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Abstract: Thermo-physical properties of hybrid synthetic/natural reinforcements represent a challenging issue for 

material designers since several factors have to be accounted in terms of stacking sequence, fibre/matrix interface 

and individual material properties of constitutive. In this study, a novel cyanate ester resin formula was developed 

and deployed as a matrix for similar architectures of various stacking sequences of carbon (CF) or basalt fibres (BF) 

in combination with flax fibers (FF). Coefficients of linear thermal expansion (CTE) and thermal conductivities 

were debated in terms of CF or BF stacking sequences and volume fraction accounting for the reinforcements’ 

anisotropy behavior with selected temperature range. Further comparison aided by rules of hybrid mixtures 

(RoHM/iRoHM) enabled a perspective on combinations’ synergy, highlighting the insulating character of tailored 

composites.    

Thermo-gravimetric analysis (TGA) supplemented the insights into the temperature dependent properties through 

information on the decomposition temperatures of constitutive and peaks shift compared to the reference (solely FF) 

in the DTG curves that can be regarded to the shielding effects caused by synthetic reinforcements (CF or BF).    
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1. Introduction 

Green composites and natural fibers industry surpassed the limits for threshold attributes on their developed 

products after decades of focused research work, being on the verge of leveraging their performance attributes, 

including affordability, wide-range commercial applications and environmental concerns. The smart combination 

between natural reinforcements and/or biopolymers, initially intended to address the light-weight and low-cost 

issues, inherited globally the individual material properties of their constitutive, especially on thermal and acoustic 

insulation, or enabled synergetic effects in terms of mechanical and dynamical properties while combined as hybrid 

composite architectures (1-3). Thermal degradation and fire retardant properties of natural reinforcement polymer 

based composites captured the researchers’ attention over the last decade, mostly due to environmental concerns and 

safety issues. Alvarez (4), Manfredi (5), Lazko (6), Bar (7) or Kollia (8) and co-authors reported on the changes of 

aimed material properties for a couple of reinforcements embedded within synthetic resins such as vinyl ester, 

unsaturated polyester or cyanate ester, in or without surface conditioning by aid of flame retardant agents. Their 

findings enabled insights into the overall material behavior while establishing new routes for further developments 

and performance enhancements.       

Literature survey allows a comprehensive insight into the world of extensive works on various combinations of 

materials from renewable resources, more or less environmental friendly and/or fully biodegradable under controlled 

conditions. Critical reviews covering the encountered challenges, individual material selection criteria, 

compatibility, effective properties, manufacturing and processing techniques, economic and environmental impact 

as well as their ability to meet social and materials need worldwide were kindly provided by several groups of 

researchers (9-13). They argued on natural materials’ potential benefits despite their inherent hydrophilic nature that 

prior requires physically or chemically conditioning to improve the fiber/matrix adhesion to limit the penalties of the 

resulting composite material performances.   

In addition, since through hybridization improvements on the combination’s effective properties were mostly 

achieved by individual material selection, both fibers and matrix, by smart reinforcement layering or intimately 

connecting, predictability about the preferences on the composite architectures adopted by different researchers 

teams and lately by various industry players worldwide can be easily identified (14-18).  

The green polymer based composites developed hitherto used natural fibers acquired from cellulose/lignocelluloses 

sources (e.g. jute, flax, hemp, ramie, sisal, wood, etc.) embedded mainly within unsaturated polyester resins and 

epoxies. Attempt on getting an answer to the question regarding the superiority of natural reinforcements over glass 

fibers from an environmental perspective was given both by Joshi (19) and Wambua (20) and their co-authors using 

some previous studies based on life cycle assessments (LCA) and several drivers to debate on the tackled issue.  

