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Abstract

Being capable of mimicking some phenomena inherent in atomic scales, macroscopic
periodic structures have been subject to intensive research in the last two decades.
Perforated plates, although a very common periodic structure, seem to keep unexplored
sound transmission properties, whose study has been triggered by the discovery of
Extraordinary Optical Transmission through subwavelength holes perforated in metallic
plates while interacting with light.

In this work it is shown that perforated plates do not only exhibit full transmission
resonant peaks and Wood anomaly minima when the holes are arranged periodically,
but also extraordinary sound screening due to the hydrodynamic short circuit arising
from the coupling between the plate and the fluid.

Furthermore, the role of the geometrical parameters of the perforated plates in the
transmission features is also reported here illustrating different strategies to tailor the
transmission spectrum.

High complexity transmission was observed for periodically perforated aluminum
plates immersed in water when the incidence angle is varied. Leaky surface waves com-
ing from the vibration of the plate arise, which is demonstrated using a new theoretical
model involving full elasto-acoustic coupling.

A complete landscape of the coupling effect is portrayed thanks to the complementary
study of solid-solid phononic plate transmission and in-plate wave propagation. As a
direct consequence, Scholte-Stoneley-like modes folding and band gap are observed
without the need of corrugations or holes.

Finally, the transmission properties of individual holes and hole arrays for light,
electrons, and sound are put together. The differences are analyzed and discussed here.
It has been found that, although for light the hole array itself leads to 100% transmission
and surface bound modes, this is neither the case for sound nor for electrons. Thus, hole
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resonances are the key mechanism that enables the occurrence of exotic phenomena for
sound. The main results mentioned here are thoroughly explained and discussed based
on theoretical and experimental data.



Resumen

Las estructuras periédicas macroscépicas han sido objeto de una intensa investigacién
durante las dos tltimas décadas debido a su capacidad de imitar fenémenos ondulato-
rios que son inherentes a la escala atémica. Aunque las placas perforadas son estructuras
muy comunes en acustica, éstas parecen guardar propiedades de transmisién de sonido
inexploradas, cuyo estudio ha sido impulsado por el descubrimiento de la Transmi-
sién Optica Extraordinaria en laminas de metal perforadas con agujeros distribuidos
periédicamente cuando interacttian con la luz.

En el presente trabajo se muestra que las placas perforadas no sélo presentan ma-
ximos de transmisién total resonante y minimos de la anomalia de Wood cuando los
agujeros estan distribuidos de forma periddica, sino también apantallamiento actstico
extraordinario debido al cortocircuito hidrodindmico producido por el acoplamiento
entre la placa y el fluido.

También se detalla el rol de los pardmetros geométricos de las placas perforadas
en las caracteristicas de transmision, ilustrando diferentes estrategias para moldear el
espectro de transmisién.

La transmision actistica a través de placas de aluminio con perforaciones regulares
sumergidas en agua presenta una alta complejidad tanto a incidencia normal como cuan-
do se varia el dngulo de incidencia del sonido. Aparecen ondas de superficie radiantes
provenientes de la vibracién de la placa, lo cual es demostrado usando un nuevo modelo
tedrico que incluye el acoplamiento elastoactistico completo.

Gracias al estudio complementario de la transmisién y la propagacién en placa de
una placa fonénica sélido-sélido se retrata una perspectiva completa del efecto del
acoplamiento. Como consecuencia directa, se observan fenémenos de plegamiento y
bandas de propagacién prohibida en modos tipo Scholte-Stoneley sin necesidad de
corrugaciones o de agujeros.
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Finalmente, se comparan las propiedades de transmisién de agujeros individuales y
redes de agujeros para luz, electrones y sonido analizando y comentando sus diferen-
cias. Se ha encontrado que, aunque para la luz la red de agujeros en si misma lleva a
transmisiones del 100 % y modos atrapados a la superficie, esto no se produce ni para
electrones ni para sonido. En consecuencia, las resonancias del agujero constituyen el
mecanismo clave que posibilita la existencia de fenémenos exéticos en sonido. Los resul-
tados principales aqui mencionados son explicados de manera detallada y comentados
sobre la base de datos teéricos y experimentales.



Resum

Les estructures periodiques macroscopiques han sigut objecte d"una intensa investigacié
durant les dos tltimes décades degut a la seua capacitat d'imitar fenomens ondulatoris
que son inherents a 'escala atomica. Encara que les plaques perforades sén estructures
molt comunes en acustica, aquestes pareixen guardar propietats de transmissié de so
inexplorades, 1’estudi de les quals ha sigut impulsat pel descobriment de la Transmissié
Optica Extraordinaria en lamines de metall perforades amb forats distribuits periodica-
ment quan interactuen amb la llum.

En el present treball es mostra que les plaques perforades no sols presenten maxims
de transmissi6 total ressonant i minims de 1’anomalia de Wood quan els forats estan
distribuits de forma periodica, siné també apantallament actstic extraordinari a causa
del curtcircuit hidrodinamic produit per ’acoplament entre la placa i el fluid.

També es detalla el rol dels parametres geometrics de les plaques perforades en les
caracteristiques de transmissid, il - lustrant diferents estratégies per a modelar 'espectre
de transmissio.

La transmissié actstica a través de plaques d’alumini amb perforacions regulars
submergides en aigua presenta una alta complexitat tant a incidéncia normal com quan
es modifica I'angle d’incidencia del so. Apareixen ones de superficie radiants provinents
de la vibraci6 de la placa, fet que és demostrat usant un nou model teoric que inclou
I'acoplament elastoactstic complet.

Gracies a l'estudi complementari de la transmissi6 i la propagacié en placa d’una
placa fonénica solid-solid es retrata una perspectiva completa del’efecte de1’acoplament.
Com a conseqtieéncia directa, s’observen fenomens de plegament i bandes de propagacié
prohibida en modes tipus Scholte-Stoneley sense necessitat de corrugacions o de forats.

Finalment, es comparen les propietats de transmissié de forats individuals i xarxes
de forats per a llum, electrons i so analitzant i comentant les seues diferéncies. Sha
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trobat que, encara que per a la llum la xarxa de forats en si mateixa porta a transmissions
del 100 % i modes atrapats a la superficie, agd no es produeix ni per a electrons ni per
a so. En conseqiiencia, les ressonancies del forat constitueixen el mecanisme clau que
possibilita 1’existencia de fendomens exotics en so. Els resultats principals aci mencio-
nats so6n explicats de manera detallada i comentats sobre la base de dades teoriques i
experimentals.
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Introduction

Nature provides very good examples of periodic organization at different scales. When
the repeated element is an atom we are dealing with solids and more particularly with
crystals. The understanding of how electrons behave in a periodic array of atoms was
the keystone contribution of Felix Bloch in 1928. At the light of quantum theory [1],
Bloch considered electrons as matter waves and was able to explain the conductivity
phenomenon in metals, which subsequently led to the exploration of the electronic
properties of semiconductors and constitutes the basis behind any electronic device.

Other structures found in nature that display periodicity, this time at a scale of
hundreds of nanometers, are opals and peacock feathers [2] among others [3]. As can be
seen in Fig. 1.1, both share fascinating optical properties. Although crystals, opals, and
peacocks are known from very long time ago, the connection between the behavior of
electrons in crystals and that of light in sub-micron periodic structures was not realized
until nearly twenty years ago [4, 5].

Brillouin [6] already pointed out the similarities that electrons, electromagnetic
waves, and sound waves share when propagating through periodic structures. His
pioneering work describes the existence of pass and stop frequency bands and sets the
principles for their analysis. In this spirit, phenomena found at atomic scales in ordered
systems could be resembled by light and sound. From this development emerges the
concept of phononic [7, 8] and photonic [9, 10] crystals. Briefly speaking, an ordered ar-
rangement of one or more materials embedded in a host material constitutes a phononic
or photonic crystal if the wave propagation properties of the constituent materials differ
in a manner that enables the observation of wave propagation features more related
with the periodicity than with the properties of the crystal building blocks.
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(a) (b)

Figure 1.1: Examples of natural sub-micron-scale periodic structures. (a) An opal doublet from
Andamooka South Australia (from CRPeters). (b) Peacock and scanning electron microscopic
image of a peacock feather revealing the underlying periodic structure (from [2]).

Properties typically observed in solid-state physics overcame its natural boundaries
and reached then larger scales. The importance of phononic and photonic crystals comes
from the fact that the translated properties cannot be achieved by means of conventional
materials, opening a new way for the control of waves. One important property of
wave crystals is the existence of frequency regions where the wave propagation through
the crystal is forbidden [5, 11]. These frequency regions are called band-gaps and their
importance comes from the fact that they enable the localization of waves [4, 12] in
crystal defects. Furthermore, when several crystal defects are coupled, waveguiding
effects can be observed [13, 14] through the chain of defects. The complexity that the
periodicity adds to the band structure can also enable negative refraction phenomena
[15, 16], which can be further used to achieve strong focusing effects.

In addition, the development of acoustic metamaterials [17] brought into focus the
wide range of possibilities of locally resonant structures. In contrast to phononic crystals,
most features of acoustic metamaterials show up at wavelengths larger than the period of
the array because their constituents exhibit low frequency resonances which are directly
involved in the wave propagation phenomena.

Periodic structures can also be used in the long wavelength regime to change al-
most arbitrarily the effective elastic wave propagation constants of the medium. This
additional degree of freedom makes more feasible the otherwise chimerical concept of
cloaking [18, 19]. Objects can be detected by waves if they produce a significant distor-
tion in the wave propagation behavior. Then, an object could be undetectable or even



1. INTRODUCTION

invisible if it is covered by a medium (the cloak) which can minimize the wave field
distortion.

Besides natural periodic structures, Periodically Perforated Plates (PPPs) or mem-
branes are, nowadays, probably one of the most common man made structures and they
are used in many different applications (see Fig. 1.2). Most applications take advantage
of the rigidity of the solid and the permeability to air flow and light provided by the
apertures. Its geometry is fairly simple, allowing their mass-production.

Figure 1.2: Perforated plates are everywhere

Moreover, PPPs and panels are an old ally of the acoustician. They constitute an
important part in the toolbox of an acoustic engineer [20] and therefore, their acoustical
properties are well known when the size of the aperture is many times smaller than
the wavelength A. In fact, one of the most common solutions used in architectural
acoustics to achieve sound absorption and avoid unwanted reflections comprises a
rigid wall, an air cavity, sound absorbing material, and a perforated panel. Further
applications where perforated plates are involved also include exhaust pipe silencers
for noise control purposes, widely used in either large industrial processes or in internal
combustion engine vehicles.

Beyond the deep subwavelength regime in which PPPs are used and hence their
properties known, the regime where the wavelength is of the same order of magnitude
than the distance between the holes still remained unexplored. The motivation to further
study the properties of PPPs in this unexplored regime comes after the experimental dis-
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covery of Extraordinary Optical Transmission (EOT) through a periodically perforated
metallic membrane [21] and the evidence of analogies between photonic and phononic
crystals [11]. Ebbesen et al. [21] demonstrated experimentally that periodic arrays of
subwavelength holes drilled on a metallic membrane transmit much more light per hole
than expected from Bethe’s theory [22] for a single opening (see Fig. 1.3). This effect
occurred at specific wavelengths strongly correlated with the period of the hole array,
which suggests a cooperative interaction between holes.

(a) ‘ ‘ (b)

%)

Transmission intensity (

. .
500 1,000 1500 2,000
Wavelength (nm})

Figure 1.3: (a) First report on EOT on a metallic silver film decorated with a periodic distribution
of holes (from [21]). (b) Further refinement of the structure using dimple arrays and white light
illumination (from [23]).

EOT has been predicted theoretically and reported experimentally in slit arrays
[24, 25, 26, 27] and hole arrays [21, 28, 29, 30] in numerous studies and over a wide
range of wavelengths [31, 32, 33]. After a strong debate, several mechanisms have been
identified to contribute to EOT, such as surface plasmon resonances [30, 34], cavity
resonances [35], and dynamical diffraction [25], all of them describable using a simple
analytical formulation [35]. A comprehensive review of EOT phenomena can be found
in [36].

Although in the broad sense Brillouin’s hypothesis on the similarity of wave phe-
nomena can be regarded as correct, there are subtle fundamental details that make them
different. An appropriate contextualization is required when comparing wave phenom-
ena, otherwise the misunderstanding can be guaranteed. For instance, considering the
simple case of an object travelling faster than the wave velocity and comparing what
happens in the case of sound and light one arrives to very different scenarios. While for
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sound it corresponds to supersonic displacement (perfectly plausible), for light it would
imply a deep revision of Einstein’s general relativity. Even though the previous example
is very dramatic, it clearly represents the risk taken when optical phenomena are simply
translated to acoustics.

Into PPPs converge several aspects that make them interesting and worth of being
studied. One aspect is related with the possibility of finding interesting physics and phe-
nomena which can be exotic in acoustics using a fairly common system. Another aspect
is the opportunity to test how far holds the analogy between the different manifestations
of wave phenomena (i.e. matter, electromagnetic, and sound waves) regarding sound
transmission through PPPs. Finally, from a practical viewpoint, the exotic phenomena
could be exploited in applications for which an old ally could still be full of surprises.

In the following section, the evolution and the state of the art regarding PPPs is
presented from a global point of view. A more detailed exposition on specific themes is
given in the different chapters.

1.1 State of the art

The study of sound interaction with periodic structures is rooted at the end of the XIX
century with the work of Rayleigh [37], who studied the reflection coefficient of an one-
dimensional grating. This study on scalar sound waves served as the basis in his attempt
to explain the experimental observations done by Wood [38] while researching optical
gratings. Wood reported anomalous sharp reflection spikes (nowadays known as Wood
anomalies) which can be partially explained by Rayleigh’s successive refinements to his
theory of gratings.

Afterwards, most of the efforts concentrated in the study of PPPs and slits arrays at
the deep subwavelength regime (i.e. the wavelengths at least two orders of magnitude
bigger than the inter-hole distance) for airborne sound applications, where the air inside
the holes can be simply considered as an acoustic mass moving back and forth with the
impinging sound wave.

Nearly hundred years after Rayleigh, full reflection was reported by Norris and Luo
[39] in 1987 for a two-dimensional array of circular holes of period a in a semi infinite
rigid-solid when A = a, in agreement with Rayleigh results.

Then, following the spirit of Brillouin and looking at an old ally with curious eyes,
the wave nature of sound was exploited to study the same structures that give rise to
EOT.

For example, sound collimation through a plate having one-dimensional corruga-
tions on both sides with a central aperture was proposed by Christensen et al. [40, 41]
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following some ideas from [42]. However, the first attempt of an experimental verifi-
cation [43] in a two-dimensional bullseye structure showed lower transmission values
than expected, probably due to the finite impedance mismatch between water and the
brass plate employed in the experiments. More recently, Zhou et al. [44] reported
the successful measurement of the collimation effect in airborne sound employing one-
dimensional corrugations in a steel plate. In addition, the dispersion of non-leaky modes
which participate in the beaming effect has been recently measured by He et al. [45].

The first steps to understand sound transmission through PPPs were mainly con-
cerned with the prediction and observation of resonant full transmission and Wood
anomaly transmission dips. Although a monolayer of cylinders arranged periodically
is not exactly a PPP, Zhang [46] mimicked a slit array leaving a very narrow air-gap
between the cylinders. Already in 2005 he was able to predict full resonant transmis-
sion of sound through the cylinder array. Zhou and Kriegsman [47] treated the PPP
transmission problem by means of the scattering matrix technique and also predicted
the appearance of full transmission peaks in very thick walls.

The experimental confirmation of complete transmission is reported by two groups
[48, 49], for a perforated brass plate immersed in water and for a slit array made of
steel in air respectively. This full transmission has been called Extraordinary Acoustical
Transmission [49] in the same way as EOT.

On the other hand, Estrada et al. [50] studied theoretically and experimentally
how geometrical parameters influence the transmission of ultrasound through PPPs.
Christensen et al. [51, 41] reported theoretical results in the rigid-solid limit for one-
and two-dimensional arrays of square holes, where the dispersion relation of leaky and
bounded surface modes is derived. It has been pointed out the hybridization of these
modes with the Fabry-Pérot Resonances (FPRs) in the holes.

Whereas for electromagnetic waves there is a big difference between the transmission
through a slit or a hole due to the existence of a well defined cutoff in the subwavelength
regime for the latter, this is not the case of sound. Transmission of transverse magnetic
waves through a slit is dominated by FPRs [52] in similitude to sound in both slit
and holes. This point is very well demonstrated in [48] by means of theoretical and
experimental comparison of both, electromagnetic waves interacting with a slit array
and sound waves interacting with a hole array. Some transmission maxima near the
Wood anomaly were, however, erroneously linked to a structure factor resonance, as it
has been pointed out by Garcia de Abajo et al. [53].

The situation is complex, because diffractive surface-waves can produce significant

deviation of the transmission peaks from the Fabry-Pérot resonant condition. Moreover,
it has been argued [44] that the main contribution to the full transmission is due to
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Figure 1.4: Pictures of a bone flute found in
Hohle Fels, southwestern Germany, dating from
30,000 years ago. (from [54])

evanescent surface waves. It seems that not only the ideas and concepts from EOT
have been translated to sound, but also the debate regarding the physical origin of the
predicted and observed phenomena.

The differences between optical and acoustical transmission through hole arrays can
be traced back to the case of wave transmission through an individual hole. Thus,
EOT is extraordinary because the light transmission per hole unit area for an individual
hole is much less than unity in the subwavelength regime. However, an individual
hole can display sound transmission per hole unit area much larger than unity in the
subwavelength regime because of hole resonances across the plate thickness.

The wave nature of sound is evident at a human scale and the same kind of resonances
that are responsible for the hole transmission peaks are known from ancient times and
are intimately linked with the cultural development of mankind. A recent discovery
[54] dates the bone flute depicted in Fig. 1.4 from 30,000 years ago. Their constructors
knew very well that the key aspect in its fabrication, in order to produce the desired
tones, was the length of the tube. Now, at the beginning of the 21th century, we cannot
forget that even if the aperture size is subwavelength, the thickness of the plate may not
be subwavelength. Thus, the key ingredient behind all the interesting phenomena that
takes place in the sound transmission through perforated plates of finite thickness are
the same kind of resonances mankind has been playing with for ages.

Moreover, a diacritical theoretical study on electrons, light, and sound [53] puts the
accent on the key role of FPRs in the acoustic phenomenon. It demonstrates, using an
analytical method, that in the case of hole arrays pierced periodically in zero thickness
films (no hole resonances across the plate thickness) one could still observe EOT, whereas
for sound no transmission peak should be expected.

Besides how extraordinary can be a full transmission peak in the sound transmission
through hole arrays, Estrada et al. [55] observed that periodically perforated aluminum
plates immersed in water transmitted less sound than non perforated plates at certain
ultrasonic frequencies near the Wood anomaly. This phenomenon, called extraordinary
sound screening, has been numerically studied in more detail for slit arrays recently
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[56]. The sound is blocked mainly due to the fluid-solid coupling, which produces an
hydrodynamic short-circuit that prevents the forward sound radiation.

Beyond the basic study of the sound transmission through slit or hole arrays, more
elaborated structures and possible applications are being considered in addition to
different interpretations of the phenomena.

Wang [57, 58] obtained an impedance description of sound transmission through
PPPs by assuming piston-like behavior at the hole apertures. In this way, the full
transmission near to the Wood anomaly can be understood as induced by the singularity
of the radiation impedance of the hole array.

Two layers of PPPs [59, 60] have also been proposed for sound blocking in the
rigid solid limit. In addition, Liu and Jin [61] have predicted a suppression of the full
transmission peaks due to phase resonances when the hole array basis is asymmetric.
Compound arrays have also been considered theoretically in [62] reporting a complex
interplay between hole resonance interference and the Wood anomaly.

