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Fluoride–induced modulation of ionic transport in asymmetric 
nanopores functionalized with “caged” fluorescein moieties 

Mubarak Ali,a,b*  Ishtiaq Ahmed,c  Patricio Ramirez,d  Saima Nasir,a,b  Javier Cervera,e  Christof M. 
Niemeyer,c  and Wolfgang Ensingerb 

We demonstrate experimentally and theoretically a nanofluidic fluoride sensing device based on a single conical pore 

functionalized with “caged” fluorescein moieties. The nanopore functionalization is based on an amine-terminated 

fluorescein whose phenolic hydroxyl groups are protected with tert-butyldiphenylsilyl (TBDPS) moieties. The protected 

fluorescein (Fcn-TBDPS–NH2) molecules are then immobilized on the nanopore surface via carbodiimide coupling 

chemistry. Exposure to fluoride ions removes the uncharged TBDPS moieties due to the fluoride-promoted cleavage of the 

silicon–oxygen bond, leading to the generation of negatively charged groups on the fluorescein moieties immobilized onto 

the pore surface. The asymmetrical distribution of these groups along the conical nanopore leads to the electrical 

rectification observed in the current–voltage (I–V) curve. On the contrary, other halides and anions are not able to induce 

any significant ionic rectification in the asymmetric pore. In each case, the success of the chemical functionalization and 

deprotection reactions is monitored through the changes observed in the I–V curves before and after the specified reaction 

step. Theoretical results based on the Nernst-Planck and Poisson equations demonstrate further the validity of the 

experimental approach to fluoride-induced modulation of nanopore current rectification behaviour. 

 

Introduction 

During the recent years, the community working in host-guest 
and supramolecular chemistry has paid much attention to 
miniaturize anion sensing devices.1 Anions play a fundamental 
role in a variety of chemical and biological processes. In 
particular, fluoride is considered a small, highly electronegative 
ion with hard Lewis basic nature. In living organisms, fluoride 
plays a pivotal role in cell signaling transductions and also 
induces apoptosis.2 A deficiency or excess of fluoride beyond 
an optimum limit can cause various diseases in human beings.3 
For example, fluoride deficiency can adversely affect the 
human development and led to dental caries and osteoporosis.4 
On the contrary, excessive ingestion of fluoride can cause 
various ailments in humans such as dental and skeletal 
fluorosis, nephrotoxic changes and urolithiasis.5  
To date, different fluorescent and colorimetric chemosensors 
have been designed for the sensing of fluoride anion.1c,4b,6, The 
sensing principle mainly relies on Lewis acid-base interactions, 
metal ion displacement from the metallic complexes and 

fluoride-induced desilyation reaction. While most of the 
reported chemosensors can detect fluoride with high sensitivity 
and specificity, the majority of them are functional only in 
organic solvents or mixed organic-water solutions, which limit 
their use in biological applications. Hence, the design and 
development of a sensing nanodevice that selectively detects 
fluoride under aqueous physiological conditions is still a 
challenge. 
Ion channels and pores regulate the flow of ions across the 
membrane, facilitating the chemical and electrical 
communication with the extracellular environment in living 
organisms.7 The protein ion channels are precisely controlled 
structures with defined interfacial chemistry which have proved 
useful for a variety of applications in nanobiotechnology such 
as sensing and manipulation of single molecules.8 However, the 
fragility and sensitivity of the embedding lipid bilayer restrain 
their suitability in practical cases. Conversely, synthetic 
nanopores fabricated in solid-state and polymeric materials 
have recently attracted interest because their shape, size, and 
surface properties can be tuned on demand.9 Moreover, they 
exhibit more chemical and mechanical robustness compared 
with their biological counterparts. To broaden the scope and 
application of nanoporous systems, a variety of responsive 
molecules and functional groups have been immobilized onto 
the inner pore walls.10 Upon exposure to specific analyte or 
external stimulus, the modified pores undergo changes in their 
effective diameters and surface charge polarity, resulting in the 
variation of ionic flux across the membrane. Thus, nanofluidic 
sensing devices based on nanopores have been employed for 
the detection of a variety of analyte molecules.11 
We demonstrate here a nanofluidic fluoride sensing device 
based on a single asymmetric pore functionalized with “caged” 
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1H NMR (500 MHz, CD3OD, mixture of isomers): δ 1.23-1.28 
(m, 4H), 1.32-1.37 (m, 4H), 1.39 (s, 9H), 1.40 (s, 9H), 1.44-
1.50 (m, 4H), 1.60-1.65 (m, 4H), 2.97 (t, J = 6.9 Hz, 2H), 3.03 
(t, J = 6.9 Hz, 2H), 6.51-6.56 (m, 4H) 6.58-6.63 (m, 4H), 6.70-
6.74 (m, 4H), 7.28 (d, J = 8.2 Hz, 1H), 7.39-7.48 (m, 2H), 7.66 
(s, 1H), 7.72 (d, J = 8.2 Hz, 1H), 7.81 (d, J = 8.2 Hz, 1H), 7.94 
(s, 1H), 8.05 (d, J = 8.2 Hz, 1H), 8.12 (dd, J = 1.69, 8.2 Hz, 
1H), 8.20 (dd, J = 1.69, 8.2 Hz, 1H), 8.44 (br s, 1H). 
13CNMR (125 MHz, CD3OD, mixture of isomers): δ 29.9, 
30.1, 30.2, 30.3, 31.5, 32.7, 32.9, 33.4, 34.4, 39.7, 43.7, 43.8, 
61.0, 78.1, 82.4, 106.3, 114.3, 116.4, 120.9, 126.6, 127.5, 
128.3, 128.8, 130.0, 130.7, 131.1, 132.1, 132.7, 132.8, 138.1, 
140.4, 144.9, 156.6, 156.9, 158.9, 161.0, 161.1, 163.9, 164.0, 
167.4, 170.5, 170.8, 173.2. 
HRMS-FAB: calcd for C32H34N2O8 [M+H]+ 575.2391, found 
[M+H]+ 575.2388 
 
