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Abstract 14 

A novel BNT-BKT-BT piezoelectric ceramic immunosensor, tested for quantification of 15 

the pesticide carbaryl is here presented. The measuring format was based on a competitive 16 

immunoassay of immobilized conjugate using monoclonal antibodies (MAbs) as specific 17 

immunoreagent. The immunosensor is able to detect concentrations of the analyte from one 18 

and up to three orders of magnitude below the reported values of high- and low- frequency 19 

quartz crystal commercial resonators (HFF-QCM and QCM), respectively. Furthermore, 20 

the minimum content of quantified carbaryl is 0.11 μg L
-1

, which is clearly lower than 21 

reported values of any commercial quartz-based biosensors. Such measurement 22 

characteristics are only possible due to the high electromechanical coupling factor (kt) of 23 

the Bi-based piezoelectric ceramic, approaching the commercial QCM, HFF-QCM, 24 

ELISA´s technique and strongly enhancing the sensitivity in the immunoassay. 25 
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1.   Introduction 27 

Further progress in medical diagnosis, drug discovery, biotechnology and environmental 28 

control require more and more selective and sensitive measurements. During the last 20 29 

years, several methods have been developed, including immunological methods, 30 

polymerase chain reaction (PCR) and biosensors [1]. Currently, both enzyme-linked 31 

immunosorbent assays (ELISA) and immunosensors [2] are the most common 32 

immunoassays. The ELISA method uses a biochemical recognition reagent that could 33 

compromise the biochemical activity [3,4]. A label-free immunosensor combines the 34 

selectivity of the immunological interactions with the high sensitivity of the electronic 35 

signal transducer [5–7]. Both are typically used for the monitoring of low molecular weight 36 

compounds in analytical devices such as impedance spectroscopy, surface plasmon 37 

resonance (SPR), cantilever-based, piezoelectric-based, among others [8]. 38 

A piezoelectric immunosensor works as a transducer through the resonance frequency, that 39 

is principally determined by the thickness of the transducer, which itself defines the 40 

sensitivity of the assay [9–11]. The transducer element commonly works in the micro-41 

gravimetric mode and has been used as piezoelectric sensor since Günther Sauerbrey 42 

discovered the relationship between the mass deposited/absorbed in the surface of the 43 

material and variations in frequency [12]. These sensors are suitable for the detection of a 44 

broad range of analytes including bacteria and eukaryotic cells [10,13], viruses [14,15], 45 

proteins [16], nucleic acids [17] and small molecules such as drugs, hormones and 46 

pesticides [18,19] by using recognition ligands such as antibodies, aptamers (DNA or RNA 47 

molecules) and peptides that bind specifically and with high affinity to the analyte. The 48 

antibodies are the most commonly used, but the advances in selection methods for aptamers 49 

(SELEX) and peptides (phage and yeast display) provides alternatives, principally when the 50 

target molecules are not immunogenic, and the antibodies are difficult to generate [8]. 51 

Particularly, the pesticides are potentially harmful to human’s health and the environment 52 

[20]. The minimum allowed pesticide concentration in water intended for human 53 

consumption is around 0.10 μgL
-1

. There are several reports to detect low concentrations of 54 

dangerous pesticides through different immunological techniques such as, membrane-based 55 

competitive enzyme immunoassays in flow through for carbaryl, with a limit of detection 56 



(LOD) of 10 g L
-1 

[21], membrane-based in flow through / lateral flow for carbaryl and 57 

endosulfan with LODs of 10 μg L
-1

 and 1 μg L
-1

 respectively [22], a rapid enzyme 58 

immunoassay using 8-well coated stripes for carbaryl and methoprene with LODs of 1.09 59 

mg L
-1 

and 0.99 mg L
-1

 respectively, a BELISA assay based on molecularly imprinted 60 

polymers on paper for carbaryl detection with a sensitivity (IC50) of 0.116 mg L
-1

 [23], 61 

among others. The allowed pesticide concentration is also challenging to measure or even 62 

detect with the commercially available quartz-based biosensors [24–26], which are also the 63 

most commonly used piezoelectric transducers [11,27–29]. Based on Marrazza´s review 64 

about piezoelectric biosensors for organophosphate and carbamate pesticides, different 65 

efforts are currently being undertaken in several research groups to improve the limit of 66 

detection of QCM-based biosensors [30]. The piezoelectric biosensors are promising 67 

candidates to detect pesticides, seeking to enhance LOD by varying their working 68 

frequencies [31–33]. For instance, March et al. in 2009 [34] reported the use of a quartz-69 

based piezoelectric immunosensor for the detection of the pesticide carbaryl and the 70 

metabolite 3,5,6-trichloro-2-pyridinol (TCP), based on the immobilization of the hapten - 71 

conjugate and monoclonal antibodies. This type of immunoassay evidenced to be between 72 

