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Abstract
Working in large networks applied to epidemiological-type models has led us to
design a simple but e↵ective computed distributed environment to perform a
large amount of model simulations in a reasonable time in order to study the
behavior of these models and to calibrate them. Finding the model parameters
that best fit the available data in the designed distributed computing environment
becomes a challenge and it is necessary to implement reliable algorithms for
model calibration. In this paper, we have adapted the random PSO algorithm
to our distributed computing environment to be applied to the calibration of a
Papillomavirus transmission dynamics model on a lifetime sexual partners network.
And we have obtained a good fitting saving time and calculations compared with
the exhaustive searching strategy we have been using so far.
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Introduction

Sexually Transmitted Diseases (STD) have been a major public health threat
for a long time in human history. Modern concerns about STD began with the
pandemic of syphilis which spread over Europe in the early sixteenth century.

Human Papillomavirus (HPV) is the most common STD. It is transmitted via
vaginal, anal, or oral sex with someone who has the virus [1]. Persistent HPV
infections with genotypes 16 and 18 are responsible for about 70% of all cervical
cancer, with 40� 85% of other anogenital cancers and also 16� 28% of the
head and neck cancers. Furthermore, HPV is a cause of other non malignant
diseases, to mention genotypes 6 and 11 cause about 90% of anogenital warts,
and secondarily juvenile onset of recurrent respiratory papillomatosis [2].

Most of the modeling approaches to STD in general and HPV in particular
are done using classical models where the hypothesis of homogeneous mixing
(everybody can transmit a disease to everybody) is implicitly assumed. However,
when STDs are considered, homogeneous mixing is not a reasonable hypothesis
and consequences of this assumption can be seen, for instance, in that the e↵ects
of vaccination schedules against HPV have been detected much sooner than what
the models predicted [3].

Therefore, the structure and properties of networks of sexual contacts in
human populations and the building of reliable sexual partner networks, as
in [4], is a public health topic of key interest in connection with the spread
of STD. However, this problem has received scarce attention in the world of
computational modeling and the modeling of STD epidemiology is usually based
upon theoretical proposals in terms of the network structure.

In the last years, we have been working on modeling the dynamics of several
phenomena using large random networks [5, 6, 7] and we know that, under this
approach, it is necessary to perform a lot of simulations for model calibration. To
do so, a distributed computing environment called Sisifo [8] was developed [9].
Using this environment we were able to find, using exhaustive searching, model
parameters that made the model output close to given data, that is, calibration.
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The next step was to find out how to reduce the number of simulations studying
the inclusion of optimization algorithms. In [10] we presented an attempt with
small networks and in an only computer.

Then, in this paper, we describe how to adapt the optimization algorithm named
Particle Swarm Optimization (PSO) in the distributed computing environment
Sisifo to calibrate a large network of lifetime sexual partners (LSP) where we
want to study the transmission dynamics of two types of HPV: the high and
the low risk. High risk HPV gathers the types of HPV related to the apparition
of precancerous lesions or cancers. Low risk HPV types are the ones that can
develop genital warts.

This paper is organized as follows. In Section 2 we give an overview of the LSP
network building and describe the transmission dynamics of both types of HPV
on LSP networks. In Section 3, we summarize the functioning of the distributed
computing environment Sisifo. Also, we describe how to incorporate and adapt
the PSO algorithm to this environment. In Section 4 we present the results and,
finally, in Section 5, conclusions are discussed.

HPV network model building

Here we give a general review of the method presented in [4] where an algorithm
to build LSP networks consistent with the distribution of the number of partners
for both males and females reported in the Health and Sexual Habits Survey in
Spain [11], has been described. Then, on the LSP networks, we will define the
transmission dynamics of high and low risk HPV.

First, we consider the population of the Community of Valencia (Spain) [12] and
its demographic structure [13] given in Figure 1, where we show the number of
men and woman per age.
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Figure 1. Number of men and woman in the Community of Valencia per age (year 2013).
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Now, we consider data about the lifetime sexual partners for both males and
females reported in the Health and Sexual Habits Survey in Spain [11] as can
be seen in Figure 2. The asymmetry in the behavior of males and females have
to be taken into account in the construction of the network.
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Figure 2. Number of lifetime sexual partners (LSP) for men and woman per age group
in Spain (year 2003). The age groups are 14-29, 30-39 and 40-65.