Subwavelength imaging has been proposed [63, 64] using periodic hole arrays in
thick slabs, and confirmed experimentally by Zhu et al. [65] in airborne sound.

Although phononic crystal research started studying bulk wave phenomena, other
kind of elastic waves such as Lamb waves [66] have become a target for periodic struc-
tures. In fact, Lamb waves are guided waves that propagate through plates and, as
demonstrated in [67, 68], they are definitely linked with perforated plates. Recent re-
sults on high transmission have been also observed by He et al. [69] for a corrugated
brass plate immersed in water without the need of any opening. It has been explained as
due to the fluid-solid resonant coupling attributed to a non-leaky elastic surface mode,
corroborating the phononic-perforated plate connection. Theoretical [70, 71, 72] and ex-
perimental [73, 74, 75] studies dealt firstly with band gap and waveguiding phenomena
for air-solid and solid-solid Phononic Plates (PhPs), whereas most recent studies also
report negative refraction for flexural [76] and shear horizontal [77] waves.

The work done so far for PhPs is restricted to in-plate vibration, while that done
gazing at an acoustic analogy of EOT has been limited to out-of-plate excitation. Whereas
most studies on PhPs, particularly those performed towards micro-scale applications,
only take into account the elastic wave propagation through the plate and neglect the
effect of the surrounding air (which could be treated as vacuum), most of the work done
on perforated plates transmission neglects the vibration of the solid and concentrates
on wave propagation through the fluid. The same structure can only be analyzed from
independent points of view when the coupling between the solid and the fluid is weak
enough to be neglected. However, this is only a half of the whole picture and in the
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present work the main results point towards the rich physics and complexity one can
find when the fluid and the solid interact, leading to a unique scenario for sound waves.

1.2 Problem definition

What motivates this work has been already exposed in the previous sections. Here, the
research frame followed in this investigation as well as its main objectives are defined.

The aim of this study is to elucidate by means of theory and experiments the physical
phenomena involved in the acoustical transmission through Periodically Perforated
Plates (PPPs).

In particular, this work deals with a longitudinal wave in a fluid which impinges
on a plate decorated with cylindrical subwavelength holes. Emphasis is placed on the
portion of the wave which is transmitted forward to the fluid. This scheme is used not
only in the underwater ultrasonic experiments, but also in the theoretical and numerical
models.

Several factors that could modify the behavior of PPPs are taken into account such
as:

o The orientation of the incident wave with respect to the plate.

o Geometrical parameters including array symmetry, plate thickness, and hole filling
fraction.

e Elastic parameters considering the effect of the impedance mismatch between the
fluid and the solid.

e The material contained inside the holes studying not only fluid-solid PhPs, but
also solid-solid PhPs.

For the particular case of the solid-solid PhP and additional experimental approach
consisting in interrogating the plate directly at its surface is employed to complement
the information given by the transmission experiments.

From the theoretical perspective, the problem has been tackled starting from different
assumptions, which result in several models. The simplest model is derived considering
just the effect of the fluid and neglecting its coupling to the solid (Rigid-Solid Model
(RSM)) using modal expansion in the holes and Rayleigh expansion in the surrounding
fluid. The Full Elasto-Acoustic Model (FEAM) takes into account the vibration of the
solid and uses plane wave expansion to extract the eigenvalues of the two dimensional
PhP and Rayleigh expansion to match them with the surrounding fluid. Finally, standard
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Finite Element Method (FEM) is used to characterize slit arrays under strong fluid-solid
coupling.

1.3 Outline

The contents of this work are organized as follows:

Chapter 2: Background

The basic principles and equations concerning mechanical wave propagation in solids
and fluid are briefly derived and followed by an overview on the sound transmission
problem.

Two classical problems in acoustics are explained in depth as they play a major
role in the analysis of hole array results, namely the transmission of sound through
homogeneous plates and the transmission of sound through a single hole in a perfectly
rigid solid.

Chapter 3: Theory

This chapter describes in detail the theoretical models used in this work. First, geomet-
rical facts and notation common to the analysis of periodic structures are given. Taking
advantage of this basis, the RSM is derived. This model neglects the contribution of the
solid plate, which is taken into account in the FEAM, which is derived next. In addition,
to study the case of strong coupling in slit arrays, the Finite Element Method (FEM) is
employed. The details on the numerical calculations performed are also given.

Chapter 4: Experiments

The complete description of the experiments performed for this work is presented here.
The convenience of underwater ultrasonic measurements is discussed. Then, a de-
scription of the measurement instruments is followed by the definition of the two mea-
surement techniques employed in this work, namely the classic ultrasonic transmission
technique and the nearfield measure for in-plate excitation scheme. Finally, detailed in-
formation concerning the plate samples measured including their fabrication procedure
is covered in this chapter.

10
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Chapter 5: Results analysis

The chapter is devoted to present the experimental and theoretical results followed by
data analysis and discussion. The different aspects of the physical phenomena observed
in the results are firstly treated separately so that the following sections include complex
interactions and hybridization of the phenomena previously described.

The experimental results on resonant transmission at normal incidence are reported
and compared to RSM predictions. Wood anomalies are analyzed from the theoretical
results for simple and compound arrays. Experimental results on hole array sound
screening are analyzed together with numerical finite element results. The feasibility
of hole and slit array sound screening applications in different scenarios is discussed.
Then, the effect of fluid-solid coupling manifested in surface plate waves is analyzed
considering experimental and theoretical data. Complementary experimental measure-
ments for transmission and in-plate excitation are presented and compared with FEAM
predictions for solid-solid PhPs.

Chapter 6: Concluding remarks

The interaction of hole arrays with different kinds of waves is discussed. Then, the main
results of this work are summarized and an outlook of possible future research lines are
sketched.
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Background

2.1 General elastoacoustics

Acoustical wave phenomena can be well described using continuum mechanics formu-
lations. Since this study requires waves propagating in both, solid and fluid media, a
unified framework as that developed in [78] will be followed. Most of the fundamental
equations are well known and some of them derived more than a century ago. Therefore,
only a brief derivation starting from the fundamental equations up to the linear wave
equations, which are valid for small amplitude waves, will be given. Unless explicitly
addressed, Einstein’s summation convention is employed through this document.

Geometrical considerations

Lets consider a point in the cartesian three-dimensional space plus the time coordinate
be described by r = (x,y,z,t). Thus, the spatial coordinates constitute the indepen-
dent variables and a spatial description (Eulerian coordinates) is adopted, ignoring the
position of a particle in the continuum, which is used as independent variable in the
material description (Lagrangian coordinates). Then, given the velocity v = v(x,y, z, t)
in the spatial description, the acceleration (of crucial importance) in the same description
yields
dv

T: = atv+vj6jvn, (2.1)

where d/dt is the material derivative, v;0; is known as the convective term, and the
subindices j and n run along the space coordinates.

13
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Waves are known to deform the continuum as a function of time. A measure of
that deformation is the displacement vector u = r — o(r, t), where o(r, t) identifies the
particles position at the time t. The change in the relative positions of the material points

in a continuum is called strain and is defined as

1 1
€jn = 5(5)'11 —0j0x0n0k) = E(anu—j + 05un — OjurOnuyk), (2.2)

where 0;,, denotes the Kronecker delta. In addition, the elongation tensor only takes the
linear displacement gradients as

1
&in = E(anuj + ajun) . (23)

Mass and momentum balance

In absence of mass exchange, the mass conservation is given by the continuity equation
0tp + On(pvn) =0, (2.4)

where density of the continuum p is a scalar field.

According to Newton’s second law of motion, the rate of change in the momentum
must equal the resultant force. Using Eq. (2.1), the momentum equation in absence of
body forces can be written as

P(0¢vn +vj05vn) = 05 Tjn, (2.5)

where Tj;, is the stress tensor. It can be considered as symmetric (T, = Ty;) in non-polar
materials and it is convenient to assume that it can be separated in a dissipative T/, and
a non-dissipative oj,, part. In absence of shear stresses, e.g. for ideal fluids, and subject
to an hydrostatic pressure p, the stress can be written as 0, = —pdjn.

Energy balance

Thermo-mechanical interactions must satisfy the energy balance, i.e. the increase of
energy must equal the work done plus the heat and other non-mechanical energy.
Ultimately, the energy balance gives the stress-deformation relation in the case of solids
and the state equation for fluids. Considering a reversible isentropic (adiabatic) process
in an elastic solid and small displacements as well as small displacement gradients, the
stress-deformation relation yields

Ojn = Cjnkl€kl, (2.6)

14
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which is known as Hooke’s law, where the coefficients cnjx1 are components of the
stiffness tensor. This tensor can be reduced due to the symmetry of the stress tensor
from 81 to 36 components using the Voigt notation of only two subscripts.

In the case of an ideal fluid under reversible isentropic assumptions, the equation of

dp op\ dp dp
Lo (2] == — 2.7
T (5p>s a —ce Sl (27)

where ()s stems for isentropic and c is the sound velocity depending on both, the fluid

state yields

density and the entropy.

Wave equations

Combining Egs. (2.4), (2.5), (2.6), neglecting higher order terms, and expressing the
equation in terms of the displacement u for a locally isotropic solid yields

[aj (Adnun) + 0n (H(anuj + ajun))] = pa%uj ’ (2.8)

which is the inhomogeneous elastic wave equation where A = ¢ and p = 1/2(c11 —c12)
are the Lamé coefficients valid for locally-isotropic solids. Now p is no more a variable
but a constant which can be inhomogeneous through the space.

Similarly, the linear wave equation in fluids can be derived combining Egs. (2.4),
(2.5) (known as Euler equation for fluids) , (2.7), and disregarding higher order terms as

1 1
Ot <pczatp) =0y <pajp> ’ (29)

where p and ¢ do not variate with the wave but can be inhomogeneous across the
space. These two wave equations, namely Egs. (2.8) and (2.9), are the basis for many
studies which deal with sound wave propagation through periodic structures. Further
derivations of the different kinds of waves and relations between elastic constants and
sound velocities are given in appendix A.1.

2.2 Sound transmission

The transmission of sound through a medium is a very important phenomenon that
gives us information about the medium itself and its coupling with a surrounding fluid.
As shown in Fig. 2.1, a fluid-filled space A is divided into two regions separated by
an infinite medium or structure B, whose wave propagation characteristics are different
from those of the host fluid. An incident wave with wavenumber ky = 27t/A¢ and fre-
quency w impinges on B and generates reflected, transmitted, and guided components
depending on wave propagation properties of B.

15
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B
Incident wave%L ;

/\/\) Transmitted wave py
Reflected wave p, (\X\‘

A

Guided wave

Figure 2.1: Diagram of general wave transmission phenomena. Two semi-infinite fluids A are
separated by an infinite plate B

Some general relations that hold for transmission and reflection problems are given
as follows. The conservation of the integrated pulse [79] is given by

o0

JOO (P0+pr)dt=J pidt, (2.10)

—0o0 —00

and it is valid not only regardless the shape of the incident pulse and the point in
the space at which the integrals are taken, but also for finite time perturbations in a
three dimensional inhomogeneous fluid. Another basic principle is that related to the
symmetry of the wave path, also known as reciprocity principle [79]. This principle states
the interchangeability between source and receiver. In terms of sound power, the most
basic relation between incident, reflected, and transmitted sound power is the energy
conservation law. However, this relation can be very complex and strongly dependent
on the acoustical and geometrical properties of the materials involved. Therefore, a
general expression cannot be formulated and each case must be analyzed separately.

To quantify the amount of sound energy transmitted through B, the sound power
transmission coefficient [80] is defined as T = TT1/Tly, where Tly, TTt correspond to the
incident and transmitted sound power respectively. In the case of plane waves T is
related to the pressure transmission coefficient T by T = [T|> = [pt//Ipol?, with po (pT)
being the pressure amplitude of the incident (transmitted) wave.

If medium B is an homogeneous solid: flexural, Lamb, Rayleigh, and Scholte-
Stoneley waves can propagate depending on the wavelength-to-thickness ratio and
the impedance ratio between the solid and the fluid. More complex solid structures like
double partitions or multilayer panels can also exhibit acousto-mechanical resonances
together with viscous or thermal losses.

How these excited vibrations radiate the sound back and forward to the fluid cannot
be answered in a general manner. Indeed, many different phenomena related with the
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mechanical coupling between A and B and also with the radiation efficiency of the
vibrations in B may take place. And that is just the case of sound transmission through
PPPs. Different phenomena are mixed together giving rise to a complex scenario.

2.3 Sound transmission through homogeneous plates
The problem of sound transmission through an isotropic solid is well known and has
been extensively studied [66, 81, 82]. Many textbooks about wave propagation in solids

and ultrasound [83, 84] deal with this problem. Here is described the model given in [84]
due to both its simplicity as well as the minimal assumptions involved in its derivation.

1 (p1, ca1)
2 (p2, ce2, Ci2) Jh

3 (p3, ce3)

Figure 2.2: Diagram of the sound transmission through a solid plate of thickness h. The elasto-
acoustic properties of the three media j = 1,2,3 are (pj, c,;) with v ={{,t}. As media 1 and 3 are
inviscid fluids only ¢y and c; are retained.

The geometry and system of coordinates are depicted in Fig. 2.2. For simplicity,
harmonic time excitation is assumed through this work, thus the time component et
can be neglected.

The elasto-acoustic properties at each medium j = 1,2,3 are the density p; and the
wave velocity c,j, where v represents longitudinal ({) or transverse (t) waves. In the
case under study, media 1 and 3 are fluids and therefore only c¢; and c¢3 are considered.
Thus, the wavenumbers are k,; = w/c,; and the wavevectors are given by kvij =
kyj (sin(6,;)%X £ cos(0,j)2) where the £ sign indicates the propagation direction along
the z axis and r = X + Z are unit vectors. An incident sound pressure py impinges on the
plate giving rise to the reflected (pr) and transmitted (pt) sound pressure, which are
characterized using plane waves. In the solid, Stokes-Helmholtz decomposition allows
us to describe the sound field in terms of the wave potentials & and 1, (see appendix
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A 4). The field in the three regions can be written as follows

P1=po+ pr = ekar 4 Retkar, (2.11a)
=8, +& =Atelkdr 4 A-eiker, (2.11b)
Py =P, +p_ = Btelkdr 4 Betkur, (2.11¢)
ps = pr = Telker, (2.11d)

where R and T are the reflection and the transmission coefficients respectively and
A*, BT the coefficients for the upwards (+) and downwards (—) longitudinal and trans-
verse potentials. The momentum must be conserved in the x direction, i.e. all ky;sin(6,,;)
are equal and will be denoted simply as Q. Applying continuity of the normal displace-
ment u; , and stresses 057, 03* at both interfaces yields

Uy, = Uy, 03" = —p1, 03 =0, atz=0, (2.12)
Uz, = Uz, 05° = —p3, 03> =0, atz=—h. (2.13)
4 _
r 109
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3r i
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Figure 2.3: Transmitted sound power T calculations (gray linear scale) for an homogeneous
aluminum plate immersed in water as a function of the parallel wavenumber Q and the frequency
w, both of them normalized by the plate thickness value h. The different modes are labeled
according to their shape as shown in the inset.
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These six equations with six unknowns, namely R,A*,A~,B*,B~, and T form a
linear system that needs to be solved for each (8¢, w) pair. Explicit forms of the
boundary conditions and of the system of equations can be found in the appendix A 4.
Performing calculations for an aluminum plate (p; = 2700 kg/m?, c;» = 6500 m/s,
cr2 = 3130 m/s) immersed in water (p; = 1000 kg/m?, ci1 = 1480 m/s) the Fig. 2.3 is
obtained, where T = [T|2.

High transmission values can be observed revealing a complex dispersion in Fig. 2.3.
For this case, three kinds of modes can be distinguished [85]: Scholte-Stoneley mode,
symmetric leaky Lamb modes, and antisymmetric leaky Lamb modes.

C
1
Gl
Ly
2 o
I; B, e e e em
“a
= )
1 —— = STFEL PLATE INA VACUUM
Ck « =«  «WATER
" B, X NUMERKCAL CHECK POINTS
5 10 4 10° SEC’ W20r-FAfQ.
§ o wisc, q

Figure 2.4: Excerpt from [85] showing the phase velocity of Lamb waves for an steel plate
immersed in water as a function of the frequency. Top curve corresponds to Sy, middle curve to
Ay, and lower curve to the Scholte-Stoneley mode.

The Scholte-Stoneley mode (see Fig. 2.4) propagates across the fluid-solid interface
with a phase speed slightly slower than that of the water. Atlow frequencies, this mode
is mixed with the Ay mode and slowly converges to the sound line as w increases.

Leaky Lamb modes are guided waves produced due to the multiple reflections of
longitudinal and in-plane transverse modes at both plate-fluid interfaces. The inset in
Fig. 2.3 shows the different shapes of the symmetric (S,,) and antisymmetric (A, ) modes.
The two cutoff-free modes, Ay and Sy, show different transmission properties. The first
one has a broader transmission peak and smaller phase speed than the latter, but both
converge at higher frequencies to Rayleigh waves phase speed. The higher order Lamb
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modes show many interesting features like negative and zero group velocity (mode Sy),
mode splitting (S; and S), and mode crossing (A, and Sp).

To obtain more information concerning the plate displacement, a traveling wave
along the x axis can be assumed. Neglecting the incident wave and applying the bound-
ary conditions, the dispersion relation can be obtained [82, 83, 84, 85]. The dispersion
equations are quite complex and can be solved only using numerical methods for non-
linear systems. Thus, despite its simplicity, the transmission approach gives access to
the leaky dispersion relation. The suitability of the transmission approach depends,
however, strongly on the fluid.

Lamb waves are widely used for nondestructive evaluation at ultrasonic frequencies
in plate type structures. Internal defects in large plates can be detected by means of
Lamb waves. Not only isotropic plates, but also anisotropic or multilayered structures
can be inspected. In addition, material characterization can be performed by means of
Lamb waves because its propagation enables the extraction of the elastic constants of the
plate [86]. Most applications use water-coupled Lamb wave excitation and detection,
although some techniques make use of zero group velocity [87] for nondestructive testing
of plates in air to increase the fluid-solid coupling.

Modes having negative group velocity are well known for Lamb waves [88] and
other mechanical realizations [89]. In words of Horace Lamb [89]:

“It is hardly to be expected that the notion of a negative group-velocity
will have any very important physical application.”

However, a recent realization of negative refraction focusing of Lamb waves has been
reported [90] using an astonishingly simple approach consisting in nothing but an
abrupt change in the plate thickness. Lamb waves are interesting because under fairly
simple vibrations, a plethora of exotic phenomena is available without the need of any
metamaterial or complicated structure.

The electromagnetic analogy of this phenomenon would be a dielectric plate having
high refractive index, however, intrinsic differences separate light and sound in this kind
of systems.

2.4 Single hole sound transmission

The problem of the sound transmission through a circular hole has been studied at
different levels of detail and using several methods. Atthe end of the nineteenth century,
Rayleigh [91, 92] started to work in this problem in the case of scalar waves (sound
and electrons) for null thickness plates. An exact solution to this three-dimensional
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diffraction problem was found by Bouwkamp [93] in 1941, who later, in 1954, wrote a
review [94] comprising not only scalar, but also vectorial waves (light) for zero thickness
screen, summarizing the knowledge of the problem at that moment.

Although the same equation must be satisfied for sound, electrons, and light, namely
the Helmholtz wave equation (V2+k2)p = 0, their different behavior lies in the boundary
conditions. The screen needs to be perfectly rigid for sound, to have infinite potentials
boundaries for electrons, and to be a perfect conductor for light. Sound and electrons
show complementary behavior via Babinet’s principle i.e. the diffraction of sound (elec-
trons) by a disc is essentially identical to the diffraction by the complementary aperture
for electrons (sound). However, a small hole in a perfect screen is quite permeable for
sound while for electrons and light it is nearly opaque.

