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The study of reaction times and their underlying cognitive processes is an important field

in Psychology. Reaction times are often modeled through the ex-Gaussian distribution,

because it provides a good fit tomultiple empirical data. The complexity of this distribution

makes the use of computational tools an essential element. Therefore, there is a strong

need for efficient and versatile computational tools for the research in this area. In this

manuscript we discuss some mathematical details of the ex-Gaussian distribution and

apply the ExGUtils package, a set of functions and numerical tools, programmed for

python, developed for numerical analysis of data involving the ex-Gaussian probability

density. In order to validate the package, we present an extensive analysis of fits obtained

with it, discuss advantages and differences between the least squares and maximum

likelihood methods and quantitatively evaluate the goodness of the obtained fits (which

is usually an overlooked point in most literature in the area). The analysis done allows one

to identify outliers in the empirical datasets and criteriously determine if there is a need

for data trimming and at which points it should be done.

Keywords: response times, response components, python, ex-Gaussian fit, significance testing

1. INTRODUCTION

The reaction time (RT) has become one of the most popular dependent variables in cognitive
psychology. Over the last few decades, much research has been carried out on problems focusing
exclusively on success or fail in trials during the performance of a task, emphasizing the
importance of RT variables and their relationship to underlying cognitive processes (Sternberg,
1966; Wickelgren, 1977; McVay and Kane, 2012; Ratcliff et al., 2012). However, RT has a potential
disadvantage: its skewed distribution. One should keep in mind that in order to perform data
analysis, it is preferable that the data follow a known distribution. If the distribution is not
symmetrical, it is possible to carry out some data transformation techniques (e.g., the Tukey
scale for correcting skewness distribution), or to apply some trimming techniques, but with these
techniques, statistics may be altered (in other words a high concentration of cases in a given range
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may be favored and as a result, statistics can appear biased).
Moreover, transformations can affect the absolute value of the
data or modify the relative distances between data. When
conducting trimming it is not easy to distinguish noisy data from
valid information, or in other words, to set the limits between
outliers and extreme data (Heathcote et al., 1991). Whether we
include or exclude outliers often depends on the reason why
they might occur, dealing with the decision to classify them
as variability in the measurement or as an experimental error.
Another option, for the analysis of skewed data, is to characterize
them with a known skewed distribution. This procedure allows
one to determine the probability of an event based on the
statistical model used to fit the data. A common problem with
this approach is to estimate the parameters that characterize
the distribution. In practice, when one wants to find out the
probability for an event numerically, a quantified probability
distribution is required.

Going back to the point on characterizing data with a
specific distribution, there is one distribution that has been
widely employed in the literature when fitting RT data: the
exponentially modified Gaussian distribution (West, 1999; Leth-
Steensen et al., 2000; West and Alain, 2000; Balota et al., 2004;
Hervey et al., 2006; Epstein et al., 2011; Gooch et al., 2012;
Navarro-Pardo et al., 2013). This distribution is characterized by
three parameters, µ, σ and τ . The first and second parameters
(µ and σ ), correspond to the average and standard deviation
of the Gaussian component, while the third parameter (τ ) is
the decay rate of the exponential component. This distribution
provides good fits to multiple empirical RT distributions (Luce,
1986; Lacouture and Cousineau, 2008; Ratcliff and McKoon,
2008), however there are currently no published statistical tables
available for significance testing with this distribution, though
there are softwares like S-PLUS (Heathcote, 2004) or PASTIS
(Cousineau and Larochelle, 1997) and programming language
packages available for R, MatLab or Methematica.

In this article we present a package, developed in Python, for
performing statistical and numerical analysis of data involving
the ex-Gaussian function. Python is a high-level interpreted
language. Python and R are undoubtedly two of the most
widespread languages, as both are practical options for building
data models with a lot of community support. However, the
literature seems to be rather scarce in terms of computations
with the ex-Gaussian function in Python. The package presented
here is called ExGUtils (from ex-Gaussian Utilities), it comprises
functions for different numerical analysis, many of them specific
for the ex-Gaussian probability density.

The article is organized as follows: in the next section
we present the ex-Gaussian distribution, its parameters and a
different way in which the distribution can be parameterized.
Following this, we discuss two fitting procedures usually
adopted to fit probability distributions: the least squares and
the maximum likelihood. In the third section we present the
ExGUtils module and we apply it in order to fit experimental
data, evaluate the goodness of the fits and discuss the main
differences in the two fitting methods. In the last section we
present a brief overview.