The estimated percentage of homosexual men is 3.88% [11]. The situation for the
homosexual men population is di↵erent of the one shown in Figure 2, because
the average number of sexual partners is estimated in 39 regardless of age, but
this number increases with age with a peak of 59 in the 40-49 age-group [14].

A di�culty arises because we have little information about the number of sexual
contacts in homosexual women subpopulation. In a personal communication by
Dr. Mireia Dı́az from the Catalan Institute of Oncology (IDIBELL) we were
informed that HPV hardly spreads among homosexual women, and almost all
homosexual men, sometimes in their lives, had a woman partner. Consequently,
we have simulated these connections by assigning a contact to every man in the
homosexual subpopulation with woman with 5 partners or more. This is done
according to the assortativity principle, that is, people use to join with people
with similar habits.

Taking into account the above premises, for the average number of LSP of men
k and for each one of the N individuals (nodes) in the network

1. Using the demographical information, we assign randomly the sex
(man/woman) and age.

2. We label 3.88% of men as homosexual men, randomly.
3. Depending on the age and gender, and using the data about LSP for men

and women, we assign randomly the number of LSP he/she is going to
have.

4. We assign randomly LSP to homosexual men depending on their age
following the report [14].

The above algorithm determines the sex, age and number of LSP of each node.
Now, we have to build the network that matches with the LSP of the nodes.

1. Separate men and women nodes into two groups.
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2. Order women in descendant order of LSP.
3. For each woman node:

(a) we pair her with as much heterosexual men as the number of LSP
she has. Among all the possibilities to pair we try to choose those
men with similar number of LSP.

4. For each homosexual men node:

(a) we pair him with as much homosexual men as the number of LSP he
has.

(b) Assign to every homosexual men a woman with 5 partners or more.

The procedure to pair heterosexual partners is the same we use to pair
homosexual partners. In Figure 3 we can see a small LSP network. Details
about how to build the heterosexual networks can be found in [4].

	

10	

	
Fig.1:	 LSP	 network	 for	 1000	 individuals:	 blue	 dots	 correspond	 to	
men,	pink	to	women	and	yellow	ones	to	homosexuals.	
	
From	a	structural	point	of	view	we	notice	the	appearance	of	a	large	
core	 of	 connections	 through	 individuals	 with	 many	 partners	 and	
also	a	radial	distribution	of	 individuals	with	a	single	partner	or	two	
partners	 which	 can	 also	 be	 affected	 by	 the	 disease	 through	 the	
network	of	connections.	
	
	

Figure 3. LSP network for 1000 individuals: blue dots correspond to men, pink to
women and yellow to homosexual men.

HPV prevalence data

Data provided by [2] allow us to determine an estimation of the prevalence of
the HPV. Then, we divide the data of infectious women into the age groups
18� 29, 30� 39 and 40� 65, the same age groups as those given by the Sexual
Behaviour Habits Survey [11] and used to build the LSP networks.

Taking into account that an infected individual with high risk HPV may develop
precancerous lesions and, eventually, cancer, and that an infected individual
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with low risk HPV may develop genital warts, we say that an individual is HR-
infected if he/she has been infected by a high risk HPV. That individual may
also be infected by a low risk HPV (co-infection). Analogously, an individual
is LR-infected if he/she has been infected by a low risk HPV. That individual
may also be infected by a high risk HPV (co-infection). Then, the percentage of
women HR- and LR-infected per the aforementioned group ages, are collected
in Table 1.

Table 1. Prevalence of HR- and LR-infected women per age groups. Mean and 95%
confidence intervals.