Concerning sound, for the finite thickness case Nomura and Inawashiro [95] devel-
oped an exact solution but difficult to implement. Afterwards, Wilson and Soroka [96]
derived an approximated solution for normal incidence showing very good agreement
with measurements. However, a more rigorous and exact method relying in modal ex-
pansions has been derived in [97]. More recently [98, 99] deal with diffuse field incidence
and compare different methods theoretically and experimentally.

Here the modal expansion method described in [97] will be used to show the trans-
mission properties through a circular aperture. A comparison between the flat piston
approximation of [96] and the modal expansion method will also be given.

Figure 2.5: Diagram of the sound transmission through a circular hole of radius 1, in a rigid plate
of thickness h. As the sound field does not penetrates into the solid, the same fluid is used in the
three regions j = 1,2, 3. Cylindrical coordinates (r, ¢, z) are used.

Following the method described in [97], the geometry of the problem is depicted in
Fig. 2.5, where cylindrical coordinates are used to take advantage of the hole symmetry.
The incident sound pressure py and the specularly reflected sound pressure pr are plane
waves, whereas the backscattered (ps) and the transmitted (pt) sound pressure are
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described using plane wave expansion. Under the rigid-solid assumption there is no
field inside the solid, whereas the field inside the hole p, consists of circular eigenmodes
in the polar plane together with backward and forward components in the z direction.
Thus, the pressure field in the three regions can be written as follows:

p1= (e +e %) Y M, (Qor)e™?
o N (2.14a)
£ Y @] Bhan(QreQaQ,

S Y Jm(Quar) €™ W (2), (2.14b)

m=—ocon=1
p=pr= 3 ™| Bguin(@e EMQAQ, (2,149

with

YE (2) = [ahpetdmn® Lo e e (2.15)

where Qg = kosin8, o = kgcos8, g = /k3 — Q% qmn = /K3 — Q2%,,,, and J;m(x) is the

Bessel function of the first kind and order m.

Note that p; = po + pr + ps and for both, incident and reflected plane waves, the
Jacobi-Anger expansion is used for the parallel to the plate component (see appendix
A.2). Atboth hole openings, the field must satisfy the continuity of pressure and normal
velocity. However, at the solid surface, the normal particle velocity is zero. Therefore,
at the hole walls J/,, (QmnTo) = 0. The boundary conditions at z = 0, —h are given by

0.P1lz—0 = 92p2l.—0 ifr <, 0.pilz—0 =0 if r > T, (2.16)
0,P3lz——n = 02p2lz——n ifr <, 0:p3lz——n =0 if r > 1o, (2.17)

Pilz—0 = P2lz—0, P3lz=—h = P2lz——n, ifr<nmg. (2.18)

Taking advantage of the orthogonality of the Bessel functions (see details in appendix
A.2) by applying Hankel transforms in Egs. (2.16) and (2.17) we get

Zqﬂw 0)1(Qmn,Q), (2.19)
Bom = q‘g“w W (“NI(Qun, Q) , (2.20)
n=0

where I(k, k') is defined in Eq. (A.12). Similarly, substituting Egs. (2.19) and (2.20) into
Eq. (2.18), multiplying by Jm (Qmn/7)r, and integrating with respect to r from 0 to 1o
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yields
20™1(Qo, Qun) + ) Win (0L, = Z W (0)I(Qmn, Qmn’) s (2.21)
n=0
- Z 11jran nn’ - Z \1} [(Qmn, Qmn'), (2.22)
n=0
where IT! , is an integral (see Eq. (A.14)) with respect to Q, which has to be calculated

numerically. Truncating the sums in Eqs. (2.21) and (2.22) over n, n/, and m up to N,
N, and M respectively, a linear system of size 2(M + N) x 2(M + N) involving o, is
obtained. In matrix form it gives A & = 3, where

I(an/ an’) - ITTn/ (an/ an’) nn’
A= . (223)
[I(an/ an’) + I;nn/] e tdmnh [I(an/ an’) - IKIH/] gtdmnh
CX‘;LTLTL ZimI(QOI an’)
o= ., B= . (2.24)
Xn 0

However, B@m needs to be calculated from Eq. (2.20) to eventually evaluate the
integral in Eq. (2.14c). In order to get the farfield and overcome the complexity of this
integral, the stationary phase approximation [100] is used. The details for this particular
case are given in appendix A.3. The final expression after applying the approximation
is

—i
—igrh €

ps~ O3 =iqre ™Borme ™, (2.25)

where r = Rsin 67, z = Rcos 01, Q1 = kgsin 07, and qt = kg cos 01 due to the change
to spherical coordinates.
Then, the transmitted sound power can be calculated as follows

. ﬂT(w,G)
o Uo(w,e) !

27T pTo . 0
ﬂg(w,e):;fRe{L L pg(l?;:EO) rdr d(p} mg% 2.27)

where ()* means complex conjugate and Re{} the real part. The expression (2.27) cor-

(2.26)

respond to the time averaged intensity of the incident wave integrated through the
aperture area. The radiated sound power can be calculated either following [97] as

27T 1o . *
Tt (w, 6) :%Re {L L Pale (167“’3;*‘) rdrd(p}, (2.28)
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or using the farfield pressure ®3 and performing numerical integration with respect to
01 and @7 as
/2 27
Mr(w,0) = —J J |D3>R? sin(0)dT dOT . (2.29)
2pc Jo Jo

Although numerical integration is involved, the last alternative has been chosen due
to its simplicity. Under normal incidence only the m = 0 components contribute to the
transmission. Thus, the integrand in Eq. (2.29) yields qu ‘B6T0‘2 sin 0.

The results of this model under normal incidence are plotted in Fig. 2.6 for different
h/rg proportions as function of t9/A. Looking carefully at the results of Fig. 2.6 one
can see several high transmission peaks whose highest level increases as the h/r, ratio
increases overcoming the full transmission level at 0 dB. This behavior is well known
and was verified experimentally already in 1965 by Wilson and Soroka [96]. Not only
the peak level but also the number of peaks increases with the h/rg ratio and penetrate
deeper in the subwavelength area even for ro/A < 0.2. This behavior can be explained
as due to the resonance that takes place into the hole along its length h. Following the
nomenclature from optics, we are dealing with FPR, which in its simplest form for an
open tube satisfies the condition h = nA/2 (n € IN), which is shown as white curves
in Fig. 2.6. As the thickness increases, more resonances are found in the transmission
spectrum. The resonances are always at larger wavelengths than those predicted by the
open tube resonances. This discrepancy is usually corrected by means of an equivalent
thickness or end correction [101]. When h = 0 the transmission converges to 8/ for
very large wavelengths [93].

Figure 2.7 shows the comparison between the approximation of Wilson and Soroka
[96] and the model derived here for normal incidence. For the three different h/ry ratios
the agreement is excellent when 1o/A < 0.5 and the differences for ro/A > 0.5 can be
explained as due to the lack of the higher order circular modes in the approximation
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Figure 2.7: Comparison between the approximation of Wilson and Soroka [96] (black) and the
model described here (gray) for three different h/r, values.

that assumes planar piston behavior at the hole openings. Therefore, the modal model
method has been chosen because it provides an exact solution for a larger range of
frequencies than the planar piston approximation.
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Theory of periodically perforated
plates

In the following pages will be presented the derivation of the different theoretical models
developed to understand the experimental results and also to predict some interesting
phenomena. First, some notation and geometrical facts regarding two-dimensional
arrays will be given. Afterwards, the rigid-solid theory and the full elasto-acoustic
theory are derived. Finally, the details of the finite element method calculations are
given.

3.1 Geometry of two dimensional periodic structures

Holes drilled in a plate in a periodical manner form two-dimensional structures. To
characterize two-dimensional periodic structures, some ideas and nomenclature from
solid-state physics [102, 103] will be taken. Solid-state physics includes the study ordered
structures at atomic scales. Because of that, some geometrical results obtained at that
tiny scale are also useful for this study.

The key parameters to describe the arrays of holes are the radius of the hole 19 and
the distance a between them as shows Fig. 3.1. In addition, to characterize the plate we
need the thickness h.

A more global parameter that involves not only the hole size, but also the array
period is the filling fraction of holes f, which is defined as the ratio between the hole
area and the unit cell area. Then, the filling fraction of holes of the square lattice is
fo = 7r2/a? and in the case of the triangular lattice is fo = 2712/ v/3a?. Figure 3.2 shows
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(a) (b)

h h

Figure 3.1: Diagram of the geometrical parameters of the PPP where 1y is the hole radius, a the
array periodicity, and h the plate thickness for (a) square and (b) triangular lattices.

the filling fraction of holes for both lattices depending on the geometrical proportions
2rg/a = d/a and h/a of the perforated plate. This geometrical parameter space is very
useful in the study of the transmission characteristics of the plate as it helps to retain a
global picture of the phenomena. The main difference between both parameter spaces
is the fact that fAmax > fymax as can be clearly seen in Fig. 3.2 comparing both colors
atd/a=1.
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Figure 3.2: Parameter spaces of the PPP for (a) square and (b) triangular lattices. d = 2r is the

hole diameter, a the array periodicity, and h the plate thickness. The color scale corresponds to
the filling fraction of holes.

The position of every hole can be written as r, = nja; + nya; where a; are called
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primitive cell vectors and n; are integers. For the square lattice we get
a] = (l)?, a) = (lf’, (31)
whereas for the triangular lattice yields

alng‘(—&— V39),  a=-(k— V39). (3.2)

The area S of the unit cell is S = a? for the square lattice and S = /3a?/4 for
the triangular lattice. The whole array can be seen as infinite series of periodically
distributed Dirac-delta functions

Alr) = ) 8r—ra), (3.3)
whose Fourier transform
4 &

FFyAm) = ) 8(k-G), (3.4)
is also an infinite set of periodically distributed delta functions but in the reciprocal
space instead of the real space (F{} and J{} denotes the Fourier transform in x and y
respectively). This gives rise to the reciprocal lattice where

G = myby + myb, (35)

denotes the reciprocal lattice vector where b; are the primitive vectors of the reciprocal
lattice and the integers m; are called Miller indices. For the square array we have

b] = FX, b2 = Fy, (36)
and for the triangular array
2n ¥ 2., ¥
bi=—&+—=2), by=—(%——2). 3.7
1=/ ), b= R ) (37)

Due to this periodicity in the reciprocal space some physical quantities can be re-
dundant if they are studied along a large area. To avoid this redundancy the analysis
is performed inside the first Brillouin zone [6] which is depicted in Fig. 3.3 (a) for the
square lattice and in Fig. 3.3 (b) for the triangular lattice. Moreover, as the Brillouin
zone is symmetric, one can restrict further the region of study to the irreducible Brillouin
zone, showed in dark blue in Fig. 3.3.
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(a) K (b) K,

Figure 3.3: Diagram of the first Brillouin zone in the reciprocal space for a) square and b) triangular
lattices. Irreducible Brillouin zone is depicted in dark blue.

3.2 Rigid-solid theory

In a similar manner to the case of a single hole, the sound transmission through periodi-
cally distributed holes can be studied under the rigid-solid assumption taking advantage
of the periodicity of the apertures. The problem also started with Rayleigh’s work, who
in the second edition (1896) of his book “The Theory of Sound” [37] includes the prob-
lem of plane wave scattering on a periodic surface using a rigorous approach called
then Rayleigh’s hypothesis. Later [104] he extended his study to electromagnetic waves
trying to explain the Wood anomaly [38]. In words of Wood [105]:

“Lord Rayleigh showed that, in the case of sound waves passing, at
normal incidence, through very narrow parallel slits, the passage of energy
through any slit might be prevented by the cooperative action of the other
slits, under the condition that the distance between the slits was an integral
multiple of the wave-length”

Nearly a century after, this result was also found by Norris and Luo [39] dealing with a
two-dimensional semi-infinite perforated rigid solid. The same method used by Norris
was further completed to the case of a two-dimensional periodically perforated slab by
Zhou and Kriegsman [47] ten years after Norris. They found complete transmission
through narrow holes using only the cutoff-free mode inside the hole. Very recently,
several groups have also found similar full transmission peaks in PPPs [48, 49, 51].

To calculate the sound transmission, the Rayleigh’s hypothesis is used, extending
Takakura’s model [26] for light in a slit array. The validity of this hypothesis for gratings
remained under discussion until now [106] for the electromagnetic case. The diagram
with the description of the geometry is shown in Fig. 3.4. An incident plane pressure
wave pg impinges in the perforated plate. The reflected pressure field pr is plane-wave
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! \Q #J

X Figure 3.4: Diagram of the unit-cell cross-
) ES section of the periodically perforated plate.
Due to the circular symmetry of the holes also
h 2 P2 polar coordinates (1, ¢) are used together with
the cartesian coordinates. Dimensions of the

| holes and plate have been defined in Fig. 3.1.
3 : The sound field is divided into three fluid re-
| pr

gionsj =1,2,3.

expanded, as well as the transmitted sound pressure pt. The pressure field inside the
cavity is described by guided waves in the same manner than the single hole case (see
Eq. (2.14Db)).

Splitting the space in three regions we can write the pressure field as

p—eienaey [ prgetontagg, (3:82)
= 33 T Quan) ™ W (2), (3.8b)
m=—oon=1
v [[ p@etenamieg, (380
with
YE (2) = {oqmeiq‘““(“h] + cx;ne’iq‘““z} ) (3.9)

where ko = (Qo, qo), 1) = (x,y) = (1,9), ¢ = /K3 —Q?, qmn = /ki—Q?%,,, and
B(Q), p(Q) are the coupling coefficients between the holes and the semi-infinite
space. As the sound does not penetrates into the solid the polar eigenfunctions inside
the hole must satisfy J/, (Qmn7o) = 0, which is equivalent to assume zero normal velocity
at the hole walls.

Due to the plane wave expansion, B*(Q) are related to the particle velocity at both
sides of the plate. As the particle velocity is then periodic and based on the Rayleigh
hypothesis one can perform Fourier series expansion on either side of the film yielding

BH(Q)=5(Q—Qo)+ ) BESQ—Qqc), (3.10)
G

B (Q) =) BsdQ—Qq), (3.11)
G
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where Qg = Qo + G, and G is the reciprocal lattice vector defined in Eq. (3.5). Thus
Egs. (3.8a) and (3.8c) can be rewritten as

p1 = 2e'%" cos(qoz) + ) Pet(Qenitacs), (3.12)
G
Ps = Z Baei(chu*QG(ZJrh)) ) (3,13)
G

Imposing the continuity of the particle velocity at both hole openings, multiplying
by e Q¢TI and integrating along a unit cell yields

1 mn m
BE =5 qqc v (0)IMNQg), (3.14)
- 1 Qmn .
c="3 ; o W (CWIT(Qa), (3.15)

where S refers to the unit-cell area and the term I7}*(Qg ) corresponds to the the following
integral

27T T . )
I™(Qc) = J J o (Qun ) €70 19611 1 dp —
0 0

M%Jm(qmnro)lm(\gc|ro) i Qun #1Qcl,  (316)
2 Metmes s

15 m : _

2 ]%n(anTo) [1 - (anfop} if Qmn =1Qgl,

where @ = arcsin(Qg,,/Qcx). The continuity of the sound pressure at the hole open-

ings requires
26iQ1 4 Z B e'en = Z Jon(Qumnt) €0 W (0), (317)
Z Bi elQGr” = Z ]m anT’ etme \yjnn(_h) : (318)

Substituting Eqs. (3.14) and (3.15) into Egs. (3.17) and (3.18) respectively, then
multiplying by 7] (Qmn/T)e” "™ © and integrating over the hole area yields

2 (m'(Qo))* + % D dmn¥n(0) ) Qo) Ef Qc))
mn G

= 5mm"y;n(0)I(an/ an’) s

(3.19)

LY i Y QI IQO). 5yt h1Qun, Q) (320

G dc
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A set of linear equations involving only o, is then obtained truncating the sums for a
finite number of hole modes and reciprocal lattice vectors. In matrix form, Egs. (3.19)
and (3.20) can be written as

[DH D12] loqm} _ [2 (II{‘/(QO))*] (3.21)

D21 D22 Xmn 0
where
1 , i
Dy = [5mm’I(an/ an’) - gqmnMTTT?/l (QG)] elqmnh/ (3'22)
1
D12 = 6‘rrL'rrL’I(Q'mTu an’) + gqmn nn' (QG) (323)
1
D21 = 6Tnm’I(an/ an’) + gqmn nn/ (QG) (324)
1 , .
D22 = |:5mm’I(an/ an’) - qunnM:?rTLT'1 (QG):| elqm"h/ (325)
and
(Q Z Q) (12> (QG)) : (3.26)

At this point, we calculated the o, coefficients and the B coefficients can be easily
obtained evaluating back Egs. (3.14) and (3.15).

As the perforated plate is assumed to have an infinite extension in the r plane, the
radiated sound power [100] is given by

k |V B
M(w) = 8;20 {ff sz}, V(Q) = 5T, {w;ﬁ,_ . h}, (3.27)

which applied to the incident and radiated sound power yields

o p(w) qG | p—p
T To(w,0,9) ZRG{ qo } ol (3:28)

G

The converged numerical results presented here are obtained considering 100 evanes-
cent diffraction orders and 11 holes modes. In addition, a reduced version of this model
for the study of slit arrays has been also developed and used to test the convergence
of the finite element approximation in the rigid-solid limit. Further extensions of this
model implemented to deal with compound hole arrays can be found in [62].
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3.3 Full elasto-acoustic theory

The beginning of the research in the field of phononic crystals and metamaterials was
devoted to the understanding of bulk wave phenomena. It was after the seminal paper
of Sainidou et al. [107] on a mono layer of solids spheres embedded in a polyester slab
that Lamb waves became a target for phononic and metamaterials research.

In other context, Maysenholder [108, 109] theoretically studied the transmission
behavior of inhomogeneous walls. These models are devised to deal with airborne sound
insulation problems. In fact, it is predicted [108] the appearance of a high Transmission
Loss (TL) spike followed by full transmission peak.

The first theoretical works on PhPs [70, 110, 111, 71] predicted the existence of band-
gaps in solid-solid PhPs. Zhang et al. [73] comes up with the first experimental evidence
of Lamb gaps for air-aluminum and air-brass two-dimensional PhPs. This work was fol-
lowed by more experimental [74, 75] and theoretical studies [112, 113, 114, 72] centered
in band-gap and waveguiding phenomena. After that, different geometrical arrange-
ments and materials have been thoroughly studied. Within the different geometrical
possibilities for controlling Lamb waves one can find thin solid-solid phononic film on
a plate [115], stubs on thin plates forming phononic structures [116, 117, 118] including
locally resonant stubs [119, 120], air-solid PhPs with a membrane [121], air-solid PhP
strips [122], and Lamb wave resonators with PhP reflectors [123].

On the other hand, not only plates made of conventional isotropic or anisotropic
solids have been subject of research, but also piezoelectric [124] and ferroelectric [125]
materials including temperature variation issues of the latter [126].

For applications in the high MHz range, i.e. at small scales for Microelectromechan-
ical systems (MEMS), most practical realizations need a substrate to be implemented.
The effect of a solid substrate on the PhP is considered for band-gap formation and
waveguiding in [124, 127, 128, 129, 130, 131, 132, 133].

Recent developments comprise negative refraction of shear horizontal (SH) waves
[77], Lamb wave band gap optimization [134], and Lamb wave focusing using gradient
index PhPs [135].

In addition, in the thin plate limit, flexural waves can also show interesting phenom-
ena such as band gaps due to locally resonant inclusions [136] and negative refraction
focusing effects [137, 138, 76].

