider the following dynamical system with nx states and nu inputs given by:

ẋ = f(x,d) + g(x)u, (10)

where x(t) is the state vector, d(t) is an unmeasured disturbance or model uncertainty, u(t) is the
control input vector (possibly discontinuous), f is a vector field and g is a set of vector fields.

Consider also that the system state vector x is subject to user-specified equality constraints
φi(x) = 0, i = 1, . . . , N , where φi(x) is the ith equality constraint function. Thus, the region Φ
of the state space compatible with the constraints on state x is given by:

Φ = {x | φi(x) = 0} (11)

with i = 1, . . . , N .
Then, assuming that the constraint function φi is differentiable, the variable structure control

below guarantees that the system converges to Φ in finite time and remains there henceforth:

u = −Lgφ
T sign(φ) u+ (12)

u+ > ‖Lfφ‖1
/

eigmin(Lgφ Lgφ
T), (13)

where the scalar Lfφi and the row vector Lgφi denote the Lie derivatives of φi(x) in the direction
of vector field f and in the direction of the set of vector fields g, respectively, column vector Lfφ
contains the elements Lfφi of all constraints, matrix Lgφ contains the row vectors Lgφi of all
constraints, φ is a column vector with all the constraint functions φi, sign(·) represents the sign
function (typically used in SMC), positive scalar u+ is the so-called switching gain, which can be
either constant or varying in time, ‖ · ‖1 represents the 1-norm (also known as the Taxicab norm)
and function eigmin(·) computes the minimum eigenvalue of a matrix.

Proof

Assuming that φ(0) 6= 0, the goal of this proof is to show that convergence to point φ = 0 is
achieved in finite time.

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2017)
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SLIDING MODE CONTROL FOR TRACKING IN VISUAL SERVOING 5

Taking the time derivative of the constraint function φi results in:

d(φi(x))

dt
=
∂φi(x)T

∂x
f(x,d) +

∂φi(x)T

∂x
g(x)u = Lfφi(x,d) + Lgφi(x)u.. (14)

From (14) and (12), the column vector φ̇ composed of the constraint function derivatives φ̇i is
given by:

φ̇ = Lfφ−
(
Lgφ Lgφ

T) z u+, (15)

where z is a column vector with the ith-component zi = 1 if φi > 0 and zi = −1 if φi < 0.
Let V = zT φ be a Lyapunov function candidate. Vector φ can be generically partitioned into two

subvectors φ = [φa T φN−a T]T, where SM occurs in the manifold given by φa = 0a, whereas the
components of vector φN−a are not zero. Obviously, one of these two subvectors may be empty at
a certain time. Since vector zN−a is constant, the time derivative of V results in:

V̇ =
d

dt

(
zT φ

)
=

d

dt

([
za

±1N−a

]T [
φa

φN−a

])
=

[
ża

0N−a

]T [
0a

φN−a

]
+ zT φ̇ = zT φ̇,

(16)

where ±1 represents a column vector with all its elements equal to 1 or −1.
Replacing vector φ̇ with its value from (15), it is obtained:

V̇ = zT Lfφ− zT (Lgφ Lgφ
T) z u+. (17)

The components of vector z range from −1 to 1, hence the upper bound of the first term in (17)
is given by zi = 1 if Lfφi > 0 and zi = −1 if Lfφi < 0, that is:

zT Lfφ ≤
N∑
i=1

|Lfφi| = ‖Lfφ‖1. (18)

Assuming that u+ > 0, the second term in (17) is negative, since matrix
(
Lgφ Lgφ

T) is positive
definite, and its upper bound is given by:

− zT (Lgφ Lgφ
T) z u+ ≤ −eigmin

(
Lgφ Lgφ

T) ‖z‖22 u+, where ‖z‖2 ≥ 1 ∀ φ 6= 0N , (19)

because if vector φN−a is not empty at least one component of vector z is equal to 1.
From (18) and (19), the upper bound of the time derivative of the Lyapunov function V results

in:
V̇ ≤ ‖Lfφ‖1 − eigmin

(
Lgφ Lgφ

T) u+. (20)

Therefore, if u+ fulfills (13) the Lyapunov function decays at a finite rate, it vanishes and
collective SM in the intersection of the N constraints occurs after a finite time interval.

It is important to remark that, using the transpose of matrix Lgφ for the SMC in (12) instead of
its pseudoinverse represents a theoretical contribution of this approach. In fact, the transpose of the
Jacobian matrix has already been used in robotics for continuous control laws due to its simplicity,
see [37–40], among others. However, to the best of the authors knowledge, it has not been yet
used for SMC, e.g., all the SMCs proposed in literature for robot VS [25–36] use the Jacobian
pseudoinverse.

Using matrix inversion. Alternatively, instead of using the transpose of matrix Lgφ in (12),
it could be also utilized the Moore-Penrose pseudoinverse [41], but at the expense of higher
computational load and the condition that Lgφ must be now full row rank. In this case, the control
law and the lower bound condition for u+ result in:

u = −Lgφ
† sign(φ) u+ (21)

u+ > ‖Lfφ‖1, (22)

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2017)
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6 PAU MUÑOZ-BENAVENT, LUIS GRACIA, ET AL.

where superscript † denotes the Moore-Penrose pseudoinverse
The control law given by (12), or alternatively (21), firstly makes the system converge to Φ in

finite time, known as reaching phase [23]. And, subsequently, the control law will make u switch at
a theoretically infinite frequency in order to keep the system on the so-called sliding surface Φ. This
final phase is known as sliding mode phase [23]. Moreover, a continuous equivalent control [42] can
be obtained for the SM phase, i.e., the control required to keep the system on the sliding surface.
Hence, the SM generated by (12) or (21) produces such control action without explicit knowledge
of it and with a low computational cost, which is a typical advantage of SM strategies [42].

3.2. Higher-order invariance

The above SMC produces a non-smooth u. If a smooth control action is wished, the following
approach can be used. Firstly, the initial constraint φ(x) = 0 is transformed to φ = φ(x) +
Kφ̇(x) = 0. Thus, we obtain φ = φ(x) +K∇φ · ẋ = φ(x) +K∇φ · (f(x,d) + g(x)u). Hence, an
augmented state is considered x̄T = [xT uT], which includes the input u, so that φ is a function
of the augmented state, i.e, φ(x̄,d). Then, taking time derivatives‡, we obtain φ̇ = (∂φ/∂x̄)T ˙̄x +
(∂φ/∂d)Tḋ. Thus, since u̇ appears in ˙̄x, φ is relative degree one in u̇, so considering u̇ as the
“new” discontinuous input, the actual control u will be now smooth. Hence, the fulfillment of the
new constraint φ = 0 gives rise to an exponential decrease of the original constraint φ towards
zero: φ(t) = φ(0)e−t/K , where K is a free design parameter to establish the rate of approach to the
boundary of the original constraint.

Therefore, the proposed systematic procedure above, which is sequentially applied three times in
next section, consists in increasing the constraint order and using first-order SMC. Alternatively, a
different approach in the literature consists in using high-order SMC [43–45] so that the SM surface
is not modified but its relative degree with respect to the discontinuous control action is increased to
two or more. Then, the discontinuous control action is computed using complex expressions of the
SM surface function and its derivatives, e.g., see the algorithms: twisting [46], super-twisting [47],
sub-optimal [48], etc.