Women HR-infected LR-infected

18� 29 y.o. 24.10%, [21.33%, 26.98%] 6.36%, [4.71%, 8.07%]
30� 39 y.o. 11.01%, [7.54%, 15.09%] 1.26%, [0.0%, 3.14%]
40� 64 y.o. 5.96%, [4.29%, 7.8%] 2.37%, [1.22%, 3.68%]

18� 64 y.o. 16.23%,[14.52%, 17.97%] 4.41%, [3.42%, 5.45%]

HPV dynamics on a LSP network

Over the LSP networks, we introduce the transmission dynamics of the HPV.
Thus, non-infected individuals may get infected if they have sexual intercourses
with HR- or LR-infected sexual partners. Being infected, the individuals may
infect other susceptible sexual partners. After a period of time depending on
the type of infection (HR or LR), the individuals recover and move from the
contagious state to susceptible state, clearing the infection.

The above description leads to consider the following model parameters that
determine the model behavior. These parameters are:

• Global probabilities in order to determine if a LSP produces a contagion
in the current time step per age group 14� 17, 18� 29, 30� 39 and
40� 65. Taking into account that the edges that represent LSP are fixed
and permanent, we need to modulate the possibility of contagion in a
certain period. Then, we include the model parameters T0, T1, T2 and T3 to
modulate these contagion in every month for group ages 14� 17, 18� 29,
30� 39 and 40� 65, respectively (4 parameters).

• Average time an individual infected by a high (low) risk HPV clears the
infection and recovers (2 parameters).

• Probability that a woman (man) infected of high (low) risk HPV transmits
it to his/her partner in a sexual intercourse (4 parameters).

Also, we should recall that, for LSP network building, we need to provide the
average number of men LSP k. Then, we have a total of 11 model parameters
to be determined.

For the simulations we are going to show hereinafter, the networks will have
200 000 nodes and the temporal step used is defined as a month.
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Hence, we have implemented in C++ a simulator that, given the above described
model parameters, it builds a LSP network and performs a simulation of the
transmission dynamics of high and low risk HPV.

Note that the transmission parameters involve certain probabilities. Then, in
order to see if a contagion has been carried out by a sexual intercourse, we
simulate this by generating a random number and checking if it is less than the
corresponding threshold given by the model transmission parameters. Therefore,
the randomness is included into the model in a natural way producing some
uncertainty on the model output that has to be quantified.

After all the above considerations, now, the goal is, assuming that we are in a
stable situation, to calibrate the model parameters in such a way that the model
output related to women HR and LR prevalence is as close as possible to the
data in Table 1.

Preparing the distributed computing environment for model
calibration

Sisifo distributed computing environment

Sisifo is a client-server based system designed to allow a problem to be solved
using distributed computation. Sisifo is able to assign tasks to a set of personal
computers (PCs), wait for the tasks to complete and collect the results for
further analysis. Sisifo is made with simplicity as main aim, giving as a result
a system that requires almost no maintenance, needs very little configuration
time, and can be deployed in just a couple of hours.

The Sisifo Server keeps listening for request of the clients. The Server has stored
one or more executors, a set of problems to be solved in the Problem files folder,
and the solutions sent in the Result files folder.

The Sisifo Client is a program stored in one or several PCs that connects to the
server, and asks for a work packet. This work packet is composed of two elements:
a text file containing the model parameter values and the simulator executable
file. The Client, once the work packet is received, executes a simulation using
the model parameters stored in the text file. When the simulation finishes, a
solution file is generated, returned to the server and dropped in the Results files
folder.

More details about how Sisifo works can be found in [9].

PSO-based calibration procedure

As we mentioned in the Introduction, we used in the past Sisifo to calibrate
models using exhaustive searching. With this method, we needed to perform a lot
of simulations and the best obtained fitting was not always as closed as desired.
For instance, in [9] 145 000 simulations were performed achieving the equivalent
of more than three years of computing time in just five weeks. However, even
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eventually we could find a feasible solution, most of the simulations were useless,
far from being feasible solutions.

For this reason, we consider the implementation of a version of PSO optimization
algorithm adapted to Sisifo computing environment. To do that, first, we recall
the rPSO algorithm appearing in [15] applied to the optimization of a function
F .

Step 1. Initialization.

• Initialize N particles p1, . . . , pN chosen randomly in the parameter
space.

• Initialize randomly their velocities v1, . . . , vN .
• Evaluate the fitness of all the particles F (p1), . . . , F (p

N

).
• Define the individual best fitness as pbest

i

= p
i

, i = 1, . . . , N and the
global best fitness pbest

global

as the pbest
i

which fitness is optimum.