Recently, were reported studies on resins developed from renewable resources (e.g. linseed oil, soybean oil, etc.) as 

polymer matrices for natural reinforcements which all shown good mechanical, thermo-physical or dynamical 

properties in comparison with their counterparts (21-23). In the paper of Mosiewicki et al. (24) was summarized the 

main vegetable oils based composite architectures, covering macro, micro- and nano-scale range on the 

reinforcement dimension and examples in special applications as coatings, adhesives, foams and shape memory 

materials. Furthermore, the paper of Lligadas et al. (25) enables the reader to get acquitting with a different 

perspective on bio-based materials tailored as posing certain material properties, focusing on their biomedical 

application potential. Further insights on the issue were given by Fombuena et al. with their comprehensive study 

regarding the mechanical and thermal properties of various protein fillers embedded within an epoxidized soybean 

oil (ESBO) novel resin combination cured by aid of nadic methyl anhydride (26). The study revealed enhancement 

on the properties under the focus with filler weight fraction increase.       

Flax and hemp fibers classified as favorites among the preferences while selecting the reinforcements for this 

composite class. A recent paper of Pil et al. attempted to provide a large spectrum of facts and data while arguing 

positively the question used as title regarding the fascination of designers for these types of natural materials (27). 

They succeeded to capture the substantial spectrum of applications deploying these materials due to their intrinsic 

property of having a high vibration damping capacity in addition to the excellent mechanical properties and lower 

environmental impact compared with the glass and carbon reinforced composites. 

In addition, the nature and individual features of the polymer matrix strongly influence mechanical and temperature-

dependent properties, like storage modulus or damping factor. Subsequently, matrix-material selection must be 

tackled as sharing the same importance in the composite design. For example, epoxy resin was preferred in the early 

stages of advanced composite development and has maintained its position, even following extensive research into 

new blend formulas to transcend the drawbacks encountered with respect to transition temperature, moisture control, 

toxicity, polymer viscosity, etc. (28, 29). Next, epoxy resin was used to enhance the individual processing properties 

of other polymer resins through novel blend synthesis. Special attention was given to the synthesis with cyanate 

ester thermosetting resin. The latter is particularly preferred for its material performance (e.g. high strength, low 
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dielectric constant and dissipation factor, radar transparency, flame retardant, etc.) in high-temperature 

environments. Moreover, used as a matrix material for carbon fibers, reinforced composites satisfy the low-weight 

structural material requirements in the aerospace industry. In addition, cyanate ester resin is acknowledged for its 

recyclable potential under chemical attack or for its self-healing capacity while enhanced with epoxy resin filled 

micro-capsules, allowing the reuse of reinforcements in remanufacturing processes (30, 31). To the author’s 

knowledge, no systematic study has been carried out on the effect of different stacking sequences and the content of 

natural reinforcements, especially flax fibers, in combination with carbon fibers or basalt fibers, as hybrid 

architectures. Further, there are no reports available on natural-fiber reinforced cyanate ester based 

prepregs/laminates. 

The present paper explores the feasibility of tailoring hybrid architectures based on flax in combination either with 

carbon or basalt fibers prepregs. The synergetic effect due to hybridization will be emphasized individually on 

different stacking sequences by deploying a novel resin system made by cyanate ester and epoxy resins followed by 

a couple of important material properties' investigation. Debate on effective thermo-physical properties (e.g. thermal 

expansion and thermal conductivity) and thermal decomposition within selected temperature range of herein 

samples focuses on the perspective of deploying basalt fibers as potential replacements of carbon reinforcements in 

applications driven by economic issues (32).         

2. Experimental procedure  

2.1. Material selection and resin blend formulation 

Commercial available plain weave 1/1 flax (n. FF), carbon-fiber (n. CF) and basalt fiber (n. BF) fabrics were 

selected as reinforcements.  The novel resin blend was formulated by intimately mixing dicyanate ester pre-polymer 

(n. CE - 75% vol.) with methyl ethyl ketone (MEK) solution and further stirring with diglycidyl ether of bisphenol F 

(n. DGEBF) epoxy resin under a 70:30 (vol.%) ratio in the presence of a bisphenol A hardener. Individual 

reinforcement properties and resin components are summarized in Table 1 and Table 2, respectively. 