10 to 100 times more sensitive compared to other biosensing techniques based on the 73 

inhibition of the enzyme acetylcholinesterase [34]. Subsequently, the same authors 74 

proposed a new electronic characterization approach based on the fixed-frequency phase-75 

shift measurement technique previously described in Montagut et al. 2011 [2], to obtain a 76 

high-frequency quartz crystal immunosensor (HFF-QCM) as an alternative to increase the 77 

analytical performance and versatility of these sensors [35]. The results of the new high-78 

frequency sensor (100 MHz) were compared with those of low-frequency (9 MHz) and 79 

evidenced an improvement in sensitivity and LOD. As mentioned before, sensitivity 80 

depends of the area of the electrodes and resonance frequency, the latter is directly affected 81 

by the thickness of the transducer. Nevertheless, reducing the thickness of a quartz crystal 82 

biosensor has a natural limit, since the preparation of thinner and smaller quartz-based 83 

transducers becomes increasingly challenging [36,37]. Thus, piezoelectric ceramic 84 

resonators are emerging as an alternative, offering advantages in manufacturing and costs 85 

due their multifunctional characteristics. However, biosensing applications have been rarely 86 

explored by polycrystalline piezoelectric ceramic transducers, such as lead zirconate 87 



titanate ceramics (PZT) due to its remarkable ferro/piezoelectric properties [38–41]. There 88 

are few reports claiming that PZT-based piezoelectric ceramics were successfully used as 89 

immunosensors, e.g. working as low-frequency resonators (< 200 kHz), exhibiting a narrow 90 

range for detection of the prostate-specific antigen (PSA) by frequency shifts [39] and 91 

quantification of fructose in aqueous solution [40]. A high-frequency (40 MHz) PZT-based 92 

biosensor  has been reported to detect PSA and alpha-fetoprotein (AFP), with LODs around 93 

0.25 ng L
-1

 [38]. Moreover, PZT-based ceramics were also used as mass sensors to measure 94 

the intraocular pressure in an in vitro pig eye [41]. 95 

However, the use of PZT is controversial because of its toxicity due to the high PbO vapor 96 

pressure during sintering steps of functional devices [42,43], as well as its instability when 97 

used or released in aqueous environments [44]. Apart from the well-known barium titanate 98 

BaTiO3 (BT), other lead-free perovskites are considered as candidates to replace PZT 99 

systems [45–47], such as bismuth-sodium titanate (Bi0.5Na0.5)TiO3 (BNT), bismuth-100 

potassium titanate (Bi0.5K0.5)TiO3 (BKT) and their respectively quasi-binary and quasi-101 

ternary combinations with BT, which are well described elsewhere [48–50]. The reported 102 

piezoelectric properties from the ternary system BNT-BK-BT are already comparable with 103 

PZT [48,51]. Despite the lead-free piezoelectric bismuth-based ceramics already have 104 

shown adequate properties to replace lead-based materials, there are surprisingly no reports 105 

in the literature on their use in biosensing applications.  106 

In this work, a lead-free bismuth-based piezoelectric ceramic with high electromechanical 107 

properties was previously fabricated following a method based on mixed oxides and 108 

carbonates and subsequently solid state reaction [52]. The sintered ceramic was thereafter 109 

conditioned to develop a novel immunosensor for a typical dangerous pesticide: The N-110 

methylcarbamate insecticide carbaryl. A preliminary carbaryl calibration curve was 111 

obtained from competitive immunoassays after functionalization and immobilization of the 112 

gold deposited layer on the surface of the ceramic. In addition, the lead-free ceramic 113 

biosensor was compared with low (QCM) and high-frequency (HFF-QCM) commercial 114 

quartz crystals. Summarized details of the analytical parameters of interest such as LOD, I50 115 

and working range are here presented and discussed.  116 

 117 



2.   Materials and methods 118 

2.1 Ceramic preparation 119 

Highly dense lead-free piezoelectric ceramics were prepared in a composition of 120 

95(Bi0.5Na0.5)TiO3 + 2.5(Bi0.5K0.5)TiO3 + 2.5(BaTiO3) by mixing commercial oxides and 121 

carbonates such as Bi2O3, TiO2, BaCO3 (Sigma Aldrich, St. Louis, MO, USA), Na2CO3 122 

