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Abstract. In the present study, novel green composites made of polylactide (PLA) and 

orange peel flour (OPF) were melt compounded by twin-screw extrusion (TSE) and 

shaped into pieces by injection molding. Orange peel, a large by-product of the juice 

industry, was first grounded to flour and then incorporated as a lignocellulosic filler into 

the biopolymer at 10, 20, and 30 wt.-%. Since both components of the green composite 

presented low compatibility, the resultant injection-molded pieces showed poor ductility 

and impaired thermomechanical performance. As a new bio-based reactive 

compatibilizer, acrylated epoxidized soybean oil (AESO) was added at 5 parts per 

hundred resin (phr) to the PLA/OPF formulations during the extrusion process. The 

addition of AESO increased the filler–biopolymer adhesion and led to compostable 

green composite pieces with improved physical properties. The enhancement achieved 

was related to a dual effect of plasticization and melt grafting of the OPF particles onto 

the PLA chains provided by the multiple acrylate and epoxy groups present in AESO. 

The use of multi-functionalized vegetable oils to improve the performance of green 

composites certainly opens up new opportunities for the expansion of fully bio-based 

and biodegradable materials that are partially obtained from agro-food waste. 
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1. Introduction

Nowadays, the increasing environmental concern about the extensive use of petroleum-

derived polymers is leading the research of new environmentally friendly polymer 

materials obtained from natural resources.1 The development of green composites is a 

leap forward to solve these environmental problems since these novel materials 

combine a bio-based polymer with a natural filler obtained either from plants or agro-

food wastes.2, 3 Additionally, the use of biodegradable polymers, that is, polymers that 

undergo rapidly and completely disintegration through the action of enzymes and/or 

chemical deterioration associated with living microorganisms, represents the most 

valuable approach in green composites since fully bio-based and biodegradable 

materials are produced.4, 5 

The use of polylactide (PLA) as the matrix in green composites is currently gaining a 

great importance.6, 7 Indeed, this biopolyester is nowadays considered the front runner in 

the bioplastics market, which is already surpassing some conventional polymers derived 

from petroleum with an annual consumption of 140,000 tons.8 PLA is of particular 

interest in the manufacturing of green composites due to its dual-fold advantage of 

being bio-based and biodegradable.9, 10 In addition, it shows the required mechanical 

strength for different industrial applications (e.g. automotive, rigid packaging or 

building and construction) as well as adequate thermal stability and rheological 

characteristics for being easily processable and recyclable at the large scale.11-13 

The latest research performed on green composites shows that the employ of 

lignocellulosic materials obtained from industrial by-products and food or agroforestry 

wastes is increasing as cost-effective fillers since they provide a sustainability 



enhancement and improve the physical performance.14, 15 Some recent examples 

include, for instance, wood flour,16 banana fibers,17  rice husk,18, 19 peanut skin,20, 21 

wheat and soy fibers,22 pita fibers,23 and Posidonia oceanica seaweed.24 In the present 

study, it is intended to use, for the first time, orange peel flour (OPF) as the 

lignocellulosic filler to develop green composites of PLA. The use of this 

lignocellulosic filler provides a further positive sustainable effect on the resultant green 

composite due to the large world production of oranges and, especially, to the 

possibility of generating a high added value from a readily available residue produced 

by the juice industry. Indeed, around 20 million tons of solid and liquid wastes derived 

from the orange juice production are globally generated. In this sense, Spain is one of 

the main world producers of oranges, among other countries like Brazil, the United 

States, and China, being the Valencian Community one of the areas with the highest 

production rate with approximately 1.7 million tons of oranges.25 Although at present 

orange peel is not of economic value, it is rich in cellulose, sugars, hemicellulose, 

pectin, and essential oils, which opens up new opportunities for diverse applications.26 

There are some general drawbacks related to the use of lignocellulosic fillers in polymer 

composites, which are mainly derived from their poor interfacial adhesion with most 

polymer and biopolymer matrices. In general, polymers are highly hydrophobic whilst 

the lignocellulosic materials are extremely hydrophilic. This low chemical affinity is 

certainly responsible for their lack of compatibility, thus leading to the formation of 

particle aggregates and, in overall, poor physical properties.17, 27, 28 In this sense, 

reactive extrusion (REX) has been proposed as a smart strategy to enhance the 

properties of polymer materials, being particularly interesting for the preparation of 

biopolymer blends.29 Based on this concept, REX has been recently proposed as a novel 

route for grafting inorganic nanoparticles with polar surface onto biopolymer matrices, 



which results in polymer nanocomposites with enhanced physical properties.30 This 

process is based on the addition during melt mixing of reactive additives capable of 

acting as interfacial agents between both components of the polymer composite. This 

process particularly involves the chemical attachment of the fillers to the biopolymer 

chains by the action of reactive molecules with an average functionality (f) value of, at 

least, 2. These additives cannot only act as interfacial agents but they can also 

potentially react with hydrolyzed polymer chains to provide a chain-extension effect, 

inducing a positive effect on melt stability.31, 32 

Most conventional and commercially available reactive additives consist of polymers 

with a low molecular weight (MW) or oligomers based on different functional groups, 

such as anhydride, epoxy, oxazoline, isocyanates, acrylates, etc.33, 34 More recently, 

however, the use of chemically modified vegetable oils (e.g. maleinized, acrylated, and 

epoxidized oils), the so-called multi-functionalized vegetable oils, has been expanded.35, 