2. THE ex-GAUSSIAN DISTRIBUTION AND
ITS PROBABILITY DENSITY

Given a randomly distributed X variable that can assume values
between minus infinity and plus infinity with probability density
given by the gaussian distribution,

g(x) =
1

σ
√
2π

exp

(

−
1

2

(

x− µ

σ

)2
)

, (1)

and a second random Y variable that can assume values between
zero and plus infinity with probability density given by an
exponential distribution,

h(x) =
1

τ
e−

x
τ , (2)

let’s define the Z variable as the sum of the two previous random
variables: Z = X + Y .

The gaussian distribution has average µ and standard
deviation σ , while the average and standard deviation of the Y
variable will be both equal to τ . The Z variable will also be a
random variable, whose average will be given by the sum of the
averages of X and Y and whose variance will be equal to the sum
of the variances of X and Y :

M = µ + τ (3)

S2 = σ 2 + τ 2 (4)

Defined as such, the variable Z has a probability density with the
form (Grushka, 1972):

f (x) =
1

2τ
exp

(

1

2τ

(

2µ +
σ 2

τ
− 2x

))

erfc

(

µ + σ 2

τ
− x

√
2σ

)

(5)

which receives the name of ex-Gaussian distribution (from
exponential modified gaussian distribution). The erfc function
is the complementary error function. One must be careful, for
µ and σ are NOT the average and standard deviation for the
ex-Gaussian distribution, instead the average and variance of the
ex-Gaussian distribution is given by Equations (3)–(4): M =
µ + τ and S2 = σ 2 + τ 2. On the other hand, a calculation of
the skewness of this distribution results in:

K =
∫ ∞

−∞

(

x−M

S

)3

f (x)dx =
2τ 3

(σ 2 + τ 2)
3
2

, (6)

While the gaussian distribution has null skewness, the skewness
of the exponential distribution is exactly equal to two. As a result
the skewness of the ex-Gaussian has an upper bound equal to two
in the limit σ ≪ τ (when the exponential component dominates)
and a lower bound equal to zero in the limit σ ≫ τ (when the
gaussian component dominates).

Let’s parameterize the ex-Gaussian distribution in terms of its
average M, standard deviation S and a new skewness parameter
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λ = 3

√

K
2 . Defined in this way, the λ parameter can have values

between 0 and 1. Now, defining the standard coordinate z (z =
x−M
S ) one can have the ex-Gaussian distribution normalized for

average 0 and standard deviation 1 in terms of a single parameter,
its asymmetry λ:

fλ(z) =
1

2λ
exp

(

1

2λ2
(−2zλ − 3λ2 + 1)

)

erfc

(

−z + 1
λ
− 2λ

√
2
√
1− λ2

)

.

(7)

in this case, in terms of λ, the parametersµ, σ and τ are given by:

µ = −λ (8)

σ =
√

1− λ2 (9)

τ = λ. (10)

Thus, the ex-gaussian represents a family of distributions that can
be parametrized in terms of their assymmetry. Ranging from the

FIGURE 1 | ex-Gaussian distributions for different values of the λ asymmetry

parameter.

exponential (maximum assymmetry in the limit when λ = 1) to
a gaussian (symmetrical distribution in the limit when λ = 0).

In Figure 1, we show plots for the ex-Gaussian function for
different values of the parameter λ. We should note that for very
small values of λ (less than around 0.2), the ex-Gaussian is almost
identical to the gaussian function (see Figure 2)1.

Given a probability density, an important function that can
be calculated from it is its cumulative distribution (its left tail),
which is the result of the integral

F(z) =
∫ z

−∞
f (x)dx. (11)

The importance of this function is that given the cumulative
distribution one is able to calculate the probability of an event.
For the ex-gaussian, the expression for its cumulative distribution
is given by:

F(x) =
1

2
erfc

(

−
x− µ
√
2σ

)

−
1

2
exp

(

σ 2

τ 2
−

x− µ

τ

)

erfc

(

−
x−µ

σ
− σ

τ√
2

)

(12)

Let’s also define zα , the value of z for which the right tail of the
distribution has an area equal to α:

α =
∫ ∞

zα

f (x)dx. (13)

1− F(zα) = α (14)

so, solving the Equation (14), one is able to obtain the value of zα
for any given α.