While most of the aforementioned works only take into account in-plate elastic
vibrations, this study additionally brings into focus the coupling of the surrounding
fluid to the PhP, which is of crucial importance when considering sound transmission
through PhPs.
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If the sound penetrates into the plate, which is periodically perforated, one has to
consider the elastic movement of the plate coupled with the surrounding fluid not only
at the plate free surface but also inside the apertures. This case is more complex than
those explained before because one has to deal with the following processes: a) solid-
fluid coupling, b) hole scattering, and c) the interference between waves scattered at
the periodic distribution of holes. The method used will be first briefly summarized,
concisely derived, and finally some results will be discussed. For more information
concerning elastic wave propagation in homogeneous medium see appendix A.1.

The method of solution involves the following steps:

e The displacement field u, the plate density p, and the Lamé coefficients A, p, are
Fourier-expanded along directions parallel to the periodic plate.

o The eigenstates of a two-dimensional crystal formed by infinitely-long holes with
the same periodicity as the plate are obtained when solving the inhomogeneous
elastic wave equation (see Eq. (A.1)) leading to a quadratic eigenvalue problem.

e Rayleigh expansions are used for the pressure in the water outside the plate,
whereas the displacement field inside the plate is expanded in terms of its eigen-
states calculated previously from the inhomogeneous elastic wave equation.

e The continuity of the displacement and the stress in the plate boundaries leads to a
set of linear equations that are solved to yield the coefficients of these expansions.
This method of solution gives a rigorous expansion for finite plates, in which
the thickness enters through the boundary conditions matching the internal two-
dimensional modes to the Rayleigh expansions outside the film.
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Figure 3.5: Diagram of the coordinate system to be used with the FEAM theory. The sound field
is divided into three regions: 1 and 3 correspond to semi-infinite fluids and 2 being a solid plate
with a two-dimensional array of holes.
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Tomodel the perforated plate, the Plane Wave Expansion (PWE) for a two-dimensional
array of cylinders in solid host is used in a similar way to [139] for a given frequency
and parallel wavevector. Therefore, one needs to solve the inhomogeneous elastic wave
equation for harmonic displacement given by

[aj U\anun) + an (H(anuj + ajun))] + pwzuj = 0, (329)

with j and n running over the cartesian coordinates (x,y,z) and u = (u,, uy,u,) being
the displacement vector. The elastic properties of the solid are given by the density p
and the Lamé coefficients A, i1, which in this case depend on r|| in a periodic manner.
Using the periodicity we can expand p;, A, and p, in Fourier series as

g(r)) =) gge'“n, (3.30)
G

where the Fourier coefficients g¢ for a square array of cylinders are calculated as

27r

gG = (g8 +fn(9A—QB))5Go+(QA—QB)gh(GTL (3.31)
where G = |G| and the subscripts A and B refers to the properties of the host and
inclusion homogeneous material respectively. The displacement can be expanded using

the Bloch theorem [102] as

u=) [uge'®] e =3 ug;(z) e, (3.32)

G,j Gj

where Qg = Qp + G and the subscript j runs over the cartesian coordinates. Replacing
the before defined expansions in the Eq. (3.29), multiplying by e 2", and integrating
along the unit cell yields

Z AEG/ aiucl]' (Z) + Z Bg;;/ aZuG/]'/ (Z) + Z CJC{G’ ugj’ (Z) =0. (333)
G/ G/]'/ G/j/

Truncating the sums over G, G’ we get the following quadratic eigenvalue problem

&6 — PAge Ceer —qB&G UG/x
Cux, CW., — ?AY%.,  —qBY, Ugy | =0, (3.34)
—qBge —qBge C&o — d°Agar] Vo
where
AGe = HG-G', Adc = BG-a/, AGe =Ac-c' t+2UG-c’, (3.35)
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&o = Qoxde-e + Qaxbic-a,  Bge =Qayre-o + Qaytic-c,  (3.36)
BéXG’ = QG'X}\G—G' =+ QGX UG-G/, BGG’ QG’ }\G G + QGy HLG—-G’, (337)
Ces = w?pe—c — QexQa'x (Ac—c’ +216-c’) — QeyQc'yHe—c', (3.38)
Cee = —Qa6xQayrc-c — QeyQarxtc-ar, (3.39)
Céc = —QcyQa'xAc-6' — QexQarykc—c', (3.40)
CeL = w’p6-o — QayQary M- +216-6) — QexQarxbic-r (3.41)
&o = w?pc-c — (QexQa'x + QayQary) Mg’ - (3.42)

This system has been solved using standard numerical routines ! and gives us the
eigenvalues g, and the eigenvectors ug, . Then, the n-eigensolution can be expressed
as
u, = Z ugn et tianz (3.43)
G
At this point, the Rayleigh expansion can be performed as before by splitting the
space in three regions and writing the displacement as

uy = g et (Qr—a0z) ¢ Z [-)’J(Evﬁ\(};r et(Qorjtdcyz) (3.44a)
G,v

u = Z {oﬁug gtdn(zth) UG, e_iq“z} e'Qer (3.44b)

uz = Z Bo iy efQeri—dev(zth)) (3.44¢)

where kg = (Qy, qo) and corresponds to the incident longitudinal wavevector, ka =

(Qg, tqgy) suchthatqg, = k2 —[Qgl?) withv = {¢, p, s} thatimplies the longitudinal
k¢ = w/c¢ and transverse wavenumber k, = ks = w/c for isotropic solids.

Therefore, the urutary vectors uG w1th the dlsplacement direction of the waves are

defined as 05" = k&, 0B = — +0g ,and 1 u = @I (see Figure A.1).
¢ o 08 G G &
Using the orthogonality of the exponential functions within the unit cell one can
write the continuity of the displacement atz =0and z = —h as
Z BJGFV/ I\I‘c);vlJr = Z [CX;LLM‘C);L equ"’h + a:LM‘é:l] — (ﬁ‘éJr)* . ﬁOBGO , (345)
v/ n
S Boy N =Y (o Mgk + an My, o] (3.46)
v/ n

1ZGEEV from the LAPACK library
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where
N\év’i = (agh)* .ﬁgi , (3.47)
M = % fs (agh)* -ug, d’r. (3.48)
Defining LY % such that

Z L‘év”i N‘é//v/i = v, (3.49)

v

then
Mgh: = 3 LY =Mgk . (3.50)
v/

Applying Egs. (3.49) and (3.50) to both Egs. (3.45) and (3.46) yields

Béy =D [oiMEhT et9orm 4+ o MY 7] + B8co, (3.51)
n
Boy =D [0 MELT + o My~ etdeh] (352)
mn
where
BY =) L& gagT, o (3.53)
V/

The stress for a locally-isotropic solid can be explicitly written in terms of the strain
as
Onj = 7\8511]' + Z]JEnj p (3.54)

which yields for the stress in the z direction
Oxz = H(axuz + azux) ’ Oyz = H(ayuz + azuy) , 0z =AV-u+ 2U-azuz . (355)
Thus, the stress in the z direction at each region of the space can be calculated as

. i . ik
o}, =i (Qouoz — qoupy)e™ +i) BE, (chz; + qc,,vuzgﬁ) ellkenr, (3.56)
G,v

oL, =iAikotio — 201Gtz )e™ +1 Y B, (MK v + 21w aguudt ) eer,  (357)
G,v

Gﬁz = iZ H2 |:(X:eiqn(z+h) (qnugnu + chgm)
Gn

+ a;e*iq“z(fqnuan” + QGanZ)] e'Qati - (3.58)
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O—iz _ iZ {cx eldn(z+h) ()\Z(QGugnH + qnud,,) + Zuzqnugnz)

Gn

+ ote 1 (Aa(Qattg | — dntign:) — Zuz%uénzﬂ el (3.59)

ol =1 Bay s (chég - qc,vuéw etlavlrih) (3.60)
G,v

ol =1) Ba (Aské,&vz - 2usqc,vu“c;) etha (i) (3.61)
G,v

wherer = (r|,z) = (x,y, z), | denotes the (x,y) components, and h = (0,0, h). Applying
continuity of the stress at both sides of the plate and projecting over the unit cell area

yields
Z B& Ben =D [Aly ol e M AL o]+ ol (3.62)
ny
Z BoyBen =D (AL ol + AL o, el (3.63)
by
where B, A, and o are defined as
Bén =t (QGu‘éJQ + qc,v“‘éﬁ) ubny + (Mkedve + 20160 UGE) Ubh, / (3.64)
Bg, = s (—ch‘& — qGNu‘c’;'r‘) ubny + (Askebyoe + 203qG0UGE) Udn, s (3.65)

+ + + +
Ann/ = Z |:HGG' (QG'uG’n’z + qn'uG’Tl’H) uG;”
GG’

+ (AG—G/ (QG/ug/n/H + qn/ué/n/z) + ZHG_GI qﬂ/ué/nll) uéj‘_z:| ’ (366)

- _ + + o
Ann’ = Z |:HGG/ (—QG/uG,n,z — qn’llG/n/H) anH
GG’

+ (AG*G/ (QG’ug/n/” + qn/ug/nzz) + ZHG,G/ qn/ug/nlz) ug;l:| , (367)

on +x* 0

ot = iugfoy, = iugy (m(Qouoz — qoupy) + (Akotly — 2p1qoup:)) - (3.68)

Combining this two equations with Egs. (3.51) and (3.52) one arrives to the following

system depending only on o

D> A e =13, (3.69)

n’,s’

39



3. THEORY 3.3. FULL ELASTO-ACOUSTIC THEORY

with
AL =D [METBE, — AL ] et AT =Y MELBEL —AL,,  (370)
Gv Gv
A = [MEUBE, — A ] e ™, AL =) MEIBE, —AL,, (371
Gv Gv
bi=— Z BIBYE + o, b, =0. (3.72)
v

Solving this system and replacing the solutions & back into Egs. (3.51) and (3.52)
let us calculate the transmitted sound power t using Eq. (3.28) as in the rigid-solid case.
Then, for solving the transmission problem a finite number reciprocal lattice vectors Ng
and a finite number of phononic plate eigenmodes N, is needed. The influence of the
plate vibration leads to a much more complex equations than that of the naive rigid-solid
theory.

0.9
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wa/Tcy

r X

Figure 3.6: Transmitted sound power spectra obtained using the FEAM fora d/a = 0.6, h/a = 0.2
aluminum plate with a square hole array immersed in water in the I'X direction of the irreducible
Brillouin zone.

Figure 3.6 shows some spurious modes appearing (Ng ~ 100) which similar to those
observed in [140]. These modes are mainly localized in the water-aluminum interface
and originate in unphysical values of the Fourier-expanded Lamé coefficients because
of the lack of shear modulus in the fluid medium. Spurious modes produce noise that
can be partially removed by eliminating them from the expansion of the displacement
u, although part of their effects are still discernible and increase with h. More detailed
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discussion about the results obtained with this model will be discussed together with
the experimental part in chapter 5.

Besides the aforementioned problem, the model is exact when the physical system
consists in a solid-solid PhP immersed in a fluid and it is expected that it also could give
accurate predictions when the semi-infinite fluid media are replaced by solid media.

Some solids, in particular polymers, show certain degree of sound attenuation at ul-
trasonic frequencies, e.g. [141] reports on PMMA attenuation in the MHz range. Follow-
ing some simple phenomenological approximations from the lossy Helmholtz equation
[101] the sound attenuation enters through a complex phase speed c!, defined as

/ Cv
= — .7
= Trip,’ (3.73)

such that the complex wavenumber yields

K, = 2 (1+1By), (3.74)

Cv
from which is clear the frequency dependent behavior of the attenuation given by f3,.
As in the previous derivations, v = {{, t} represents longitudinal and transverse waves.

3.4 Finite Element Approximation

Linear elasto-acoustic problems can also be solved using the so called Finite Element
Method (FEM). This numerical method, which has been developing for more than half
a century, is particularly well suited to solve problems having a geometry which is not
readily accessible by means of analytic methods. With the explosive increase of com-
putation capabilities in recent years, FEM is widely used to solve practical engineering
problems. As a consequence, several commercial and open-source implementations are
available.

For elasto-acoustic problems, the method can be understood in terms of a discretiza-
tion of a particular version of the Helmholtz equation (A.8) and the wave equation
in solids (A.2) (see [142] for more details and a general overview) considering both
boundary conditions and fluid-solid coupling.

Although in this study the geometry is fairly simple, FEM not only provides a starting
point to conduct further modeling of more complicated designs, but also constitutes a
powerful tool to avoid the rise of spurious modes when using PWE for solid-fluid
phononic crystals. However, due to constrains in the computational power only two-
dimensional simulations are performed. Therefore, instead of two-dimensional hole
arrays only one-dimensional slit arrays are studied with this method.

41



3. THEORY 3.4. FINITE ELEMENT APPROXIMATION

The transmission problem has been solved numerically by means of finite elements
implemented in Comsol Multyphysics software for frequency domain, which by default
uses e'®! time dependence. A unit cell of the slit array (see Fig. 3.7) having a period a, a
slab thickness h = 0.6a, and an aperture of size d = 0.28a constitutes the geometry of the
problem. The slab is modeled as an elastic domain having zero out-of-plane components
of the strain (0,u = 0) to keep the problem in two dimensions and neglecting transverse
waves having out-of-plane polarization (u, = 0).

PML

Figure 3.7: Scheme depicting the unit cell geometry used in the FEM simulation. Perfectly
Matched Layer (PML) is an absorbing artificial medium useful to simulate free field conditions.

A fluid domain is used to model the slit and the surrounding media. The pressure p
in the fluid is decomposed as the sum of incident p (known) and scattered ps (unknown)
pressures, the first being a plane wave

po = pie—tkolsin(0)y—cos(0)x) (3.75)

The fluid-structure interaction is ensured by imposing continuity of both, the normal
acceleration 0?u = —Vp/p and the normal stress 0i; = —p&; at the fluid-solid interfaces.
The periodicity enters through the lateral limits of the unit-cell via periodic boundary
conditions as

plx,—a/2) = p(x, a/2)etkosin@®la (3.76)
in the fluid and as

u(x, —a/2) = u(x, a/2)e*osin(@a (3.77)

in the solid. Finally, to satisfy the Sommerfeld radiation condition at infinity, Perfectly
Matched Layers (PML) [143] are used at left and the right of the unit-cell. Wavelength-
dependent scaling is applied to the mesh, the thickness of the PML, and the vertical size
of the unit-cell. The transmitted and reflected sound power is calculated by integrating
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the x sound intensity component along the unit-cell width right at the interface between
the fluid domain and the PML as

1 piacos(d)

Mo =5 P = (3.78)
1 0/2

M, = —J Refpvi}dy, (3.79)
2 —a/2
1 Cl/2

m, = EJ Refpoviy}dy. (3.80)

—a/2

Convergence is achieved for a mesh element size around A/15 and has been tested
through the balance of the total sound power and by comparison with a two-dimensional
rigid-solid model.
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Experiments

4.1 Experimental setup

In order to measure the acoustic transmission through a perforated plate and the wave
propagation in the plate itself, underwater ultrasound has been chosen due to its ad-
vantages:

o As the plate is immersed in water, plate samples of the size of an A4 paper sheet
can be used at ultrasonic frequencies.

e The acoustic impedance (zg = poco) of the water is relatively high. Therefore, it
makes possible to vary the impedance contrast between the plate and the water
using common solid materials.

Two different techniques have been employed to measure wave properties of periodi-
cally perforates plates. Both rely on accurate alignment and positioning provided by an
automated positioning system (Artitecnic DS4) built around a water tank as depicted
in Fig. 4.1(a). This system consists in three motorized cartesian axes, one rotational
motorized axis, and three manual cartesian axes.

Depending on the measurement technique, two different kind of transducers are
used: a Polyvinylidene fluoride (PVDF) needle hydrophone (see Fig. 4.1(b)) and a
piston underwater piezoelectric transducer (see Fig. 4.1(c)), which can be employed as
a receiver and emitter.

On the one hand, the couple of piston transducers (Imasonic) are centered at a
frequency of 250 kHz, have an active diameter of 32 mm, and its nearfield distance
reaches up to 43 mm. On the other hand, the needle hydrophone (Precision Acoustics
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Ltd.) model HPM1/1 has a sensor diameter of 1 mm and its +4 dB bandwidth spans
from 200 kHz to 15 MHz.

Figure 4.1: (a) Automated scanning system and water tank (from Artitecnic DS4 Operation
Manual). (b) Needle hydrophone with mounting piece. (c) Immersion ultrasonic transducer with
mounting piece.

Further equipment and software is required to synchronize the source, the receiver,
the positioning stage, and eventually to register the measured data. This equipment is
rather standard and will be briefly described as follows. A pulser/receiver generator
(Panametrics model 5077PR) produces a pulse which is applied to the emitter transducer
that launches the signal through the system under study. Then, the signal is detected by
the receiving transducer, acquired by the pulser/receiver, post amplified, and digitized
by a digital oscilloscope (Picoscope model 3224). This process is repeated and controlled
from a computer which synchronizes via software (3DreamsUltra) the data acquisition
from the oscilloscope and the automated positioning from the Motion Control card
(National Instruments model 7344). The sampling frequency is limited ultimately by
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the oscilloscope and reaches 10 MHz, which is atleast ten times higher than the frequency
range under study.

4.2 Underwater measurement techniques

4.2.1 Transmission measurements

The experimental setup is based on the well known ultrasonic immersion transmission
technique (Fig. 4.2). This technique makes use of a couple of transmitter/receiver ultra-
sonic transducers (see Fig. 4.1(c)). Each transducer was located at a distance larger than
that of its nearfield distance from the plate and aligned with respect to the plate.

Emitter Receiver

Inspected plate

Figure 4.2: Diagram of the experimental setup. This setup makes possible to explore the transmis-
sion coefficient at different angles of incidence. Q, corresponds to the component of the incident
wavevector ko which is parallel to the plate.

A pulse is launched by the emitter piston transducer through the inspected plate.
Then, the signal is detected by the receiving piston transducer and acquired. Time
domain data is finally analyzed after averaging 100 different measures and deleting
unwanted reflections by means of a time window. Also the reverberation of the tank
must be considered as it restricts the use of high Pulse Repetition Frequency (PRF). For
the present setup, a PRF= 20 Hz satisfied the requirements of leaving the reverberation
below the noise level. The signal-to-noise ratio can be increased by averaging different
measurements under the same experimental conditions. The noise is then reduced as
101log(I), where I is the number of signals included in the average, so that 100 averaged
signals increase the signal-to-noise ratio in ~ 20 dB.
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Figure 4.3: (a) Normalized amplitude of signals after averaging 100 pulses (color scale) as a
function of the distance and the time of flight of the pulse measured with the 250 kHz transducer
couple (emitter and receiver). (b) Slice of the previous plot showing the normalized amplitude
against the time of flight. (c) Normalized frequency response of the previous pulse.

The normalized pulse amplitude h(t) launched and measured by the piston trans-
ducer couple in the water tank is depicted in color scale in Fig. 4.3(a) as a function of
the time of flight and the off-axis distance. The transducers are placed at a distance
around 180 mm from each other. Both the beam spreading and the low frequency tail
are visible from the plot. A slice for x = 0 mm is plotted in Fig. 4.3(b), where it is clear
that most of the energy is condensed in around 20 ps. Employing the Fourier transform
to obtain the pulse power spectrum [Hy(w)[? in absence of any obstacle and normalizing
by its maximum [Hy[?, [Ho(w)[?/|Hol? is obtained (see Fig. 4.3(c)). The main broad peak
is placed around 250 kHz , with a —6 dB frequency range from 155 kHz to 350 kHz.
|2

Given the power spectrum [H(w)|* measured with a sample plate between the trans-
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Figure 4.4: Normalized amplitude of signals after averaging 100 pulses measured by the 250 kHz
transducer couple (emitter and receiver) with a plate placed between them as a function of the
rotation angle and the time of flight.

ducers, the transmission spectrum is then calculated as

2 _ \H(w)\z
IT(w)I* = (@) 4.1)

If the plate is rotated, h(6,t) can be measured as shows Fig. 4.4. Then,

_ H(8,w)P

2
T, W) =" foye

(4.2)
as Qo = ko sin(0) (see Fig. 4.2) and assuming that koc = w, where c is the wave velocity in
water, a simple mapping lead us to [T(wsin(0)/c, w)> = [T(Qo, w)[* ~ T(Qo, w). Then,
the direction in which Qg is varied is perpendicular to the rotation axis and is bounded
to the plate.