(Meyer, CDMX, Mexico), and K2CO3-1.5H2O (J.T. Baker, J. T. Baker Chemical, 123 

Phillipsburg, NJ, USA), all of them with purity over 99.5 %. Stoichiometric amounts of the 124 

mixed oxides were ball milled in a planetary system with methanol and Y2O3 - stabilized 125 

zirconia balls as grinding media based on 2:1 and 10:1 methanol (mL) to powder (g) and 126 

ball to powder ratio, respectively. Furthermore, mixed powders were dried at 100 ºC for 24 127 

h and subsequently calcined at 920 ºC for 5 h. Thereafter, the calcined powder was 128 

manually milled in a mortar for 10 minutes. This calcination procedure was carried out by 129 

triplicate to assure a full solid-state reaction for the synthesis of the Perovskite. 130 

An additional ball milling step using a SPEX 8000D mixer mill was undertaken and the 131 

product was sieved with a 44 m mesh. Thereafter, disc-shaped green samples were 132 

uniaxial pressed with 3.4 MPa using a hardened steel die of 16.5 mm in diameter and then 133 

sintered at 1120 ºC for 5 h. Finally, the thickness of sintered ceramics was reduced to a 270 134 

m. Gold electrodes were deposited on sintered ceramics by a mini-sputtering system 135 

(LVC-76, Plasma Sciences). 136 

 137 

2.2 Sample Characterization. 138 

The crystalline structure of the sintered samples was characterized by X-ray diffraction by 139 

using a Rigaku Dmax 2100 diffractometer (Rigaku Corp, Tokyo, Japan), CuKα radiation 140 

(λ = 1.  0   ) and a step size of 0.02◦. 141 

The microstructure of sintered ceramics was recorded using a field emission scanning 142 

electron microscope, FESEM JEOL 7610F (Tokyo, Japan). 143 

Ceramic transducers were obtained after poling at room temperature, applying an electric 144 

field of 50 kV cm
-1

 using a voltage direct current (VDC) source at 1.4 kV for 1 h, 145 

embedded in silicone oil to prevent dielectric breakdown. Piezoelectric coefficient (d33), 146 



capacitance (C0) and dissipation factor (tan δ) were measured in the transducers using a 147 

piezometer device (Piezotest PM300). The electric minimum impedance (Zmin) in the 148 

resonance (fr) – antiresonance (fa) frequencies and conductance (G) in thickness mode were 149 

obtained by using a Keysight E4990A impedance analyzer. The quality factor (Qm) and 150 

electromechanical coupling thickness factor (kt) constants were calculated according to 151 

following expressions: 152 

   
 

          
 

Eq. (1) 

    
   
   

    
 

 

       

  
  

Eq. (2) 

Ceramic transducers were placed in a test flow cell and subsequently analyzed in an 153 

acoustic platform from Advanced Wave Sensors S.L. (AWSensors). Conductance were 154 

measured in dry and at continuous water flow of 20 µL min
-1

. 155 

2.3. Ceramic biosensor prototype  156 

Before transducer functionalization, a cleaning protocol to eliminate the traces of dielectric 157 

oil from the polarization process on the piezoelectric ceramics was carried out. First, the 158 

sensors were immersed for 5 min in a solution of 25 % NH4OH in distilled water, at 75 ºC 159 

with continuous magnetic stirring. Thereafter, the ceramic was subjected to the following 160 

cleaning sequence: rinsing with bi-distilled water and ethanol, drying with nitrogen gas, 161 

exposure to UV radiation/ozone in a ProCleaner device (Bioforce Nanosciences) for 20 162 

min, and a final rinsing step. After the cleaning protocol a transducer functionalization and 163 

immobilization protocols were undertaken, which are schematically shown in figure 1. 164 

2.3.1 Transducer functionalization  165 

The immunoreagents used in the immunosensor consisted of a protein-hapten conjugate 166 

(BSA-CNH) for covalent immobilization and a monoclonal antibody (MAb: LIB-CNH45) 167 

for the specific immunoassay (Figure 1a), both prepared at Ci2B (UPV) as previously 168 

described [20]. 169 



The ceramic sensors surface functionalization was performed through a mixed self-170 

assembled monolayer (mSAM) composed by alkane thiols as intermediate layers (Figure 171 

1a), following slight modification of the protocols reported elsewhere [34,35]. Briefly, 172 

thiolated compounds for the mSAM formation were 11-Mercapto-1-decanol (MUOH) and 173 