1In this cases, the numerical evaluation of the ex-Gaussian distribution in Equation

(5) becomes unstable and one can without loss (to a precision of around one part

in a million) approximate the ex-Gaussian by a gaussian distribution.

FIGURE 2 | Differences between the ex-Gaussian distribution with λ = 0.2 and the gaussian distribution. Both curves plotted on the left and the difference on the right

(note this difference is less than 1%).
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3. FITTING THE PROBABILITY
DISTRIBUTION

We are interested in the following problem: given a dataset, to
estimate the parameters µ, σ and τ that, plugged into Equation
(5), best fit the data.

We must now define what it means to best fit the data.
Different approaches here will result in different values for the
parameters. The most trivial approach would be to say that the
best parameters are those that result in the fitted ex-Gaussian
distribution with the same statistical parameters: average (M),
standard deviation (S) and asymmetry (K or λ). So, one can take
the dataset, calculate M, S, and K and use the relations between
them and the parameters µ, σ and τ :

M = µ + τ (15)

S =
√

σ 2 + τ 2 (16)

λ = 3

√

K

2
=

τ
√

σ 2 + τ 2
(17)

µ = M − Sλ (18)

σ = S
√

1− λ2 (19)

τ = Sλ (20)

This method of evaluating the parameters from the statistic
(momenta) is know as the method of the moments as is usually
the worst possible approach given the resulting bias. For instance,
in some experiments, one finds the K parameter bigger than 2 (or
λ > 1) and from Equation (17) one sees that, in order to have
K > 2, σ cannot be a real number.

Another approach is to find the parameters that minimize the
sum of the squared differences between the observed distribution
and the theoretical one (least squares). In order to do that, one
must, from the dataset, construct its distribution (a histogram),
which requires some parametrization (dividing the whole range
of observations in fixed intervals). Since a potentially arbitrary
choice is made here, the results might be dependent on this
choice. When analyzing data, we will study this dependency and
come back to this point.

The last approach we will study is the maximum likelihood
method. The function in Equation (5) is a continuous probability
distribution for a random variable, which means that f (x)dx can
be interpreted as the probability that a observation of the random
variable will have the x value (with the infinitesimal uncertainty
dx). So, given a set ofN observations of the random variable, {xi},
with i = 1, 2, ..., N, the likelihood L is defined as the probability
of such a set, given by:

L =
N
∏

i=1

f (xi;µ, σ , τ ) (21)

lnL =
N
∑

i=1

ln
(

f (xi;µ, σ , τ )
)

(22)

The maximum likelihood method consists in finding the
parameters µ, σ and τ that maximize the likelihood L (or its

logarithm2 lnL). Note that in this approach, one directly uses
the observations (data) without the need of any parametrization
(histogram).

In both approaches, least squares and maximum likelihood,
one has to find the extreme (maximum or minimum) of a
function. The numerical algorithm implemented for this purpose
is the steepest descent/ascent (descent for the minimum and
ascent for the maximum). The algorithm consists in interactively
changing the parameters of the function by amounts given by the
gradient of the function in the parameter space until the gradient
falls to zero (to a certain precision). There are other optimization
methods, like the simplex (Van Zandt, 2000; Cousineau et al.,
2004), which also iteratively updates the parameters (in the case
of the simplex without the need to compute the gradients). We
chose to implement steepest ascent in order to gain in efficiency:
since one is able to evaluate the gradients, this greedy algorithm
should converge faster than the sample techniques used by
simplex. But in any case, both algorithms (steepest descent and
simplex) should give the same results, since both search the same
maximum or minimum.

4. THE EXGUTILS MODULE

ExGUtils is a python package with two modules in its 3.0 version:
one purely programmed in python (pyexg) and the other
programmed in C (uts). The advantage of having the functions
programmed in C is speed, stability and numerical precision.

As mentioned, the package has two modules: pyexg and
uts. The first one comprises all functions with source code
programed in python, some of which depend on the numpy,
scipy and random python packages. On the other hand, the
module uts contains functions with source code programmed
in C. In Table 1 one can find a complete list of all functions
contained in both modules and the ones particular to each one.
The source distribution of the ExGUtils module comes with a
manual which explains in more detail and with examples the
functions.