Normalization leads to transmission values slightly above 100% in some cases, which
we attribute to the finite size of the incident wave so that the wave front generated by
the transducer is not perfectly plane. Similarly, finite size effects can appear in the
measurements if the number of holes is small. Actually, these effects can be minimized
using large arrays (39 holes x 39 holes).

Typically, angle dependent measurements were done in angle steps of A@ = 1° and
comprising 0° < 0 < 60°. Some of the features found in perforated plates attracted
our attention and measurements using a higher angular resolution were performed.
However, from the results, it turned out that the main limitation is not the angular
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resolution of the plate rotation but the beam aperture of the flat transducers. Then,
AB = 1° has been found to be adequate to accomplish this study.

4.2.2 Nearfield in-plate excitation measurement

A very interesting feature of plates immersed in the fluid is the existence of guided
modes which are confined onto the fluid-solid interfaces and the plate. Scholte-Stoneley
modes lie within this category. As they develop just at the sound line and even with
lower velocities than the sound velocity in the fluid at low frequencies, they cannot be
measured using transmission techniques. As the source beam in the transmission setup
solely excites the leaky part of the dispersion, only the direct excitation of the plate can
trigger the propagation of non leaky modes. Furthermore, as these modes, in principle
do not leak energy to the far field, the receiver transducer must be placed as close to the
plate as possible, but causing minimum field distortion. This is the reason why a needle
hydrophone is used as the receiver and a small piezoelectric transducer is bonded to the
plate and employed as a source (see Fig. 4.5).

Phononic plate
Piezoelectric actuator

Piezoelectric actuator

Figure 4.5: (a) Phononic plate having the piezoelectric actuator bonded at the center of the array.
(b) Measurement setup including the needle hydrophone and the piezoelectric actuator attached
to the inspected plate.

The electrical signal measured by the hydrophone is proportional to the dynamic
pressure in the fluid. Thus, the pressure measured by the hydrophone when it is placed
close to the plate (~ 1mm in our case) provides a good approximation to the stress
component normal to the plate surface.
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The needle hydrophone is depicted in (see Fig. 4.1(b)). The actuator correspond to a
piezoceramic disc (Steiner&Martins Inc. model SMD15T(095411, 15 mm in diameter and
1 mm thick) bonded to the plate by means of cyanoacrylate based adhesive and covered
with a thin silicone layer to avoid electrical short circuit. The electronic and acquisition
module is the same described before with the addition of a preamplifier just before the
hydrophone to stabilize the signal.

Common techniques use liquid [144] and solid [145] wedges attached to the trans-
ducers to excite Lamb waves. However, considering the geometry of the array, a simple
piezoceramic disc at its center is found to be more appropriate to our purposes.

The dispersion of the plate modes can be then measured performing a linear spa-
tial scan with the hydrophone on the inspected plate surface, taking into account the
array symmetry when choosing the scanning path. Then, performing two-dimensional
Fourier transform [146] on both temporal and spatial domain, the dispersion map as a
function of both the frequency and the parallel to the plate wavevector can be obtained.

A total scanned length of 220 mm covering the array diameter in steps Ax = 0.25 mm
is measured using an automated positioning system (see Fig.4.1(a)). Defining x as
the distance from the hydrophone to the piezoelectric disk source and selecting the
measurement path passing through the source on the opposite plate face one can obtain
the electric tension amplitude h in (V) given by the hydrophone as a function of x
and the time t. As an example, Fig. 4.6 depicts h(x,t) after averaging 128 pulses at
each measurement position. The color scale clearly saturates when the hydrophone
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Figure 4.6: Electric tension signal (color scale) given by the hydrophone as a function of time t and
the distance x relative to the source. The regions delimited by the rectangle are those on which
Fourier transform is calculated.

passes near the source position. However, this region contains information regarding
the source coupling to the plate, which is not of interest in this study. Indeed, the
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regions delimited by the rectangles at the upper and lower parts of the plot comprise the
information related with the propagation of waves in the plate. The harmonic analysis
is then performed over these regions.

The two-dimensional Fourier transform of h(x, t), denoted as H(Q, w) is symmetric
with respect to w but it is non-symmetric with respect to Q. This behavior can be easily
understood by the simple fact that while the waves do not propagate backwards in time
they do propagate backwards in space relative to a given direction. Moreover, waves
having negative group velocity, i.e. dw/dQ < 0, will appear having positive group
velocity dw/dQ > 0 but negative phase speed w/Q < 0, which necessarily implies that
Q < 0. Thus, some information related with negative group velocity propagation and
with wave reflections appears at the side of the Fourier transform having Q < 0. In order
to compare our results with the theory, we would need to represent both sides of the
dispersion in just one side for |Q|. Taking modulus of the Fourier transform [H(£Q, w)|
and defining A as

AQ) @) = 5 (H(Q, @) + HI-Q, @), @3)

will allow the observation of all the dispersion properties in a single measurement shot.

4.3 Perforated plates

The measurements were made using aluminum plates (see Fig. 4.7) having around
200 mm in width and 350 mm in length (p = 2700 kg/m3, ¢; = 6467 m/s, ¢, = 3120 m/s)
immersed in water (p = 1000 kg/m?, ¢; = 1480 m/s). Also brass (p = 8560 kg/m?, ¢ =
4280 m/s, c; = 2030 m/s) and PMMA (p = 1270 kg/m?, ¢; = 2770 m/s, ¢y = 1430 m/s)
plates were measured.

If the hole size is too small compared with the wavelength, viscous effects cannot
be neglected. One approach to account viscous effects in the holes is to calculate the
viscous boundary layer thickness d,, which for liquids takes the form [147]

2 !
dy =/, (4.4)
pw

where ' is the (shear) viscosity coefficient. For water at 25 °C, 1/ = 8.9 mPa s [148]
yielding d, ~ 10 pm in the kHz range. Thus, viscous effects can safely be neglected
as the hole size is at least two orders of magnitude above the viscous boundary layer
thickness.

One step forward starting from the perforated plate is the fabrication of a solid-
solid phononic plate by filling the holes with a polymer. PMMA and epoxy resin have
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(b) (d)

Figure 4.7: Some of the aluminum perforated plates used in the experiments having (a), (c)
a square lattice and (b), (d) a triangular lattice. (e) Aluminum-epoxy phononic plate and (f)
aluminum-PMMA phononic plate.

been used due to its elastic constants, which are close to that of water, and provide an
acceptable impedance mismatch with the aluminum.

Of course, the presence of air bubbles inside the resin or PMMA-filled holes consti-
tutes a major drawback and has been successfully avoided. However, if the plate is thin
(h < 2mm) the polymer excess layer could deform the plate producing a bias strain. In
this case, the polymer excess must be carefully removed because small cracks inside the
holes could appear as a result of the back action of the plate trying to recover its original
shape.

4.3.1 Al-Epoxy phononic plates

The resin filling process was performed by the Mechanical and Materials Engineering
Department of the UPV. The epoxy resin Prime 20LV (Gurit Ltd.) is used in 100:26
proportion with a slow hardener. After 20 minutes at rest to allow small bubbles to
leave the mixture, the resin is poured into the mold, which contains the perforated plate,
until the holes brim with resin. The plate lies above a plastic film to make the unmolding
process easier. Eventually, after 72 hours curing, the plate is unmolded and sanded to
remove the resin excess from both sides of the plate. This last process is critical in the
sense that small parts of resin can be taken off when the plate is sanded, thus leaving a
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small hole defect particularly near to the aluminum-resin interface. An example of these
aluminum plates with epoxy resin inclusions can be observed in Fig. 4.7(e).

4.3.2 Al-PMMA phononic plates

Methyl methacrylate monomer is polymerized by means of benzoyl peroxide as a cat-
alyst. Also a small proportion of PMMA powder can be used to both accelerate the
polymerization and reduce the amount of monomer involved in the process. The plate
and the monomer are placed inside a chemically-resistant plastic bag under the radiation
of two infrared bulbs to control the temperature. Once the polymer is cured, the plate is
ground to remove the unwanted PMMA from the surface. A photograph of one of these
plates can be seen in Fig. 4.7(f).

It has been observed that some aluminum particles got stuck in the PMMA surface
presumably due to the high temperature reached while grinding the plate. It is worth-
while to mention that also the flatness of the phononic plate is affected by the grinding
process. In fact, deviations of the plate thickness reached values as large as 0.5 mm.

4.3.3 Random arrays

In addition to the periodic lattices, pseudo-random lattices have been studied. As can
be seen in Fig. 4.8(b) and (d), the array is not perfectly random, firstly because of its
finite size and secondly, because it was designed to have the same global filling fraction
than the periodic array. This strategy was conceived to properly address the effect of
the translation invariance. Thus, as shows the spatial Fourier transform in Fig. 4.8(d),
there is a broad annular maxima having a radius similar to that of the periodic transform
(Fig. 4.8(c)) first order discrete maxima.

@) (@ - Cor o d)
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Figure 4.8: Position of the holes for the (a) periodic and (b) random array. Magnitude of the spatial
Fourier transform (gray scale) of the (a) periodic and (b)s random hole distribution respectively.
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Results analysis

In this chapter, experimental results obtained by means of the described techniques are
presented and discussed in the light of the theoretical models.

5.1 Resonant transmission

When sound impinges onto a hole of finite depth, transmission peaks will arise due to
the FPRs even if the hole size is subwavelength because it is the hole depth and not the
hole cross-section what governs these resonances. Increasing the number of holes could
lead to interesting results, as showed in Fig. 5.1.

Three aluminum plates of the same thickness, h = 2mm, are measured at normal
incidence. Two of them have around 1500 holes of diameter d = 3 mm arranged pe-
riodically (a = 5mm, fg = 0.28) and pseudo-randomly (f = 0.28), whereas the third
plate has no holes. Figure 5.1(a) shows the transmitted sound power coefficient T of
the three plates as a function of the wavelength in water. Nearly full transmission can
be observed when the holes are distributed periodically (Fig. 5.1(a)), which does not
occur neither for the homogeneous plate nor for the randomly perforated one. The
homogeneous plate response is feature less, characterized by a monotonic increase of
the transmission as the wavelength becomes longer. On the other hand, the spectrum
of the random array resembles that of the periodic one, particularly at the minimum
between 5 mm< A <6 mm. However, when the periodic hole distribution reaches al-
most full transmission, the random hole array only reaches T = 0.5. At A >8 mm both
spectra are very close. Moreover, one could expect both spectra to be equal in the deep
subwavelength regime as they share almost the same global filling fraction.
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The experimental evidence thus suggest that the periodicity of ordered arrays facili-
tates a cooperative effect in the holes transmission. This coherent phenomenon relies on
the translational invariance of the array, which guarantees a single resonance for each
direction of sound incidence. Once the translational invariance is broken, different reso-
nant wavelengths for different hole environments appear, thus leading to a transmission
spectrum with lower values of the transmission.
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Figure 5.1: Measured transmission spectra of perforated plates immersed in water at normal
incidence. (a) Transmittance spectra of 2 mm thick aluminum plates pierced by holes of 3 mm in
diameter, distributed periodically with a = 5 mm (d3a5h2) and randomly with an average filling
fraction f = 0.28 (f0.28h2). The transmission of the homogeneous plate is shown for comparison.
(b) Comparison between measurements and rigid-solid model (RSM). The perforated plates are
made of different materials (brass, aluminum (Al), and PMMA) but share the same geometrical
parameters, namely d = 3 mm, a =5 mm, h = 3 mm, and 11x11 holes.

The characteristic acoustic impedance z, is given by the product between the fluid
density pg and the phase velocity cyp. The impedance mismatch between a solid and a
fluid will be simply considered as K = zs/z¢p = pci/poco, where p is the solid density
and c is the longitudinal wave velocity in the solid. This ratio controls the sound
transmission through a fluid-solid interface at normal incidence. On the other hand, the
c¢/co ratio determines whether the wave motion of a homogeneous plate is governed
by leaky Lamb waves and one Scholte-Stoneley mode (c¢/co > 1) [149] or mainly by
Scholte-Stoneley waves as it occurs in a fluid-solid interface (ct/co < 1) [150].

The crucial role of the impedance mismatch in the resonant transmission peaks
can be observed in Fig. 5.1(b), where the transmitted sound power is plotted against
the normalized wavelength (A/a). The transmission spectra of PPPs made of different
materials but having the same square lattice are compared with the RSM for normal
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incidence. The impedance ratio relative to water is 25 for brass, 11.8 for aluminum, and
2.1 for PMMA. The transmission curve for brass follows quite closely the prediction of
the RSM. In the case of aluminum, it also agrees rather well with the theory exceptatlong
wavelengths, where the transmission is still being large after the resonance compared
with the theory and the brass. This step-like behavior found for perforated aluminum
plates can be attributed to the lower impedance mismatch. A completely different picture
from those of the brass and the aluminum plates is observed for the PMMA plate. The
very strong coupling of the PMMA and the water results in a larger amount of energy
passing through the bulk plate. Moreover, 60% transmission is obtained instead of the
dip when A ~ a observable in the other two spectra.

