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ABSTRACT 

 The applications of digital video image to the investigation of physical 

phenomena have increased enormously in recent years. The advances in computer 

technology and image recognition techniques allow the analysis of more complex 

problems. In this work we study the movement of a damped coupled oscillation system. 

The motion is considered as a linear combination of the two normal modes, i.e., the 

symmetric and antisymmetric modes. The image of the experiment is recorded with a 

video camera and analyzed by means of software developed in our laboratory. The 

results show a very good agreement with the theory. 
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I. INTRODUCTION 

 Digital techniques have shown to be a very useful tool for the analysis and 

understanding of physical concepts [1-4]. In particular, digital simulations allow the 

visualization of the physical process. In this way, the students can improve their 

knowledge of the real physical process through a model rather than through its oral 

explanation [5-7]. Unfortunately, many simulations used in teaching physics only 

display the end product but not contribute to the understanding of the physical 

phenomena. When using simulations the teacher must be sure that they serve to increase 

the students’ understanding [8]. 

 Video analysis was initially used to investigate simple problems related to 

kinematic concepts [9,10]. The development of point-and-click tools such as 

VideoPointTM and VideoGraphTM allows the quantitative analysis of more complex 

problems [11, 12]. Recent works [13,14], confirm the interest of  video analysis applied 

to more advanced concepts in physics. It has also been proposed as a remote and non 

invasive technique in the area of system identification involving non-linear 

characteristics of mechanical and structural systems [15]. 

 However, the application of video analysis to the investigation of increasingly 

complex problems involves working with a great number of images. In order to reduce 

errors and avoid the excessively tedious process of image processing, new automatic 

image recognition techniques have been developed [15,16]. In this work we analyze a 

mechanical system consisting of two gliders mounted on an air track. Between the 

gliders there is a spring, as well as between the gliders and the fixed extremes of the air 

track. Therefore, the system consists of two coupled oscillators. Recently, a simple 

method to observe normal modes in coupled oscillators has been proposed [17]. This 

method consists of applying a frequency dependent force to the system and using 
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resonance to excite each mode separately. However, it doesn’t allow the analysis of a 

coupled movement generated by an arbitrary combination of the two normal modes. 

This latter case can be studied using video analysis technique that gives the position of 

both gliders every 0.04 seconds. With this technique, the student not only obtains the 

quantitative results, but thanks to the visual display of the process he/she also gains a 

better understanding of the physical phenomenon. We have used standard linear 

correlation [18] as the basis for the detection technique. It is same technique as that used 

to analyze the movement of a body at constant speed and constant acceleration [16]. In 

this case, the positions of more than one object on each image need to be obtained. The 

detection technique has revealed also suitable for this task, opening a new field of 

applications. 

 This paper is organized as follows. The experimental design and the 

measurement techniques are shown in Section II. The theoretical basis of a system of 

coupled oscillators is described in Section III. The experimental results, fitting and 

discussion are explained in Section IV. Finally, concluding remarks are presented in 

Section V. 

 

II. EXPERIMENTAL PROCEDURE 

The experimental arrangement consists of two identical gliders connected to 

each other by a spring and to the confining walls by other two identical springs. The 

gliders are mounted on an air track in which friction can be regulated through the air 

flow (see Fig. 1)  

The digital camera used in the experiments was a Panasonic NV-DS15EG, with 

an exposure time of 1/2000 s and a rate of 25 frames/s providing a time resolution of 

0.04 s. The camera was placed with its axis perpendicular to the movement direction, at 
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a distance of 1.5 m. The video system was PAL (Phase Alternation by Line) that 

produces 720x576 pixel images. We performed the analysis on 512x256 pixel windows, 

thus obtaining a good balance between information accuracy and computational cost. 

 For the localization of the moving objects, we considered each frame as an input 

scene, f(x,y), and used a detached image as the filter for the particular object of interest, 

h(x,y). The correlation function between these functions is given by [16,18]: 
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The maximum of the correlation function (see Fig. 2) corresponds to the location where 

the scene is most similar to the target object. 

When working with digitized images, correlation function involves double 

integrations that require much computation time. However, the process can be 

substantially simplified by using the properties of Fourier transforms. It can be easily 

proved that [19]: 

    ),(),(),( yxhFyxfFFyxg 1   .     (2) 

In this way, the correlation function can be calculated relatively rapidly using the direct 

and inverse Fourier transforms based on Fast Fourier Transform (FFT) algorithms. The 

image recognition software has been developed in VisualBasic and runs on Windows 

platforms. Two extreme positions of the gliders were tested in order to know if the 

system resolution allows the location of both gliders. Fig. 2 shows the correlation 

function at these positions, where the distance between the gliders is maximum (Fig. 2a) 

and minimum (Fig. 2b). In all cases, the system resolution allowed the location of both 

gliders. 
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III. THEORETICAL BASIS 

 Let us consider the system shown in Fig. 1 consisting of two equal masses m 

connected to each other by a spring with elastic constant ki, and to a fixed point by 

similar springs with elastic constant ko. The system is horizontally aligned; let us now 

consider one-dimensional motion along the line connecting the masses. We define the 

coordinates, x1 and x2, as the displacement to the right from equilibrium for gliders 1 

and 2 respectively. If we apply Newton’s law to each mass, we find the following 

equations of motion: 
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where c is the coefficient of the velocity dependent damping force. It is possible to 

uncouple these equations by introducing a new set of coordinates )(
121

xxq   and 

)(
122

xxq  . Then:  
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Each of the two independent equations corresponds to the motion of a damped harmonic 

oscillator. The solution of these equations is: 
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where 22