16-Mercaptohexadecanoic acid (MHDA) (Sigma-Aldrich), at a 50:1 ratio and a total 174 

concentration of 10 mM in ethanol. BSA-CNH conjugate in 0.1 M sodium phosphate 175 

buffer, pH 7.5, was assayed at 0, 0.2, 0.5 and 1 mg mL
-1

 concentrations and it was 176 

incubated for 2.5 h to allow covalent immobilization (Figure 1b). Finally, sensors were air-177 

dried and stored at 4 ºC.  178 

2.3.2       Immunoassay protocol 179 

Commercial carbaryl pesticide (Dr. Ehrenstorfer-GmbH) was used as a contaminant 180 

reference model analyte. The working conditions to quantify carbaryl with 9 MHz quartz 181 

crystal sensors were previously reported [34]. 182 

A 1 mM stock solution of carbaryl was prepared in dimethylformamide and stored at -20 183 

ºC. After that, carbaryl standard solutions ranging from 4000 to 4x10
-4

 µgL
-1

 were 184 

prepared by serial dilutions in PBS (10 mM phosphate buffer solution, 0.9 % NaCl, pH 185 

7.4). The working buffer consisting of PBST (PBS containing 0.005 % of surfactant 186 

Tween-20) was flowed through the sensor to reach a baseline. A suitable baseline was 187 

considered when the sensor signal (phase variation at fixed fundamental frequency ∆uɸ)  188 

were lower than 1 mVmin
-1

. 189 

Carbaryl standard solutions (375 µL) were mixed with an equal volume of LIB-CNH45 190 

monoclonal antibody to carbaryl (10 µLmL
-1

) and subsequently incubated for 1 h at 25 ºC 191 

to perform the competitive immunoassays (Figure 1c,f). Thereafter, 2 0 μL of the pre-192 

incubated sample was injected and allowed to interact with the functionalized sensor 193 

surface for 20 min, with a continuous working buffer flow rate of 20 µLmin
-1

 (Figure 194 

1d,g). All standard concentrations were run at least in duplicate. 195 

The regeneration of the biosensor surface was performed with 0.1 M HCl pumped at 250 196 

µLmin
-1 

for 4 min, followed by working buffer at 250 µLmin
-1

 for 5 min to break the 197 



antibody-hapten conjugate binding. Then the flow rate was re-established to 20 µLmin
-1 

to 198 

recover the baseline. 199 

Specific analytical parameters of the carbaryl standard calibration curve were calculated by 200 

plotting the phase shift vs analyte concentration, and fitting the experimental points to the 201 

following four-parameter logistic equation (Eq. 3), using Sigmaplot 
® 

software: 202 

  203 

    
   

   
 
  

  
Eq. (3) 

where x and y are the analyte concentration and the assay signal (The normalized phase 204 

voltage variation 100x ∆uɸ/∆uɸ0 where ∆uɸ0 is the phase voltage variation at zero analyte 205 

concentration, or maximum signal), respectively. A is the maximum asymptote (maximum 206 

signal in the absence of analyte), B is the slope of the sigmoidal curve at the inflection point 207 

C, the latter represents the analyte concentration providing 50 % of inhibition (I50 value), 208 

and D is the minimum asymptote (minimum signal at saturating analyte concentrations) 209 

2.3.3 Acoustic sensor platform (AWS A20-F20) 210 

For the immunochemical assays, a platform from AWSensors including AWS-A20 and 211 

AWS-F20 research and fluidic modules was used. The piezoelectric immunosensors were 212 

placed into a flow cell (also from AWSensors) with the mechanical and electrical 213 

requirements for this application (Figure 2a). The flow cell was connected to the AWS-A20 214 

module (Figure 2b). 215 

AWS-A20 module has previously been used to characterize the sensor response during the 216 

experiments performed in flow conditions. This platform consists of an electronic 217 

characterization system based on the fixed-frequency phase-shift measurement technique 218 

described elsewhere [2,34,35], and provides two electrical voltages directly related with the 219 

sensor phase and amplitude (uɸ and uA). The AWS-F20 platform has been used to generate 220 

a uniform flow through the sensor cell and consists on automated flow-through equipment 221 

controlled by syringe pumps (Hamilton, Bonaduz, GR, Switzerland) and thermostatized at 222 

25 °C. Sample injection is performed at a 2 0 μL. The AWSuite software interface from 223 



AWSensors was used to control both platforms during the experiments and for data 224 

acquisition. 225 

Before covalent immobilization of the conjugate, ceramic sensors were electronically 226 

characterized in the A20 platform to determine the impedance and conductance values. The 227 

operation frequency was set up so that the sensor showed the maximum conductance. 228 