d3a5h3

P
" d3a5h3
~~~~~~ 14 16 18
Aa Aa
/ ----  Theory /
R Experiments

Figure 5.2: Comparison between measured and calculated sound power transmission of PPPs at
normal incidence. Different plate thicknesses and lattice geometries are shown keeping d and a
constant as indicated by the labels. The measurements correspond to perforated aluminum plates
immersed in water, whereas the calculations were performed with the rigid-solid model.

An extended comparison between the RSM and the measurements is shown in
Figs. 5.2 (a)-(f) for different plate proportions and lattices. Good agreement can be ob-
served between measurements for aluminum plates and the RSM. The main differences
can be explained by the finite impedance mismatch between aluminum and water, in
particular the high transmission values after the resonance in Figs. 5.2 (a), (b), (d), and
(e) which are not predicted by the theory as mentioned before. Transmission values
slightly above unity in the resonances can be attributed to finite-size effects of both,
transducers and perforated plates. The transmission minima is placed in a different po-
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sition depending on the lattice geometry. Instead of the A/a = 1 position for the square
lattice, it appears at A/a = v/3/2 =~ 0.87 for the triangular lattice. This difference implies
a direct relationship between the transmission dip and the array pitch in a similar way
to what takes place in optical diffraction gratings [38] which is called Wood anomaly.

The increase in the plate thickness h shifts the transmission peak towards larger
wavelength values for both lattices. Although this statement could seem to be invalid
when h = 5mm, this peak is actually related to the first-order FPR instead of the
zero-order FPR, which is out of the measurement range. Both, zero and first-order
resonance-related peaks appear together for Fig. 5.2 (e), where the very narrow peak
near to the Wood anomaly is related to the first-order resonance. A similar case should
be observed in Fig. 5.2 (b) as predicted by the theory but in this case the peak is so
narrow that it could not be resolved in the measurements. Small losses from the water
and in the holes could complicate the detection of these very narrow peaks.

The dependence of the transmission coefficient T on the geometrical parameters of
the plate and the hole array under normal incidence was calculated using the rigid-
solid model and is shown in Fig. 5.3. Each contour plot corresponds to one line in the
parameter space of Fig. 5.3 (a) related to four different d/h ratios. The filling fraction is
then varied through a retaining d/h constant.

A first sight in Fig. 5.3 shows full transmission in all cases. The number of peaks is
directly related to the thickness as they depend on the FPRs inside the hole. However,
the position of the peaks is highly influenced by the array periodicity. For an open
tube, the FPRs appear at A/h = 2/j (with j being integer) which is very near to the full
transmission for high filling fraction values, but the transmission peak for an individual
hole is actually placed at larger wavelengths as show the white vertical dashed lines
in Figs. 5.3 (b)-(e). Thus, the resonant peak can be tuned only within the open tube
resonance position and the single hole transmission resonance position.

As the filling fraction decreases, the peak moves to larger wavelength values follow-
ing the A = a minima and becomes narrower. While for a single hole the transmission
peak is higher for the lower order Fabry-Pérot modes (see Fig. 2.7), in the periodic case
each Fabry-Pérot mode reaches nearly full transmission. The influence of the filling frac-
tion of holes [50] via periodicity variation shows a high interaction, which is translated
into peak narrowing when the filling fraction decreases together with a shift in the peak
position towards longer wavelengths.

Until now, the arrays under consideration have all the holes of the same size. By
considering a compound array consisting in two different arrays having different hole
size one could expect to observe some degree of interaction between the hole resonances.
Two different perforated plates are studied. Plate A has a plate thickness h = 0.375a
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Figure 5.3: Transmitted sound power T (color scale) through PPPs as a function of A/h and the
filling fraction for a square array fy calculated with the rigid-solid model for normal incidence. The
parameter space (a) shows the possible proportions of the perforated plate and their corresponding
fy value (color scale). Each contour plot represents a line in (a) for (b) d/h = 1.5, (c) d/h =1, (d)
d/h = 0.6, and (e) d/h = 0.3. The vertical white dashed lines correspond to the position of the
resonances calculated for an individual hole.
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Figure 5.4: Sound transmission through single hole (top row), simple hole array (medium row),
and compound hole array (bottom row). The left column corresponds to the A plate whereas the
right column to the plate B.

and hole diameters d; = 0.375a, d, = 0.25a. On the other hand, plate B has h = 0.5q,
d; = 0.4a, and d, = 0.2a. The transmitted sound power coefficient T is shown as a
function of the normalized incident wavenumber for normal incidence in Fig. 5.4. The
inset in each panel sketches the geometry used in the calculations. In addition to the
compound hole array curves (Figs. 5.4(c) and (f)) the normalized sound transmitted
power for the individual holes (Figs. 5.4(a) and (d)) and T for the simple square arrays
that form the compound array (Figs. 5.4(b) and (e)) are also depicted for plate A (left
column) and plate B (right column).

It can be clearly seen from the single hole spectra, that the resonances of the two hole
sizes are slightly different, even though they share the same thickness. This difference
in the resonance frequency is enough to be seen in the spectra of the simple hole arrays.
Then, the same resonant transmission peaks can be seen in the compound array spectra
with some differences. A new minimum arising probably from the interference [61]
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between both arrays can be observed between the two peaks located at 1 < 2a/A < 2.
The base transmission contour is higher, presumably due to the higher filling fraction
of the compound array. This effect is clearer at very large wavelengths. Although the
first resonant transmission peak of the small array (array 2) is very near to the Wood
anomaly of the array 1 itis not quenched and nearly full transmission prevails. A similar
behavior can be observed for the second peak of the array 2, which is well beyond the
diffraction limit if the compound array period a is considered.

5.2 Wood anomalies

The dips found at normal incidence measurements are related to Wood anomalies. In
the following section the geometrical nature of these anomalies is clearly set in the light
of the transmission dispersion.

Figure 5.5 shows results of four different plates, whose geometrical parameters are
shown in the lower side corners of the panels. The transmission 7 is in linear color scale
as function of the normalized frequency wa/mcy and the parallel-to-plate wavevector
Qp along the MT" and I'X directions of the irreducible Brillouin zone. The effect of the
filling fraction (fy) is reflected in the transmission dispersion, where it is clear that the
smaller the filling fraction, the narrower the peaks. It is remarkable the fact that all
spectra share the same position of the minima when the axes are normalized by the
array period a. This give us another evidence of its geometrical nature. These minima
were also observed by Wood in terms of sharp reflection maxima when light impinges
in a diffraction grating [38]. As predicted by Rayleigh the minimum is produced by
the coherent interference between holes. The Wood anomaly is given by the following
condition:

ko =1Qo + Gl, (6.1)

e.g. when a diffracted beam becomes grazing to the array plane. Therefore, it only
depends on the array symmetry. Equation (5.1) can be explicitly written for a square
array as

w 21 2 21 2
@ 100+ 6= /(@ T ) o+ (Quy o+ o) 62)

Cf

and for a triangular array as

w 271 2 27 2
—_—= G = _— — — . 5-3
. 1Qo + G| \/(Q()x + +m2)> + (QOy + a\/g(ml mz)) (5.3)
The transmission vanishes right when this condition is satisfied. Different values of the
Miller indices (mj, m;) produce the several minimum curves. Like in the optical case,

61



5. RESULTS ANALYSIS 5.2. WOOD ANOMALIES

these transmission dips are driven by lattice-sum singularities originating in cumulative
in-phase scattering among the holes of the array.

| d/a=0.3 fo = 0.07 |
h/a=2

| d/a=0.7
h/a=0.5

I -
| d/a=08" fa =05
0.5 h/a =1.5 ./ m}

M r X M r X

Figure 5.5: Transmitted sound power T (color scale) through plates with a square array of holes as
a function of the normalized frequency wa/mcy and the wavevector Q, along the MI'X directions
of the irreducible Brillouin zone (see Fig. 3.3(a)). Four different cases are shown with their
proportions placed below the sound cone.

The number of transmission peaks is given by the plate thickness but also depends on
the periodicity due to their interaction with the Wood anomaly modes. One remarkable
fact is the existence of full transmission peaks that are independent of the angle of
incidence. This can be seen in Figs. 5.5 (a), (b), and (d).

In addition, we can explore the transmission properties of square and rectangular
compound arrays [62] as shown in Fig. 5.6. The compound hole arrangement consists
in a primary square array which is decorated with a larger secondary array that can be
square (Fig. 5.6(a)) or rectangular (Fig. 5.6(b)). The symmetry of the resulting structure is
given by the symmetry of the secondary array. Thus, three different samples are defined
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Figure 5.6: Diagram showing compound hole arrays. The region inside the dashed line corre-
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sponds to the compound hole array unit cell. A primary square array (light gray) is combined
with a larger secondary array (dark gray) having (a) square and (b) rectangular symmetry.

and their geometrical parameters summarized in Tab. 5.1, namely sample A and B being
square (see Fig. 5.6(a)) and sample C (see Fig. 5.6(b)) being rectangular.

Table 5.1: Geometrical parameters of compound hole arrays according to diagrams in Fig. 5.6

Sample label H di/a; ‘ dy/a; ‘ h/a; ‘ ap/ap
A 0.25 | 0.375 | 0.375 1 (square)
B 0.2 0.4 0.5 1 (square)
C 0.25 | 0.375 | 0.375 | 1.5 (rectangular)

Calculating T as a function of the normalized frequency wa/7cy and the parallel-
to-plate wavevector Qp, Figs. 5.7 and 5.8 are obtained. In contrast to the simplicity
found in [61] when studying the angular dependency of T, a complex interplay between
Wood anomaly minima, resonant interference minima and resonant full transmission
is observed in the transmission dispersion plots from Figs. 5.7 and 5.8. Identifying the
contribution of each array (primary and secondary) to the Wood anomalies is not an
easy task. Therefore, the right side plots of Figs. 5.7 and 5.8 are the same than those
at the left side with the inclusion of Wood anomaly curves of the primary (white) and
secondary array (black). This redundant information is, however, helpful to distinguish
resonant interference minima from common Wood anomalies.

In agreement with the normal incidence observation from Fig. 5.4, the prevalence
of the transmission peaks over the Wood anomaly minima is evident also when the
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Figure 5.7: Transmitted sound power coefficient T as a function of the normalized frequency
wa/7cy and the parallel-to-plate wavevector Qo along the directions of the first Brillouin zone
showed in the left insets of (a) and (c) for samples A and B respectively. In (b) and (d) Wood
anomaly curves of the primary (white) and secondary (black) arrays are added to the plots (a) and

(o).

incidence angle is varied. The interaction of the first order Fabry-Perot full transmission
peaks can be observed when wa/mcg < 2. For samples A and B (Fig. 5.7), the transmis-
sion maxima originated by the secondary array (first order Fabry-Perot) are flanked by
the secondary array Wood minima (black curves), whereas the first order transmission
peak provided by the primary array is nearly flat, is located a slightly higher frequen-
cies, and clearly overcomes the secondary array Wood minima (black curves). This can
explain the angle dependence of the resonance interference which is different from that
reported in [61] because the case analyzed here involves the Wood minima as well.

The secondary array Wood minima (black curves) have only little influence in the
second order transmission peaks coming from the primary array, which are still flanked
by primary Wood minima. From the point of view of the reciprocal space, the primary
array is just a subset of the secondary array, thus the Wood anomaly minima of the
primary array are also a subset of that of the secondary array. These features remain
even when the secondary array is rectangular, as shows Fig. 5.8. The transmission
dispersion for sample C is calculated following the path in the reciprocal space depicted
in the insets of Fig. 5.8(a) and (c). When the Wood minima curves are added to the
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Figure 5.8: Transmitted sound power coefficient T as a function of the normalized frequency

wa/mcy and the parallel-to-plate wavevector Qg along the M and X directions of the irreducible
Brillouin zone. In (b) and (d) Wood anomaly minima are added to the plot for the primary (white)

and secondary (black) arrays.

plot (Fig. 5.8(b) and (d)) it is clear that the interplay between Wood minima, resonance
interference, and transmission peaks is more complex than for samples A or B.
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5.3 Extraordinary sound screening

5.3.1 Perforated plate in water medium

When no holes are drilled, the sound transmission for normal incidence at low frequen-
cies can be approximated using the mass-law [80] given by

2pc 2
T~ el (5.4)

where m” = pshis the mass per unit area of the plate. This law states that heavier walls
shield sound better than lighter ones. Thus, an increase in the plate mass produces a

decrease in the sound transmission. However, in opposite to the common sense and
the mass law, PPPs can transmit less sound than homogeneous plates having less mass.
Figure 5.9 shows the transmission spectra of several aluminum plates perforated with
square arrangements of holes immersed into water having different geometrical param-
eters (diameter d, period a, and thickness h in millimeters) under normal incidence.
Perforated plates shield sound much better than non perforated ones when A ~ a. For
wavelengths larger than the periodicity, hole resonance appears leading to high trans-
mission values. The transmission dip is located at the same place for both plates with
a = 5 mm, while the plate with a = 6 mm shows the dip at larger wavelengths.

s

-101
= No holes h3
<
)
" 20M\
d3a5h3
-30
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Figure 5.9: Measured transmission spectra of PPPs having square lattice symmetry immersed in

water at normal incidence for aluminum plates with different geometrical parameters, as indicated

by labels (in millimeters).
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5.3.2 The role of the fluid-solid impedance mismatch K.
Hydrodynamic short-circuit

When first reported [55], extraordinary sound screening was thought to exclusively rely
on the Wood anomaly minima. Then, it could have been easily scaled up or down due to
the purely geometric nature of Wood anomalies. However, it has been recently shown
[56] that the phenomenon is more complicated and could be even more impressive due
to the crucial role that plays the impedance mismatch K in the fluid-solid coupling.

Figure 5.10 reveals the key role of K for slit arrays compared to homogeneous plates.
The sound power transmission coefficient T in (dB) has been calculated as a function of
the normalized frequency fa/c at normal incidence. The features described in several
papers [46, 48, 49, 47, 51, 55] assuming a perfectly rigid-solid (K — co) appear almost
unchanged for K = 15. Resonant full transmission and the Wood anomaly can be
observed for K = 15 and K — oo at fa/cy = 0.6, 0.99 and fa/cy = 1 respectively.
However, when K = 8, huge unexpected transmission dips appear. In order to retain a
more global picture of the effect of K, it has been varied between 2 < K < 15 following
five different slopes m = (c1/co)/(p/po) (see appendix B.1 for more details).

(a)

15

0 E
20} 10
98 K =38, slit array K
= K = 15, slit array
vl = — K=8,plate
40 K = 15, plate 5
—— K = o, slit array
-60 E . . . .
0.2 0.4 0.6 0.8 1
f(l/Co

Figure 5.10: (a) Transmitted sound power coefficient T in dB as a function of the normalized
frequency fa/c for slit arrays and homogeneous plates having different K. (b) Insertion loss in
dB of slit arrays in a homogeneous plate as a function of the normalized frequency and different
K for m = 1.00.

In addition to p and c¢, which define the characteristic impedance z, also the trans-
verse wave velocity c¢ in the solid needs to be taken into account. In these calculations
it is chosen as ¢ = 0.7c1/ v/2, thus satisfying c¢? — 2¢2 > 0.

The transmission features in Fig. 5.10(b) evolve with the decrease of K in agreement
with what is reported here for aluminum perforated plates immersed in water (K ~
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11.8, c¢/co = 2) and the theoretical prediction in [151] for PMMA perforated plates in
water (K = 1.8, ct/co ~ 0.7) (see appendix B.1 for more details).

The physical origin of this phenomena can be understood by comparing the pressure
and displacement fields for finite and infinite K values, as it is shown in Fig. 5.11 when
a plane wave coming from the left side impinges on the slit array.
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Figure 5.11: (a) Transmitted sound power coefficient in (dB) for slit arrays of different K as a
function of the normalized frequency at normal incidence. For each peak indicated by the labels
(b)-(e), the pressure (color scale) and displacement (arrows) fields are shown at the slit-array
unit-cell. The incident wave travels from left to right having the same amplitude in all cases.
Differences in the range of the color scale arise due to the existence of constructive interference in
the pressure field. Arrow scaling is also different for each plot.

Two points for each transmission curve in Fig. 5.11(a) corresponding to K = 5 (light
curve) and K — oo (black curve) are shown and labeled in Figs. 5.11(d)-(e). The moderate
transmission of -12 dB obtained for K — oo at fa/co = 0.95 is distinguishable from
Fig. 5.11(b). Some portion of the incident wave coming from the left passes through
the slit and is transmitted to the right. The interfaces at the right side of the solid
cannot move, i.e. they act as a rigid baffle. This behavior differs from that of the Wood
anomaly minimum at fa/cy = 1 (see Fig. 5.11(c)). As expected, the incident wave is
almost completely reflected at the left side of the array, precluding the wave to enter
into the slit. Thus, even if the plate thickness is enlarged up to infinity [39], the same
phenomena occurs. On the other hand, when K = 5 the solid can vibrate and it couples
to the fluid. How this coupling contributes to decrease the transmission through the slit
array can be inferred from Figs. 5.11(d) and 5.11(e), which correspond to the minima in
Fig. 5.11(a) at fa/co = 0.64 and fa/co = 0.87 respectively. At first glance, the fields for
K =5 are more similar to those of Fig. 5.11(b) than to the Wood anomaly ones. However,
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in these cases the incoming wave penetrates not only into the slit, but also into the solid
in such a way that the outward displacement at the slit right side is compensated by the
inward displacement of the solid right face. Thus, an evanescent wave appears at the
transmitted side of the slit array, yielding sharp dips beyond -40 dB in transmission.

This phenomena, is well known in the sound radiation of structures and it is called
hydrodynamic short-circuit [100]. Also the field inside the slit is affected by the solid
deformation. Small gradients in the vertical direction distort the otherwise straight
displacement field.

To further understand the differences between both transmission minima for K =5,
we can analyze time averaged quantities related with the sound radiation as the sound
intensity normal to the aperture at the right side of the slit array unit cell (see Fig. 5.12

(@)).

(a) — Fig.5.11(d) (b) 25 0
= Fig. 5.11(e)

Intensity (a.u.)

0:5 1 1:5 2
Qoa/m

Figure 5.12: (a) Time averaged intensity normal to the aperture at the right side of the slit array

referred to Fig. 5.11(d),(e) as a function of the normalized vertical coordinate y/a. The slit is

centered at y/a = 0 and the positive side of the intensity point outwards the slit. (b) Transmitted

sound power coefficient T dispersion of a slit array for K = 8 (color scale in (dB)) as a function of
the parallel wavevector Qpa/m and the normalized frequency wa/7cy.

Surprisingly, at the first minimum (regarding Fig. 5.11(d)) the solid is attempting
to transmit energy to the fluid, but the fluid within the slit inhibits it, resulting in a
overall sound blocking effect, as shown at the minimum (d) of the Fig. 5.11(a). The
intensity at the second minima (regarding Fig. 5.11(e)) behaves in the opposite way,
mainly concentrated at the edges of the slit. This shape is presumably induced by the
solid deformation because the cavity sustains a standing wave and little energy is carried

69



5. RESULTS ANALYSIS 5.3. EXTRAORDINARY SOUND SCREENING

through the slit. In addition, the intensity at the solid presents more gradients due to
the shorter wavelength of the incoming wave.

Previous results for normal incidence can be broadened considering non zero parallel
to the array wavenumber Qq. The sound power transmission coefficient T is shown in
Fig. 5.12 (b) for K = 8 as a function of Qg and ky. Dark regions below the Wood anomaly
given by kg = 2mt/a — Qo correspond to low transmission zones where both dips can be
distinguished. Thus, an acceptable angular window of low transmission is provided.

The non-trivial behavior presented here is even more outstanding than the already
counterintuitive possibility of screening sound with slit (hole) arrays. The lowest trans-
mission is not achievable with the highest impedance ratio, but with an optimum K.
This results are consistent through the whole set of parameters included in this study
(see appendix B.1).

As the impedance ratio for most solids in air is at least three orders of magnitude
larger than those considered for this study, slit array sound screening is not suitable for
airborne sound [56]. The physical mechanism involved in the transmission dips differs
from the Wood anomaly. The solid vibrations allow normal intensity oscillation at the
transmission face of the array, which produces very low radiated sound power.

The existence of an optimum impedance ratio to obtain TLs up to 60 dB using slit
arrays opens the door for a wide range of possible applications mainly in underwater
acoustics and underwater ultrasound. For sonar applications it could be used as a
reflector either to block signals coming from unwanted sources or for redirecting the
launched sonar signal. In this aspect, a slit array can be a better option over a solid
surface or a holey plate because of its hydrodynamic characteristics. Some similar
applications, but at a smaller scale, could be thought as well for underwater ultrasound.

5.3.3 Sound screening for airborne sound

One key issue in hole-array sound screening is whether it can be applied for the case of
airborne sound at audible frequencies [152, 153, 154]. Other approaches using periodic
structures having air resonant cavities have been proposed [155, 151, 59, 60]. Hannink et
al. [155] attempted to build a thin shell structure for airborne sound insulation purposes
by means of A/4 resonator (hole closed at one end). The flexural coupling was as
important as the random incidence and the high TL obtained in Kundt tube experiments
could not be repeated in transmission chamber ones. The theoretical predictions under
the rigid-solid assumption [151, 59, 60] propose a double layer of periodically perforated
structures, although no realistic comparison neither with single wall nor with double
homogeneous wall are given.
