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Isomorphic copies of `1 for m-homogeneous
non-analytic Bohnenblust–Hille polynomials

J. Alberto Conejero ∗ Juan B. Seoane-Sepúlveda†

Pablo Sevilla-Peris‡

Abstract

We employ a classical result by Toeplitz (1913) and the seminal
work by Bohnenblust and Hille on Dirichlet series (1931) to show that
the set of continuous m-homogeneous non-analytic polynomials on c0

contains an isomorphic copy of `1. Moreover, we can have this copy of
`1 in such a way that every non-zero element of it fails to be analytic
at precisely the same point.

1 Introduction and statement of our main re-

sult

An m-homogeneous polynomial in n variables is a function of the form

P (z) =
∑
α∈Nn0

α1+···+αn=m

cαz
α1
1 · · · zαnn =

∑
α∈Nn0
|α|=m

cαz
α for z ∈ Cn . (1)

These are somehow the blocks with which the Taylor series expansion of a
holomorphic function at 0 is built. When we go to infinitely many variables
(say to c0, the Banach space of null sequences), one is tempted to define
an m-homogenous polynomial as a function given by an power series like
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in (1) (since we have infinitely many variables we have no longer a finite
sum). This was actually one of the first attempts at the beginning of the
20th century to define a theory of holomorphic functions in infinitely many
variables, assuming that such a power series would converge everywhere un-
der certain conditions (basically that the suprema on the open unit ball of
finite dimensional sections are uniformly bounded). It soon became clear
that this was not the right approach: Toeplitz [11] provided an example of
a 2-homogenous polynomial for which the power series expansion does not
converge everywhere (see Section 2 for all needed definitions)

Proposition 1.1. There exists P =
∑

α cα(P )zα ∈ P(2c0) such that for
every ε > 0 there is z̃ ∈ `4+ε with

∑
α |cα(P )z̃α| =∞.

The existence of elements for which the convergence at a certain point
fails is not a isolated phenomenon. Bohnenblust and Hille in [5] solved a long
standing problem on Dirichlet series and, as one of the tools for the solution,
extended this construction of Toeplitz to m-homogeneous polynomials (see
Proposition 3.1).

Recently, the work by Bohnenblust and Hille [5] on Dirichlet series has
resurfaced and attracted the attention of many authors who became inter-
ested in classical problems such as obtaining the optimal values for the con-
stants in the Bohnenblust–Hille and Hardy–Littlewood inequalities, or in
estimating the asymptotic value of the n-dimensional Bohr radius (see, e.g.,
[3, 6, 9]).

Bohnenblust and Hille’s work, beyond inspiring the aforementioned line
of research, also has implications in the study of the analyticity of continuous
m-homogeneous polynomials. Nowadays the set of points on which the power
series expansion of every m-homogeneous polynomial converges is known to
be exactly the space `m−1

2m
,∞ (see [2]). Here we look at the problem from

a different point of view: we are interested in the set of m-homogeneous
polynomials for which there is a point at which the power series expansion
does not converge. Our work here is a contribution to the ongoing search
(see, e.g., [10, 4, 1]) of what are often large subspaces of mathematical objects
enjoying “special” properties in a stronger way. Namely we show that:

Theorem 1.2. For every m ≥ 2, the set of continuous, m-homogeneous
non-analytic polynomials on c0 contains an isomorphic copy of `1.