3.3. Order of the control action

In order to use the SMC above, the time-derivative of φ must explicitly depend on the control
action u, see (14). That is, the sliding manifold must have relative degree one with respect to the
control variable, as required by SMC theory [23]. Therefore, when the constraint function vector
φ is defined, the order of the corresponding discontinuous control action in (12) or (21) is also
established. Nevertheless, if the order of the actual control action vector for the system at hand does
not match the order of the mentioned discontinuous control action, a filter with the right order (or a
set of integrators) can be used between both signals to meet the relative degree condition above.

For instance, if the constraint function depends on the joint positions and velocities, the
discontinuous control action is an acceleration or second-order signal. For this example, if the actual
control action is the joint velocity vector, a first-order filter§ or a pure integrator has to be applied to
the discontinuous control signal in order to compute the actual control action, which is continuous.

Note that in any case, the order of the actual control action must be equal to or lower than the
order of the discontinuous control signal. If that would not be the case, the higher-order invariance
described in Sec. 3.2 may be used to increase the order of the discontinuous control signal.

‡Note that to use this approach the original constraint function φi needs to be twice differentiable.
§If a filter is used, it has to be properly designed since it limits the bandwidth of the controlled system.

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2017)
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SLIDING MODE CONTROL FOR TRACKING IN VISUAL SERVOING 7

4. SLIDING MODE CONTROL FOR REFERENCE TRACKING

4.1. Procedure to use sliding mode control

This section gives an overview of the required steps to use SMC. This “recipe” will be used in the
next subsections.

The first step consists in defining the equality constraint to be satisfied: φ = 0. Typically, this
constraint is chosen to be an ordinary differential equation in order to obtain the desired dynamics
for the controlled system. In particular, for reference tracking, this differential equation is expressed
in terms of the error variable, i.e., the difference between the current value and the reference value
for the controlled variable. Note that, when the order of the differential equation is is defined, the
order of the corresponding discontinuous control action is also established, see Sec. 3.3. Therefore,
the control design specification could be either the order of the differential equation or, alternatively,
the order of the discontinuous control action.

The next step consists in obtaining the time-derivative of the constraint function vector φ and
identifying the Lie derivatives Lfφ and Lgφ of the system at hand.

Finally, the control law given by (12), or alternatively (21) if the matrix inversion option is
considered, has to be obtained.

4.2. Sliding mode control using joint velocities

This case considers the most simple equality constraint for reference tracking, which is
straightforward obtained by rewriting (6) as:

φv(q, t) = s(q, t)− sref (t) = e = 0, (23)

where e represents the tracking position error of the visual feature vector s.
Taking into account the first-order kinematics in (2), the time-derivative of the constraint function

vector φv is given by:

φ̇v = ṡ− ṡref = Jsq̇ + ∂s/∂t− ṡref = Jsq̇ + ∂e/∂t, (24)

where it can be noticed that it explicitly depends on the joint velocities. Hence, in order to satisfy the
relative degree condition mentioned above, the control input vector u for this case is the commanded
joint velocity q̇c.

Therefore, from (24) and (7) the Lie derivatives in (14) for the constraint function vector φv are
given by:

Lgφv =Js (25)
Lfφv =Js dcv + ∂e/∂t. (26)

Therefore, the control laws given by (12) and (21) result in:

q̇c = −JT
s sign(e) u+ (27)

q̇c = −J†s sign(e) u+. (28)

It is interesting to note that the sliding surface given by (23) has already been used in VS for a
SM velocity controller in [25, 28, 29, 32, 33].

4.3. Sliding mode control using joint accelarations

The above constraint φv will be modified via the higher-order invariance described in Sec. 3.2 as
follows:

φa(q, q̇, t) = φv +Kaφ̇v = e +Kaė = 0, (29)

where Ka is a positive parameter that determines the time constant of the approach to φv = 0.

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2017)
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8 PAU MUÑOZ-BENAVENT, LUIS GRACIA, ET AL.

Taking into account the first- and second-order kinematics in (2) and (4), the time-derivative of
the constraint function vector φa is given by:

φ̇a =ė +Kaë = ṡ− ṡref +Ka(s̈− s̈ref ) = Jsq̇ + ∂e/∂t+Ka(Jsq̈ + J̇sq̇ + ∂ė/∂t), (30)

where it can be noticed that it explicitly depends on the joint accelerations. Hence, in order to
satisfy the relative degree condition mentioned above, the control input vector u for this case is the
commanded joint acceleration q̈c.

Therefore, the main advantage of considering (29) instead of (23) is that the control is smoother:
the joint velocity is continuous instead of discontinuous and the error equation is a first-order
differential equation instead of an static equation.

From (30) and (8) the Lie derivatives in (14) for the constraint function vector φa are given by:

Lgφa =KaJs (31)

Lfφa =(Js +KaJ̇s)q̇ +KaJsdca + ∂(e +Kaė)/∂t. (32)

Therefore, the control laws given by (12) and (21) result in:

q̈c = −K−1a JT
s sign(e +Kaė) u+ (33)

q̈c = −K−1a J†s sign(e +Kaė) u+. (34)

4.4. Sliding mode control using joint jerks

As before, the constraint φa will be modified via the higher-order invariance described in Sec. 3.2
as follows:

φj(q, q̇, q̈, t) =φa +Kjφ̇a = e +Kaė +Kj ė +KaKj ë = e +Kj1ė +Kj2ë = 0, (35)

where Kj is a positive parameter that determines the time constant of the approach to φa = 0 and
Kj1 = Ka +Kj and Kj2 = KaKj represent the coefficients of the differential equation above.

Taking into account (2), (4) and (5), the time-derivative of the constraint function vector φj is
given by:

φ̇j =ė +Kj1ë +Kj2
...
e = ṡ− ṡref +Kj1(s̈− s̈ref ) +Kj2(

...
s − ...

s ref )

=Jsq̇ + ∂e/∂t+Kj1(Jsq̈ + J̇sq̇ + ∂ė/∂t) +Kj2(Js

...
q + 2J̇sq̈ + J̈sq̇ + ∂ë/∂t), (36)

where it can be noticed that it explicitly depends on the joint jerks. Hence, in order to satisfy the
relative degree condition mentioned above, the control input vector u for this case is the commanded
joint jerk

...
qc.

Therefore, as before, the main advantage of considering (35) instead of (29) is that the control
is smoother: the joint acceleration is continuous instead of discontinuous and the error differential
equation is of second-order instead of first-order.

From (36) and (9) the Lie derivatives in (14) for the constraint function vector φj are given by:

Lgφj =Kj2Js (37)

Lfφj =(Js +Kj1J̇s +Kj2J̈s)q̇ + (Kj1Js + 2Kj2J̇s)q̈ +Kj2Jsdcj + ∂(e +Kj1ė +Kj2ë)/∂t.

(38)

Therefore, the control laws given by (12) and (21) result in:

...
qc = −K−1j2 JT

s sign(e +Kj1ė +Kj2ë) u+ (39)
...
qc = −K−1j2 J†s sign(e +Kj1ė +Kj2ë) u+. (40)

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2017)
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SLIDING MODE CONTROL FOR TRACKING IN VISUAL SERVOING 9

4.5. Chattering

Discrete-time implementations of any practical SMC makes the system leave the ideal SM and
oscillate with finite frequency and amplitude inside a band around φ = 0, namely chattering [23].
The chattering band 4φ of the proposal can be obtained using the Euler-integration of the
discontinuous control action given by (21), that is:

4φ = Ts |Lgφ u| = Ts u
+ 1, (41)

where Ts is the sampling time of the robot control and 1 is the column vector with all its components
equal to one.