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To illustrate the difficulties one could face when translating underwater ultrasound
phenomena to audible airborne sound, a simple numerical example calculated with the
FEM is given. Suppose a concrete wall (p = 2400 kg/m?, c; = 2996 m/s) in air (pg = 1.12
kg/m3, ¢y = 343 m/s) whose impedance mismatch yields K = 1.7 x 10*. Lets now
calculate if drilling holes or slits in the wall could produce an improvement in the TL
(TL= —10log()).

@, T ®) y

gof -~

50
- —_ 5 10
/M —— Slit array as)
T T wa T K
A 1 -10
H b

— 5
-15

0.2 0.4 0.6 0.8 1 1.2
f(l/C()

0.2 0.4 0.6 0.8 1
fa/co

Figure 5.13: (a) Transmission loss in dB for a slit array (solid curve) and a homogeneous wall
(dashed curve) both made of concrete in air as a function of the normalized frequency at normal
incidence. (b) Insertion loss in dB of slit arrays in a fluid layer as a function of the normalized
frequency for the different values of K.

The results of this high impedance mismatch in the TL of the slit array compared
with the homogeneous wall of the same thickness and material are shown in Fig. 5.13(a)
as a function of the normalized frequency fa/cy at normal incidence. Resonant full
transmission peaks and the Wood anomaly are present in the slit array spectrum, as
expected from previous results using rigid-solid assumption [46, 48, 49, 47, 51, 55]. It
is clear that the slit array does not provide any advantage at any frequency in terms
of TL over the homogeneous wall as its TL (dark solid curve) is nearly 55 dB below
than that of the homogeneous wall (dashed curve in Fig. 5.13(a)). The previous results
preclude the use of the slit array sound screening in airborne conditions due to the huge
impedance mismatch between the air and most solids (K > 10°) and this restriction is
almost certainly valid also for hole arrays.

The possibility of overcoming the homogeneous plate TL by inserting slits in a
low impedance material is unfortunately not realistic for airborne sound because no
conventional solid has such a low acoustic impedance to reach K = 8. Replacing the
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solid by a fluid , i.e. another gas, could be more feasible in the practice to achieve the
low K required to obtain high TLs. Following the FEM calculation scheme used for a slit
array in a solid slab, the Insertion Loss (IL) of a slit array in a fluid layer is calculated
for different K values as a function of the normalized frequency fa/cy and shown in
Fig. 5.13(b). It can be clearly observed that the IL is almost always negative. Then, as
our calculation predicts, it would be useless to replace the solid by a fluid in order to
attain high TL in airborne sound.

These encouraging results seemed to block not the sound but the previous naive
assumption of easy translation between waterborne and airborne sound phenomena.
There are, however, porous materials capable of showing low impedance and certain
amount of sound absorption as well. This kind of materials could be suitable candidates
to show interesting properties when they are arranged periodically, as several authors
have reported in previous studies for airborne sound [156, 157]. Porous materials are,
however, more complex and are out of the scope of this study. Also low impedance
metamaterials [158] working in the effective media regime could be appropriate to
provide the low impedance mismatch required but further research is required to address
this question.

5.4 Surface waves

A more global picture is obtained when the angle of incidence is varied. Although for
normal incidence one could simply rely on the RSM prediction plus a few considerations
as the step-like behavior, the angle dependent measurements clearly depict a different
scenario for which RSM does not provide a convincing explanation.

Figure 5.14 shows the results of angle dependent measurements for two different
lattices (square and triangular). The color scale corresponds to Tin (dB) as function of the
parallel wavevector within the irreducible Brillouin zone and the normalized incident
frequency wa/2mcy. Three different plate thicknesses were measured for square and
triangular arrays drilled in aluminum plates immersed in water.

Complex interaction between minima and maxima is present in the spectra and it
makes clear that the symmetry of the array results in a high angular dependence of the
spectra [67]. In Figs. 5.14 (a)-(f), Wood anomalies are depicted in the transmission dis-
persion as white dashed curves. There is a very good agreement between the measured
position of the minima and the prediction of Egs. (5.2) and (5.3) when the thickness of
the plates is small. However, the dips appearing from the bottom of the figures are not
predicted by the Wood anomaly and can be related to leaky surface modes, whose phase
velocity can be measured. This surface modes resemble leaky Lamb modes observed in
the homogeneous plate (see Fig. 2.3) arising from the plate vibration and the solid-fluid
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Figure 5.14: Measured sound transmission as a function of the parallel wavevector Q, and the
normalized frequency wa/2mc for periodically perforated aluminum plates with square (a)-(c)
and triangular (d)-(f) lattice symmetry (see insets), and for different plate thicknesses h. The period
is a =5 mm and the hole diameter is d =3 mm for all cases. White dashed curves correspond to
Wood anomaly modes. Around 720 measurements are condensed in this figure.

coupling. Indeed, it has been found that the geometrical anisotropy of the arrays leads
to anisotropy of the modes phase-velocity [68] even if the solid is isotropic (aluminum
in this case).

One can actually extract the phase velocity cg of the Sy-like mode below the crossing
with the Wood anomaly by fitting a linear dispersion at low frequencies. The results (see
Tab. 5.2) reveal the importance of plate thickness and orientation of Qq. For both types
of lattices, the phase velocity decreases when the thickness increases from 2 to 3 mm.
Moreover, the Sp-like mode travels faster through the I'X direction with square lattices,
and through the 'M with triangular lattices. For thicker plates, the bands evolve in a
complex way which prevents us from extracting accurate values for the group velocity
within the frequency range of our measurements.

Considering the RSM results in Fig. 5.5 one should conclude that this model does not
predict the existence of leaky surface modes because in its derivation it is assumed that
K — oo neglecting the plate vibration and the fluid-solid coupling, both essential for
the observation of leaky Lamb waves in homogeneous plates. A theory that takes into
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Table 5.2: Phase speed cs for the Sy-like mode below the crossing with the Wood anomaly for
both square and triangular lattices.

h (mm) Lattice Direction c¢g (m/s)
X 3495 + 33

2
square ™ 3020427
, 'K 2994 + 22
2 triangular
™ 3521 +9
5 X 3150 + 48
I
square ™M 2748 +23
_ 'K 2747 £ 22
3 triangular

'™ 3217 £ 35

account the plate vibrations and the solid-fluid coupling is then needed. One option
is the use of the FEAM, which has been derived before. Comparing the results of the
three theories, namely the homogeneous plate, the rigid-solid, and the FEAM, with the
experimental results we obtain Fig. 5.15. The sound power transmission T is depicted
in color scale as a function of the parallel wavevector along the I'X direction and the
normalized frequency wa/mcy. Plates having three different h/a ratios but sharing the
same filling fraction (fy = 0.28) are shown.

In the homogeneous-plate calculations, the normalization by the lattice period a
in both axis is only used to have the same scale as the other contour plots. The first
row shows the transmission dispersion for the homogeneous plate, dominated by the
cutoff-free symmetric and antisymmetric leaky Lamb modes, the latter mixed with the
Scholte-Stoneley mode for h/a = 0.2, 0.4 near the w = ¢ Qg line (co is the sound phase
velocity in water). Each of this three images represents a magnified version of the
complete behavior of aluminum plates immersed in water given in Fig. 2.3, which is
valid for plates of any thickness. Higher order modes enter in the frequency range when
the plate thickness is increased (see h/a = 1.0).

The second row contains the sound transmission dispersion calculations of PPPs un-
der the rigid-solid assumption. Full transmission peaks arising from the hole resonances
and hybridized with the Wood anomaly dips are observed. The peak is quite narrow
when h/a = 0.2 and is placed immediately below the Wood anomaly. The transmission
peak is then moved to lower frequencies by increasing the h/a ratio and higher order
FPRs enter into the frequency range.

The third row shows the calculations obtained with the FEAM, which includes the
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Figure 5.15: Comparison of the transmitted sound power T between the different theoretical
models and the measurements for square arrays (f; = 0.28) in the 'X direction as a function of the
normalized frequency wa/mcy. Top row corresponds to homogeneous plate calculations, followed
by the rigid-solid prediction row and the FEAM prediction row. Finally, the bottom row shows
the experiments. Wood anomalies are depicted as white dashed curves in the measurements row.
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hole resonances, coherent scattering due to the hole array, and the elastic vibrations of the
plate. These three phenomena are responsible of the complex transmission dispersion
obtained in the measurements (see fourth row of Fig. 5.15). In spite of the numerical
instabilities observed in the results of the FEAM, the main features regarding the finite
impedance mismatch between solid and fluid can be properly resolved. Whenh/a = 0.2,
the FEAM correctly predicts a dip arising from the bottom of the dispersion plot reaching
zero group velocity at the X point and falling down again due to symmetry around
X. Adding the rigid-solid results to the comparison enable us to infer that this dip
corresponds to a surface mode similar to Lamb modes, i.e. caused by the plate vibrations.
The high transmission region measured at low frequencies, which is delimited by the
leaky surface mode and a Wood anomaly, is also properly predicted by the FEAM, in
opposite to the RSM.

A similar landscape is obtained for h/a = 0.4. The crossing between the Wood
anomaly and the surface mode can be clearly seen in both, the experiment and the
FEAM results. This crossing is particularly interesting because there coexist the leaky
surface mode, the Wood anomaly, and the transmission peak, all of them hybridized. The
high transmission found below this crossing is connected with the step-like behavior
observed at normal incidence (see Figs. 5.2 (a), (b), (d), and (e)). This behavior has
been correctly attributed to the effect of the finite impedance mismatch K, which is
taken into account in the FEAM. The full transmission peak is also affected by the
plate vibration with a small shift towards lower frequencies. For thicker plates (h/a =
1.0) the interaction between surface modes, coherent scattering among holes, and hole
resonances is stronger, producing a rich and complex scenario, and further investigation
is needed to unveil the complex interplay. These results show clearly how the fluid-
solid coupling mixes two phenomena that had been studied separately, namely sound
transmission through perforated plates and elastic wave propagation through phononic
plates.

Slits and holes produce a different behavior when light is transmitted through them.
However, in the case of sound they behave in the same way unless the fluid-solid
coupling reaches finite values. Calculating numerically the transmission dispersion for
a slit array, we arrive to Fig. 5.16. Three different models are depicted for three slit
arrays of the same filling fraction d = 0.28a and three slab thicknesses (from top to
bottom h = 0.6a,a,1.6a). The left columns shows the results of the two-dimensional
RSM (K — o0) followed by the central column showing the FEM results for K = 8, and
m = 1. Finally, the transmission dispersion of the homogeneous plate having the same
thickness and material as the FEM simulated slit arrays is also provided for comparison
at the right column.
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Figure 5.16: Comparison of the transmitted sound power T (color scale) between the different
theoretical models for slit arrays as a function of the parallel wavevector Q, and the normalized
frequency wa/mcy. The left column corresponds to the RSM, the central to FEM approximation,
and the right to the homogeneous plate. Each row corresponds to one h/a ratio, as indicated by
the labels at the right. The impedance mismatch is K = 8 in the FEM and the homogeneous plate

calculations.

As the periodicity is one-dimensional, Wood anomaly minima are far simpler than
the previously considered cases. Looking at the thiner slit array results (Fig. 5.16(a)-
(c)), the resonant transmission peak, which appears in the rigid-solid case, is pushed to
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lower frequencies by the low transmission zone that appears right above when K = 8 in
Fig. 5.16(b). One key difference between slit and hole arrays for finite impedance ratio
is evident from Fig. 5.16(b) contrasted with the experimental and theoretical results of
Fig. 5.15. No zero-order leaky surface modes appear for slit arrays because the solid
slabs do not have elastic connection between them as a perforated plate does. As can
be observed in the transmission dispersion of the thicker slabs, only the higher order
Lamb modes seem to interact with the periodicity and the slit resonances, adding more
features to the finite K dispersion. In addition, slit arrays having h = 0.6a, a clearly
show a step-like behavior near normal incidence.

To make clearer the key role of the symmetry in the transmission properties of
perforated plates we can compare a periodic lattice with a random lattice, both having
the same filling fraction (average hole filling fraction f for the random array) and sharing
the same plate thickness. This comparison is shown in Fig. 5.17, where the upper panels
(a) and (b) correspond to transmission dispersions while the lower panels (c) and (d)
represent the two-dimensional Fourier transforms of both lattices.

wa/2mc

d/h =15

-2 2 -2 2

Qua/m Qua/m

Figure 5.17: Transmitted sound power T (color scale) through perforated plates as a function of
the normalized frequency wa/mcy and Qp along the I'X direction of the irreducible Brillouin zone
for square (a) and random (b) lattices. (c), (d) two-dimensional Fourier transforms (contour plots
in log scale) of the holes for the (c) periodic and (d) random arrays.
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The rich interplay between lattice modes and intrinsic plate modes in the ordered
array (Fig. 5.17 (a)) is completely absent in the random sample. However, the latter
displays a feature resembling the surface mode coming from the plate vibration without
the fall due to the array symmetry around the X point.

Interestingly, the Fourier transform of the two-dimensional distribution of geomet-
rical openings in random arrays shows a broad annular maximum with a radius close
to |Q| = 7/a. This maximum gives rise to a broad dark region near normal incidence,
close to the Wood anomaly of the ordered array. Regarding the transmission peak, it
is reduced nearly to a half for the random lattice at normal incidence, while the high
transmission observed near to the X point at low frequencies is mainly due to the plate
vibration and not to the hole resonance.

5.5 Solid-solid phononic plates immersed in water

The wave behavior of a solid can differ enormously from that of a fluid. Moreover, the
wave interaction at a solid-solid interface is different from that of a fluid-solid interface.
As the fluid only supports longitudinal vibrations, the stress tensor reduces to a scalar,
i.e. the fluid pressure (0i; = —pdi;j), when viscous effects are neglected. Thus, a different
behavior in the transmission properties of perforated plates is expected if the holes are
filled with another solid. Two different polymers have been employed to fill the holes
drilled in aluminum plates due to it elastic constants, which are close to that of water.

In the following pages it will be shown that the FEAM works flawlessly when the
PhPs constituents are both solids. No spurious modes appear as a result of the eigenvalue
problem.

Figure 5.18 depicts the experimental (a) and numerical (b) transmission dispersion
of PMMA cylinders of d = 3 mm arranged periodically in a square lattice of period a =
5mm embedded in an aluminum plate having h = 3 mm and immersed in water. Below
the sound line, the normalized evanescent transmission is plotted. This normalized
transmission reaches unity when a surface mode exists and it will be of great help in the
analysis.

The calculations have been made considering Ng = 97 (reciprocal lattice vectors),
N = 3Ng (phononic plate eigenmodes), and nominal elastic constants for water, alu-
minum, and PMMA (see Tab. 5.3).

Zero order Lamb modes are clearly distinguishable from both pictures. On the
one hand, the Ay mode is broad and couples the surrounding fluid producing full
transmission in the calculations and high transmission in the experiments. On the other
hand, the Sy mode preserves its less radiative nature, which shows up with very sharp
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Figure 5.18: Transmitted sound power T as a function of the parallel wavevector Qo in the I'X
direction and the normalized frequency wa/mc, from (a) measurements and (b) FEAM calculations
for an AI-PMMA PhP immersed in water. The geometrical parameters of the square array are

d =3mm, a =5mm, and h =3 mm.

Table 5.3: Elastic constants for aluminum and PMMA used in the calculation of Fig. 5.18(b).

Material H p(kg/mB) ce (m/s) ‘ ct (m/s) ‘ By

2700 6467 3120 0
PMMA 1270 2770 1430 0
Water 1000 1480 0 0

features, and is affected by the symmetry of the array when Q¢ > 7/a. Some modes
resembling Wood anomaly minima seem to be doubled when wa/mcy < 2 by other
two modes. Considering the information available from the calculations regarding non-
leaky modes below the sound line (from points (1,1) to (2,2) in the dispersion space),
one can observe the mirror image of the non-leaky mode reflected on the Qpa/m =1
axis. It means that the non-leaky mode is folded due to the array symmetry. Thus, on
the leaky side of the dispersion, the mode is characterized by a negative group velocity.
The other mode, whose group velocity is low and develops near wa/mcy = 2, seems to
be related to the folded continuation of the non-leaky mode.

There is a transmission minimum at low frequencies in the measurement which
has not been predicted by the theory. It can be due to imperfections of the PhP (non
homogeneous thickness due to the sanding process, defects in the PMMA filled holes)
or the finite size effects of the measurement setup. However, the main obstacle to
obtain better measurements is clearly the limited angular resolution of the immersion
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transducers. As can be clearly seen in the theory, most features are very sharp and
include abrupt changes of the transmission from T = 0 to T = 1 in a small frequency-
wavenumber area.

Changing the polymer from PMMA to epoxy resin to fill the holes we obtain the
experimental and numerical dispersion showed in Fig. 5.19. Transmission and Nearfield
in-Plate Excitation Measurement (NiPEM) as a function of the parallel wavevector Qg
in the 'X direction and the normalized frequency wa/mcy are compared with the FEAM
transmission calculation, which includes the normalized evanescent transmission below
the sound line. The NiPEM is required to measure the wave propagation right at the
plate surface and thus, unveil the bounded modes predicted by the FEAM.

The elastics constants of both, aluminum and epoxy resin have been previously
extracted from homogeneous plate measurements by fitting the theoretical angle depen-
dent data to the measurement data. Attenuation was needed to properly characterize
the epoxy resin. However, the measurements of the PhP showed a low frequency shift
in comparison with the numerical calculations based on elastic constants measured on
homogeneous aluminum and epoxy plates.

Table 5.4: Elastic constants for aluminum and epoxy used in the calculation of Fig. 5.19(b).

Material | p (kg/m’) | cc(m/s) [ce(m/s) | Be | B
Al 2683 6175 2900 0 0
Epoxy; 880 2038 942 | 18x107% | 22x107°

Table 5.5: Deviation of the elastic constants used in the calculation of Fig. 5.19(b) from the
measured data of homogeneous aluminum and epoxy plates.

H P \ Ce \ Ct \ By
AAl +6% | +1% | —8% | 0
AEpoxy || —23% | —20% | —18% | 0

Then, a further step in the calculation was required. The quadratic error between
experimental and numerical data was used as a minimization target and parameter
variation is performed in the space of the elastic constants (p1, p2, c¢1, Ce2, Ct1, €2) without
including the attenuation to keep the problem as small as possible. During this process,
it was found that the thickness of the plate was no more h = 1 mm but h ~ 0.85 mm due
to the sanding process to remove the epoxy over-layer.
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Figure 5.19: Transmitted sound power T as a function of the parallel wavevector Q, in the I'X
direction and the normalized frequency wa/mcy from (a) measurements and (b) FEAM model
calculations for underwater Al-Epoxy PhP. (c) Near field dispersion measurement for the same
PhP immersed in water, where the color scale corresponds to the normalized A defined in Eq. (4.3)
and white dashed curves correspond to the features predicted by the theory. The geometrical
parameters of the square array are d = 2.5mm, a = 5mm, and h = 0.85 mm.
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Furthermore, the final elastic constants, which provided the lowest quadratic error,
are written in Tab. 5.4 and its percentage deviation from the homogeneous plate extracted
ones in Tab. 5.5. The deviations for aluminum are below 10% but, surprisingly, in the
case of epoxy all elastic constants show a similar deviation in the same direction of
around 20%. As described in subsection 4.3.1, the fabrication process is complicated and
several factors can influence the final result.

Despite this issue, there is a good agreement between the theory (see Fig. 5.19 (b)) and
the experimental results, not only for the leaky modes measured using the transmission
measurement technique (see Fig. 5.19 (a)), but also for the NiPEM (see Fig. 5.19 (c)).

The transmission dispersion looks different from the PMMA-aluminum PhP not only
because of the different geometrical parameters (d = 2.5mm, a = 5mm, h = 0.85mm)
but also because of the higher attenuation given by the epoxy resin. The features are
smoother than in Fig. 5.18 for both, experiments and calculations. Wood anomalies are,
however, too narrow to be detected.

The main feature observable from the transmission measurements are the minima
around wa/mcy = 1. These minima are also predicted by the theory and they can be
connected to a zero group velocity non-leaky mode. This is evident from both theory
and NiPEM at (Qoam, wa/7c) =~ (2,1) and the lower frequency branch which is folded
onto the leaky side of the dispersion having negative group velocity when wa/mcy < 1.

In addition, the Sy-like mode can be clearly distinguished from the three sub-figures
including its symmetric branch having negative group velocity. As the plate is relatively
thin, the A like mode is difficult to visualize in the transmission because its broadness
is mixed with the overall high transmission observed. As the A should be localized
near the sound line, a closer look into the NiPEM results clearly demonstrates its pres-
ence in the dispersion. Remaining modes seen in the transmission dispersion can be
easily explained in terms of the folded non-leaky modes predicted by the FEAM and
corroborated by the NiPEM. Following the white dashed curves in Fig. 5.19(c) taken
from the theory in Fig. 5.19(b) one can observe not only the agreement between theory
and experiment, but also the band folding phenomenon.

Non leaky modes show band gaps as well as a subsonic band with zero group
velocity dispersion. To the best of our knowledge, this is the first time that this kind of
modes are predicted and measured for non-corrugated PhPs.

The relation of these non-leaky modes with Scholte-Stoneley modes can be demon-
strated by comparing the c¢/c¢ ratio between the lowest solid ¢ of the different PhPs