2.2. Sample preparation 

The hybrid composite laminates (dimensions: 310 mm x 310 mm) were produced by stacking individually nine 

either solely FF and/or combined with CF or BF for the hybrid prepreg sheets. The prepregs were manufactured in 

situ after having previously an optimized formula of the novel polymer blend. ISO 15034:1999 standardized 

procedures were used to determine the resin flow while ISO 15040:1999 was used to evaluate the gel time. A 

temperature-controlled oven was used to compress (i.e. at 50 kN) and fully cure the composite plates at constant 

temperature of 180 °C, for one hour. The overall fiber loading fluctuated as shown in Table 3 and an average of 5 % 

of resin flow was measured, after lamination, for all hybrid composite plates. Solely FF and hybrid FF/CF or FF/BF 

composite laminates, posing high-quality surfaces, were obtained. Sample thickness ranged from 2.5 to 3 mm 

depending on the stacking sequence.  

With respect to the stacking sequence, in the case of the hybrid architectures, the higher strength material (i.e. CF, 

BF) was layered as the outermost, exterior and exterior/middle layers. Flax fibers were layered in between due to 

their lower material performance. Table 3 lists the stacking layering codes used to further address the hybrid 

composite architectures, and their individual and total volume fraction within the final laminate.   

2.3. Material characterization 

Dilatometry (DIL) and laser flash analysis (LFA) 

Expansion in composites where monitored by aid of a push rod dilatometer DIL 402 PC (Netzsch GmbH, D), in 

controlled atmosphere, within 25 °C – 250 °C temperature range and a 4 K min-1 heating rate, in accordance with 

ASTM E228:2011 standard procedures. Two successive scans were performed to remove thermal history and to 

retrieve the aimed thermo-physical property - linear coefficient of thermal expansion (CTE). Thermal conductivities 

of specimens were retrieved by aid of LFA 447 NanoFlash™ device (Netzsch GmbH, D), within 25 °C – 150 °C 

temperature range according with the ISO 22007-4:2008 standard procedures. Samples were covered back and forth 

with a thin layer of graphite to enhance their emission/absorption properties. The density at room temperature was 

obtained by the buoyancy flotation method. Thermal conductivity data corresponds to the mean value of the 

recorded values out of 5 single shots on each point considered.  
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Thermogravimetric analysis (TGA) 

Thermogravimetric analysis on specimens was performed by aid of a STA 449 F3 Jupiter® (Netzsch GmbH, D) at a 

heating rate of 10 K min-1, in N2 atmosphere at a 20 mL min-1 flow rate, in accordance with ISO 11358-1:2014. 

Dynamic mode was deployed in the heating step within the selected 25 °C – 850 °C temperature range. Alumina 

crucible was used for each individual specimen excerpt. The weight loss was recorded in response to temperature 

increases.   

Scanning electron microscopy (SEM) 

Specimens’ morphology were examined by aid scanning electron microscopy (SEM) on an EVO MA 25 (Zeiss, D) 

at room temperature, deploying different magnification modes - 500x and 2.0 K x, respectively. The prevailing 

images, after sputtering the samples with a gold thin layer, were closely investigated to qualitatively characterize the 

fiber–matrix interfaces. 

3. Micromechanical approaches – RoM/iRoM and RoHM/iRoHM 

Effective thermal properties of individual laminate (i.e. FF, BF or CF) and correspondingly tailored composite 

architectures were predicted deploying rules of mixtures and inverse mixtures (RoM/iRoM) as well as rules of 

hybrid mixtures and inverse hybrid mixtures (RoHM) respectively, as delivered in Table 4. In the expressions of 

addressed thermal properties the following hold for the fiber loadings - Vnf and Vsf, either natural or synthetic, while 

Vt is the total reinforcement volume fraction.  