5. COMPARISON WITH CLASSICAL CONTINUOUS CONTROL

5.1. Classical continuous control using joint velocities

Substituting the first-order kinematics of the robot system (2) and the low-level control equation (7)
in the first-order differential equation of the error given by (29), it is obtained the following equation:

e +Kaė =e +Ka(Jsq̇ + ∂s/∂t− ṡref ) = e +Ka(Js(q̇c + dcv) + ∂e/∂t) = 0, (42)

and the commanded joint velocity vector results in:

q̇c = −J†s(K−1a e + ∂e/∂t)− dcv, (43)

which is the most typical control law used in VS [2] in order to obtain an exponential decrease of
the tracking error.

The partial derivative ∂e/∂t is typically estimated (see [2]) using the first-order kinematics given
by (2), yielding:

∂e/∂t = ė− Jsq̇, (44)

and, hence, the time-derivative of the error vector ė is also needed like in the SMC given by (33)–
(34).

5.2. Classical continuous control using joint accelarations

Substituting the second-order kinematics of the robot system (4) and the low-level control
equation (8) in the second-order differential equation of the error given by (35), it is obtained the
following equation:

e +Kj1ė +Kj2ë = e +Kj1ė +Kj2(Js(q̈c + dca) + J̇sq̇ + ∂ė/∂t) = 0, (45)

and the commanded joint acceleration vector results in:

q̈c = −J†s(K−1j2 e +K−1j2 Kj1ė + J̇sq̇ + ∂ė/∂t)− dca, (46)

which represents the classical operational space robot control [49] that has already been used in VS
appliactions by [21] for PBVS and by [22] for IBVS.

As above, the partial derivative ∂ė/∂t can be estimated using the second-order kinematics given
by (4), yielding:

∂ė/∂t = ë− Jsq̈− J̇sq̇, (47)

and, hence, the second-order time-derivative of the error vector ë is also needed like in the SMC
given by (39)–(40).
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5.3. Equivalences between sliding mode control and classical continuous control

Assuming that the SMC is in the SM phase, i.e., the reaching phase has finished and the system
on the sliding surface, the SMCs proposed in Sec. 4.3 and Sec. 4.4 are equivalent to the classical
velocity and acceleration controls described in Sec. 5.1 and Sec. 5.2, respectively, in the sense
that both approaches give rise to the same first-order or second-order differential equation for
the tracking error. In particular, if the SMC is in the SM phase and considering the same initial
conditions, both the SMC and its continuous equivalent give rise to the same value for the joint
velocities or joint accelerations, as will be shown in the simulations of Sec. 9 and Sec. 10.

However, despite the mentioned equivalences, the proposed SM strategy presents several
significant advantages over its classical continuous counterpart that are discussed below.

6. ADVANTAGES OF THE METHOD

6.1. Valid both for PBVS and IBVS

In contrast to some SMCs proposed in literature for VS [29–36], the proposed SMC given by (33)–
(34) or (39)–(40) is valid either if the visual feature vector s is defined in PBVS or IBVS domain.
Obviously, each case yields a specific Jacobian matrix Js to be used in (33)–(34) and (39)–(40) .

6.2. Smoothness

In contrast to the SMCs proposed in literature for VS [25–36], see Sec. 1, the proposed
method yields continuous joint velocities given that the SM discontinuous control action are joint
accelerations or joint jerks.

6.3. Robustness

Instead of using a SM discontinuous control action to enforce φ̇a = 0 or φ̇j = 0, in order to keep the
system on the sliding surface, the analytic computation of q̈c or

...
qc, respectively, could be obtained

solving (30) or (36), respectively. However, the accurate computation of these continuous control
actions requires a perfect knowledge of the system model: Jacobian matrix Js and its derivatives,
partial derivative of the error vector ∂e/∂t and its derivatives, joint velocities q̇, inaccuracies
{dca,dcj} of the low-level control loop, etc. The same applies to the classical continuous control
given by (43) and (46).

For instance, if the disturbances {dca,dcj} and/or the partial derivatives {∂e/∂t,∂ė/∂t} given
by a moving target are not known a priori, as common in practice, the accurate computation of the
mentioned continuous control actions is not possible.

In contrast, the proposed SMC is robust [23] against {dca,dcj} and {∂e/∂t,∂ė/∂t} since they are
collinear with the discontinuous control action, see (8) and (9). The same applies to the remaining
terms collinear with the discontinuous control action: time-derivative of the Jacobian matrix, etc.

Even more, although the Jacobian matrix Js used in the proposed SMC is not collinear with the
discontinuous control action, see (33)–(34) and (39)–(40), a non-accurate value of this matrix can
be used as long as it provides a component perpendicular to the sliding surface given by φ = 0 in
order for the SM control action to be able to switch the value of the constraint functions φi from
positive to negative or vice versa.

It is worth to mention that, the proposed SMC is not robust against the error signal e (i.e., s)
and its derivatives since they are used to define the sliding surface in the switching control law,
see (33)–(34) and (39)–(40). Obviously, the continuous equivalent control is neither robust against
this error.

The robustness feature of the proposed SMC is illustrated in the simulation of Sec. 10.3 and in
the experimental results of Sec. 11.3.
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6.4. Low computational cost

The proposed SMC only requires to compute the Jacobian matrix Js and the constraint function
vector φ. In contrast, the classical continuous control given by (43) and (46) require to compute: the
partial derivative ∂e/∂t due to a moving target and its derivatives; the inaccuracies {dca,dcj} of the
low-level control loop; the time derivative of the Jacobian matrix; etc. Therefore, the computational
cost is reduced.

It is interesting to remark that, the partial derivative ∂e/∂t due to a moving target is also used as
a feedforward term by some SMCs proposed in literature for VS [25, 28–33], while the proposed
SMC does not require any kind of feedforward, as commented above.

Note also that, in contrast to the classical continuous control, the inversion of the Jacobian matrix
is not mandatory for the proposed SMC, since the transpose of the Jacobian matrix JT

s can also be
used, as mentioned above. Therefore, the computational cost can be further reduced.

6.5. Sliding mode control using joint jerks

If the joint jerks are used for the proposed SMC instead of the joint accelerations, i.e., Eq. (39)–
(40) instead of Eq. (33)–(34), two main advantages are obtained: the joint velocities are smoother,
i.e., they are C1 instead of C0; and the error differential equation has one more degree-of-freedom,
i.e., there are two poles to be assigned instead of one. However, practical implementations for this
case may be affected if the sampling time is not small enough or significant measurement noise is
present.