and the nominal speed of sound in water ¢y = 1480 m/s. For the AI-PMMA PhP this ratio
reaches 0.97 whereas for the Al-epoxy PhP it gives 0.64. Comparing now Figs. 5.18(b)
and 5.19(b) one can certainly link the distance of the modes to the sound line for a given

83



5. RESULTS ANALYSIS 5.5. SOLID-SOLID PHONONIC PLATES IMMERSED IN WATER

frequency to the c¢/cg ratio, which is consistent with the observations of wave propaga-
tion [150] in fluid-solid interfaces. A fluid-solid interface is governed by Rayleigh waves
if ¢t > ¢ and by Scholte-Stoneley waves if ¢y < c. In our case, as we are dealing with
PhPs which contains two different materials this condition is reflected in the distance to
the sound cone of the non-leaky modes.

Table 5.6: Elastic constants for aluminum, nickel and PMMA used in the calculation of Figs. 5.21
and 5.20.

Material H p (kg/m?) ‘ c¢ (m/s) ‘ c¢ (m/s) ‘ B

Al 2700 6310 3130 0
Ni 8910 5910 3080 0
PMMA 1270 2770 1430 0

Provided that the FEAM can predict experimental results, more materials and geo-
metrical parameters can be examined. Three different materials have been regarded as
appropriate due to their elastic constants, namely aluminum, nickel, and PMMA. Four
combinations of these materials have been considered, i.e. nickel plate decorated with
aluminum cylinders (Ni-Al), aluminum plate having nickel inclusions (Al-Ni), PMMA
plate with aluminum cylinders (PMMA-AI), and finally an aluminum plate decorated
with PMMA cylinders (Al-PMMA). Sound power transmission coefficient T in water
is calculated as a function of the parallel wavevector Qg in the MTI'X directions and the
normalized frequency wa,/7cy for three plate thicknesses (h/a = 0.4,0.6,1) and a filling
fraction fg = 0.28 for each material combination. Below the sound line the normalized
evanescent transmission coefficient is plotted.

Figures 5.20(a)-(c) shows the calculations for Ni-Al PhPs and Figs. 5.20(d)-(f) those
for AlI-Ni PhPs. In both cases, thiner plates, i.e. h/a = 0.4,0.6 (Figs. 5.20(a), (b), (d),
and (e)) differ slightly from and homogeneous plate, where zero order Lamb modes are
clearly distinguishable, as well as the Scholte-Stoneley-like mode just below the sound
line, in agreement with the previous statement that the bigger the c¢/co (2.11 in this
case) ratio, the smaller the distance to the sound line of this mode. However, due to
the geometry of the array it is observed some degree of anisotropy. The transmission
features for the Al-Ni plate are broader than those of the Ni-Al plate in the same way than
a homogeneous nickel plate displays sharper transmission features than an aluminum
homogeneous plate. For the thicker plates having h/a =1 (Figs. 5.20(c) and (f)) a small
gap for the Ag-like Lamb mode opens.

More complex dispersion is shown in Figure 5.21 above and below the sound line as
well as a stronger anisotropy. Sy like mode is clearly steeper for AI-PMMA (Figs. 5.21(d)-
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Figure 5.20: Transmitted sound power T as a function of the parallel wavevector Qg across the MI'X
directions and the normalized frequency wa/mcy calculated with the FEAM model for Ni-Al (left
column) and Al-Ni (right column) PhPs immersed in water having fy = 0.28 and h/a =0.4,0.6,1.
The insets depict the unit cell geometry for each case.

(f)) PhPs than for PMMA-ALI plates (Figs. 5.21(a)-(c)). Scholte-Stoneley-like modes are
no more as simple as in the Al-Ni, Ni-Al plates. Several gaps appear as in Fig. 5.21(c)
and more interestingly, they are folded to the leaky side due to the symmetry around
the M and X points. This phenomenon has been already proposed in [151, 69] to
explain transmission features predicted [151] in PMMA PPPs immersed into water and
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Figure 5.21: Transmitted sound power T as a function of the parallel wavevector Q, across the
MTI'X directions and the normalized frequency wa/mcy calculated with the FEAM model for
PMMA-AI (left column) and AI-PMMA (right column) PhPs immersed in water having fy = 0.28
and h/a =0.4,0.6, 1. The insets depict the unit cell geometry for each case.

measured [69] in periodically corrugated brass plates immersed in water both at normal
incidence, though no direct proof has been given yet.

These results give a complete description of the phenomena involved in PhPs as they
also includes the coupling with the surrounding fluid. The Scholte-Stoneley-like modes
reported here do not need a surface corrugation to be strongly confined but one of the
phononic crystal constituent materials having lower c, than the fluid. This constitutes
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a key difference with fluid-solid PhPs and perforated plates together with the absence
of FPRs in solid-solid PhPs. Even if the solid is considered as perfectly rigid, non-leaky
modes can be induced using a corrugation [159, 45]. Although the cavity then has a
closed and an open end, it still supports resonances which are intimately linked to these
non-leaky modes.
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Concluding remarks

6.1 Sound, light, and matter waves

This section, which is reported in [53], consist in comparing the behavior of light,
electrons, and sound when transmitted through a hole drilled in zero and arbitrary
thickness membranes under the unified framework derived in [35] and further extend
the analysis to hole arrays.

Figure 6.1 summarizes the comparison between sound, electrons, and light when
transmitted through a single hole in a h = 0 membrane. In contrast to electron and
electromagnetic waves, sound scattered through the hole shows a monopolar behavior
(see Eq. (2.25)) instead of dipolar response. Another difference between sound, electrons,
and light is the existence of a cutoff-free mode in the acoustical case, where the whole
fluid inside the hole moves in phase like an acoustic mass. Both fluid half-spaces are
always connected through the hole and the limiting factor for the transmission of sound
from one side to the other at the long-wavelength regime is the radiation efficiency of
the aperture. This is clearly shown in Fig. 6.1 for a zero thickness screen. While almost
all the sound is transmitted, even at large wavelengths, light and electrons display a
strong cutoff in their transmission spectra, i.e. subwavelength sound transmission is the
rule and not the exception.

Considering the previous results for a single hole interacting with different kind of
waves, the following discussion focuses on extending this comparison to hole arrays.
The arguments are based on an analytical analysis developed by Garcia de Abajo et al.
[53].

Wood anomalies can be analyzed from another point of view, following [35], as the
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divergence of the structure factor of the array. Under null-thickness and small hole
assumptions one can relate via Babinet’s principle the reflection coefficient of a disk
array for electrons with the transmission coefficient of the complementary hole array for
sound [53] giving

1 _ eikoR
T= , where G(Qq) = Z e_‘QOr“T (6.1)

1 +i%:}ze {1 - S(Qo)}
27 o

corresponds to the inter-hole interaction and Re{o} = —7¢/7, Im{oc !} = —2ky is the scat-

tering coefficient of a single hole. When Re{G(Qy)} diverges, the transmission becomes
zero. The condition for the divergence [35] of §(Qo) is

1

\/1Qo + GI> — k3

which is the same condition given before for the Wood anomaly. This approach also

9(Qp)

(6.2)

makes possible the analysis of the full transmission peaks, which require Re{ac 1 —5(Qp)}
to be zero. This condition cannot be fulfilled in the case of sound because Re{x} < 0 and
Re{G(Qp)} > 0, similarly to electrons and in opposite to light [53], where full transmission
occurs for arbitrarily small holes. Therefore, in the acoustic case no full transmission
peak is produced due to the hole array itself as in the electromagnetic case.

Performing a similar analysis we obtained the results showed in Tab. 6.1, where
the existence of different transmission properties is stated against the different kind of
waves.

An opposite behavior between light and sound has been found, in contrast with
the similarities emphasized by several groups [48, 49, 44]. Whereas subwavelength
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Table 6.1: ST of individual small holes, ET of arrayed small holes, and surface-bound modes
in arrays. The acoustic transmission of individual holes is proportional to their area, whereas
arbitrarily small-hole arrays can trap light and produce full optical transmission.

Type of wave H One-hole ST | Hole-array ET | Hole-array bound states

Sound Yes No No
Electrons No No No
Light No Yes Yes

transmission takes place for sound through a single hole, this is neither the case for
electrons nor for light (see Fig. 6.1 (b)). ET and surface-bound states exist exclusively for
light and not for sound or electrons.

These analytical results for null thickness membranes, although they could be con-
sidered as a specific ideal cases, portrays clearly the key role of hole resonances in the
acoustic case. To illustrate this point let us consider a different geometry, for example
a wall of large thickness drilled with tiny periodically distributed holes. Each hole,
although having a very small aperture, still supports hole resonances dictated by the
wall thickness. Then, full transmission will take place for wavelengths much larger than
the hole size but not much larger than twice the wall thickness. In fact, recalling Fig. 5.3
and the results reported in [160] the transmission peak of the isolated hole is placed at
larger wavelengths than the hole array full transmission peak unless the filling fraction
is so small that the Wood anomaly gets involved and extremely deviates the resulting
sharp full transmission peak.

In this limit, however, that sharp full transmission peak would be difficult to mea-
sure and even minimum dissipative loss could quench it. All the interesting features
predicted and observed for sound impinging on a hole array embedded into a finite
thickness plate such as evanescent surface modes, full transmission peaks, and sub-
wavelength imaging strongly rely on the existence of hole resonances.

6.2 Conclusions

In summary, the transmission of ultrasound through periodically perforated plates has
been studied experimentally and modeled theoretically. Different array geometries in-
cluding square, triangular, and random lattices have been measured for perforated plates
immersed in water including solid-solid phononic plates. The following conclusions can
be derived:
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A)

B)

O

D)

E)

It has been found that the transmission features of periodically perforated plates
involve three different physical phenomena, namely Fabry-Pérot resonances of
holes, coherent scattering due to the hole array, and elastic surface-modes of the
plate. The interaction of these phenomena results in the following transmission
features: a) Full transmission peaks, b) Wood anomaly minima, c) Minima and
maxima from surface modes, and d) Scholte-Stoneley-like modes showing band
gaps and folding. While a) and b) depend mostly on the geometrical parameters,
¢) and d) depend strongly on the physical properties of the constituent materials.

The key role of Fabry-Pérot resonances in the full transmission peaks has been
demonstrated. However, periodicity is required to coherently add the contribution
of each aperture, otherwise the transmission peak is quenched to a value of one
half for the same global hole filling fraction. The frequency and the width of the
peaks can be tuned by changing the hole filling fraction. On the other hand, the
number of peaks depends on the plate thickness, the hole filling fraction, and the
unit cell symmetry for compound hole arrays.

It has been observed that perforated plates could transmit much less sound than
homogeneous plates of the same thickness due to the hydrodynamic short-circuit.
Thus, a higher transmission loss can be achieved using lighter permeable barriers.
Slit array and hole array sound screening could have interesting applications for
underwater sound as a reflector. An optimum impedance mismatch has been
found to provide a large transmission loss.

Two theoretical models have been derived and explained. As they differ only in
the behavior of the plate, they allows us to extract the role of the plate vibration and
its interaction with the modes derived from the periodical distribution of holes.
The rigid-solid model shows a good agreement with the experiment at normal
incidence, whereas the full elasto-acoustic model resolves properly the key trans-
mission features for arbitrary angle of incidence despite the numerical instabilities
when dealing with fluid-solid interfaces inside the plate. The numerical instabili-
ties could be solved by using a finite element method but at a considerably higher
computational cost.

Phononic plates have been studied theoretically and experimentally from the point
of view of the sound transmission as well as in-plate propagation. Full elasto-
acoustic model provides an appropriate description for studying transmission
phenomena even for non-leaky modes. The transmission properties have been
addressed and the folding phenomenon of non-leaky waves demonstrated.
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F)

6.3

It has been pointed out that in the case of sound the full transmission should not
be called extraordinary transmission. In contrast to light, there is a lack of a true
lattice resonance [53, 35] and, moreover, there always exist a cutoff-free mode at
each hole connecting both sides of the plate, making subwavelength transmission
common rather than extraordinary.

Future work

Some themes and issues that are not covered in the present work are briefly exposed in

the following lines as they could lead to improvements in the field:

A)

B)

@)

D)

A semi-analytical model similar to the full elasto-acoustic model is required to
solve the transmission through infinite fluid-solid phononic plates for high fluid-
solid coupling. Such a model should give results without unphysical modes and
being less computer intensive than FEM.

The better outcomes of the extraordinary sound screening phenomenon have been
predicted for materials which cannot be found in nature. However, recent ad-
vances in polymer-metal composites could pave the way towards underwater
applications. Further research in this direction may be desirable.

Although accurate enough to test underlying the physical phenomena, the mea-
surement techniques can be further improved to deal with phononic plates. Syn-
thetic aperture, ultrasonic holography, and spatial fourier analysis are possible
candidates to enhance both the precision and the accuracy of the measurements.

Lamb waves are known by their peculiar behavior when reflected at plate edges.
Therefore, it is important to know if phononic plate modes behave in the same
way. This information could be important for many applications.
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Appendix

Mathematical details

A.1 Harmonic wave propagation

Starting from the equation derived in section 2.1, i.e. Egs. (2.8) and (2.9), some basic
results and relations will be given regarding mechanical waves in solids and fluids.
More detailed treatment can be found in many textbooks as [78, 83, 161, 84]. Assuming
harmonic time dependence, Eq. (2.8) yields

[3;(Adnitn) + On ((dnuj + djun))] + pw?u; = 0. (A1)
If the elastic material is homogeneous isotropic the equation can be further simplified to

A+ WV (V-u) + uVu + pw’u=0. (A.2)

Assuming plane wave propagation of the form u = upe™" and replacing into Eq. (A.2)

one obtains
(pw® — pkPug — A+ wk (k-up) =0, (A.3)

which gives two different possibilities of wave motion:

N [A+2
Longitudinal waves: uy = wok, ke = CQ , Cp = —; a , (A.4)
¢

Transverse waves: u-k=0, ki = @ , Ce = 4/—. (A.5)

We can use previous results to express the wave field in the solid as the contribution
of longitudinal and transverse waves. This procedure is called the Stokes-Helmholtz
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Figure A.1: Diagram of the polarization
scheme for the characterization of longi-
tudinal and transverse plane waves. The
displacement for a longitudinal wave fol-

lows the same direction of the wavevec-
tor k = £. However, in the case of a
transverse wave, the displacement is per-
pendicular to the wavevector and can be

represented using 0 and ¢

decomposition. Denoting & and 1 for longitudinal and transverse wave potentials
respectively, one can write u = \7&+57 X\, which in two-dimensional in-plane problems
takes the form

Uy = 0xE+ 0,0, Uy = 0,6 — Oy (A.6)

With regard to the elastic constants p, c¢, and c¢, they are related to the Lamé
coefficients by p = pc? and A = pc — 2 = p (¢ —2¢32).

Considering linear harmonic propagation in a fluid, the particle displacement is
related to the pressure by the Euler equation (2.5) as

1

In addition, Eq. (2.9) under time harmonic considerations and for an isotropic homoge-
neous fluid yields
2
V2p + %p —0, (A.8)

which for plane waves of the form p = poe’ gives longitudinal pressure waves for

which kc = w.

A.2 Bessel functions properties

Some general properties of the Bessel functions are shown as well as some particu-
lar expressions involving them which are used through this work. The Jacobi-Anger
expansion [162] that represents a plane wave in cylindrical coordinates is given by

eix cos @ _ Z im}m (X)eimcp , (A9)

m=—00
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The nth order Hankel transform is defined following [100] as

Fo(Q) = [ ulrn(Qrirar, (A10)
Due to the orthogonality of the Bessel functions we get [162]
|, mi@nim(@rrar = 22, (A1)

Whereas changing the upper limit of the latter integral one obtains [162]

1Q,Q) = JO° T (QP) o (Q7)r dr =

2
2 ifQ=Q =0,
. (A.12)
r(bu [Q'Tm (QT0)Jimn—1(Q'T0) — QJm (Q'T0)Jm—1(Qro)] i Q #Q’,
2
2 [F(Qro) = Jon 1 (Qro) 1 (Qo)] ifQ=Q.
In case J),, (QmnTo) = 0 then [162]
0 if an * an’
I(an; an’) = 2 2 (A.13)
T m .
EO ]%(anfo) l:l - w] if an = an"

From the derivation of the single hole transmission (Egs. (2.21), (2.22)) the following
integral is obtained

Ilnn’ = J:O q% ( mns Q)I(an’/ Q)QdQl (A14)

An asymptotic approximation [162] for the Bessel function is

Jm (QT)lQr—s00 = \/ WLQT cos (QT— % — Z}j) . (A.15)

A.3 Stationary phase approximation

This approximation is an asymptotic method that can be applied to evaluate the integral
of Eq. (2.14¢) in the farfield using spherical coordinates. The general procedure is
well described in [100] and here will be applied to a particular case. First, changing to
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spherical coordinates r = Rsin 01, z = R cos 01 and taking the asymptotic approximation
of the Bessel function (A.15) assuming large values of R, Eq. (2.14c) is rewritten as

m7t T

o0
ps~ Y eime JO BomY cos (QR sin6y — - — Z) e iResOT(+h 0 40, (A.16)
m

2
T= \/ TQRsin 01’ (A.17)

Using the identity cosx = (e'* + e~**)/2, neglecting the first exponential since there is

where

no wave propagating backwards in region 3, and arranging terms it yields

; ; 1
~ sm ime int/4 - IR Al
p3 %l © ¢\ 2nRsinor (R), (A.18)

g(Q)
R Joo Bém \/aefiqh efiR(Q sin 01 + q cos 01) Q. (A.19)
0 e
f(Q)
Concentrating now in the phase term g(Q) = —Q sin 81 — q cos 01 of the second expo-

nential in Eq. (A.19), we need to determine the stationary phase point to perform the
integration around it and thus take out the rapidly oscillating regions that tend to cancel.
The stationary point can be found by solving g’(Q) = 0. In this case, the stationary point
is Q1 = ko sin 87. We can now replace f(Q) and g(Q) in the expression derived in [100]

~ iRg(Qr) in/a | 2T
I(R) = f(Qr)e™9 e RIg QT (A.20)

. . 2k
I(R) ~ Bg,me 97" /Qre e ™4 cos 0y 1/%. (A21)

as

Replacing Eq. (A.21) back in Eq. (A.16) and arranging terms yields

—ikoR

ps~igre taTh QT Y imBg,me ™, (A22)
m

which is the same expression obtained in [97] for the transmitted farfield.
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A.4 Homogeneous plate transmission

This appendix is the continuation of the derivation started in section 2.3 for the trans-
mission of sound through an homogeneous plate. Explicit boundary conditions from
Egs. (2.12) and (2.13) applying Egs. (A.7) and (A.6) are:

1
W al(bllZ:O = (aZEvZ - ax1b2) |Z:O/ (A23a)
1
m az¢3|z:—h = (aZEZ - axll)Z) |z:—h ’ (A23b)
P1lz—0 = 12 (Kir&2 +2(3%& + 93,12)) |20, (A.23¢)
Palaen = w2 (k& +2(058 + 02,02)) [o——n, (A.23d)
0= uz (203, + 0202 — 03W2) lz—0, -1, (A.23e)

If medium 1 and 3 have the same properties, the system can be written in matrix
form as A o = B where

"R _kelzz_
prw
T 1
An A At
A=|" 2 =", p=]| O (A.24)
Ao A A 0
B+ 0
B~ L 0 |

Due to the momentum conservation in the x direction, the wavevector is simply written
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A.4. HOMOGENEOUS PLATE TRANSMISSION

as Q =k, sin 0,j, however in the z direction is defined as k,j, = k,; cos 6,;. Thus,

VASH!

A2

A

Ay =

0

L 0 0

—ke22
K2 (2Q* —Ki,)
—2QKke2
k
B 012(1)22 El_ll
E.
0 0

o

—ke2-Ep2

—2Qkep-Ep

routines for each (81, w) pair.

w2 (2Q* —k3,) Eeo

K2z

0 e (2Q*—kg) |~

2QKke2,

Q Q
—21 QKo 21Qki22 ’
(2Q* = ki) (2Q*—KPy)

k@ZzEz_zl
2 (2Q* —K%,) B |
2Qk,Ep!
QE,
—2u2 Q2 E )
(2Q*—k},) B

QEp
21 Qk - E2
(2Q* — ki) B

7

(A.25)

(A.26)

(A.27)

(A.28)

with Ey; = etkvicos(®vi)h Thig 6 x 6 linear system can be solved using standard numerical

100



Appendix

Extensive results

B.1 K variation in slit arrays

A more complete scenario of the influence of the impedance ratio K can be obtained
performing a parameter variation. The parameter space formed by the normalized

density p/po and the normalized longitudinal wave velocity c1/cg is shown in Fig. B.1(a).
c1/¢o

This two variables can be replaced by K = 2 &L and m = =72 giving two new variables
which appear in Fig. B.1(a) as red hyperbolas (K) and as black lines (m). While K takes 14
different values between 2 < K < 15, m = {0.27, 0.58, 1.00, 1.73, 3.73}. However, in the
solid there also exist transverse waves, whose wave velocity ¢t has been chosen to fulfill
the c% —2¢? > 0 condition as ¢y = 0.7¢{/ V2. Care has to be taken with the value of ¢,
because when it is lower than ¢y the fluid-solid interface is governed by Scholte-Stoneley
waves instead of Rayleigh waves [150], although a pure interface mode exist in plates
immersed in a fluid even if ¢t > ¢y [149] in addition to leaky Lamb waves. The region
in the parameter space (Fig. 1(a)) where c; < ¢ has been marked with a light yellow
(gray) rectangle.

A suitable quantity to address the effect upon the sound transmission of insert-
ing periodically distributed slits in a homogeneous plate is the insertion loss, IL=
—10log(t/70), where T is the transmitted sound power coefficient through the slit array
and 1 the transmitted sound power coefficient through the homogeneous plate. Both,
slit array and homogeneous plate, share the same thickness and elastic constants. Fig-
ures B.1(b)-(f) show the IL of the slit array in the homogeneous plate as a function of the
normalized frequency fa/co and K at normal incidence for each m. The normalized IL
evolves in a similar way for the five m values. The IL provided by the slit array can reach
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60 dB over a homogeneous plate. The darker zones correspond to full transmission in
the slit array. When K is small, several sharp peaks are present in the spectrum and the
effect of the ¢; < ¢y condition can be correlated with the existence of these extra IL peaks
at frequencies between a minimum of the IL and fa/cyp = 1. As K increases the peaks
are shifted to higher frequencies and start to couple forming one peak which decreases
as K approach to infinity. There is an optimum between 7 < K < 12 depending on m
having a relatively broad part of the spectrum with 20 dB over the homogeneous plate.

It is clear from Fig. B.1(b), that the parameter with more influence in the transmis-
sion features of slit arrays is K, whereas m has only a moderate influence. Therefore,
references to m have been mostly omitted from the discussion, although it has been
considered and is needed to perform the calculations.
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Figure B.1: (a) Parameter space for K variation as a function of p/py and c;/co. The curves
correspond to equal-K hyperbolas and black lines show the different slopes m for which K has
been varied. (b)-(f) depict the IL of the slit array in a homogeneous plate (color scale in (dB)) as a
function of the normalized frequency and K. Each contour plot corresponds to a line (m) in the

parameter space (a) as indicated by the labels.
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