Deviation from the reference (i.e. 9FF architecture) of the experimental values reveals the hybrid effects, which can 

be ranked as positive or negative according to Marom et al. (33). These hybrid effects highlight the influence of 

stacking sequences and synthetic reinforcement’s nature upon addressed thermal properties being indicators for the 

synergetic behavior of the combinations. On the other hand, since the retrieved thermal conductivity values 

represent through thickness measurements, RoM and RoHM must be replaced with their correspondingly inverse 

expressions accounting for the applied external load and fibers’ orientation. This series model provides the lowest 

values of the composites’ equivalent thermal conductivity (34, 35). Nonetheless, more appropriate micromechanical 

approaches may be deployed to account for the reinforcement characteristics (i.e. anisotropy, orientation, waviness, 

etc.) but are thought to surpass the purpose of herein contribution and debate.  

4. Results and discussion 

Effect of structure on the effective thermal properties  

SEM images from Fig. 1, (a) and (b) were collected for the FF specimens and the highest number of layers of BF 

reinforcements in the hybrid composite samples to reveal the synergetic effects on their morphology. Images clearly 

evidence the weak adhesion between the CE&DGEBF resin and BF fibers due to the high sensitivity of CE resin to -

OH groups and other volatiles present in the untreated fibers. Moreover, different types of interactions can be 

outlined in these composites function of fiber types. These are interactions between the fiber bundles and 

interactions between the cells of natural fiber. The latter is of particular importance because it can cause inter-

fibrillar failure and uncoiling of the helical fibrils, and thus diffuse matrix cracking in practical applications (36).  In 

addition, Fig. 1(b) reveals both fiber/matrix adhesion and the beauty of the fiber orientation. The latter can be 

considered to be in favor of BF while the replacements of CF with these are becoming an issue. 

Effect of hybridization on the expansion behavior 

Thermal strain fields with FF and either CF/FF or BF/FF reinforced novel cyanate ester based composites 

experience the same tendency over the temperature range (Fig. 2), such as a linear increase before a peak value, 

followed by a similar decrease toward the final value. Furthermore, physical alpha curves (Fig. 3) reveal 

approximately linear variation with temperature increases, exception the behavior shown between 100 to 150 °C 

associated with an abrupt decrease. This behavior can be regarded mainly to the hydrophilic nature of FF fibers, 

namely the aforementioned -OH groups and other volatiles that react with the resin as the temperature increase. 

Novel CE&DGEBF resin has a complicated structure and prone to be highly sensitive to the moisture. Thermal 
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history cannot be accounted with the responsible mechanisms to the overall expansion behavior since the second 

runs were reported.   

The increase in the rigid phase content with the hybrid architectures influences the amplitude of recorded data such 

there is a direct connection irrespective of the reinforcement deployed, CF or BF. On the other hand, the CF hybrid 

composites, either symmetrical or unsymmetrical stacked, reveal an opposite behavior to their BF counterparts, 

especially on the alpha curves variation as the temperature increases. This overall lowering effect can be assigned to 

the extremely low or negative thermal expansion of CF with temperature increases as widely acknowledged or 

shown by herein authors into a previous contribution (37). Moreover, the higher the CF content the more 

pronounced is the decrease on the overall linear coefficient of thermal expansion values, especially within 150 °C to 

250 °C temperature range.  

A theoretical predicted vs. experimentally retrieved values’ (see values listed in Table 5) comparison, in terms of 

relative error (see Fig. 4, square symbol), reveal high discrepancies up to 95% in case of 9FF architecture and 

approximately 60% to 92% for the hybrid combinations, irrespective of the synthetic reinforcement. These values 

have to be viewed in accordance to their significance as long as the theoretically values belong to the upper limit 

predicted by micromechanical expressions within literature (34).   

With respect to the hybrid effects, accounting for the relative differences between the experimentally retrieved 

values from either CF/FF or BF/FF combinations and 9FF reference specimen (see Fig. 4, triangle symbol), positive 

departures were recorded in all cases. Thereof, irrespective of the stacking sequence, the presence of synthetic fibers 

(i.e. CF or BF) within the composite architecture enables a synergetic behavior at the overall assembly level from a 

thermal expansion perspective.                   