7. ADDITIONAL REMARKS

7.1. Time derivatives

The proposed approach requires the time derivatives of the error signal: ė (i.e., ṡ) for the SMC using
joint accelerations, see (33)–(34); and {ė, ë} (i.e., {ṡ, s̈}) for the SMC using joint jerks, see (39)–
(40). However, this situation is not new in VS applications: the classical continuous controls given
by (43)–(44) and (46)–(47) require the same time derivatives, together with other time derivatives
(i.e., q̇ and J̇s) not needed in the proposed SMC. As in many other applications, besides the use
of advanced sensors (tachometers, accelerometers, etc.), the simplest way to deal with this issue
consists in using numerical differentiation, e.g., the well-known backward Euler approximation.
However, some kind of filtering should be previously applied to the actual variable when non-
negligible noise is present. It is important to remark that the low-pass filter used for noise reduction
must not limit the bandwidth of the control law. That is, the bandwidth of the control law should
not exceed the bandwidth of the low-pass filter. In particular, for the proposed SMC, the theoretical
frequency of the control law signal is equal to (2Ts)

−1 Hertz and, hence, the filter attenuation at this
frequency should be relatively small.

7.2. Jacobian singularities

Concerning the Jacobian pseudoinverse used by the proposed SMCs in (34) and (40), it is recalled
that this inversion gives rise to numerical problems when the determinant of the Jacobian vanishes,
which occurs at singular points. Several approaches are discussed below to overcome this issue:

• The simplest option consists in using the Jacobian transpose JT
s instead of the the Jacobian

pseudoinverse J†s, i.e., using {(33),(39)} instead of {(34),(40)}. The main advantage of this
approach is the low computational cost, while its main drawback is that the lower bound for
the switching gain u+ is increased, see (13) and (22).

• Another alternative consists in using a classical type of matrix regularization: the damped
least-squares (DLS) solution [50], which minimizes the square norm of the equation error
together with the square norm of the solution weighted by a nonnegative damping factor λ. In
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particular, the regularized Moore-Penrose pseudoinverse of matrix Js using DLS results in:

J]
s = JT

s(JsJ
T
s + λ2I)−1, (48)

where I denotes the identity matrix of suitable size and superscript ] denotes the so-
called regularized or singularity-robust pseudoinverse. The main drawback of this method
is that the direction of the Jacobian pseudoinverse is significantly modified around singular
configurations.

• Another type of matrix regularization can be considered to preserve the direction of the
Jacobian pseudoinverse but saturating its magnitude as follows:

J]
s = JT

s adjoint(JsJ
T
s) sat((det(JsJ

T
s))−1, ε), (49)

where det(·) is the determinant function and function sat(·) is used to saturate the value of
(det(JsJ

T
s))−1 to ±ε, where ε represents a threshold to avoid extremely large values.

• Finally, the pseudoinverse can be computed via the singular value decomposition (SVD)
method [41] and using a tolerance to set to zero the very small singular values in order to avoid
extremely large values for the commanded variable. The main drawback of this approach
compared to the previous options is the computational cost required to obtain the SVD.

7.3. Switching gain selection

The selection of the switching gain u+ is a common issue in SMC applications. A number of options
for this purpose are discussed below.

Firstly, a big number could be chosen for u+ in order to ensure that it is greater than the lower
bound given by (13) or (22), as usual in SMC applications. However, such big numbers may induce
unnecessary chattering amplitude, see (41). Therefore, in order to avoid this drawback, a second
option consists in estimating the mentioned lower bound and choosing a value slightly larger than
the estimated one. However, since this lower bound depends on the system state, as usual in SMC
applications, it may be difficult to a priori estimate it. Thus, many practical applications use a third
option that consists in running the system application (either in simulation or experimentally) in
order to empirically tune a proper value for u+ so that the SM behavior is fulfilled at all times and
the chattering amplitude is minimized.

Finally, taking into account that the switching gain u+ can be varying in time, a fourth option
consists in using an adaptive switching gain u+(t) on the basis that different parts of the system
trajectory may require very different SM control actions. That is, the lower bound for u+ may
drastically change from one part of the trajectory to another, e.g., it is typically larger when the
system trajectory executes abrupt maneuvers. The main advantage of this adaptive approach is
that the chattering amplitude is minimized online according to the current part of the trajectory.
Examples of adaptive algorithms for the switching gain can be found in [51–56], among others. In
any case, this is out of the scope of this research and remains as further work.

7.4. Adaptation of the algorithm for dynamic robot control

The proposed SMC has been designed considering the existence of the underlying robot control
described in Sec. 2. However, if the robot can be controlled directly commanding the joint torques,
which is not the case of most industrial robots (e.g., the one used in the real experimentation of
Sec. 11), the proposed SMC can be adapted as detailed below to perform the dynamic control of the
robot.

The joint space dynamic model of the robot is typically given by [49]:

τ = M(q)q̈ + H(q, q̇)q̇ + Fvq̇ + Fs(q, q̇) + G(q) + JT
s(q)Fee, (50)

where τ represents the vector of joint torques, M the inertia matrix, Hq̇ the centrifugal and Coriolis
torques, Fv a diagonal matrix with the viscous friction coefficients, Fs the static friction torques, G
the torques generated by the links weights due to gravity and Fee the vector of forces and moments
exerted by the robot end-effector on the environment.
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The SMC described in Sec. 4.3 can be modified as follows to consider the joint torques as the
discontinuous control action instead of the joint accelerations. Solving for q̈ in (50) and substituting
into (30) yields the following modified Lie derivatives for the constraint function vector φa:

Lgφa =LgφaM
−1 (51)

Lfφa =Lfφa −KaJsM
−1(Mdca + Hq̇ + Fvq̇ + Fs + G + JT

sFee), (52)

and, hence, the modified switching control law (21) results in:

τ = −K−1a MJ†s sign(e +Kaė) u+. (53)

Similarly, the SMC described in Sec. 4.4 can be modified as follows to consider the time derivative
of the joint torque vector as the discontinuous control action instead of the joint jerks. Taking the
time derivative of (50) and solving for

...
q results in:

...
q = M−1(τ̇ − (Ṁ + H + Fv)q̈− Ḣq̇− Ḟs − Ġ− J̇T

sFee − JT
s Ḟee), (54)

and substituting this result into (36) yields the following modified Lie derivatives for the constraint
function vector φj :

Lgφj =LgφjM
−1 (55)

Lfφj =Lfφj −Kj2JsM
−1(Mdcj + (Ṁ + H + Fv)q̈ + Ḣq̇ + Ḟs + Ġ + J̇T

sFee + JT
s Ḟee),

(56)

and, hence, the modified switching control law (21) results in:

τ̇ = −K−1j2 MJ†s sign(e +Kj1ė +Kj2ë) u+. (57)

Note that, as explained in Sec. 3.3, the discontinuous control action τ̇ in (57) has to be integrated
in order to obtain the actual control action of the robot, i.e., the torque vector τ .

Therefore, by comparing (53) with (34) and (57) with (40), it is concluded that only the
inertia matrix M is required to use the proposed SMC for the dynamic control of the robot.
Moreover, this SMC is robust (see Sec. 6.3) against the remaining terms of the robot dynamic
model (centrifugal/Coriollis torques, viscous and static friction, gravity force, external forces) and
its derivatives, since they are included in the Lie derivatives Lfφa and Lfφj , i.e., they are collinear
with the discontinuous control action.

8. CONDITIONS FOR THE SIMULATIONS AND EXPERIMENTS

The proposed approach can be used either for PBVS or IBVS. However, the simulations and
experiments are focused on PBVS, since it is less robust to calibration and modeling errors than
IBVS [2,57,58] and would get more benefit from the proposed SMC. Furthermore, the simulations
and experiments have been developed for the eye-in-hand configuration, i.e., camera rigidly attached
to the robot end-effector, although the method can also be used for eye-to-hand configuration
(camera does not move with the robot).