The main section in this paper, Section 3, is dedicated to the construction
(in full detail) of a linear subspace of polynomials sharing a common vector
for which the analyticity fails (and that is isomorphic to the Banach space
`1). First we provide all the necessary notations and background to follow
our construction.
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2 Basic definitions

A mapping P : c0 → C is a (continuous) m-homogeneous polynomial if
there exists a (continuous) m-linear mapping L : c0 × · · · × c0 → C such
that P (z) = L(z, . . . , z) for every z ∈ c0. It is a well known fact that the
mapping L can be taken to be symmetric (see e.g. [8, Chapter 2]). We denote
by P(mc0) the set of continuous m-homogeneous polynomials on c0, which
endowed with the norm ‖P‖ = supz∈Bc0 |P (z)| is a Banach space. Every
polynomial is going to be assumed to be continuous.
We consider N(N)

0 , the set of multi-indices that eventually become zero. In

other words, if we make the identification Nn
0 = Nn

0 × {0}, then N(N)
0 =⋃∞

n=1 Nn
0 . For each such index α = (α1, . . . , αn, 0, 0, . . .) with |α| := α1 +

· · · + αn = m a polynomial P defines a coefficient through its associated
symmetric m-linear form

cα(P ) =
m!

α1! · · ·αn!
L(e1, α1. . ., e1, e2, α2. . ., e2, . . . , en, αn. . ., en) .

In this way, each m-homogeneous polynomial defines a formal power series

P ∼
∑
α∈N(N)

0
|α|=m

cα(P )zα .

We say that an m-homogeneous polynomial is analytic at z0 ∈ c0 if the corre-
sponding power series converges absolutely, that is if

∑
α∈N(N)

0
|α|=m

|cα(P )zα0 | <∞.

A polynomial is analytic if it is analytic at every z ∈ c0.
Finally, we define the support of a multi-index α ∈ N(N)

0 as suppα := {k ∈
N : αk 6= 0}.

3 Main section

We start with the construction of a continuous m-homogenous polynomial
that fails to be analytic. This whole construction was first presented in [5,
Sections 3 and 4] and a detailed study can be found at [7, pages 70–84]. We
sketch here the proof and point out the facts that will be needed later.

Proposition 3.1. For each m ≥ 2 there exists an m-homogeneous polyno-
mial P ∈ P(mc0) that is not analytic.

Let us note that for m = 1 we have that P(1c0) is just `1, the dual space
of c0. In other words, in this case the coefficients are ci = P (ei) for i ∈ N.
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Then, for each x ∈ c0 we have
∑∞

i=1 ‖cixi‖ ≤ ‖x‖∞
∑∞

i=1 |ci| <∞. So, every
1-homogeneous polynomial is analytic.

Proof. To begin with, we fix m ∈ N and a prime number p with p > m. Let

us consider the p × p matrix M1 = (mrs)r,s =
(
e2πi rs

p

)
r,s

. We now define

M2 = M1 ⊗M1 and, inductively, Mn = M1 ⊗Mn−1 (where ⊗ denotes the
Kronecker product of matrices), for n ≥ 2. Then Mn = (ars)r,s is a pn × pn
matrix that satisfies

pn∑
t=1

artast = pnδrs and |ars| = 1.

With this, for each n ∈ N, we are going to define an m-homogeneous poly-
nomial Qn in pn variables as

Qn(z) =
∑
α∈Np

n

0
|α|=m

cα(Qn)zα,

in the following way. Given a multi-index α = (α1, . . . , αpn) ∈ Npn

0 with |α| =
α1 + · · · + αpn = m, we consider (i1, . . . , im) = (1, α1. . ., 1, 2, α2. . ., 2, . . . , pn, αpn. . .
, pn). If we also denote by Σm the group of permutations of {1, . . . ,m}, the
coefficients of Q are defined to be

cα(Qn) =
1

α1! · · ·αpn !

∑
σ∈Σm

aiσ1iσ2 · · · aiσm−1iσm

The polynomials in the sequence (Qn)n satisfy ‖Qn‖ ≤
(
pn
)m+1

2 and

0 < η = inf
{
|cα(Qn)| : α ∈ Npn

0 , |α| = m, n ∈ N
}

≤ sup
{
|cα(Qn)| : α ∈ Npn

0 , |α| = m, n ∈ N
}
≤ m!