Effect of hybridization on the thermal conductivity 

Figure 5 depicts the thermal conductivity curves of the analyzed polymer composite specimens, between 0.116 and 

0.299 W m-1K-1 within selected temperature range. As it can be seen, thermal conductivity values of the hybrid 

composites, irrespective of the synthetic reinforcement, are in the same order of magnitude and can be ranked as 

thermal insulators despite the presence of a thermal conductivity phase. Moreover, a slight difference on thermal 

conductivity values retrieved from the CF and BF hybrid architectures is present within temperature range.   

In particular, it seems that BF reinforced hybrid composite specimens are exhibiting enhanced thermal 

conductivities compared both with the reference and CF architectures. Indeed, sudden changes in thermal 

conductivity between 75 °C and 125 °C with BF hybrid architectures can be observed in the above graphical 

representation. These changes can be related both to the glass transitions and synergetic behavior while combined 

with FF reinforcements, being consistent with the thermal expansion behavior of the similar architectures.  

Supplementary, due to the relatively small values of the through-thickness thermal conductivities, heat dissipations 

from panels made from these materials are limited, restricting thus their potential applications. Indirectly, the heat 

dissipation issue can be tackled based on the hybrid effect reflecting the synergy due to sequencing and individual 

reinforcement selection compared with the reference. The results are presented in Fig. 6 and seem to be more 

pronounced for CF hybrid specimens accounting the thermal conductivities values recorded at room temperatures. A 

conductivity enhancement factor (n. TCEF, in %), defined as the relative error between the retrieved hybrid 

composite architectures and matrix thermal conductivities at 25 °C, can be used further to debate on the heat 

dissipation within the specimens (see Fig. 6). The values vary from 15% up to 38% showing an increasing tendency 

in terms of efficiency due to hybridization and deployment of more synthetic layers within the composites. 

On the other hand, the relative error values unveil relatively small differences among the predicted and 

experimentally retrieved values on FF and CF/FF hybrid architectures (between 45% up to 60%) in comparison with 

the BF reinforced architectures (up to 200%). The latter should be assigned to the individual thermal conductivity 

values of BF fabrics reported with literature (38).                  

Thermal decomposition of hybrid composites   

In order to provide an extended perspective on other temperature related properties on herein hybrid CF and BF 

reinforced composites, a systematical study was carried out by means of thermogravimetric analysis (TGA) under 

controlled nitrogen atmosphere. Weight losses vs. temperature together with their derivatives are being delivered in 

Figs. 7 and 8. Additionally, relative mass losses and residues as well as peak values from both curves were extracted 

and listed in Table 6 to aid thermal degradation characterization in inert atmosphere (i.e. pyrolysis). 

As it can be seen, both neat CE&DGEBF resin and either FF or CF/BF hybrid reinforced composites revealed two 

peaks in the DTG curves. With a single exception, the unsymmetrical CF stacked layers composite, in all fiber 
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reinforced specimens, the first DTG peaks can be identified around 320 °C and further attributed to the 

decomposition of the primary and secondary walls of flax fibers, especially to cellulose micro fibrils (10, 39). With 

the exception, there was encountered a shift toward 365 °C that can be attributed to the shielding effect caused by 

the presence of CF fibers. TGA curves are shifted to lowering temperatures showing a decrease in thermal stability 

of all hybrid composites. This could be the result of degradation of both natural/synthetic fibers and fibers/matrix 

interfacial bonding. Furthermore, the stacking layer number and reinforcement type seems to influence the 

magnitude of the decomposition peaks, too. Thus, from the plotting can be identified a decreasing tendency of the 

first peaks with the addition of synthetic reinforcements, both CF and BF, with smaller values for the latter 

architectures.  

Moreover, the TG/DTG curves of the novel formula of neat polymer resin reveal a beginning of thermal 

decomposition near 350 °C that will be present further in the decomposition process of the natural/synthetic 

reinforced composites in their second peaks.          