The typical visual feature vector used in PBVS [2] is considered in this work:

s =
[
C∗

tT
C

C∗
θuT

C

]T
, (58)

where the first element represents a translation vector and the second element gives the angle
parameterization for the rotation (see [2] for further details), both between the desired camera pose
and current camera pose.

For both simulations and experiments, it is used a classical 6R serial robot with spherical wrist: the
Kuka KR6 R900 sixx manipulator, coined as Agilus. The robot is ceiling-mounted and its Jacobian
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Figure 2. Positioning task: 6R robot, target object with four markers, involved coordinate frames, and
resulting 3D trajectory of the camera (magenta-continuous). Image plane on the left-hand side: initial
position (black-dark), desired position (green-light), and trajectory of the features (magenta-continuous).

For clarity, only the trajectories for the SMC using joints acceleration and J†s are depicted.

matrix eJe can be readily obtained [49] from the Denavit-Hartenberg (DH) parameters in Table I.
Moreover, since the camera is rigidly attached to the end-effector of the robot, the twist matrix cVe

is constant and can be computed from the camera to end-effector transformation matrix cMe.
For both simulations and experiments presented below, the following two tasks are considered to

demonstrate the general effectiveness and robustness of the method: (1) a positioning task consisting
in moving the robot from the initial to the goal position, defined with respect to a still target object;
(2) a tracking task consisting in moving the robot to follow a 3D trajectory defined by the object
motion.

For the description of the parameters, let S2MS1
=
[
x y z α γ θ

]T
be the compact

notation adopted for detailing the values of the homogeneous transformation matrix from frame
S2 to frame S1, where x, y and z are the Cartesian coordinates in meters, and α, γ and θ are the roll,
pitch and roll angles, respectively, in radians. The simulation results presented below were obtained
using MATLAB R©.

9. SIMULATED POSITIONING TASK

Fig. 2 depicts the VS application in consideration for the simulated positioning task with the
following elements: 6R robot, target object, as well as the involved frames: robot base frame F ,
object frame O, initial camera frame C and desired camera frame C∗.
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9.1. Conditions for the simulated positioining task

Simulation for the positioning task was run under the following conditions:

i) Parameters used for the camera: focal lengths fx = 640 and fy = 480 pixels; principal
point [u0, v0] = [320, 240] pixels; and camera to end-effector transformation matrix cMe = I4
where I4 represents the identity matrix of dimension 4, i.e., the camera pose is equivalent to
the end-effector pose.

ii) Coefficients for the error differential equation:Ka = 5 for the first-order differential equation;
Kj2 = 5 and Kj1 = 3

√
Kj2 (i.e., a value of 1.5 for the damping ration) for the second-order

differential equation.
iii) The initial configuration considered for the robot is given by the joint

position vector q(0) =
[
0 −0.82 0.79 −0.35 −1.57 −2.09

]T
rad, yielding

an initial camera pose given by the transformation matrix FMC(0) =[
0.755 0.027 0.564 −2.7923 −0.0250 2.1038

]T
in compact notation.

iv) A static target object is considered with the pose given by the transformation matrix
FMO =

[
0.755 0.027 0.564 π 0 π/2

]T
in compact notation and with four markers

given by the following points with respect to the object frame: Op1 =
[
−0.05 −0.05 0

]T
m, Op2 =

[
0.05 −0.05 0

]T
m, Op3 =

[
0.05 0.05 0

]T
m, Op4 =

[
−0.05 0.05 0

]T
m, that is, the four markers are the vertices of a square with a side length of 0.1 m.

v) The desired camera pose is given by the transformation matrix FMO =[
0.624 0.001 0.377 π 0 π/2

]T
in compact notation.

vi) Switching gain u+ for the SMC: u+ = 1 when J†s is used and u+ = 3 when JT
s is used.

vii) For comparison purposes between the proposed SMC and the continuous equivalent, the initial
value for the joint velocities and joint accelerations is chosen so that the system starts on the
sliding surface Φ and, hence, the reaching phase is not present, see Sec. 5.3. In particular, in
order to satisfy (29) when joint accelerations are used, the initial value for the joint velocities
is computed as q̇(0) = −J†sė(0) with ė(0) = −KT,pe(0). Similarly, in order to satisfy (35)
when joint jerks are used, the initial value for the joint velocities is set to zero q̇(0) = 0, i.e.,
ė(0) = 0, and the initial value for the joint accelerations is computed as q̈(0) = −J†së(0) with
ë(0) = −KT,pe(0).

viii) The simulation was carried out with a sampling time Ts of 1 millisecond.

9.2. Simulation results for the positining task

The results of the simulation are depicted at different figures. In particular, Fig. 2 shows that, as
expected in PBVS approaches, the resulting camera trajectory in the 3D space is a straight line
from the initial to the desired camera pose, whilst the trajectory of the features in the image plane
describe a non-straight line. For clarity, only the trajectories for SMC using accelerations and J†s are
depicted. The differences between all the approaches is shown in the following figures.

Fig. 3 and Fig. 4 show the position error e, the integral of the control action (i.e., q̇ or q̈) and
the constraint function vector (i.e., φa or φj) for the SMC using joint accelerations and joint jerks,
respectively. Note that the behavior of the position errors and joint velocities or accelerations is very
similar when using J†s and JT

s , whereas the difference in the chattering band (see the constraint
function) is due to the value used in each case for the switching gain u+.

Fig. 5 compares the SMCs to their respective continuous equivalents in terms of joint speeds or
joint accelerations, i.e., q̇ or q̈, and in terms of the Euclidean norm (in the sequel, unless stated
otherwise, it will be assumed the Euclidean norm) of the tracking error, i.e., ‖e‖. The differences
are similar for the SMC using joint accelerations and joint jerks, and the norm of the tracking error
increases around one order of magnitude when the transpose of the Jacobian matrix is used instead
of the pseudoinverse.
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Figure 3. Simulated positioning task. SMC using joint accelerations. From top to bottom and left to right
plots: (1) translation errors eT ; (2) rotation errors eR; (3) joint speeds q̇; (4) Constraint function vector

φa.

A video of this simulated positioning task for the SMC using joint accelerations and J†s (the
other cases are very similar) can be played at https://media.upv.es/player/?id=
4f000e20-782b-11e7-90ea-23686ce0f1be.

10. SIMULATED TRACKING TASK

As above, Fig. 6 depicts the VS tracking application in consideration for the simulated tracking task.