3.   Results and discussion 229 

3.1 BNT-BKT-BT ceramics 230 

A typical diffraction pattern of the 95BNT-2.5BKT-2.5BT ceramics is shown in figure 3a, 231 

where the perovskite-type structure and a rhombohedral phase without presence of 232 

secondary phases when compared with a theoretical PDF (ISCD 98-006-3231) was 233 

confirmed. This rresult is consistent with literature data since compositions of (97.5 – 234 

x)BNT-xBKT-2.5BT with x between 0 - 9 mol% BKT crystallize with Rc3 rhombohedral 235 

symmetry [52].  236 

On the other hand, figure 3b shows a typical SEM micrograph of the 95BNT-2.5BKT-237 

2.5BT sample recorded with a secondary electrons detector. These ceramics show a 238 

equiaxial shaped grains with 2.35 m average size. This microstructure is also in agreement 239 

with previous reports [52,53]. It is worth to mention that the sintered ceramics evidence a 240 

densification over 95 % of the theoretical density as measured by the Archimedes method 241 

that matches with the low porosity observed in the micrograph of figure 2b. 242 

It is well-known that the microstructural characteristics of BNT-BKT-BT ceramics are 243 

directly related with their piezoelectric behavior [52,54]. As mentioned before, the 244 

piezoelectric properties of the 95BNT-2.5BKT-2.5BT ceramics were obtained from the 245 

impedance module in a frequency range presented in figure 4a. The measured values for the 246 

characteristic pair of resonance fr, fa and Zmin of the poled ceramic were 6.7 MHz, 7.1 MHz 247 

and 20.4 , respectively. In this case, Qm and kt were calculated by following the resonance 248 

frequencies method and using equations 1 and 2. Table 1 summarizes the piezoelectric 249 

constants kt, Qm and d33 exhibiting a value of 0.37, 15.88 and 75 pC/N, respectively.  250 



Finally, both the electrical phase (Figure 4b) and the conductance (Figure 4c) were used to 251 

establish the work-resonance frequency (Wrf). The poled ceramic evidences an inductive 252 

behavior (Figure 4b) at a frequency of 6.92 MHz. Moreover, the maximum conductance 253 

(0.05 S) is reached at 6.7 MHz (Figure 4c), which also represents the piezoelectric moment 254 

of the ceramic with lower losses. Thus, the used Wrf = fr = 6.7 MHz. 255 

3.2 Biosensor behavior   256 

3.2.1 Immunoassay format 257 

An indirect competitive (inhibition) immunoassay was employed to quantify carbaryl in the 258 

conjugate-coated format. For the inhibition assays, a fixed concentration of the specific 259 

monoclonal antibody was first mixed and incubated with the same volume of the standard 260 

analyte solution. Thereafter, the incubated mixture was pumped over the immunosensor 261 

surface to complete the immunoassay. Both, phase and amplitude (uɸ and uA) variations  262 

were continuously monitored as analytical assay signals. Figure 1e shows a schematic 263 

representation of the phase voltage signal expected to be obtained in a functionalized and 264 

immobilized piezoelectric sensor that was subsequently put in contact with the antibody-265 

analyte mixture. Figure 1a and 1b represent the schematic of the functionalized transducer 266 

with a given concentration of immobilized hapten conjugate on its surface. In figure 1c, a 267 

sample with only free MAb was pumped on the surface of the sensor. As a consequence, all 268 

available MAb molecules will bind to the immobilized conjugate on the sensor surface 269 

(Figure 1d), leading to the characteristic decrease of the phase voltage in figure 1e 270 

(maximum assay signal in the absence of analyte). A phase voltage decrease of 271 

approximately 100 mV is usually considered as a good signal for a successful 272 

quantification. Such a signal correlates to the minimum detectable concentration of 273 

antibody and immobilized conjugate on the biosensor surface and contributes to the 274 

sensitivity of the device, reflected in the analytical parameters of interest such as the limit 275 

of detection (LOD), limit of quantification (LOQ) and 50 % inhibition value (I50). 276 

The opposite situation, in figure 1f a sample with very high analyte concentration (MAb 277 