The less pronounced deflections within 100 °C up to 200 °C temperature range encountered in the DTG curves can 

be regarded to decomposition of hemicelluloses micro fibrils from the composition of flax fibers, whereas the lignin 

component of the flax fibers is decomposing near 400 °C (10). The latter cannot be separated from decomposition of 

the polymer resin that further holds within 350 °C and 450 °C temperature range, revealing a second shoulder 

around the same temperature point. This temperature range corresponds to a 50% weight loss for all composite 

excerpts and more pronounced shifts to lowering temperatures in the second peaks recorded with hybrid specimens 

can be seen comparatively with the pure resin system. These shifts can be regarded to a char layer formation from 

the CF or BF layers that decompose with temperature increases. This char layer inhibits the heat and mass transfer 

from the inner layers of flax fibers and/or synthetic fibers and the melting resin toward the surface, thus affecting the 

thermal stability of correspondingly composites.    

Finally, comments on residues may further aid the thermal decomposition processes analysis of herein composite 

architectures. Correspondingly values listed in Table 6 highlights the amount of char assumed mainly from synthetic 

fibers that were not decomposed near 850 °C, the temperature end considered for the experimental recordings. Thus, 

at this temperature value, it seems that BF reinforced hybrid excerpts are decomposing slower compared with their 

counterparts, the shielding effect due to the presence of the former synthetic reinforcement being increasingly 

pronounced.          

5. Conclusions 

The paper aimed to develop, investigate and debate the overall temperature related behavior of differently stacked 

sequences of synthetic- (i.e. CF/BF) and natural- (i.e. FF) fiber-reinforced laminates. The novel thermosetting 

cyanate ester formula proved to fulfill adhesion criterion and easiness during handling while deployed as the matrix 

for the laminates, spawning high-quality surface samples. The synergetic effects, due to individual synthetic or 

natural reinforcements and various stacking sequences were debated accounting on the effective thermo-physical 

properties (i.e. thermal expansion, thermal conductivity) and thermal decomposition processes. 

Thus, from the previous findings, improvements in the coefficients of thermal expansion and thermal conductivity 

values can be noticed for all hybrid composite architectures herein, irrespective of the constitutive stacking sequence 

and reinforcement material compared with the reference (9FF). Furthermore, CF reinforced hybrids revealed poor 

performances both in thermal expansion and thermal conductivity values in comparison with BF reinforced hybrids 

for the same stacking sequence. These effects are not necessarily negative in terms of overall thermo-physical 

properties and should be assigned to the transversal anisotropy particular about the CF reinforcements. 

Positive and negative hybrid effects were accounted for while comparing the predicted values with the experimental 

data. As expected, and consistent with reported values within the literature, the RoM based predictions reveal the 

highest values since they represent the upper bounds on the CTE values. On the other hand, RoHM predicted values 

are closer to the experimental data, and thus a better predictor model for the hybrid composite architectures. 

Inverse RoM and RoHM formula were accounted in the effective thermal conductivity predictions proven the 

experimental setup enabling through thickness measurements. Comparisons revealed the anisotropic behavior 

particular about the CF reinforcements that are impeding heat dissipation from these panels and thereby their overall 

performances. 

Furthermore, if cost issues become stringent with respect to the individual material selection of the hybrid composite 

constituents with the aim of similar thermo-physical effective properties, decision making can focus on the less-

expensive reinforcements herein, namely basalt fibers, which have proven to be highly competitive and less 

anisotropic along all directions. 
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The conclusions from this study can be thought to apply to a broad range of lignocellulosic reinforcements (e.g. 

kenaf, ramie, hemp, coir, jute, etc.) by stacking similarly in combination to carbon or basalt fibers or accounted for 

other hybrid composite architectures.  
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Figures 

Fig. 1 - SEM images of the side views for (a) 9FF and (b) BF/3FF/BF/3FF/BF composites  

Fig. 2 – Thermal strain within various stacking sequences of CF and BF reinforced composites  

Fig. 3 – Technical alpha at different temperatures from DIL measurements   

Fig. 4 – Hybrid effects and relative errors on CTE values with herein composites 

Fig. 5 – Thermal conductivity variations at different temperature values from LFA measurements 

Fig. 6 – Hybrid effects on thermal conductivity and TCEF values comparison with herein composites   