10.1. Conditions for the simulated tracking task

Simulation was run under the same conditions as the positioning task except for the following:

i) Coefficients for the error differential equation: Ka = 0.4 for the first-order differential
equation; Kj2 = 0.4 and Kj1 = 3

√
Kj2 for the second-order differential equation.

ii) The initial configuration considered for the robot is given by the joint position vector
q(0) =

[
0 0.17 −1.22 0 −0.52 −1.57

]T
rad, yielding an initial camera pose given by

the transformation matrix FMC(0) =
[
0.652 0 0.63 π 0 π/2

]T
in compact notation.

iii) The desired camera pose with respect to the object is given by the transformation matrix
C∗

MO =
[
0 0 0.5 0 0 0

]T
in compact notation, i.e., the camera must follow the target

trajectory keeping a distance in the CZ axis equal to 0.5 meters.
iv) Switching gain u+ for the SMC: u+ = 0.5 when J†s is used and u+ = 2 when JT

s is used.
v) A moving target object is considered with four markers as described in

previous section and with the following transformation matrix FMO(t) =

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2017)
Prepared using rncauth.cls DOI: 10.1002/rnc

https://media.upv.es/player/?id=4f000e20-782b-11e7-90ea-23686ce0f1be
https://media.upv.es/player/?id=4f000e20-782b-11e7-90ea-23686ce0f1be


SLIDING MODE CONTROL FOR TRACKING IN VISUAL SERVOING 17

 Time (s)

0 5 10 15 20 25

φ
j

-0.02

-0.01

0

0.01

0.02

J†
s

JT
s

0 5 10 15 20 25

q̈
(r
a
d
/
s2
)

-0.05

0

0.05

0.1

J†
s

JT
s

0 5 10 15 20 25

e
R
(r
a
d
)

-0.2

0

0.2

0.4

J†
s

JT
s

0 5 10 15 20 25
e
T
(m

)
-0.2

-0.15

-0.1

-0.05

0

J†
s

JT
s

Figure 4. Simulated positioning task. SMC using joint jerks. From top to bottom and left to right plots:
(1) translation errors eT ; (2) rotation errors eR; (3) joint accelerations q̈; (4) Constraint function vector

φa.

[
FxO

F yO
F zO

FαO
FβO

F γO
]T

in compact notation, where FxO =

0.542 + 0.1 cos(t) + 0.01t+ e−t(0.1− 0.09 cos(t)), F yO = −0.15(sin(t) + e−t cos(t)− 1),
F zO = 0.105 + (t+ e−t cos(t))/40, FαO = π − 0.00763(t− 1 + e−t cos(t)), FβO =
−0.00763(t− 1 + e−t cos(t)) and F γO = π/2 + 0.061(t− 1 + e−t cos(t)) which basically
represents an ellipsoidal movement in the horizontal axes, plus a linear displacement for all
linear and angular coordinates and plus a transient component (given by the term e−t) in
order for the target object to have initial velocity and acceleration equal to zero.

vi) The initial value for the joint velocities and joint accelerations is set to zero, that is q̇(0) =
q̈(0) = 0. Note that for these initial conditions, as before, the SMC starts on the sliding
surface Φ, i.e., (29) or (35) are satisfied due to e(0) = 0, see {FMC(0),C

∗
MO,FMO(t)},

and ė(0) = ë(0) = 0 since the initial velocity and acceleration for the joints and the target is
equal to zero.

10.2. Simulation results for the tracking task

Fig. 6 shows the object and camera trajectories during the tracking process. For clarity, only
the trajectories for SMC using accelerations and J†s is depicted. The differences between all the
approaches is shown in the following figures.

Fig. 7 and Fig. 8 show the integral of the control action (i.e., q̇ or q̈), the tracking error e and
the constraint function vector (i.e., φa or φj) for the SMC using joint accelerations and joint jerks,
respectively. Note that the tracking errors are always lower than 0.7 millimeters and that, as before,
the chattering band is greater when the transpose of the Jacobian matrix is used instead of the
pseudoinverse.
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SM acceleration control and continuous equivalent
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Figure 5. Simulated positioning task. SMC versus the continuos equivalent. From top to bottom and left to
right plots: (1) Norm of the difference in q̇ between SMC using joint accelerations q̇sm and the continuous
equivalent q̇cont ; (2) Norm of the difference in e between SMC using joint accelerations esm and the
continuous equivalent econt. (3) Norm of the difference in q̈ between SMC using joint jerks q̈sm and the
continuous equivalent q̈cont ; (4) Norm of the difference in e between SMC using joint jerks esm and the

continuous equivalent econt.

Fig. 9 compares the SMCs to their respective continuous equivalents in terms of the joint speeds
or joint accelerations, i.e., q̇ or q̈. The differences are similar for the SMC using joint accelerations
and joint jerks.

A video of this simulated tracking task for the SMC using joint accelerations and J†s (the
other cases are very similar) can be played at https://media.upv.es/player/?id=
96753c70-79d5-11e7-90ea-23686ce0f1be.

10.3. Robustness against errors

Three types of “modeling errors” are considered to analyze the robustness of the proposed SMC:
low-level controller error, target estimation error and Jacobian matrix error.

In particular, the error in the Jacobian matrix Js (3) can be due to the following sources of error:
1) image noise, which affects the interaction matrix Ls; 2) error in the camera intrinsic parameters,
which affects the interaction matrix Ls; 3) error in the pose estimator, which affects the interaction
matrix Ls; 4) error in the target model, which affects matrix the interaction Ls; 5) error in the
camera to end-effector transformation matrix cMe, which affects the twist matrix cVe; 6) error
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Figure 6. Tracking task: 6R robot, target object with four markers, initial and final object frames (Oi and Of ),
initial and final camera frames (Ci and Cf ) and resulting 3D trajectory of the object (magenta-continuous)
and camera (magenta-dashed). For clarity, only the trajectories for the SMC using joints acceleration and J†s

is depicted. Image plane on the left-hand side: Constant desired features position.

in the DH parameters of the robot, which affects the robot Jacobian matrix eJe; and 7) error in
the robot configuration q, which affects both the interaction matrix Ls and the robot Jacobian
matrix eJe. However, the first four sources of error listed above also affect the computation of
the feature vector s, which negatively influences¶ both the proposed SMC for VS and its continuous
equivalent, see Section 6.3. Therefore, in order to focus on highlighting the differences between
both approaches, only the last three sources of error are simulated for the Jacobian matrix: camera
to end-effector transformation matrix cMe, which typically might have significant error in VS
applications [60–63], specially if a coarse calibration is used [64–66]; DH parameters of the robot;
and robot configuration q.

For the simulations below, the norm of the tracking error e is used to compare three different
cases: SMC with J†s, SMC with JT

s and the equivalent continuous control. The comparison is carried
out for both SMCs using joint accelerations and joint jerks. Modeling errors are introduced with a
signed variation in percentage of the actual value:

¶It is worth mentioning that, in VS applications the reference sref for the visual feature vector is typically specified to
the robot system using the well-known teaching by showing method [1, 2, 59]. In this manner, the repetitive inaccuracies
in s are also present in sref and, hence, they are mostly compensated when computing the error vector e, which is the
main signal used in both the discontinuous and continuous control law.
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Figure 7. Simulated tracking task. SMC using joint accelerations. Integral of the control action, i.e., q̇, on
the left-hand side, and error e and constraint function φa, on the right-hand side.