Now, let us consider the decomposition of c0 as c0(`p
n

∞ ) (that is, we decompose
each sequence z ∈ c0 into blocks of increasing length p, p2, p3, . . ., that we
denote by z(n)). Then, we can rewrite every z ∈ c0 as

z =
(
z

(1)
1 , p. . ., z(1)

p︸ ︷︷ ︸
z(1)

, z
(2)
1 , p2. . . . . ., z

(2)

p2︸ ︷︷ ︸
z(2)

, z
(3)
1 , p3. . . . . . . . ., z

(3)

p3︸ ︷︷ ︸
z(3)

, . . . . . . . . .
)

(2)

and then define the m-homogenous polynomial P ∈ P(mc0) by

P (z) =
∞∑
n=1

1

n2
p−n

m+1
2 Qn

(
z(n)
)
. (3)
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We affirm that P is an m-homogeneous polynomial that fails to be analytic:
Let us define the point z̃ at which the monomial series expansion of P does
not converge. Choosing 1/p < b < 1, we define z̃ blockwise as

z̃
(n)
k =

(
b

p

)nm−1
4m

for k = 1, . . . , pn, and n ∈ N. (4)

Clearly z̃ ∈ c0 and, moreover,
∑

α∈Np
n

0 , |α|=m cα(P ) |z̃α| =∞.

We proceed showing that there exists certain m-homogeneous non ana-
lytic polynomials such that no linear combination of them is analytic.

Proposition 3.2. There are non-analytic m-homogeneous polynomials P1,
P2 ∈ P(mc0) such that λP1 + P2 is not analytic for every λ ∈ C.

Proof. First, we are going to block again c0 in a slightly different way from
(2). Instead of taking blocks of length p, p2, p3, . . ., we are going to take two
consecutive blocks of each length

z = (z
(1)
1,1 ,

p. . ., z
(1)
1,p︸ ︷︷ ︸

z
(1)
1

, z
(1)
2,1 ,

p. . ., z
(1)
2,p︸ ︷︷ ︸

z
(1)
2

z
(2)
1,1 ,

p2. . . . . ., z
(2)

1,p2︸ ︷︷ ︸
z
(2)
1

, z
(2)
2,1 ,

p2. . . . . ., z
(2)

2,p2︸ ︷︷ ︸
z
(2)
2

, . . .) .

To be more precise, let us define

bn =
2p(pn−1 − 1)

p− 1
+ 1 and cn = bn + pn for every n ∈ N.

Then each z ∈ c0 is decomposed as z = z1 + z2, where each of these two zj’s
is defined blockwise and the n-th block is given by

z
(n)
1 =

pn−1∑
k=0

zbn+kebn+k and z
(n)
2 =

pn−1∑
k=0

zcn+kecn+k, for every n ∈ N.

The polynomials are then defined as a modification of the original P given
in (3):

P1(z) =
∞∑
n=1

1

n2
p−n

m+1
2 Qn

(
z

(n)
1

)
and P2(z) =

∞∑
n=1

1

n2
p−n

m+1
2 Qn

(
z

(n)
2

)
.

On the one hand, for each fixed N ∈ N we have

N∑
n=1

1

n2
p−n

m+1
2 ‖Qn‖ ≤

N∑
n=1

1

n2
p−n

m+1
2 pn

m+1
2 <

∞∑
n=1

1

n2
<∞, (5)
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that shows, as in the case of P [7, page 82], that P1, P2 ∈ P(mc0). Moreover,
we also have that

max {‖P1‖, ‖P2‖} ≤
π2

6
.