36 The multi-functionalized vegetable oils present the dual advantage of being derived 

from natural resources and of acting as plasticizers due to their intrinsic lubricant effect 

on polymer matrices.37 This is of great interest from an environmental point of view 

since they allow obtaining totally ecofriendly and fully bio-based polymer formulations 

with improved toughness.38-40 In this regard, chemically modified oils, such as 

maleinized linseed oil (MLO)41 or epoxidized soybean oil (ESO),42 have been recently 

used to increase the filler–matrix compatibility in PLA-based composites with very 

promising results. The main objective of the present work is to evaluate the effect of 

acrylated epoxidized soybean oil (AESO) on the compatibility and physical properties 

of injection-molded green composite pieces consisting of PLA and OPF. 

2. Experimental

2.1. Materials 



A commercial PLA grade IngeoTM biopolymer 6201D was obtained from NatureWorks 

(Minnetonka, MN, USA). This PLA resin is characterized by a density of a density of 

1.24 g/cm3 and a melt flow index (MFI) of 15–30 g/10 min (210 °C and 2.16 kg), which 

makes it suitable for injection molding. Fresh oranges were purchased in a local market 

in Valencia. AESO was supplied by Sigma-Aldrich S.A. (Madrid, Spain). According to 

the supplier, this contains 4000 ppm of monomethyl ether hydroquinone as inhibitor to 

avoid polymerization. 

2.2. Preparation of orange peel flour 

The orange peels were first allowed to dry for 48 h at 40 °C using a dehumidifying 

stove MCP Vacuum Casting System (Lubeck, Germany) to remove any residual 

moisture. Then, the dried peels were crushed in a Maype mill (Manises, Spain) to 

reduce their particle size for facilitating their incorporation into the centrifugal mill. The 

resultant particles were further allowed to dry at 40 °C for 12 h. The peel particles were 

then milled by means of a Mill ZM 200 centrifugal mill from Retsch (Düsseldorf, 

Germany) at a speed of 12,000 rpm and finally sieved with a 250-µm mesh filter. The 

different stages carried out during the preparation of OPF are shown in Figure 1. 

2.3. Preparation of green composite pieces 

Prior to processing, all materials were dried at 60 °C for 36 h in a dehumidifying dryer 

MDEO from Industrial Marsé (Barcelona, Spain) to remove any residual moisture due 

to the high sensitiveness of PLA to hydrolysis. Materials were then melt compounded in 

a co-rotating twin-screw extruder from Construcciones Mecanicas Dupra S.L. (Alicante, 

Spain). The screws feature 25 mm diameter with a length (L) to diameter (D) ratio, that 

is, L/D, of 24. All materials, namely PLA, OPF, and AESO, were fed using the main 

hopper. The temperature profile was set as follows: 180 ºC (feeding zone), 185 ºC, 190 

ºC, and 195 ºC (die). A rotating speed of 20 rpm was selected. Residence time was 



about 1 min, measured by means of a blue masterbatch. The AESO content was fixed at 

5 parts per hundred resin (phr) based on recent previous research performed for this 

multi-functionalized vegetable oil,43 while the amount of OPF in the PLA formulations 

varied from 10 to 30 wt.-%. A neat PLA sample and a green composite sample at 10 

wt.-% without AESO were produced in the same conditions as the control materials. 

Table 1 summarizes the set of the prepared formulations. 

The resultant PLA and green composites pellets were shaped into pieces by injection 

molding. This was carried out in a Sprinter 11 machine from Erinca S.L (Cornellá, 

Spain). The temperature profile was set as follows: 170 ºC (hopper), 175 ºC, 180 ºC, 

and 185 ºC (injection nozzle). The materials were injected into a mirror-finishing steel 

mold with standard geometries for sample characterization. A clamping force of 11 tons 

was applied. The cavity filling and cooling time were set at 1 and 10 s, respectively. 

Standard samples with a thickness of 4 mm were obtained. The obtained pieces were 

stored in a desiccator at 25 ºC and 0% relative humidity (RH) for 1 week. 

2.4. Morphology 

The morphology of the OPF particles and the fracture surfaces of the green composite 

pieces after the impact tests were observed by field emission scanning electron 

microscopy (FESEM) in a ZEISS ULTRA 55 from Oxford Instruments (Abingdon, 

United Kingdom). The working distance (WD) varied in the 6–7 mm range and an extra 

high tension (EHT) of 2 kV was applied to the electron beam. Before placing samples in 

the FESEM vacuum chamber, the surfaces were coated with a gold-palladium alloy in a 

sputter coater EMITECH model SC7620 from Quorum Technologies, Ltd. (East 

Sussex, UK). OPF sizes were determined using Image J Launcher v 1.41 and the data 

presented were based on measurements from a minimum of 50 SEM micrographs. 

2.5. Thermal characterization 



Main thermal transitions of the green composites were obtained by differential scanning 

calorimetry (DSC) in a Mettler-Toledo 821 calorimeter (Schwerzenbach, Switzerland). 