<<< Analyte) is pumped on the surface of the biosensor after incubation. The limited 278 

available MAb molecules will preferentially bind to the analyte in solution rather than to 279 

the immobilized conjugate on the sensor surface (Figure 1g), leading to the inhibition signal 280 



presented in figure 1h. It is well known that the viscosity of the samples also modifies the 281 

base-line of the phase voltage. Nevertheless, phase voltage shifts lower than 25 mV were 282 

still considered as useful inhibition signals. In the high-frequency piezoelectric transducers, 283 

the viscosity effect does not influence the inhibition signal so that, can be considered 284 

negligible [34,35]. 285 

In a competitive assay, once the maximum and inhibition signal is settled up, the phase 286 

voltage or resonance frequency shifting of samples with different concentrations of analyte 287 

in the operative working range is measured. Subsequently, a calibration curve to determine 288 

the analytical parameters of interest for the quantification of the analyte can be obtained by 289 

plotting the phase voltage shift versus the analyte concentration. Typical calibration curves 290 

of competitive immunoassays and immunosensors show a decreasing sigmoidal shape 291 

because the assay signal decreases as the analyte concentration does. 292 

3.2.2 Dose – response analysis 293 

For the determination of the optimal concentrations of immunoreagents to perform 294 

immunochemical assays and further calibration curve for carbaryl, several concentrations 295 

from 0.2 to 1 mgmL
-1

 of BSA-CNH conjugate were first immobilized on the ceramic 296 

surface and tested in combination with different concentrations of monoclonal antibody to 297 

carbaryl (LIB-CNH45 MAb between 0 and 20 µgmL
-1

). Ceramic sensors immobilized with 298 

only BSA and 0 mgmL
-1

 of BSA-CNH conjugate worked as a negative control to assure 299 

that signal shifts were only due to the specific binding of the antibody to the immobilized 300 

conjugate on the surface of the sensor. 301 

A procedure to determine the optimal combination of the immobilized hapten conjugate 302 

and monoclonal antibody concentrations was developed to obtain signals of at least 100 303 

mV with the lowest immunoreagent consumption. The signals provided by each 304 

immunoreagent combination are summarized in table 2. As expected, higher signals were 305 

observed as MAb and conjugate concentrations increased. The fluctuations in some 306 

experiments are probably due to the polycrystalline nature of the piezoelectric ceramics 307 

such as microstructure, porosity and other defects associated to the used processing route 308 

that directly affects the electromechanical behavior, e.g. the low values of Qm that results in 309 

high responses variance. According to these results, the selected concentrations to perform 310 



the calibration curve for carbaryl were: 0.2 mgmL
-1

 of the immobilized BSA-CNH 311 

conjugate and 20 μgmL
-1

 of LIB-CNH45 monoclonal antibody. 312 

It is worth to remark that for BNT-BKT-BT ceramic sensors, the required concentration of 313 

the used immobilized conjugate to reach convenient measurement signals was one order of 314 

magnitude below that reported for commercial low-frequency (9 MHz) quartz crystal 315 

resonators (QCM) [34]. This effect is probably due to the high electromechanical coupling 316 

factor in the thickness of the BNT-BKT-BT ceramics compared to the quartz crystal 317 

sensors, tending to decrease the consumption of costly immunoreagents. A comparison 318 

between the properties of interest of the BNT-BKT-BT piezoelectric ceramic with low and 319 

high-frequency commercial quartz crystal microbalances used for biosensing applications is 320 

shown in Table 1. 321 

The following observations can be done considering that the piezoelectric factors kt and Qm, 322 

are inversely proportional to each other and that their values determine how the 323 

immunoassay will be measured, either by frequency changes or phase voltage shift. 324 

The electromechanical coupling factor kt (thickness mode) of the BNT-BKT-BT 325 

piezoelectric ceramic is higher than those from either QCM or HFF-QCM. As a 326 

consequence, significant phase voltage variations are expected as a function of small mass 327 

changes on the surface of the ceramic transducer. The opposite situation is observed for the 328 

mechanical quality factor Qm, where the BNT-BKT-BT piezoelectric ceramic exhibits a 329 

very low Qm value compared to QCM and HFF-QCM. In this case, mass changes in the 330 

surface imply small variations in frequency that can only be observed by a piezoelectric 331 

transducer with high Qm performance.  332 

3.2.3 Standard calibration curve  333 

The successful quantification of the immunological reactions that produces mass changes in 334 

the surface of the biosensor, requires the construction of a standard calibration curve for the 335 

analyzed compound. In this particular case, the obtained calibration curve for carbaryl with 336 

a BNT-BKT-BT lead-free piezoelectric ceramic immunosensor is given in figure 5. Each 337 

point of the curve represents the average of two replicates and corresponds to the assay 338 

signal (sensor response as phase voltage shift) produced by carbaryl standard solutions (0, 339 