Synthesis of compound 3 
The hydroxyl groups on fluorescein derivative (2) were 
protected with tert-butylchlorodiphenylsilane (TBDPSCl) via 
silylation reaction.14 To a solution of compound (2) (300 mg, 
0.52 mmol) in anhydrous DMF (10 ml), imidazole (177 mg, 
2.61 mmol) was added. The mixture was stirred under a 
nitrogen atmosphere at room temperature. After 15 min, 
TBDPSCl (0.55 mL, 2.09 mmol) was added dropwise. The 
reaction mixture was allowed to stir at room temperature 
overnight. The solvent was evaporated under reduced pressure 
to give a yellow residue which was purified by silica gel 
column chromatography eluting with pure dichloromethane, 
increasing to 2% methanol in dichloromethane to afford 
TBDPS boc-protected fluorescein derivative (3) as yellow oil 
(466 mg, 85%).  
 
1H NMR (500 MHz, CDCl3, mixture of isomers):δ 1.01-1.21 
(m, 36H), 1.32-1.38 (m, 4H), 1.41-1.43 (s, 18H), 1.43-1.50 (m, 
4H), 1.53-1.66 (m, 4H), 1.60-1.65 (m, 4H), 3.12 (t, J = 6.9 Hz, 
2H), 3.38-3.48 (m, 4H), 6.35-6.46 (m, 7H) 6.57-6.65 (m, 3H), 
7.34-7.41 (m, 16H), 7.40-7.45 (m, 8H), 7.66-7.72 (m, 14H), 
8.17-8.20 (m, 1H), 8.34 (br s, 1H). 
13CNMR (125 MHz, CDCl3, mixture of isomers):δ 26.4, 28.4, 
30.0, 31.4, 39.7, 39.9, 79.0, 83.5, 107.4, 107.5, 111.1, 116.2, 
127.6, 127.9, 128, 6, 128.7, 129.4, 130.1, 132.1, 134.8, 135.3, 
136.7, 141.0, 152.0, 153.2, 155.2, 156.2, 157.4, 157.5, 165.7, 
168.7.  
HRMS-FAB: calcd for C64H71N2O8Si2 [M+H]+ 1051.4744, 
found [M+H]+ 1051.4742 
 
Synthesis of compound (4) 
Trifluoroacetic acid (TFA) (2 mL) was added in a solution of 
compound (3) (100 mg) in dichloromethane (12 mL) at 0 oC. 
The reaction mixture was stirred at room temperature until TLC 
showed completion of the reaction (12 h). Then 
dichloromethane (10 mL) was added and the solvent was 
evaporated under reduced pressure. In order to remove the 
traces of TFA, the residue was further co-evaporated with 
dichloromethane (3x15 mL) and toluene (1x10 mL) to obtain 
TBDPS protected free amino terminated fluorescein (4) as 
yellow thick oil (82 mg, 91 %). 
 