An average sample weight ranging from 5 to 7 mg was subjected to a heating step from 

40 ºC to 190 ºC at a heating rate of 10 ºC min-1. All tests were run in nitrogen 

atmosphere with a flow-rate of 66 mL min-1 using standard sealed aluminum crucibles 

of a volume capacity of 40 μL. The degree of crystallinity (XC) was determined by the 

following expression (Eq. 1): 

Xେ	(%) = ቂ∆ୌౣି∆ୌిి∆ୌబౣ ∙(ଵି௪)ቃ ∙ 100  Equation 1 

Where ∆Hm and ∆HCC (J/g) stand for the normalized melt and cold crystallization 

enthalpies respectively, ∆Hm
0 (J g-1) represents the melt enthalpy of a theoretically fully 

crystalline PLA, that is, 93 J g-1,44 and 1-w corresponds to the weight fraction of PLA in 

the formulation. 

Thermal stability was determined by thermogravimetric analysis (TGA) in a Mettler-

Toledo TGA/SDTA 851 thermobalance (Schwerzenbach, Switzerland). Samples with 

an average weight of 5–7 mg were placed in standard alumina crucibles of 70 µL and 

subjected to a heating program from 30 ºC to 700 ºC at a heating rate of 20 ºC min-1 in 

air atmosphere. 

2.6. Mechanical characterization 

Tensile tests were carried out on injection-molded pieces with a size of 75 × 5 × 4 mm3 

using a universal testing machine ELIB 50 from S.A.E. Ibertest (Madrid, Spain) 

equipped with a 5-kN load cell. The tests were performed as recommended by ISO 527-

1:2012. The cross-head speed was set to 5 mm min-1. 

Shore D hardness was measured in a 676-D durometer from J. Bot Instruments 

(Barcelona, Spain) according to ISO 868:2003. Impact strength was also studied on 



unnotched pieces with dimensions of 80 × 10 × 4 mm3 in a 6-J Charpy pendulum from 

Metrotec S.A. (San Sebastián, Spain) following the guidelines of ISO 179-1:2010.  

All samples were tested at room conditions, that is, 23 ºC and 50% RH, using at least 

six samples per formulation. 

2.7. Thermomechanical characterization 

Dynamic mechanical thermal analysis (DMTA) was performed using an AR-G2 

oscillatory rheometer from TA Instruments (New Castle, DE, USA), which was 

equipped with a special clamp system for solid samples working in combined torsion-

shear mode. The samples, with dimensions of 40 × 10 × 4 mm3, were subjected to a 

temperature sweep from 30 ºC to 140 ºC at a constant heating rate of 2 ºC min-1. The 

maximum deformation percentage (γ) was set to 0.1%. The storage modulus and the 

dynamic damping factor (tan δ) were obtained as a function of increasing temperature at 

a constant frequency of 1 Hz. DMTA tests were run in triplicate. 

Dimensional stability was studied by measuring the coefficient of linear thermal 

expansion (CLTE) using a thermomechanical analyzer (TMA) Q400 model from TA 

Instruments. The test was performed on injection-molded pieces sizing 10 × 10 × 4 

mm3. The heating program was set from 0 ºC to 140 °C with a constant heating rate of 2 

°C min-1 and a load of 0.02 N. CLTE measurements were performed in triplicate. 

2.8. Disintegration tests 

Disintegration in simulated composting conditions was conducted at 58 °C and 55% RH 

as indicated by ISO 20200. Injection-molded pieces sizing 10 × 10 × 4 mm3 were 

placed in a carrier bag and buried in a controlled soil compost made of sawdust (40 wt.-

%), rabbit-feed (30 wt.-%), ripe compost (10 wt.-%), corn starch (10 wt.-%), saccharose 

(5 wt.-%), corn seed oil (4 wt.-%), and urea (1 wt.-%). Samples were periodically 



unburied from the composting facility, washed with distilled water, dried, and weighed 

in an analytical balance. The weight loss during disintegration was calculated using Eq. 

2:  

Weight	loss	(%) = ቀ୛బି୛౪୛బ ቁ ∙ 100 Equation 2 

Where W0 is the initial dry weight of the sample and Wt is the weight of the sample 

after a bury time t. All tests were carried out in triplicate to ensure reliability. 

3. Results and discussion

3.1. Morphology of orange peel flour 

Figure 2 shows the size distribution of the OPF particles used for the preparation of the 

green composites. One can observe that the mean particle size was approximately 25 

µm, being most of the particles smaller than 75 µm. The micro-sized structure of OPF is 

considered a positive aspect for their adhesion to the biopolymer matrix due to the total 

surface area of the fillers increases.45, 46 The provided FESEM image of OPF, shown in 

the inset, also indicates that particles morphology was mostly heterogeneous. In 

addition, a rough perimeter was observed, which can be a consequence of the intensive 

crushing and milling processes applied to obtain the flour. 

3.2. Thermal properties 

Figure 3 shows the DSC thermograms of PLA and its green composite pieces with OPF 

obtained by injection molding. The main thermal parameters obtained by DSC are 

summarized in Table 2. The neat PLA pieces were characterized by having a glass 

transition temperature (Tg) and melting temperature (Tm) of approximately 64 °C and 

171.5 °C, respectively, and a XC value close to 24%. In addition, the biopolymer 

showed a cold crystallization process with a cold crystallization temperature (TCC) of 

~93 °C. The incorporation of AESO slightly increased the degree of crystallinity, that 



is, the XC value for the AESO-containing PLA piece was 28.5%. The value of Tg was 

reduced to ~60 °C while TCC and Tm remained nearly constant. 