On the other hand, we first have to show that none of these polynomials is
analytic, so we need to find a point for each of them at which the monomial
series expansion does not converge. We are going to produce this point by
alternating two copies of the z̃ already defined in (4) by repeating twice each
one of the blocks; that is, we define w̃ = w̃1+w̃2, where w̃1 and w̃2 are defined
blockwise from z̃ in the following fashion:

w̃1 = (z̃
(1)
1

p. . ., z̃(1)
p︸ ︷︷ ︸

z̃(1)

, 0, p. . ., 0, z̃
(2)
1 , p2. . . . . ., z̃

(2)

p2︸ ︷︷ ︸
z̃(2)

, 0, p2. . . . . ., 0, . . . . . . . . .)

and

w̃2 = (0, p. . ., 0, z̃
(1)
1 , p. . ., z̃(1)

p︸ ︷︷ ︸
z̃(1)

0, p2. . . . . ., 0, z̃
(2)
1 , p2. . . . . ., z̃

(2)

p2︸ ︷︷ ︸
z̃(2)

, . . . . . . . . .)

or, to be more precise,

w̃1 =
∞∑
n=1

pn−1∑
k=0

(
b

p

)nm−1
4m

ebn+k and w̃2 =
∞∑
n=1

pn−1∑
k=0

(
b

p

)nm−1
4m

ecn+k .

Next, defineBn = {bn, . . . , bn + pn − 1} and observe that, by the construction
of the polynomial P1, cα(P1) 6= 0 only if suppα ⊆ Bn for some n. Then we
have∑
α∈N(N)

0
|α|=m

|cα(P1)w̃α| =
∞∑
n=1

∑
α∈N(N)

0
|α|=m

suppα⊆Bn

|cα(P1)w̃α| =
∞∑
n=1

1

n2
p−n

m+1
2

∑
α∈N(N)

0
|α|=m

suppα⊆Bn

|cα(Qn)w̃α|

≥ η
∞∑
n=1

1

n2
p−n

m+1
2

∑
α∈Np

n

0
|α|=m

∣∣z̃(n)
∣∣α ≥ η

m!

∞∑
n=1

1

n2
p−n

m+1
2

(
pn∑
k=1

(
b

p

)nm−1
4m

)m

=
η

m!

∞∑
n=1

1

n2

(
(bp)

m−1
4

)n
and the last series diverges to∞ since bp > 1. With the same argument, using
Cn = {cn, . . . , cn + pn− 1} (observe that now cα(P2) 6= 0 only if suppα ⊆ Cn

6



for some n) we conclude that

∑
α∈N(N)

0
|α|=m

|cα(P2)w̃α| =
∞∑
n=1

∑
α∈N(N)

0
|α|=m

suppα⊆Cn

|cα(P2)w̃α| =∞

Let us note that N =
⋃∞
n=1(Bn ∪ Cn) and that Bi ∩ Cj = ∅ for all i, j; this

means that the coefficients of P1 and of P2 have mutually disjoint supports.
Then for every linear combination we have∑
α∈N(N)

0
|α|=m

|cα(λP1 + P2)w̃α| =
∑
α∈N(N)

0
|α|=m

|λcα(P1) + cα(P2)| |w̃α|

=
∞∑
n=1

∑
α∈N(N)

0
|α|=m

suppα⊆Bn∪Cn

|λcα(P1) + cα(P2)| |w̃α|

=
∞∑
n=1

∑
α∈N(N)

0
|α|=m

suppα⊆Bn

|λ| |cα(P1)w̃α|+
∞∑
n=1

∑
α∈N(N)

0
|α|=m

suppα⊆Cn

|cα(P2)w̃α|

and this shows that λP1 + P2 is not analytic at w̃.

Our aim now is to provide a sequence of non-analytic m-homogeneous
polynomials for which any linear combination is non-analytic. The construc-
tion this time is in some sense a step forward in the philosophy for the case of
two polynomials. We hope that having given the construction in the previous
case helps the reader to understand the general case.

Proposition 3.3. There exists a sequence {Pk}k∈N ⊆ P(mc0) of non-analytic
polynomials such that every

∑N
i=1 λiPi with λi ∈ C for i = 1, . . . , N and

λN 6= 0 is not analytic.