1H NMR (500 MHz, CD3OD, mixture of isomers): δ 1.02-1.04 
(m, 42H), 1.08-1.12 (m, 4H), 1. 61-1.24 (m, 6H), 1.41-1.53 (m, 
8H), 1.60-1.76 (m, 8H), 2.89-2.96 (m, 4H), 3.37 (t, J = 7.1 Hz, 
2H), 3.49 (t, J = 7.1 Hz, 2H), 3.60-3.66 (m, 2H), 3.71-3.78 (m, 
2H) 6.82-6.86 (m, 3H) 6.97-7.02 (m, 6H), 7.35-7.44 (m, 28H), 
7.67-7.70 (m, 6H), 7.73-7.75 (m, 14H), 8.20-8.28 (m, 2H). 

13CNMR (125 MHz, CD3OD, mixture of isomers): δ 25.8, 
27.0, 27.1, 28.7, 28.8, 30.2, 39.2, 39.5, , 83.1, 102.1, 112.0, 
113.5, 114.3, 114.9, 115.7, 116.6, 118.9, 127.1, 127.4, 129.0,  
129.4, 133.2, 134.5, 135.1, 135.8, 158.6, 158.9, 159.2, 159.5, 
166.6, 166.8.  
HRMS-FAB: calcd for C59H63N2O6Si2 [M+H]+ 951.4146, 
found [M+H]+ 951.4147. 

Chemical functionalization of nanopore 

The carboxyl groups exposed on the pore surface were first 
converted into amine-reactive esters through carbodiimide 
coupling chemistry. To this end, the track-etched single-pore 
membrane was immersed in an ethanol solution containing 
EDC (100 mM) and PFP (200 mM) at room temperature. The 
activation process was carried out for 1 h. The activated 
membrane was washed with ethanol several times. Then, the 
activated pore was dipped in Fcn-TBDPS–NH2 (10mM) 
solution prepared in anhydrous ethanol for 15 h. During this 
reaction period, amine-reactive PFP-esters were covalently 
coupled with terminal amine group of the “caged” fluorescein. 
Subsequently, the modified pore was washed thoroughly with 
ethanol followed by careful rinsing with deionized water.  

Current–voltage measurements 

The unmodified and modified pores were characterized by 
measuring the current–voltage (I–V) curves before and after 
functionalization. To this end, the single-pore membrane was 
fixed between the two halves of the conductivity cell. An 
electrolyte (0.1M KCl) prepared in 10 mM tric-buffer (pH 7.6), 
was filled on both sides of the membrane. An Ag/AgCl 
electrode was placed into each half-cell solution and the ionic 
current flowing through the single pore membrane was 
measured with a picoammeter/voltage source (Keithley 6487, 
Keithley Instruments, Cleveland, OH). The ground electrode 
was placed on the base opening side of the asymmetric pore 
and the I–V curves were recorded by applying a scanning 
triangle voltage signal from +2 to –2 V across the membrane. 
The 1 mM solutions of various anions (TBA+ and Na+ salts) 
were prepared in a 0.1 M KCl solution with 10 mM tric-buffer 
(pH 7.6) and the corresponding I–V curves were recorded under 
symmetric electrolyte conditions. 

Results and discussion 

The reaction scheme for the synthesis of “caged” 
aminofluorescein (Fcn-TBDPS–NH2) is shown in Fig. 1A. 
Firstly, the fluorescein derivate (2) was synthesized by covalent 
coupling of commercially available 5(6)-carboxyfluorescein (1) 
and N-boc-1,6-hexanediamine was performed in the presence of 
EDC, HOBt and DIPEA in anhydrous DMF overnight. Then, the 
protection of the phenolic hydroxyl groups was achieved through 
silylation reaction using imidazole and TBDPSCl in dried DMF, 
resulting in the TBDPS-protected fluorescein derivate (3). 
Susequently, deprotection of N-boc groups was achieved by 
using trifluoroacetic acid (TFA) in dichloromethane (DCM) to 
afford TBDPS-protected aminofluorescein (4). The chemical 
structures of fluorescein derivatives were characterized through 
1H NMR, 13CNMR and HRMS-FAB techniques. 