The incorporation of OPF also reduced Tg to ~59 °C and induced a pronounced 

reduction in the crystallinity of the PLA pieces, that is, XC was reduced to values of 

~6%. This remarkable reduction of crystallinity can be produced due to 

transesterification between the particles and the PLA chains, leading to the formation of 

a more amorphous structure. However, it is worthy to note that the green composite 

pieces presented similar Tm values than the neat PLA piece, which indicates that the 

OPF presence did not alter the crystal type of the biopolymer or the lamellar thickness 

of its spherulites. In relation to TCC, one can observe that there was a notable delay in 

the cold crystallization process. In particular, the green composite piece containing 10 

wt.-% OPF without AESO showed a TCC close to 108 °C, that is, 15 °C higher than the 

neat PLA piece. Therefore, it confirms that the OPF particles predominantly acted as 

anti-nucleating agent for PLA,47 interrupting the folding or packing process of the PLA 

chains. 

The green composite pieces containing AESO presented lower values of Tg, particularly 

in the 54–56 °C range. The incorporation of AESO also affected the process of cold 

crystallization of the pieces, which moved towards lower temperatures in relation to the 

green composite piece without AESO. The lowest value was observed for the AESO-

containing green composite with 20 wt.-% OPF, showing a TCC value around 99 °C. In 

this sense, one can consider that AESO acted as a plasticizer in the green composites. It 

typically increases free volume and reduces polymer–polymer interactions, allowing a 

greater mobility of the polymer chains and reducing both Tg and TCC values.48, 49 

Nevertheless, this effect was relatively low in comparison to other plasticizers, such as 

poly(ethylene glycol) (PEG) and poly(propylene glycol) (PPG),50, 51 acetyl tri-n-butyl 



citrate (ATBC),52 oligomeric lactic acid (OLA)53, etc., which have been reported to 

decrease Tg of PLA materials by 25–30 °C with contents in the 10–20 wt% range. In 

this sense, a reduction of Tg of only 2–3 °C has been recently observed in AESO-

toughened PLA pieces.40 The incorporation of higher percentages of lignocellulosic 

fillers, that is, 20–30 wt.-% OPF, into the PLA formulations containing 5 phr AESO 

produced a slight reduction in both TCC and Tm while it resulted in an increase of the XC 

values. 

Figure 4 shows the TGA curves of the PLA and the green composite pieces. It can be 

observed that the incorporation of OPF significantly reduced the thermal stability of 

PLA. This also induced the development of two degradation stages, which are 

summarized in Table 3. The first one occurred in the temperature range of 200–350 °C, 

which corresponds to the decomposition of hemicelluloses at 200–300 °C and of 

celluloses at 300–350 °C.54 This step overlapped with the PLA degradation and it 

became more significant as the percentage of OPF in the composite increased. The 

second stage took place from 400 to 500 ºC and it can be related to the degradation of 

the lignin fraction present in OPF.55 The incorporation of OPF also resulted in a direct 

increase of the residual mass at 600 °C, producing values of ~3% for the green 

composite pieces with the highest filler content. 

Interestingly, the addition of AESO slightly improved the thermal stability of PLA. In 

particular, the Tdeg value of the neat PLA piece was around 362 °C and the addition of 5 

phr AESO reduced it by 5 °C. A similar effect has been recently observed for PLA 

materials containing AESO40 and epoxidized linseed oil (ELO)56 and, hence, it 

potentially suggests that the molecular structure of the biopolymer was altered. This 

enhancement in the thermal stability suggests certain chemical interaction of AESO 

with both components of the green composite, by which the resultant linked 



lignocellulosic fillers are expected to act as a physical barrier that obstructs the removal 

of volatile products produced during decomposition. This is an interesting result since 

one of the main drawbacks of most PLA plasticizers is related to the fact that they 

habitually lower the thermal stability of the biopolymer.52, 57 This thermal degradation 

improvement was also observed for the green composite pieces containing AESO, 

though their resultant thermal stability was still slightly lower than that of the neat PLA. 

3.3. Mechanical properties 

Table 4 summarizes the effect of both OPF and AESO on the mechanical properties of 

the injection-molded PLA pieces. In relation to the tensile properties, one can observe 

that the PLA modulus increased with the addition of the multi-functionalized vegetable 

oil and, more significantly, of the lignocellulosic filler. While the neat PLA piece 

showed a Young modulus of ~1.97 GPa, it slightly increased to 2.12 and 2.71 GPa with 

the addition of 5 phr AESO and 10 wt.-% OPF, respectively. Furthermore, the modulus 

remained almost constant, that is, around 2.70–2.80 GPa, for green composite pieces 

containing AESO at all OPF loadings. For the lowest OPF content, that is, 10 wt.-%, the 

values of tensile strength also remained close to that of the neat PLA piece, that is, 66 

MPa. However, higher filler contents reduced the tensile strength to values of 

approximately 50 and 40 MPa for the green composite pieces filled with 20 and 30 wt.-

% OPF, respectively. 