Proof. The idea is quite similar to that of Proposition 3.2: to block c0 in
such a way that we can produce infinitely many copies of P and a vector
that contains infinitely many copies of z̃. What we do is to divide c0 in
blocks, first of length p, then p and p2, then p, p2, p3, then p, p2, p3, p4, and
so on. . . . We will then decompose each z ∈ c0 as

z =
(
z

(1)
1 , z

(1)
2 , z

(2)
1 , z

(1)
3 , z

(2)
2 , z

(3)
1 , z

(1)
4 , z

(2)
3 , z

(3)
2 , z

(4)
1 , . . . . . .

)
,
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where each z
(n)
k is a block of length pn. We locate the starting point of each

of these blocks by defining s
(1)
1 = 1,

s
(1)
k =

(
k∑
i=1

i∑
j=1

pj

)
+ 1

and

s
(1+i)
k−i = s1

k +
i∑

j=1

pj for i = 1, . . . , k − 1.

Then the block z
(n)
k is defined as follows

z
(n)
k =

pn−1∑
i=0

z
s
(n)
k +i

e
s
(n)
k +i

.

Now for each k ∈ N we define the polynomial

Pk(z) =
∞∑
n=1

1

n2
p−n

m+1
2 Qn

(
z

(n)
k

)
.

Just like in Proposition 3.2 we have that Pk ∈ P(mc0) and ‖Pk‖ ≤ π2

6
for

every k ∈ N.
Let us now define the following sets

M
(n)
k :=

{
s

(n)
k , s

(n)
k + 1, . . . , s

(n)
k + pn − 1

}
for every k, n ∈ N. Each M

(n)
k is the support of the block starting at s

(n)
k and

has length pn. Note that all these sets are mutually disjoint. Then we are
going to use M

(n)
k as the support for the n-th block of the k-th copy of z̃; we

define, for each n ∈ N,

ṽk =
∞∑
n=1

∑
j∈M(n)

k

z̃
(n)
j ej =

∞∑
n=1

∑
j∈M(n)

k

(
b

p

)nm−1
4m

ej.

Each one of these ṽ′ks is a copy of z̃, all of them scattered in such a way that
all of them have disjoint support,

ṽ1 = (z̃(1), 0, p. . ., 0, z̃(2), 0, p. . ., 0, 0, p
2
. . ., 0, z̃3, 0, p. . ., 0, 0, p

2
. . ., 0, 0, p

3
. . ., 0, z̃(4) . . .),

ṽ2 = (0, p. . ., 0, z̃(1), 0, p
2
. . ., 0, 0, p. . ., 0, z̃(2), 0, p

3
. . ., 0, 0, p. . ., 0, 0, p

2
. . ., 0, z̃(3), 0, p

4
. . ., 0, . . .),

ṽ3 = (0, p. . ., 0, 0, p. . ., 0, 0, p
2
. . ., 0, z̃(1), 0, p

2
. . ., 0, 0, p

3
. . ., 0, 0, p. . ., 0, z̃(2), 0, p

3
. . ., 0, 0, p

4
. . ., 0, . . .),
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and so on. The idea now is to paste all of these into one single vector ṽ on
which each linear combination of the Pk’s is not analytic. However, if we do
that as it is now we would get infinitely many copies of the block z(1) and
the resulting vector, although in `∞, would not be in c0. We solve this by
weighting the ṽk’s

ṽ =
∞∑
k=1

1

k2
ṽk.