Step 2. Modify the particle velocities based on the previous individual best
and global best positions:

vnew
i

= !v
i

+  1(p
best

i

� p
i

) +  2(p
best

global

� p
i

), i = 1, . . . N,

where ! is a random value in [ 14 ,
3
4 ],  1 is the exploitation rate and  2 is

the exploration rate.

Step 3. Update the particle locations: p
i

= p
i

+ vnew
i

, i = 1, . . . N .

Step 4. Evaluate the fitness of all the particles F (p1), . . . , F (p
N

). Go to Step
2.

The above algorithm can be adapted to Sisifo computing environment if, using
the Sisifo Server, the computation of the fitness of the particles is distributed
among the Sisifo Clients.

However, in a typical PSO procedure, including rPSO, the set of particles
is updated once the fitness of all the particles have been calculated. This
means that, until all the fitnesses have not been evaluated and Step 4 is not
completely finished, the particles cannot be updated and new evaluations cannot
be performed. Then, in every iteration of rPSO, scenarios where some Sisifo
Clients have finished their evaluations and are idle while other Sisifo Clients
are still performing their evaluations are usual. In these scenarios, we have an
under-use of the Sisifo system.

In order to avoid the under-use system drawback, we propose the
implementation of an asynchronous version of rPSO in such a way that when
the fitness of a particle has been evaluated (Step 4), this particle is updated
(Step 2 and 3) without waiting for the evaluation of the remainder particles,
considering the current existing global best and its individual best particles.
This way, we modify rPSO algorithm parallelizing Steps 2, 3, 4 and sharing the
updates of the global best particle.
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The proposed asynchronous version of rPSO has been implemented in
Mathematica [16] and it is shown in Figure 4. When the procedure starts
running, with the initialization of the particles (Step 1) we create their
corresponding problem files in the Problem files folder. The Sisifo Server detects
new problem files and distribute them among free Sisifo Clients. These clients
carry out the simulations. When a Sisifo Client ends its task, a results file is
generated and sent to the Sisifo Server that drops it in the Result files folder.
Every time a new results file appear in the Results files folder, the PSO-based
calibration procedure, that is, the asynchronous rPSO, in Step 4, reads the data
from the results file and calculates the fitness (distance from the model output
to the data in Table 1). Then, updates the velocity taking into account the
current existing global best and its individual best particles (Step 2), updates
the particle (Step 3) and with the new model parameters creates a new problem
file in the Problem files folder. And so on.

Sisifo
Server

Sisifo clients

Problem
files

folder

PSO-based
calibration
procedure 

Result 
files 
folder

Figure 4. Scheme of the PSO-based calibration procedure (asynchronous rPSO) in the
Sisifo distributed computing environment.

Even though we have to perform several attempts of the PSO-based calibration
procedure in a typical fitting problem, we are able to determine if the calibration
is acceptable or not computing around 2 000 simulations in a couple of days.
Comparing with the time and number of simulations used in [9], 145 000 during
five weeks, we can have an idea of the saving of resources involved.

Results

Once the model has been calibrated, due to the intrinsic randomness in the
LSP networks building and the evolution of the HPV infection, we carry out
100 simulations and calculate the mean and the 95% confidence interval (CI95%)
in each time step of the 100 model outputs. Then, this is compared with the
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data mean and CI95% in Table 1. The results for the age group 18� 64 years
old can be seen in Figure 5.

Figure 5. Mean and CI95% of the percentage of model output for HR-infected (left) and
for LR-infected (right), compared with their data counterparts, for women in the age
group 18� 64 years old. The blue points represent the mean of the model output and the
red points its CI95%. The green line is the mean of data and the black lines its CI95%.

Numerically, the model output mean and CI95% for women HR-infected in the
age group 18� 64 years old are 18.21%, CI95% [12.66%, 19.68%]. And for LR-
infected, 7.08%, CI95% [6.13%, 7.56%].