Since the elongation at break was also reduced in the green composite pieces, it can be 

considered that the lignocellulosic fillers acted as a stress concentrator. In particular, the 

elongation-at-break values decreased from 5.3%, for the neat PLA piece, to 4.5%, for 

the green composite piece containing 10 wt.-% OPF without AESO. This result points 

out the poor adhesion of the OPF particles to the biopolymer and probably their low 

dispersion in the PLA matrix. Therefore, the lignocellulosic fillers acted as a defect 



rather than a reinforcement so that these cannot efficiently absorb the stresses or prevent 

the propagation of cracks.58 However, the addition of 5 phr AESO led to a considerable 

increase in elongation at break up to 7.3%. This value represents an increment of 

approximately 40%, further indicating that the multi-functionalized vegetable oil 

provided some plasticization to the PLA matrix. Interestingly, AESO also improved the 

ductility of the green composite pieces. The carried out comparison of the injection-

molded green composite piece at 10 wt.-% OPF with and without AESO shows that the 

addition of the multi-functionalized vegetable oil improved the elongation at break from 

4.5% to 4.9%, that is, around 9%, while the tensile modulus and strength remained 

nearly constant. This improvement in the elongation at break allowed to achieve a green 

composite piece with a ductility relatively similar to that observed for the neat PLA 

piece. 

Regarding hardness, the OPF addition also produced a moderate increase. In particular, 

the hardness value increased from 80.2, for the neat PLA piece, to 84.4, for the green 

composite piece containing 10 wt.-% OPF without AESO, which is the typical effect of 

a hard filler on a polymer matrix. While the addition to AESO did not provide any 

remarkable effect on the PLA hardness, the green composites containing AESO and 

with high contents OPF further increased the hardness of the injection-molded pieces. In 

particular, the highest D Shore hardness was observed for the PLA piece filled with 30 

wt.-% OPF, that is, 85.2. 

As opposite to hardness, the impact strength decreased after OPF incorporation. This 

was reduced from 22.8 kJ m-2, for the neat PLA piece, to 18.1 kJ m-2, for the green 

composite piece with 10 wt.-% OPF. Interestingly, the addition of AESO remarkably 

improved toughness of the PLA piece, increasing its impact strength up to 29.7 kJ m-2, 

which means an improvement of approximately 30%. Similar results were also 



observed, for instance, by Ferri et al.59 for plasticized PLA with MLO, though it was 

also observed a saturation effect at a very low concentration. In the case of the AESO-

containing green composite piece with 10 wt.-% OPF, a slight increase in the impact 

strength was also observed. This green composite piece presented an impact-strength 

value of 20.8 kJ m-2, being very close to that of the neat PLA piece. However, for the 

green composite pieces with 20 and 30 wt.-% OPF, the decrease in impact strength was 

significant due to the relatively high filler content, which clearly compromises the 

pieces’ capacity for energy absorption. 

3.4. Thermomechanical properties 

Figure 5 shows the dynamic behavior, obtained from DMTA in torsion mode, of the 

neat PLA and green composite pieces. In Figure 5a, which shows the evolution of the 

storage modulus vs. temperature, both the glass transition and cold crystallization 

processes can be observed. For the neat PLA piece, Tg was detected by a drop of the 

storage modulus of 2 orders in the 55–65 ºC range. Besides, the cold crystallization 

process occurred from 80 ºC, showing a slight increase in the storage modulus due to 

the formation of a stiffer material by a crystallinity increase. The OPF incorporation 

produced a remarkable increase of the storage modulus at temperatures below Tg and a 

slight delay in the temperature at which cold crystallization occurred, as it was stated 

above during the DSC analysis. For instance, at 40 ºC, the storage modulus increased 

from a value of 1.5 GPa, for the neat PLA piece, to a value of 2.1 GPa, in the case of the 

green composite piece with 10 wt.-% OPF. The addition of AESO also increased the 

storage modulus of PLA up to a value of 1.6 GPa at 40 ºC. In general, the curves for all 

green composite pieces shifted towards lower temperatures, thus indicating a slight 

decrease in Tg of PLA with an additional positive effect on the toughness. 



In relation to the damping factor, in Figure 5b it can be observed that the peak of the 

neat PLA piece shifted to lower temperatures for the pieces containing both OPF and 

AESO. This decrease of the tan δ peak indicates a reduction of the alpha (α)-relaxation 

of the biopolymer, which is related to its Tg. Although this effect was noticeable for all 

the materials, it was more intense in the case of the green composites containing AESO 

in which it was reduced by ~5 °C. In addition, all green composite pieces presented 

higher values of tan δ than the neat PLA piece, which is a direct indication that the 

pieces presented a higher energy dissipation with improved toughness.16 

In relation to the dimensional stability, as it can be observed in Table 5, all PLA pieces 

presented higher CLTE values above Tg than below Tg since the biopolymer chains 

were more readily available to move. Interestingly, AESO also provided certain 

interesting changes in the CLTE values. Specifically, below Tg, it decreased from 95.3 

µm m-1 ºC-1, for the neat PLA piece, to 91.7 µm m-1 ºC-1, for the AESO-containing PLA 

piece. This effect has been previously ascribed to the formation of a long-chained or 

partially cross-linked structure due to the reaction of PLA with the multiple epoxy or 

acrylate groups present in AESO.40 The addition of OPF further decreased the CLTE 

values below Tg, indicating that the pieces acquired more thermomechanical resistance. 