0.2, 2, 20, 200, 2000 µgL
-1

) subjected to the competitive assay with a fixed concentration 340 

of MAb. Assay signals are normalized with respect to the reference one, which corresponds 341 

to zero analyte concentration (only MAb).  342 

As expected, the competitive nature of the immunoassay is reflected in the sigmoidal 343 

behavior of the standard curve. From figure 5 it becomes clear that the signal decreases as 344 

an inverse function of the analyte concentration, which reduces the quantity of free 345 

available antibody molecules in the assay leading to a proportional inhibition. In the point 346 

with the highest assayed analyte concentration (2000 µg L
-1

) and as mentioned before, data 347 

with higher standard deviation (that correspond to the inhibition signal) may be influenced 348 

by a viscosity effect [34]. 349 

The analytical parameters of the carbaryl calibration curve were calculated by fitting the 350 

experimental data to the above described four-parameter equation (Eq. 3). The I50 value is 351 

the most characteristic parameter of immunoassay standard curves since it estimates the 352 

assay sensitivity and hence defines the analytical quality of the calibration curve. Lower I50 353 

values suggest an enhancement of the biosensor sensitivity and are directly related to the 354 

lower concentration of analyte needed to produce 50 % of the signal inhibition. In this case, 355 

the I50 value was 1.15 µg L
-1

 of carbaryl. On the other hand, the precision of this  356 

immunoassay resembles the one reported for the ELISA method [2].  357 

3.2.4 Comparison with commercial biosensors 358 

Table 3 summarizes the analytical parameters for the carbaryl standard curve of the BNT-359 

BKT-BT-based biosensor, in comparison to commercial QCM and HFF-QCM biosensors. 360 

From table 3 it can be observed that the limit of detection (LOD = 0.03  gL
-1

) of the BNT-361 

BKT-BT biosensor is three orders of magnitude below QCM 1 (LOD = 13.30  gL
-1

) and 362 

two orders of magnitude below QCM 2 (LOD = 4.00  gL
-1

) [34]. The LOD was even one 363 

order of magnitude lower than HFF-QCM (0.23 and 0.14  gL
-1

) [35]. On the other hand, 364 

the BNT-BKT-BT immunosensor exhibits an I50 = 1.15  gL
-1

, being one order of 365 

magnitude below QCM 1 and QCM 2 (30.34 and 16.70  gL
-1

, respectively), and even 366 

lower than HFF-QCM 1 (1.95  gL
-1

). Moreover, the working range (0.11 - 11.68  gL
-1

) 367 

for carbaryl quantification exhibited by the BNT-BKT-BT biosensor is wider than in QCM 368 



1 (18.30 - 50.30  gL
-1

), QCM 2 (7.00 - 35.00  gL
-1

), HFF-QCM 1 (0.5 - 7.20  gL
-1

) and 369 

HFF-QCM 2 (0.26 - 1.72  gL
-1

), since it covers a range of two orders of magnitude 370 

between the lower and upper limits [34,35]. Finally, considering the calculated working 371 

ranges, the BNT-BKT-BT immunosensor evidenced a capability for carbaryl quantification 372 

in at least two and one order of magnitude lower than  QCM 1 and QCM 2, respectively 373 

[34] and at lower concentrations than HFF-QCM quartz crystals [35]. 374 

Again, the successful biosensing response of the BNT-BKT-BT transducer is due to its 375 

high electro-mechanical transduction (kt) that defines the sensitivity of the device. Our 376 

current results show that the working frequencies and dimensions of the BNT-BKT-BT 377 

biosensor overlap with those of QCM but with clearly a higher performance tending to be 378 

similar to the HFF-QCM responses. However, HFF-QCM devices are much more difficult 379 

to handle due to the extremely low dimensions to reach high working frequencies [34,35]. 380 

Nevertheless, and as mentioned before, a natural limit can be anticipated related to the 381 

challenge in manufacturing thinner quartz transducers. 382 

The present work presents a specific composition of a Bi-based piezoelectric ceramic for a 383 

targeted biosensing application. The broad range of BNT-BKT-BT compositions that can 384 

be used for these applications can lead to vary the electromechanical behavior, decrease the 385 

electrical losses, avoid the internal micro-defects and enhance the overall quality of the 386 

biosensing properties. Systematic studies such as design of experiments involving mixtures 387 

design or simultaneous optimization techniques need to be done to establish the effect of 388 