Fig. 7 – TGA mass loss-temperature profiles of FF and CF/BF reinforced hybrid composite architectures 

Fig. 8 – DTG profiles of FF and CF/BF reinforced hybrid composite architectures 

 

Tables 

Table 1 – Material data of the present reinforcements 

Table 2 – Individual physical properties of polymer system 

Table 3 - Details on hybrid composites stacking sequences, assigned codes and volume fractions 

Table 4 - RoM and RoHM expressions of thermo-physical properties 

Table 5 – Experimental CTE values, curve peaks and associated temperatures  

Table 6 – Thermogravimetric parameters and degradation temperatures at different levels of TG weight loss 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Fig_1(a) Click here to download Figure Fig_1(a).tif 

http://www.editorialmanager.com/jtac/download.aspx?id=401633&guid=c062bdc2-b3b2-40e5-8608-0c79310af7d5&scheme=1
http://www.editorialmanager.com/jtac/download.aspx?id=401633&guid=c062bdc2-b3b2-40e5-8608-0c79310af7d5&scheme=1


Fig_1(b) Click here to download Figure Fig_1(b).tif 

http://www.editorialmanager.com/jtac/download.aspx?id=401634&guid=2b4c4bae-77e0-41d9-a8e1-793623b1107d&scheme=1
http://www.editorialmanager.com/jtac/download.aspx?id=401634&guid=2b4c4bae-77e0-41d9-a8e1-793623b1107d&scheme=1


Fig_2 Click here to download Figure Fig_2.tif 

http://www.editorialmanager.com/jtac/download.aspx?id=401635&guid=f4b23461-e228-4856-a336-31292298e106&scheme=1
http://www.editorialmanager.com/jtac/download.aspx?id=401635&guid=f4b23461-e228-4856-a336-31292298e106&scheme=1


Fig_3 Click here to download Figure Fig_3.tif 

http://www.editorialmanager.com/jtac/download.aspx?id=401636&guid=fbc7dcc4-9a01-4eec-99eb-ab7bd620ad32&scheme=1
http://www.editorialmanager.com/jtac/download.aspx?id=401636&guid=fbc7dcc4-9a01-4eec-99eb-ab7bd620ad32&scheme=1


Fig_4 Click here to download Figure Fig_4.tif 

http://www.editorialmanager.com/jtac/download.aspx?id=401637&guid=b3ae33b3-e214-48ea-b4cc-8071c75634dc&scheme=1
http://www.editorialmanager.com/jtac/download.aspx?id=401637&guid=b3ae33b3-e214-48ea-b4cc-8071c75634dc&scheme=1


Fig_5 Click here to download Figure Fig_5.tif 

http://www.editorialmanager.com/jtac/download.aspx?id=401638&guid=331b750f-abed-4602-971e-a4de0a8dfc14&scheme=1
http://www.editorialmanager.com/jtac/download.aspx?id=401638&guid=331b750f-abed-4602-971e-a4de0a8dfc14&scheme=1


Fig_6 Click here to download Figure Fig_6.tif 

http://www.editorialmanager.com/jtac/download.aspx?id=401639&guid=277889d2-ab38-4c2c-8dfd-e96c308f2d3a&scheme=1
http://www.editorialmanager.com/jtac/download.aspx?id=401639&guid=277889d2-ab38-4c2c-8dfd-e96c308f2d3a&scheme=1


Fig_7 Click here to download Figure Fig_7.tif 

http://www.editorialmanager.com/jtac/download.aspx?id=401640&guid=25861a5d-a3f6-49cb-b54a-366e85c0dda3&scheme=1
http://www.editorialmanager.com/jtac/download.aspx?id=401640&guid=25861a5d-a3f6-49cb-b54a-366e85c0dda3&scheme=1


Fig_8 Click here to download Figure Fig_8.tif 

http://www.editorialmanager.com/jtac/download.aspx?id=401641&guid=f36a7a23-e2ba-4ea7-b45c-ac34776216e0&scheme=1
http://www.editorialmanager.com/jtac/download.aspx?id=401641&guid=f36a7a23-e2ba-4ea7-b45c-ac34776216e0&scheme=1