Above Tg, the CLTE value increased from 148.8 µm/m ºC, for the neat PLA piece, to 

202.5 µm m-1 ºC-1, for the PLA piece containing AESO. However, for the AESO-

containing green composite pieces, a positive dimensional stabilization was observed. 

In particular, the green composites showed CLTE values in the 175–185 µm m-1 ºC-1 

range, therefore presenting an extraordinary thermomechanical response at high 

temperatures. One can also observe that the incorporation of OPF also reduced the Tg 

values of PLA, presenting values very similar to those above-reported by DSC. For 



instance, for the green composite piece with the highest OPF content, that is, 30 wt.-%, 

the reduction was higher than 10 ºC in relation to the neat PLA piece. 

3.5. Morphology of green composites 

Figure 6 shows the fracture surface after the impact test of the injection-molded pieces 

of PLA and its green composites with OPF. The fracture of the neat PLA piece, shown 

in Figure 6a, shows the characteristic morphology of a brittle material with a low 

energy absorption. Both a micro-crack formation and a high roughness can be observed, 

showing no evidence of plastic deformation. In Figure 6b, as opposite, one can observe 

that the addition of AESO modified the surface fracture of the PLA piece. It changed 

from a rough surface to plastic-like morphology with the presence of some long 

filaments. This confirms the increase in toughness described above during the 

mechanical analysis. Figure 6c shows the fracture surface of the green composite 

containing 10 wt.-% OPF without AESO. This FESEM image revealed the presence of 

some voids, more likely produced from particle debonding during breaking, and also the 

large gaps in the interphase between the lignocellulosic particles and the biopolymer 

matrix. Therefore, the observed morphology fully confirmed the poor compatibility 

between both components of the green composite. 

Interestingly, as shown in Figure 6d to 6f, one can observe that the morphology of the 

fracture surfaces of all AESO-toughened green composites was remarkably different. 

Comparison of both FESEM images shown in Figure 6d and 6c, that is, the fracture 

surfaces of the green composite at 10 wt.-% OPF with and without AESO, respectively, 

indicates that the presence of the multi-functionalized vegetable oil notably reduced the 

number of voids and also produced smaller gaps between the OPF particles and the 

PLA biopolymer. In addition, as it can be observed in Figure 6f for the green composite 



piece with the highest OPF loading, that is, 30 wt.-%, the dispersion of the 

lignocellulosic fillers was relatively high. 

3.6. Compatibilization of green composites 

From the above-observed improvement in morphology, it can be established that the 

PLA–OPF adhesion increased in the injection-molded pieces after the AESO addition. 

Furthermore, AESO offered a more balanced mechanical and thermomechanical 

performance whilst the thermal properties were slightly improved. It has been 

considered that AESO induced certain plasticization on the PLA matrix, which 

increased ductility and toughness of the PLA and its green composites pieces. However, 

changes in Tg were relatively small, as determined by both DMTA and CLTE analysis. 

In the addition, the elongation at break, which is a direct measurement of the 

mechanical ductile properties, did not increase in a remarkable way as other plasticizers 

certainly do.43 Therefore, in addition to a plasticizing effect, AESO induced certain 

interfacial adhesion between the OPF particles and the PLA matrix by which it 

promoted a moderate increase in elongation at break in combination to a significant 

improvement of the mechanical resistant properties. This improvement was further 

assessed based on the fact that the cold crystallization peak was delayed and the melting 

peak slightly shifted to lower temperatures while the crystallization degree was 

noticeably reduced.  

Based on our previous research findings related to biopolymer composites and 

nanocomposites processed by REX with multi-functional low-MW additives,30, 41 it is 

proposed that AESO also acted as a reactive compatibilizer during melt processing, 

successfully establishing strong chemical ‘‘bridges” between the biopolymer chains and 

the lignocellulosic fillers. AESO, which is feasibly obtained from epoxidized soybean 

oil (ESO) by treatment with acrylic acid (AA),40 is based on a chemical structure 



containing multiple acrylate and epoxy groups. These functional groups are highly 

reactive, being then able to provide a chain-extension and/or cross-linking effect to 

polymers also containing functional groups. Indeed, AESO has been recently reported 

as an environmentally friendly additive for toughening PLA-based materials.40, 43 

Therefore, Figure 7 suggests the possible grafting mechanism of OPF onto the PLA 

macromolecular structure during melt processing. On the one hand, in the case of the 

biopolymer, ester bonds are proposed to be formed by the reaction of the terminal acid 

groups of the PLA chains with some of the multiple epoxy groups of AESO. In this 

sense, the mechanisms of epoxy ring-opening to produce chain extension in polyesters 

typically consists on glycidyl esterification of the carboxylic acid end groups, which 

precedes hydroxyl end group etherification.60 In the case of polyesters, the reaction rate 

of the epoxy groups is known to be approximately 10–15 times higher with the carboxyl 

(–COOH) than with the hydroxyl group (–OH).61 On the other hand, other epoxy groups 

present in AESO can simultaneously react with the –OH groups of the cellulose 

available on the surface of the OPF particles. This reaction generates C–O–C bonds 

with hydroxyl side group formation. Therefore, a new hybrid structure, namely a 

cellulose-grafted PLA composite, that is, cellulose-g-PLA composite, was formed. 