BNT, BKT and BT compositions on the structural, microstructural, dielectric, ferroelectric 389 

and piezoelectric properties of sintered ceramics seeking to enhance their biosensing 390 

response.  391 

 392 

Conclusions 393 

A specific composition of a BNT-BKT-BT (95BNT-2.5 BKT-2.5 BT) piezoelectric 394 

ceramic immunosensor successfully detected and quantified carbaryl pesticide. The tested 395 

device was able to provide reliable signals with concentrations of the immobilized 396 

conjugate one order of magnitude lower than the reported values using biosensors based on 397 

commercial low-frequency quartz crystal resonators (QCM). This fact was considered in 398 



the sensitivity assay for the pesticide carbaryl model, whose calculated sensitivity 399 

parameters (I50 value and LOD) were 1.15 μg L
-1 
and 0.029 μg L

-1
, respectively.  400 

However, there is a lot of room to extend the sensing capabilities of the BNT-BKT-BT 401 

transducers beyond those of HFF-QCM by optimizing their electromechanical factors. e.g. 402 

by including advanced manufacture techniques, such as additive manufacturing, more 403 

complex perovskites, or optimizing the structural, microstructural and chemical properties 404 

of single-phase perovskites.  405 

It is worth to point out that, to the author´s knowledge, no bismuth-based lead-free 406 

piezoelectric ceramic transducer has been previously reported and successfully tested as 407 

immunosensor potentially capable of quantifying a broad range of analytes, including the 408 

present case of a harmful pesticides. 409 
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Table Caption 583 

Table 1. Comparison of piezoelectric parameters between QCM, HFF-QCM and the used 584 

lead-free bismuth-based piezoelectric ceramic. 585 

Table 2. Obtained signals with a BNT-BKT-BT ceramic sensor in the checkerboard 586 

titration of several concentrations of the immobilized BSA-CNH conjugate and LIB-587 

CNH45 monoclonal antibody to carbaryl  588 

Table 3. Analytical performance of BNT-BKT-BT lead-free piezoelectric ceramic 589 

compared with commercial carbaryl immunosensors (QCM and HFF-QCM). 590 

  591 



Figure Caption 592 

 593 

Fig. 1 Scheme of the competitive immunoassay principles and signal transduction strategy. 594 

Fig. 2 Measurement platform (AWS A20 – F20) set up listed as a) Flow cell, b) A20 595 

acoustic platform and c) F20 fluidic module. 596 

Fig. 3 a) X-ray diffraction pattern and b) Scanning electron micrograph of the 95BNT-597 

2.5BKT-2.5BT sintered sample with rhombohedral symmetry. 598 

Fig. 4 a) Impedance module, b) electrical phase and, c) conductance of the 95BNT-599 

2.5BKT-2.5BT poled sample, at the resonance frequency. 600 

Fig. 5 Standard calibration curve for the pesticide carbaryl performed with the BNT-BKT-601 

BT ceramic sensor under optimized conditions. Each point represents the average ± 602 

standard deviation of two replicates. 603 



Table 1. 

Fernández-Benavides et al., 2018 

Low frequency High frequency 

Characteristics BNT-BKT-BT QCM 1 [34] QCM 2 [34] HFF-QCM1 [35] HFF-QCM2 [35] 

Manufacturer This work AWSensors 

Diameter (mm) 14 14 14 5 5 

Thickness (𝛍m) 277 - 320 167 - 270 167 - 270 13-20 13-20 

Capacitance (F) 5.85E-10 - - - - 

Tan 𝜹 0.037 - - - - 

d33 (pC/N) 75 - - - - 

Frequency (MHz)  6.7 9 10 50 100 

kt 0.37 0.021 0.018 0.008 0.006 

Qm 15.88 35000 30000 50000  70000 

Table(s)



Table 2. 
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Signal ΔuΦ (mV) 

BSA-CNH Conjugate 

(mg mL-1) 

LIB-CNH45 Monoclonal Antibody to carbaryl (µg mL-1) 

0 2.5 5 10 20 

0 10 28 - 40 30 

0.2 20 18 90 159 160 

0.5 60 50 48 130 130 

1 30 9 187 244 430 



Table 3. 
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Analytical parameters 

(𝜇g L-1) 
BNT-BKT-BT QCM 1 [34] QCM 2 [34] HFF-QCM 1 [35] HFF-QCM 2 [35] 

LOD 0.03 13.30 4.00 0.23 0.14 

I50 1.15 30.34 16.70 1.95 0.66 

WR 0.11 - 11.68 18.30 - 50.30 7.00 - 35.00 0.50 - 7.20 0.26 - 1.72 
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