• Low-level controller error:

q̈e = q̈ + ce
[
−1 1 −1 −1 −1 1

]T ◦ |q̈| (59)
...
qe =

...
q + ce

[
−1 1 −1 −1 −1 1

]T ◦ |...q|. (60)

• Target motion estimation error:

∂se/∂t = ∂s/∂t+ te
[
−1 1 −1 −1 −1 1

]T ◦ |∂s/∂t|. (61)

• Error in the camera to end-effector transformation matrix:

cMe,e =c Me +
[
mde

[
1 −1 1

]
mre

[
1 −1 −1

]]T
. (62)

• Error in the DH parameters (length vectors d and a) of the robot:[
dT
e

aTe

]T
=

[
dT

aT

]T
+DHe

[
−1 −1 1 −1 1 1
−1 1 −1 1 −1 1

]T
◦
[
|d|T
|a|T

]T
. (63)

• Robot configuration error:

qe = q + qe
[
−1 1 −1 −1 −1 1

]T
, (64)
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Figure 8. Simulated tracking task. SMC using joint jerks. Integral of the control action, i.e., q̈, on the left-
hand side, and error e and constraint function φj , on the right-hand side.

where | · | represents the absolute value function, symbol ◦ denotes the element-wise or Hadamard
product, and {ce, te, DHe} and {mde,mre, qe} represent the percentage errors and absolute errors,
respectively, considered in each case.

Fig. 10 and Fig. 11 show the norm of the tracking error for (a) the ideal case, (b) a low-level
controller error of ce = 20%, (c) a target motion estimation error of te = 40%, (d) a camera to end-
effector error of mde = 0.05 m and mre = 0.35 rad, (e) a DH parameters error of DHe = 20%,
and (f) a robot configuration error of qe = 0.175 rad, when using joint accelerations and joint jerks,
respectively. Note that, the equivalent continuous control for each case has very small values for
the tracking error in the ideal case, but this value dramatically increases (around three orders of
magnitude) in the presence of modeling errors. In contrast, the value of the tracking error for
the SMC using J†s approximately remains the same regardless the considered modeling errors.
When JT

s is used for the SMC the norm of the tracking error may be larger, since it represents an
additional error to the already existing error due to using matrix transpose. However, this increment
is significantly lower (up to one order of magnitude) than the one experienced by the continuous
equivalent.

Nevertheless, the tracking errors for the SMC are due to the chattering band and, therefore, they
can be reduced as much as desired by lowering the sampling time. In this sense, Fig. 12 shows
a case that combines all the errors simultaneously {ce = 20%, te = 20%,mde = 0.02 m,mre =
0.2 rad, DHe = 10%, qe = 0.1 rad}, and the effect of reducing one order of magnitude the sampling
time Ts. In particular, the norm of the tracking error for the SMCs is reduced around one order
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22 PAU MUÑOZ-BENAVENT, LUIS GRACIA, ET AL.

 Time (s)

0 5 10 15 20 25
10

-4

10
-3

10
-2

10
-1

||
q̈
sm

−
q̈
co
n
t
||

SM jerk control and continuous equivalent

J†
s

JT
s

0 5 10 15 20 25
10

-4

10
-3

10
-2

10
-1

||
q̇
sm

−
q̇
co
n
t
||

SM acceleration control and continuous equivalent

J†
s

JT
s

Figure 9. Simulated tracking task. Norm of the integral of the control action with respect to the continuous
equivalent. SMC using joint accelerations, for J†s and JTs , and SMC using joint jerks, for J†s and JTs .

of magnitude, whereas that value for the continuous equivalent basically remains the same. This
evidences that the tracking errors for the SMCs are a consequence of the chattering band and,
hence, these controls are robust to modeling errors. In contrast, the tracking errors for the equivalent
continuous controllers are not reduced by lowering the sampling time since the control law is not
qualitatively robust against modeling errors.

The simulation results can be concluded as follows. On the one hand, the performance of the
continuous control is good as long as no significant errors are present (in the Jacobian matrix, low-
level controller, and target motion estimation), while the sampling period has no significant effect
on it (obviously, the Nyquist-Shannon sampling theorem must be satisfied). On the other hand, the
proposed SMC is robust against these errors but the sampling period compromises its performance
due to the chattering drawback. Therefore, in order to acknowledge the advantages of each approach,
a fair guideline for practical applications is using the continuous control when errors are small and
using the proposed SMC with reasonable fast sampling rates otherwise.
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Figure 10. Simulated tracking task. Norm of the tracking error for SMC using joint accelerations and
continuous equivalent in presence of modeling errors: Continuous (solid, blue), using J†s (dashed, magenta)

and using JTs (dotted, red).

11. REAL EXPERIMENTATION

The proposed SMC has been implemented to obtain real experiments in order to demonstrate
its feasibility and robustness. The following setup has been used (see Fig. 13): a Kuka KR6
R900 sixx robot manipulator, coined as Agilus, in ceiling-mounted position, is equipped with the
Kuka.RobotSensorInterface (RSI) technology that allows external real-time communication using
the Ethernet UDP protocol; a general purpose web cam rigidly attached to the robot end-effector
(eye-in-hand consiguration), which is used for image acquisition; a screen, which is used to display
the target object markers; and an external PC with Ubuntu 12.04 OS prompted with real time kernel
that implements the computer vision and control algorithms proposed in this work. The position of
the image features is updated using the dot tracker in ViSP (Visual Servoing Platform) [67], whilst
the object pose is estimated to update the visual feature vector s and to compute Ls.
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24 PAU MUÑOZ-BENAVENT, LUIS GRACIA, ET AL.

 Time (s) Time (s)

0 5 10 15 20

10
-5

10
-4

10
-3

10
-2

||
e
||

No errors

Continuous

SM J
†
s

SM J
T
s

0 5 10 15 20

10
-5

10
-4

10
-3

10
-2

||
e
||

Error in low-level controller

Continuous

SM J
†
s

SM J
T
s

0 5 10 15 20

10
-5

10
-4

10
-3

10
-2

||
e
||

Error in target motion estimation

Continuous

SM J
†
s

SM J
T
s

0 5 10 15 20

10
-5

10
-4

10
-3

10
-2

||
e
||

Error in camera location

Continuous

SM J
†
s

SM J
T
s

0 5 10 15 20

10
-5

10
-4

10
-3

10
-2

||
e
||

Error in DH parameters

Continuous

SM J
†
s

SM J
T
s

0 5 10 15 20

10
-5

10
-4

10
-3

10
-2

||
e
||

Error in robot configuration

Continuous

SM J
†
s

SM J
T
s

Figure 11. Simulated tracking task. Norm of the tracking error for SMC using joint jerks and continuous
equivalent in presence of modeling errors: Continuous (solid, blue), using J†s (dashed, magenta) and using

JTs (dotted, red).

Two experiments have been conducted to show the validity of the proposed approach: (1) a
positioning task consisting of moving the robot from the initial to the goal position, defined with
respect to a still target object; (2) a tracking task consisting of moving the robot to follow a circular
trajectory defined by the object motion.

11.1. Experiment conditions and parameter values

Both experiments were run under the following conditions:

i) Both the proposed SMC using joint accelerations and its continuous equivalent were
implemented using J†s.

ii) Three periodic threads are defined and scheduled following a fixed priority scheme, from
highest to lowest: server, control and vision threads. The server period must be set to 4
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Figure 12. Simulated tracking task. Effect of sampling time in the tracking error for SMC using joint jerks
and continuous equivalent in presence of modeling errors: Continuous (solid, blue), using J†s (dashed,

magenta) and using JTs (dotted, red).

Figure 13. Experimental setup: 6R serial industrial manipulator in ceiling position with the camera rigidly
attached to the robot end-effector (eye in hand configuration) and a screen to display the object markers.