3.7. Disintegration of green composites 

Finally, disintegration tests in a controlled compost soil were carried out in order to 

ascertain the effect of both OPF and AESO on the PLA compostability. The weight loss 

of the injection-molded PLA-based pieces during disintegration in compost are plotted 

in Figure 8. In addition, Figure 9 shows the visual aspect of the pieces evaluated during 

the disintegration test. One can observe that, after an incubation period of about two 

weeks, all pieces started an embrittlement process accompanied by the development of a 

dark-to-black color and a quick weight loss. It is also worthy to remark that the test was 



conducted at 58 °C and 50% RH, that is, a relative high temperature and humidity, 

which are certainly favorable conditions for the hydrolytic degradation of PLA. 

Although it has been previously reported in the polymer literature that neat PLA 

disintegrates notably faster than its composites based on lignocellulosic fillers,62, 63 the 

here-developed green composites presented similar degradation rates. In the case of the 

AESO-containing PLA piece and the green composite piece with 10 wt.-% OPF, the 

disintegration rate was even slightly faster than that the neat PLA piece during the first 

4 weeks. In the case of the green composites containing AESO, these pieces showed a 

slightly slow degradation profile in the final weeks, particularly for the piece filled with 

30 wt.-% OPF. After 8 weeks, the neat PLA piece lost over 98% of its initial weight 

while both the AESO-containing PLA piece and the green composite piece filled with 

10 wt.-% OPF were fully degraded. For the AESO-containing green composites the 

weight loss reached values around 95%. Therefore, it can be concluded that neither the 

multi-functional vegetable oil or the lignocellulosic filler impair the compostability of 

the PLA pieces. 

4. Conclusions

The present study describes the preparation and characterization of PLA/OPF composite 

pieces compatibilized with AESO, an environmentally friendly multi-functionalized 

additive that can be easily obtained from natural soybean oil. While the incorporation of 

OPF into PLA induced a remarkable reduction of both thermal stability and mechanical 

ductility, showing values of Tdeg of 363 °C and values of elongation at break and impact 

strength of 4.5% and 18.1 kJ m-2, respectively, the addition of only 5 phr AESO 

successfully enhanced the thermal, mechanical, and thermomechanical properties of the 

green composites. In particular, for the AESO-compatibilized green composite piece 

filled with 10 wt.-%, the elongation at break and impact strength were approximately 



9% and 13% higher, respectively. However, in the case of the green composite pieces 

with higher fillers contents, that is, 20 and 30 wt.-% OPF, a significant decrease in 

ductility was observed. The compatibilization achieved was ascribed to a dual effect of 

plasticization in combination with melt grafting of the OPF particles onto the PLA 

chains provided by the multiple functional groups present in the chemical structure of 

AESO. 

The here-obtained results indicate that OPF, a large by-product of the food juice 

industry, can be successfully incorporated up to 10 wt.-% into PLA by melt processing 

in the presence of AESO without compromising the physical properties and 

compostability of the biopolymer. It can be concluded that AESO, similar to other 

multi-functionalized vegetable oils, can be used as a reactive additive to enhance the 

compatibility between biopolymers and lignocellulosic fillers in green composite 

articles and, thus, it can potentially contribute to the development of sustainable 

polymer technologies. 
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Table 1. Summary of the prepared compositions according to the weight content (wt.-

%) of polylactide (PLA) and orange peel flour (OPF) in which acrylated epoxidized 

soybean oil (AESO) was added as parts per hundred resin (phr) of PLA/OPF composite. 

Sample PLA (wt.-%) OPF (wt.-%) AESO (phr) 

PLA 100 0 0 

PLA + AESO 100 0 5 

PLA + 10 wt.-% OPF 90 10 0 

PLA + AESO + 10 wt.-% OPF 90 10 5 

PLA + AESO + 20 wt.-% OPF 80 20 5 

PLA + AESO + 30 wt.-% OPF 70 30 5 



Table 2. Summary of the main thermal parameters obtained by differential scanning 

calorimetry (DSC) in terms of glass transition temperature (Tg), normalized enthalpy of 

crystallization (∆HCC), cold crystallization temperature (TCC), normalized enthalpy of 

melting (∆Hm), melting temperature (Tm), and degree of crystallinity (XC) of the 

injection-molded green composite pieces based on polylactide (PLA), orange peel flour 

(OPF), and acrylated epoxidized soybean oil (AESO). 