Looking at the Figure 5 and data in Table 1, we should note that the calibration
is fair enough: for women HR-infected data and model uncertainty (CI95%)
almost match; for women LR-infected do not match, however they are very
near. Moreover, in Figure 6 we present a comparison as the one in Figure 5, but
for age group 18� 29. The calibration is also performed for the remainder age
groups 30� 39 and 40� 65.

	 HR-infected	 LR-infected	

18-29	y.o.	

	
25.80%	CI95%	[16.32%,	28.16%]	
24.10%	CI95%	[21.33%8,	26.99%] 

	
9.21%	CI95%	[7.33%,	10.27%] 
6.36%	CI95%	[4.71%,	8.07%] 

30-39	y.o.	

	
17.37%	CI95%	[12.70%,	18.44%] 
11.01%	CI95%	[7.55%,	15.09%] 

	
7.62%	CI95%	[6.98%,	8.08%] 
1.26%	CI95%	[0.,	3.14%]	

40-65	y.o.	

	
15.69%	CI95%	[11.22%,	17.16%] 
5.96%	CI95%	[4.30%,	7.81%] 

	
6.01%	CI95%	[5.13%,	6.49%] 
2.37%	CI95%	[1.23%,	3.68%] 

	

Figure 6. As in Figure 5, we present the model output mean and CI95% compared with
their data counterparts per women age group 18� 29. The blue points represent the
mean of the model output and the red points its CI95%. The green line is the mean of
data and the black lines its CI95%. At the bottom of the graphs we have the model
output mean and CI95% in black and data mean and CI95% in bold red.
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In general, the model calibration is fairly good and reproduces accurately the
data presented in [2], given that the complexity of this epidemic problem.

About the model parameters obtained in the calibration

Apart from the calibration, it is usual to check if the model also satisfies some
side e↵ects in the dynamics of the HPV, in order to present a model as much
credible as possible.

Thus, let us examine the credibility of the calibrated model parameters
comparing them with some values appeared in the literature. These model
parameters obtained are:

• Average number of LSP of men: 8.8. This value is consistent with the one
given in [14], where 8 is stated as the average number of LSP.

• Average duration of an infection due to high and low risk HPV: 1.56 and
0.66 years, respectively. These values are similar to the ones given in [17],
1.2 and 0.7 years, for the infection duration of HPV 16/18 (high risk) and
6/11 (low risk), respectively.

• Probability a woman/man infected of HPV transmits the infection to a
sexual partner: 0.54 and 0.73 for high risk HPV and 0.47 and 0.62 for low
risk HPV, respectively. In [17], the authors present the global values 0.7
and 0.8 for all the types.

Conclusion

In the recent years, we started to work with large network models, mainly
applied to study the transmission dynamics of infectious diseases. Then we
needed resources, not only computers but also ad-hoc software. Hence we decided
to design a distributed computing environment called Sisifo that allowed to
perform a large amount of simulations in a reasonable time taking full advantage
of the available computers and all their processors.

However, for calibration, we had to perform a lot of simulations in order to find
a fairly good calibration. And we thought in the possibility to adapt well-known
optimization algorithms to our environment.

Our first approach has been to adapt a random version of the Particle Swarm
Optimization called rPSO to calibrate a HPV transmission dynamics model
on LSP networks. The results have been better in terms of computation time
and number of performed simulations compared with the exhaustive searching
strategy we have been used so far.

Moreover, the model calibration also satisfies some other expected features
described in the literature, as the average number of LSP of men, the time an
individual clears the infection and the transmission parameters, which abounds
in the credibility of model.

Nevertheless, this is only a part of the general problem of studying the
transmission dynamics of infectious diseases: once the model has been calibrated,

Prepared using sagej.cls



12 Journal Title XX(X)

we are able to forecast the evolution of the spread of the infectious diseases and
to study the implementation of vaccination strategies. As a consequence, it
is possible to calculate the economical cost of the application of a vaccination
schedule comparing the prediction of the model in this vaccination scenario with
the model prediction with no vaccination using the calibrated model parameters.

In the future, we will introduce in Sisifo other optimization algorithms and apply
all this developed infrastructure to customize treatments for diabetic patients
using and calibrating models describing the patient’s glucose dynamics.
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