Single asymmetric nanopores were fabricated in 12 µm thick 
polyethylene terephthalate (PET) membranes irradiated with 
swift heavy ions through the well-established asymmetric track-
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etching technique.56 The asymmetric nanopores contain tip 
opening and base openings on the side of the membrane facing 
stopping and etching solutions, respectively. Due to chemical 
etching of the ion tracks, carboxylic acid (–COOH) groups are 
generated on the pore surface. These groups are employed to 
modulate the pore surface chemical properties through amide 
coupling of amine-terminated molecules. 
 Figure 1B shows the covalent attachment of Fcn-TBDPS–NH2 
molecules onto the pore surface. Firstly, the carboxylic acid 
groups on the pore surface were activated by exposing the single-
pore membrane to ethanolic solution of EDC and 
pentafluorophenol (PFP), resulting in the formation of amine-
reactive PFP reactive-ester on the pore walls. Subsequently, the 
PFP-reactive intermediate was covalently attached with the 
terminal-amine group of Fcn-TBDPS–NH2 molecules. 
 To demonstrate the success of chemical functionalization, the 
I–V curves of the single nanopore were measured before and 
after modification. The membrane was assembled between the 
two chambers of the conductivity cell. The electrolyte (0.1M 
KCl) solution prepared in tric-buffer (10 mM; pH 7.6) was filled 
on both sides of the conical nanopore and the electrodes on each 
side of the nanopore were arranged in such a way that high 
currents at positive voltages and low currents at negative 
voltages were obtained. Figure 2 shows the resulting I–V curves 
before and after the attachment of “caged” fluorescein moieties. 
Previous experimental10,11 and theoretical15 studies have proved 
that the as-prepared single conical nanopores exhibit cation-
selectivity and rectify the ion current (i.e., cations preferentially 
flow from the tip towards the base opening) due to presence of 
ionized –COO¯ groups on the pore surface. When a potential is 
applied across the membrane, the current rectification is a 
consequence of the combined effects of geometry and 
electrostatic asymmetries. As expected, immobilization of 
“caged” fluorescein resulted in the loss of pore surface charge 
due to the presence of uncharged TBDPS moieties. Eventually, 
the modified pore behaved like an ohmic resistor as evidenced 
from the the I–V curve. Moreover, the rectification degree (frec) 
of the conical nanopore is directly related to the magnitude of the 
surface charges. In this case, frec is obtained from the ratio of 
positive and negative currents at 2 V. After the pore 
modification, frec decreases from ~ 8.8 to 1.6, confirming further 
the successful anchoring of “cage” fluorescein chains on the pore 
surface. The theoretical curves of Figure 2 were calculated using 
a continuous Poisson-Nernst-Planck (PNP) model previously 
developed, which allows for the calculation of the ionic fluxes at 
a given applied voltage. The model parameters to be determined 
are the radii of the small and large pore openings, aL and aR, 
respectively, and the surface concentration of fixed charges on 
the pore wall, . The radius of the large opening was obtained by 
AFM techniques using a membrane multipore sample etched at 
the same time as the single pore sample employed in the 
experiments. The radius of the small opening was calculated 
from the I–V curve of the unmodified pore measured at 1 M KCl 
concentration and small voltages. Under these conditions, the 
mobile charges screen the fixed charge groups ( = 0) and the I–
V curve is approximately linear. The results obtained using this 
approach were aL =10 nm and aR = 250 nm. Once the pore radii 
were obtained, the only remaining model parameter  was 
calculated by fitting the experimental curves to the theory. In the 

case of the single conical pore of Fig. 2, the surface charges 
obtained were  = 0.5 e/nm2 and  = 0.02 e/nm2 before and after 
the immobilization of “caged” fluorescein moieties, respectively, 
were e is the elementary charge. 

 

Fig. 2 Experimental and theoretical I–V characteristics of the single conical 
pore before (black) and after (red) the immobilization of “caged” fluorescein 
moieties. The experimental I–V curves are recorded in 0.1 M KCl (tric-
buffer; pH 7.6) solution. The radii of the small and large pore openings are aL 
= 10 and aR = 250 nm, respectively. The inset shows the rectifications ratios 
(frec) before and after pore modification. 