 Carbon fiber (n. CF) 

(KDK 8003) 
Basalt fiber (n. BF) Flax fiber (n. FF) 

Fabric areal weight (g/m2) 200 ± 10 475 ± 10 175 ± 10 

Fabric thickness (mm) 0.30 ± 0.05 0.35 ± 0.05 0.400 ± 0.05 

Commercial trade name SIGRATEX® - - 

Supplier SGL Technologies GmbH DBF Deutsche Basalt Faser GmbH Leinenweberei Hoffmann GmbH 

Thermal expansion 

(µstrain/°C) * 
0.2 3.5 30 

Thermal conductivity 

(W/m°C)* 
80 0.038 0.3 

*CES EduPack 2016 (Granta Design Limited) 

Table_1



 
 Cyanate ester resin 

(Primaset™ BA 230 S) 

DGEBF epoxy resin  

(Epikote™ 862) 

Glass transition temperature (°C) 320 (by DMA) 270 (by DSC) 

Viscosity @ 25°C (mPa·s) 450 ± 100 740 ± 150 

Density @ 20°C (g/cm3)  1.18 ± 0.02 

Curing agent bisphenol A (BA) 

Supplier Lonza Ltd Momentive 

 

Table_2



 

Stacking sequence Laminate codes 

Reinforcements 

volume fraction 

(vol%) 

Total fiber 

loading (vol%) 

  nf sf  

□□□□□□□□□ 9FF 45 - 45 

■□□□□□□□■ BF/7FF/BF 21 14 35 

■□□□■□□□■ BF/3FF/BF/3FF/BF 13 17 30 

■□□□□□□□■ CF/7FF/CF 18 17 35 

■□□□■□□□■ CF/3FF/CF/3FF/CF 19 11 30 

■ synthetic reinforcement (sf); □ natural reinforcement (nf).  

 

Table_3



Thermal property 
RoM/iRoM RoHM/iRoHM 

natural fiber based composites synthetic fiber reinforced composites  

Linear coefficient of 

thermal expansion 
 nfmnfnfnfc V1V     sfmsfsfsfc V1V    sfccsfcnfnfcc VV   * 

Thermal conductivity 
 

m

nf

nf

nf

nfc k

V1

k

V

k

1 
  

 
m

sf

sf

sf

sfc k

V1

k

V

k

1 
  

csf

sfc

nfc

cnf

c k

V

k

V

k

1
 * 

*
t

nf
cnf

V

V
V  , 

t

sf
csf

V

V
V  , sfnft VVV   

Table_4



 

Composite architectures CTE (x10-6 K) 
Peak values 

CTEmax (x10-3 K) Temperature (°C) 

9FF 2.346 0.8904 121.9 

BF/7FF/BF 4.794 1.7543 140.3 

BF/3FF/BF/3FF/BF 6.245 1.7622 145.2 

CF/7FF/CF 1.236 0.6821 120.7 

CF/3FF/CF/3FF/CF 3.102 1.1155 144.1 

Table_5



 

Composite 

architectures 

Onset 

(°C) 

Temperatures at different weight loss (°C) 1st DTG 

peak (°C) 

2nd DTG 

peak (°C) 

Residue 

(%) 5% 25% 50% 75% 

9FF 276.2 277.7 314.2 376.3 491.6 323.8 - 19.55 

BF/7FF/BF 289.0 - 331.5 435.8 - 318.0 - 35.67 

BF/3FF/BF/3FF/BF 281.9 282.2 348.2 467.6 - 324.4 434.9 41.46 

CF/7FF/CF 289.3 280.2 323.4 410.0 - 315.7 423.3 29.94 

CF/3FF/CF/3FF/CF 333.2 - 350.1 372.6 - 367.6 641.8 30.06 

CE&DGEBF resin 378.4 - 398.2 420.8 618.9 347.5 410.0 0.05 

Table_6