As in Proposition 3.2, none of the polynomials Pk is analytic at ṽ:

∑
α∈N(N)

0
|α|=m

|cα(Pk)ṽ
α| =

∞∑
n=1

∑
α∈N(N)

0
|α|=m

suppα⊆M(n)
k

|cα(Pk)ṽ
α|

=
∞∑
n=1

1

n2
p−n

m+1
2

∑
α∈N(N)

0
|α|=m

suppα⊆M(n)
k

|cα(Qn)ṽα|

≥ η

k2

∞∑
n=1

1

n2
p−n

m+1
2

∑
α∈Np

n

0
|α|=m

∣∣z̃(n)
∣∣α

≥ η

m! k2

∞∑
n=1

1

n2

(
(bp)

m−1
4

)n
,

and the last series diverges to ∞. Again, the fact that all the sets M
(n)
k are
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pairwise disjoint gives that for every λ1, . . . , λN ∈ C we have∑
α∈N(N)

0
|α|=m

∣∣∣cα(∑N
k=1 λkPk

)
ṽα
∣∣∣ =

∑
α∈N(N)

0
|α|=m

∣∣∣∣∣
N∑
k=1

λkcα(Pk)

∣∣∣∣∣ |ṽα|
=
∞∑
n=1

∑
α∈N(N)

0
|α|=m

suppα⊆
⋃N
k=1M

(n)
k

∣∣∣ N∑
k=1

λkcα(Pk)
∣∣∣ |ṽα|

=
N∑
k=1

∞∑
n=1

∑
α∈N(N)

0
|α|=m

suppα⊆M(n)
k

|λk| |cα(Pk)| |ṽα|

=
N∑
k=1

|λk|
∞∑
n=1

∑
α∈N(N)

0
|α|=m

suppα⊆M(n)
k

|cα(Pk)| |ṽα|

≥ η

m!

N∑
k=1

|λk|
k2

∞∑
n=1

1

n2

(
(bp)

m−1
4

)n
=∞ ,

(6)

and this completes the proof.

Now we have at hand all the ingredients we need to prove our main result.

Proof of Theorem 1.2. Consider the sequence of m-homogeneous polynomi-
als {Pk}k given in Proposition 3.3. Just like in (5) we have that ‖Pk‖ ≤ π2

6

for every k and then for each (λk)k ∈ `1 we have that
∑∞

k=1 ‖λkPk‖ ≤
π2

6

∑∞
k=1 |λk| < ∞. Then the series

∑∞
k=1 λkPk converges absolutely, and

hence it converges in the Banach space P(mc0). Therefore it defines an m-
homogeneous polynomial on c0. Then we consider

X =

{
∞∑
k=1

λkPk : (λk)k ∈ `1

}
⊆ P(mc0)

that is clearly isomorphic to `1. Finally, proceeding as in (6) we have∑
α∈N(N)

0
|α|=m

∣∣∣cα (
∑∞

k=1 λkPk) ṽ
α
∣∣∣ ≥ η

m!

∞∑
k=1

|λk|
k2

∞∑
n=1

1

n2

(
(bp)

m−1
4

)n
=∞ ,

which shows that none of the polynomials in X is analytic.
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Remark 3.4. We recall that in our construction in the proof of Proposition
3.3 none of the polynomials Pk is analytic at a particular vector ṽ. A careful
examination of this proof permits us to find a copy of `1 within the set of con-
tinuous m-homogeneous non-analytic polynomials for which the analyticity
fails at an infinitely many vectors. The idea is the following:

Let V be the (infinite dimensional) linear space generated by the polyno-
mials Pk defined in the proof of Proposition 3.3. Let us denote by

ZV = {z ∈ c0 : P is not analytic at z, for every P ∈ V \ {0}} ,

in other words, we consider the set of vectors z ∈ c0 such that no linear
combination of the Pk’s is analytic at z. The proof of that result can be
modified in order to obtain infinitely many vectors having disjoint supports
(call them, for instance, w̃k, k ∈ N). This could be achieved by working with
the original ṽ and modifying it in each case by inserting a suitable number
of zero coordinates. Clearly, any vector w ∈ span{wk : k ∈ N} \ {0} belongs
to ZV , and then the set ZV is lineable. The spirit of this construction would
be the same as in the proof of Proposition 3.3, thus we spare the details of
such a construction here.

References
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