Sample Tg (ºC) ∆HCC (J/g) TCC (ºC) ∆Hm (J/g) Tm (ºC) XC (%) 

PLA 63.9 ± 0.5 16.69 ± 0.26 92.7 ± 0.4 38.86 ± 0.31 171.5 ± 0.4 23.84 ± 0.86 

PLA + AESO 59.9 ± 0.7 17.04 ± 0.49 92.9 ± 0.9 42.28 ± 0.63 171.9 ± 0.5 28.50 ± 0.94 

PLA + 10 wt.-

% OPF 
59.1 ± 1.9 26.93 ± 0.41 107.8 ± 0.8 31.97 ± 0.52 172.4 ± 0.8 6.02 ± 0.84 

PLA + AESO 

+ 10 wt.-% 

OPF 

55.9 ± 1.5 28.08 ± 0.28 103.1 ± 0.4 34.70 ± 0.39 170.6 ± 0.7 8.31 ± 0.35 

PLA + AESO 

+ 20 wt.-% 

OPF 

54.4 ± 0.8 19.94 ± 0.35 98.9 ± 0.2 32.43 ± 0.46 170.0 ± 0.3 17.62 ± 0.33 

PLA + AESO 

+ 30 wt.-% 

OPF 

54.1 ± 0.6 19.02 ± 0.31 101.5 ± 0.4 28.18 ± 0.41 169.6 ± 0.6 14.77 ± 0.44 



Table 3. Thermal degradation steps and degradation temperature (Tdeg) obtained by 

thermogravimetric analysis (TGA) of the injection-molded green composite pieces 

based on polylactide (PLA), orange peel flour (OPF), and acrylated epoxidized soybean 

oil (AESO). 

Sample 

1st step 2nd step 

Tdeg (ºC) 
Onset (ºC) Endset (ºC) Mass loss 

(%) Onset (ºC) Endset (ºC) Mass loss 
(%) 

PLA 329.8 ± 1.0 386.3 ± 0.9 99.5 ± 0.1 - - - 361.8 ± 1.5 

PLA + 
AESO 339.9 ± 1.0 396.2 ± 1.1 98.8 ± 0.2 - - - 366.8 ± 1.2 

PLA + 10 
wt.-% OPF 335.6 ± 1.6 384.1 ± 0.8 92.5 ± 0.9 384.1 ± 0.9 488.8 ± 1.1 98.3 ± 0.1 362.6 ± 1.8 

PLA + 
AESO + 10 
wt.-% OPF 

329.5 ± 1.0 381.3 ± 1.1 89.5 ± 0.6 381.3 ± 1.1 483.9 ± 1.0 98.3 ± 0.1 358.5 ± 1.4 

PLA + 
AESO + 20 
wt.-% OPF 

328.4 ± 1.2 380.5 ± 0.9 85.2 ± 0.9 380.5 ± 1.2 507.9 ± 1.1 96.9 ± 0.1 359.3 ± 1.1 

PLA + 
AESO + 30 
wt.-% OPF 

326.2 ± 1.1 373.9 ± 0.8 80.1 ± 0.8 376.9 ± 1.1 541.4 ± 0.9 96.9 ± 0.1 357.6 ± 1.4 



Table 4. Mechanical properties in terms of tensile modulus (E), tensile strength at yield 

(σy), elongation at break (εb), D shore hardness, and impact strength of the injection-

molded green composite pieces based on polylactide (PLA), orange peel flour (OPF), 

and acrylated epoxidized soybean oil (AESO).  

Sample E (MPa) σy (MPa) εb (%) 
D Shore 

hardness 

Impact 

strength 

(kJ/m2) 

PLA 1972.4 ± 95.4 65.9 ± 1.8 5.3 ± 1.0 80.2 ± 1.1 22.8 ± 1.1 

PLA + AESO 2118.9 ± 65.9 64.6 ± 0.7 7.3 ± 0.4 81.4 ± 0.6 29.7 ± 0.8 

PLA + 10 wt.-

% OPF 
2713.9 ± 103.5 64.3 ± 0.9 4.5 ± 0.3 84.4 ± 1.1 18.1 ± 0.7 

PLA + AESO 

+ 10 wt.-% 

OPF 

2679.2 ± 81.4 63.4 ± 1.1 4.9 ± 0.2 84.6 ± 0.5 20.8 ± 0.5 

PLA + AESO 

+ 20 wt.-% 

OPF 

2670.9 ± 115.0 50.3 ± 2.1 4.5 ± 0.4 84.7 ± 1.1 14.6 ± 0.8 

PLA + AESO 

+ 30 wt.-% 

OPF 

2750.4 ± 103.6 40.1 ± 0.9 4.0 ± 0.4 85.2 ± 1.8 11.9 ± 0.7 



Table 5. Coefficients of linear thermal expansion (CLTE) and glass transition 

temperature (Tg) of the injection-molded green composite pieces based on polylactide 

(PLA), orange peel flour (OPF), and acrylated epoxidized soybean oil (AESO). 

Sample 
CLTE below Tg 

(µm/mºC) 

CLTE above Tg 

(µm/mºC) 
Tg (ºC) 

PLA 95.3 ± 3.5 148.8 ± 2.3 65.7 ± 1.3 

PLA + AESO 91.7 ± 2.2 202.5 ± 3.8 62.6 ± 2.2 

PLA + 10 wt.-% 

OPF 
83.8 ± 2.9 172.7 ± 1.9 60.8 ± 1.9 

PLA + AESO + 10 

wt.-% OPF 
88.4 ± 3.1 173.8 ± 2.8 58.6 ± 1.5 

PLA + AESO + 20 

wt.-% OPF 
88.2 ± 4.2 175.6 ± 2.6 56.9 ± 1.8 

PLA + AESO + 30 

wt.-% OPF 
86.6 ± 2.6 184.5 ± 4.0 56.1 ± 1.9 
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