011   and 22

022    are the angular frequency corresponding to each 

normal mode; and represent the initial phase of each oscillating mode, 1   is 

the relaxation time, and c/(2m) is the damping coefficient. If this coefficient is 

negligible, the angular frequencies are 
m
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IV. RESULTS AND DISCUSSION 

A. Normal modes. 

 First, we tried to reproduce the oscillating normal modes separately. For this 

end, the system was excited in the appropriate way. In Fig. 3 the coordinates q1 and q2 

are plotted as a function of time. Hereafter, the corresponding uncertainty bars of the 

data are not shown in this kind of representation because they have the same size of the 

symbols. Observe in Fig. 3 that the antisymmetric mode is almost negligible. This is 

because the initial displacement of the masses (x01=2 cm, x02=2 cm) is the same, and this 

favors the symmetric mode in which both masses move in the same direction. From the 

fitting of the curve we obtain A1= 58.0(0.4) pixels, 01= 9.11(0.02) rad/s, and 1= -

3.51(0.02) rad where the number in parenthesis is the numerical value of the combined 

standard uncertainty expressed in the same unit of the quoted result. The parameters and 

their uncertainties were obtained using standard least squares method. 

 Fig. 4 shows the corresponding results when the initial displacements favor the 

antisymmetric mode (x01=-2 cm, x02=2 cm). In this case, the difference in the presence 

of both modes is not so remarkable as in the previous situation, maybe due to noise 

effects. From the fitting of the experimental data we obtain A2= 35.6(0.4) pixels,  

02= 16.86(0.04) rad/s, and 2= -3,04(0.02) rad. The theoretical relationship between 

the angular frequencies of the normal modes obtained from the elastic constants of the 

system, ki = 55.3(0.9)N/m and ko = 45.9(0.6)N/m, is )046.0(846.1
k

k
21

o

i
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02 
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This result is in a very good agreement with the value obtained in the video-analysis, 

)006.0(851.1

exp01
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
. In both cases, the value of the combined standard uncertainty 
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has been determined through the law of  propagation of uncertainty [20].  

B. Movement without friction. 

 If the air flow of the air track is high enough, the damping coefficient is very 

small. Figure 5 shows the normal modes in the case of negligible damping coefficient, 

the initial position of the masses being x01=4 cm, and x02=2 cm. From the fitting of both 

curves we obtain A1= 41.7(0.3) pixels, 01= 9.14(0.02) rad/s, and 1= -0.91(0.02) rad for 

the symmetric mode, and A2= 13.8(0.3) pixels, = 16.93(0.04) rad/s, and = -

0.49(0.04) for the antisymmetric mode As it can be seen, the values of  and 02are 

in very good agreement with the frequencies of the two independent normal modes 

obtained in section IV.A. 

C. Damped movement. 

 By reducing the air flow of the air track we have a damped coupled oscillating 

system. Figure 6 shows the normal modes when the initial positions of the masses are  

x01=4 cm, x02=2 cm. From the fitting ofboth curves we obtain A1= 28.5(0.6) pixels, 1= 

9.04(0.02) rad/s, and 1= 2.09(0.03) rad for the symmetric mode, and  

A2= 13.6(0.5) pixels, = 16.84(0.04) rad/s, and = -1.31(0.06) rad for the 

antisymmetric mode. The relaxation time is= 4.3(0.2) s. These results agree with the 

theoretical predictions, as can be seen in Fig. 7; this figure that represents the position of 

each mass as a function of time and the corresponding linear combination of the normal 

modes.  

 

V. CONCLUDING REMARKS 

 Video analysis and simple image recognition technique have proved to be a 

useful method for analyzing damped coupled oscillators. Furtermore, the possibility of 
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following the movement frame by frame opens new ways for the understanding of 

complex physics process. This technique increases the pedagogical efficiency as 

compared to the traditional methods that require more sophisticated explanation to reach 

similar results. 
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FIGURE CAPTIONS 

Figure 1. Experimental arrangement, where the detection windows has been framed. 

The object to be detected is shown in the upper-right corner. 

Figure 2. Correlation function between the input scene and the objects to be detected, 

when the distance between gliders is: (a) maximum and (b) minimum. Axes x and y 

represent pixel position in the detection window. 

Figure 3. Plots of normal coordinates q1 and q2 versus time when the initial conditions 

favor the symmetric mode. 

Figure 4. Plots of normal coordinates q1 and q2 versus time when the initial conditions 

favor the antisymmetric mode. 

Figure 5. Plots of normal coordinates q1 and q2 versus time when there are no friction 

forces. 

Figure 6. Plots of normal coordinates q1 and q2 versus time when damping friction 

forces are present. 

Figure 7. Position of each mass (d1,d2) versus time and the theoretical prediction 

corresponding to linear combination from the normal modes. Taking the origin in the 

left down corner of the window shown in Fig. 1, each mass is located in d1 = 166+x1 

and d2 = 414+x2, respectively. 
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Figure 1 

(J.A. Monsoriu et al.) 
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Figure 2 

(J.A. Monsoriu et al.) 
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Figure 3 

(J.A. Monsoriu et al.) 
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Figure 4 

(J.A. Monsoriu et al.) 
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Figure 5 

(J.A. Monsoriu et al.) 
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Figure 6 

(J.A. Monsoriu et al.) 
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Figure 7 

(J.A. Monsoriu et al.) 