 

 After functionalization, we proceeded to study the fluoride-
promoted cleavage of tert-butyldiphenylsilyl (TBDPS) moieties 
from the “caged” fluorescein chains immobilized on the pore 
surface. In the previously reported fluoride sensing systems, 
TBDPS groups have been employed for the protection of 
hydroxyl-containing compounds which can be easily and 
irreversibly removed with fluoride ions.5a,16 The deprotection of 
TBDPS was achieved through the formation of Si–F bond 
(TBDPS–F) at the expense of Si–O bond cleavage because of the 
unique interaction between the Lewis base (fluoride) and acid 
(silicon center). Keeping in mind the selective fluoride-induced 
cleavage of Si–O bond, the modified nanopore was exposed to an 
electrolyte solution containing various halides 
(tetrabutylammonium salt, TBA+) including fluoride (F–), 
chloride (Cl–), bromide (Br–) and iodide (I–), separately. Figure 
3B shows the I–V characteristics of the modified pore before and 
after exposing to halide solutions. For the Cl–, Br– and I– ions, we 
did not observe any significant change in the I–V curves. On the 
contrary, upon exposure to F–, the pore exhibits high ionic 
current rectification (Fig. 3). It is known that fluoride anions 
selectively break the Si–O bonds and then the uncharged TBDPS 
moieties are detached from the pore surface. This resulted in the 
generation of phenolic (–PhOH) and carboxylic (–COOH) acid 
functionalities on the fluorescein moieties. Under our 
experimental conditions, the exposed phenolate (–PhO¯) and 
carboxylate (–COO¯) groups impart negative charge to the pore 
walls, resulting in current rectification because of the selective 
transport of cations. This fact shows that on exposure to fluoride, 
the inner pore was switched from a hydrophobic and uncharged 
non-conductive state to a hydrophilic and charged conductive 
state. Thus, the fluoride-induced changes in the surface polarity 
modulate the permselective behavior of the pore. After fluoride 
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Fig. 5 a) I–V characteristics of the single conical pore measured in 0.1M 

KCl (pH 7.6) solution before (black) and after (red) the immobilization 

of “caged” fluorescein moieties. The radii of small and large pore 

openings are 8 and 280 nm, respectively. b) I–V characteristics of the 

modified pore before (blank) and after the addition of various anions 

(sodium salts) in the electrolyte solution separately. 

 
 In addition to TBA+ salts of halides, we have also checked the 
desilylation of “caged” fluorescein chains with sodium salts of 
fluoride (F–), chloride (Cl–), bromide (Br–) and iodide (I–) as well 
as other common anions such as sulphate (SO4

2–), nitrate (NO3
–), 

acetate (CH3COO–), bicarbonate (HCO3
–) and hydrogen 

phosphate (HPO4
–). Figure 5A shows the I–V curves of another 

conical nanopore before and after the immobilization of “caged” 
fluorescein chains. Because of the neutral nature of the attached 
fluorescein moieties, the pore became nonselective (linear I–V 
behavior) after modification. To check the sensitivity of the 
system, the I–V curves of the modified pore were recorded in the 
presence of various anions (sodium salts) in the electrolyte 
solution separately. From Fig. 5B, addition of Cl–, Br–, I–, SO4

2–, 
NO3

–, CH3COO–, HCO3
– and HPO4

– in the electolyte solution did 
not cause any change in the I–V characteristics of the modified 
pore. On the contrary, exposure to fluoride ion led to a 
significant change in the I–V behavior: current rectification was 
observed due to the fluoride mediated hydrolysis of silyl ether 
and the concomitant emergence of negatively charged phenolate 
and carboxylate groups on the fluorescein moieties. These results 
confirmed further that the sensor exhibits excellent selectivity 
towards fluoride over other competitive anions. 

Conclusions 

 

Anions play a crucial role in chemical and biological processes 
and, in particular, fluoride is involved in cell signaling and 
transduction. Sensing devices that are functional only in organic 
solvents or mixed organic-water solutions have a limited use in 
biological applications. Other sensors based on ion channels 
inserted in lipid bilayers are not so robust as synthetic pores. We 
have designed a sensing nanodevice that selectively detects 
fluoride under physiological conditions. 

In particular, we have demonstrated experimentally and 
theoretically a nanofluidic fluoride sensing device based on a 
single conical pore functionalized with “caged” fluorescein 
moieties. The nanopore functionalization is based on an amine-
terminated fluorescein whose phenolic hydroxyl groups are 
protected with tert-butyldiphenylsilyl moieties. The protected 
fluorescein molecules are then immobilized on the nanopore 
surface via carbodiimide coupling chemistry. The asymmetrical 
distribution of these groups along the conical nanopore leads to 
the electrical rectification observed in the I-V curve. On the 
contrary, other halides and anions are not able to induce any 
significant ionic rectification in the asymmetric pore. Theoretical 
results based on the Nernst-Planck and Poisson equations 
confirm further the validity of the experimental approach to 
fluoride-induced nanopore modulation. 
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