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2017)
Prepared using rncauth.cls DOI: 10.1002/rnc
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milliseconds due to robot specification. Both the vision period and the control period Ts are
set to 100 milliseconds to guarantee an appropriate scheduling.

iii) The commanded joint accelerations q̈c computed by the proposed algorithm are double
integrated (see Sec. 3.3) to obtain the commanded joint positions qc sent to the robot
controller.

iv) The perspective camera model without distortion is considered with the following
parameters: the ratio between the focal length and the size of a pixel is [Fu, Fv] =
[710.1, 709.8] pixels, the resolution [WV , HV ] = [640, 480] pixels, and the central point
[u0, v0] = [310, 247] pixels. The camera to end-effector transformation matrix is cMe =[
0 0.07 −0.05 0 0 −π/2

]T
, in compact notation.

v) Four markers define the object, representing the vertices of a square with a side length of 17
centimeters in both cases.

vi) Coefficient for the first-order error differential equationKa = 10 and control action amplitude
for the SMC u+ = 0.1.

vii) A discrete first-order low-pass IIR filter (see Sec. 7) has been used with a pole at 0.4 to reduce
the noise of the pose estimation signal before computing the time-derivative of the error signal.

viii) In the positioning task, the initial configuration is given by the robot joint position vector
q(0) =

[
2.67 −1.80 2.14 0.79 −1.44 −0.97

]T
rad, and the visual feature vector

s(0) =
[
0.111 0.006 0.045 −0.049 −0.012 0.014

]T
.

ix) In the tracking task, the initial configuration is given by the same robot joint position
vector q(0), and the reference trajectory for the visual feature vector sref (t) = s(0) =[
0 0 0.5 0 0 0

]T
, i.e., the object is aligned with the camera optical axis and at a

distance of 0.5 meters. Moreover, the target object describes a circular trajectory whose radius
is equal to 8.5 centimeters and whose angular velocity follows a trapezoidal profile with the
following parameters: initial velocity equal to zero; nominal velocity equal to 0.1 rad/s; and
acceleration to achieve the nominal velocity equal to 1 rad/s2.

11.2. Experimental results with no errors

For the positioning task, Fig. 14 shows the position eT and orientation eR errors, the commanded
joint accelerations q̈c and the constraint function φa obtained using the SMC. Note that, even
with noisy signals and a sampling period of 0.1 s, the robot goal position is reached with
eT,i < 5 mm and eR,i < 0.002 rad. Fig. 15 shows the trajectory of the object markers in the
image plane and the 3D camera trajectory, which is very similar to the ideal trajectory, i.e., for
PBVS approaches, a straight line from the initial C to the goal C∗. A video of this positioning
experiment can be played at (video at double speed) https://media.upv.es/player/
?id=a187cf40-7621-11e7-90ea-23686ce0f1be.

For the tracking task, Fig. 16 shows the joint speeds q̇, the constraint function φa

and the tracking error e. Note that, the tracking errors are relatively small: below 0.01
m or radians. Fig. 17 shows the circular 3D camera trajectory. A video of this tracking
experiment can be played at (video at double speed) https://media.upv.es/player/
?id=6b8148d0-7622-11e7-90ea-23686ce0f1be.

11.3. Experimental robustness against errors

The robustness of the proposed approach is experimentally analyzed by adding a signed error in the
Jacobian matrix as follows:

Js,e = Js + je


−1 −1 −1 1 1 −1
−1 1 1 −1 1 1

1 −1 −1 1 −1 −1
−1 1 1 −1 1 1

1 1 −1 1 1 −1
1 1 −1 1 1 1

 ◦ |Js|, (65)
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Figure 14. Real positioning experiment using the proposed SMC. From top to bottom and left to right plots:
(1) translation errors eT; (2) rotation errors eR; (3) commanded joint accelerations q̈c; (4) Constraint

function vector φa.
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Figure 15. Real positioning experiment: left, trajectory of the object markers in the image plane; right, 3D
camera trajectory.

with je = 30% being the considered percentage error.
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Figure 16. Real tracking experiment using the proposed SMC. From left to right plots: (1) translation errors
eT; (2) rotation errors eR; (3) commanded joint accelerations q̈c; (4) Constraint function vector φa.
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Figure 17. Real tracking experiment: 3D camera trajectory for a reference trajectory given by an almost
closed circle.

Fig. 18 shows the tracking error e for SMC and the continuous equivalent both without and
with errors in the Jacobian matrix. It can be seen that the tracking errors for the SMC are not
significantly modified when the error in the Jacobina matrix is introduced: they are always below
0.010 m and 0.020 radians. Whereas for the continuous equivalent: position errors are approximately
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doubled when the error is introduced (they reached values of up to 0.015 m); while orientation errors
drastically increased when the error is introduced (they reached values of up to 0.047 radians).
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Figure 18. Real tracking experiment with 30% signed error in the Jacobian Matrix. Comparison of SMC
using joint accelerations and the continuous equivalent.

A final consideration about the presented experiments is given as follows. As explained in
Section 6.2, the proposed SMC for VS is smoother than those in literature [25–36] because
yields continuous joint velocities. This characteristic can be qualitatively appreciated by comparing
the experimental results above and those presented in the mentioned works. However, from a
quantitative point of view, this advantage is fully exploited when considering large accelerations
and abrupt maneuvers in the reference trajectory. Nevertheless, this has not been possible in the
above VS experiments (neither in those presented in the listed works) due to the relatively large
sampling time used for the SMC, which is required for image acquisition and processing.
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12. CONCLUSIONS

An approach for reference tracking in visual servoing has been presented using a sliding mode
strategy. In particular, two sliding mode controls have been obtained depending on whether the
joint accelerations or the joint jerks are considered as the discontinuous control action. The main
contributions of this research are listed as follows:

• From a theoretical point of view, it has been proven that the Jacobian transpose can be
used for the sliding mode control of robotic systems, instead of the conventional Jacobian
pseudoinverse.

• A systematic procedure has been proposed to increase the relative degree between the original
constraint function and the discontinuous control action, which represents an alternative to the
classical high-order sliding mode control.

• The proposed approach for robot visual servoing is smoother than the previous sliding mode
controls used for this purpose since it yields continuous joint velocities.

• The proposed sliding mode controls have been compared theoretically and in simulation to
their classical continuous counterparts.

• The applicability and feasibility of the proposed approach is substantiated by experimental
results using a conventional 6R industrial manipulator for positioning and tracking tasks.
In particular, the robustness of the method compared to the continuous equivalent has been
successfully verified in the experiments by introducing an error in the Jacobian matrix.

Finally, the main advantages of the proposed sliding mode approach are smoothness, robustness
and low computational cost, while its main limitation is the chattering drawback.
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32. Becerra HM, Sagüés C. Sliding Mode Control for Visual Servoing of Mobile Robots using a Generic Camera.
Sliding Mode Control, Prof Andrzej Bartoszewicz (ed.). 2011; 221–236.
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TABLES

Link i θi (rad) di (m) ai (m) αi (rad)
1 q1 −0.400 0.025 π/2
2 q2 0 −0.455 0
3 q3 0 −0.035 −π/2
4 q4 −0.420 0 π/2
5 q5 0 0 −π/2
6 q6 −0.080 0 π

Table I. Denavit-Hartenberg parameters for the 6R robot.
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