5. APPLICATIONS

We use here the ExGUtils package in order to analyze data from
the experiment in Navarro-Pardo et al. (2013). From this work,
we analyse the datasets obtained for the reaction times of different
groups of people in recognizing different sets of words in two
possible experiments (yes/no and go/nogo). In the Appendix B
we briefly explain the datasets analyzed here (which are provided
as Supplementary Material for download).

In our analysis, first each dataset is fitted to the ex-
Gaussian distribution through the three different approaches
aforementioned:

• moments → Estimating the parameters through the sample
statistics Equations (18–20).

2Note that, since the logarithm is an monotonically increasing function, the

maximal argument will result in the maximum value of the function as well.

Frontiers in Psychology | www.frontiersin.org 4 May 2018 | Volume 9 | Article 612

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Moret-Tatay et al. An ex-Gaussian Approach in Python

TABLE 1 | Functions present in the package modules.

Module Function Brief description

Present drand Returns a random number with

homogeneous distribution between 0 and 1

in exp_rvs Returns a random number with exponential

distribution between 0 and infinity

both gauss_rvs Returns a random number with gaussian

distribution between minus infinity and infinity

modules exg_rvs Returns a random number with ex-Gaussian

distribution between minus infinity and infinity

gauss_pdf Evaluates the gaussian distribution at a given

point

gauss_cdf Evaluates the gaussian cumulative

distribution at a given point

exg_pdf Evaluates the ex-Gaussian distribution at a

given point

exg_cdf Evaluates the ex-Gaussian cumulative

distribution at a given point

exg_lamb_pdf Evaluates the ex-Gaussian distribution

parameterized in terms of its asymmetry at a

given point

exg_lamb_cdf Evaluates the ex-Gaussian cumulative

distribution parameterized in terms of its

asymmetry at a given point

pars_to_stats Given the parameters µ, σ and τ , evaluates

the corresponding statistics M, S, and K

stats_to_pars Given the statistics M, S and K, evaluates the

corresponding parameters µ, σ and τ

histogram Given a set of observations, produces an

histogram

stats Given a set of observations, returns the

statistics M, S, and K

stats_his Given a set of observations, presented as a

histogram, returns the statistics M, S, and K

correlation Given a set of points, returns the linear

correlation coefficient for the points

minsquare Given a set of points, fits a polynomial to the

data using the least square method

exgLKHD Evaluates the likelihood and its gradient in the

parameter space for a dataset in a given

point of the parameter space

maxLKHD Evaluates the parameters µ, σ and τ that

maximize the likelihood for a given dataset

exgSQR Evaluates the sum of squared differences and

its gradient in the parameter space for an

histogram in a given point of the parameter

space

minSQR Evaluates the parameters µ, σ and τ that

minimize the sum of squared differences for a

given histogram

Only int_points_gauss Creates a point partition of an interval for

evaluating a

in gaussian integral

uts intsum Evaluates the gaussian integral for a function

calculated at the points in a gaussian partition

Only zero Finds the zero of an equation

in ANOVA Performs an ANOVA test

pyexg integral Evaluates an integral

In python type help(FUNC) (where FUNC should be the name of a given function), in

order to obtain the list of arguments that each function should receive and in which order.

• minSQR→ Estimation through least square method, using as
initial point in the steepest descent algorithm the µ, σ and τ

obtained from the method of moments above3.
• maxLKHD → Estimation through maximum likelihood

method, using as initial point in the steepest ascent algorithm
the µ, σ and τ obtained from the method of moments3.

In Table 2, one can see the estimated parameters and the
corresponding statistics for the different experiments. From the
table, one sees that in the case of the experiments performed
with young people, the value of the skewness, K, is bigger than
two. This happens because of a few atypical measurements far
beyond the bulk of the distribution. In fact, many researches opt
for trimming extreme data, by “arbitrarly” choosing a cutoff and
removing data points beyond this cutoff. One must, though, be
careful for the ex-Gaussian distribution does have a long right
tail, so we suggest a more criterious procedure:

Having the tools developed in ExGUtils, one can use the
parameters obtained in the fitting procedures (either minSQR
or maxLKHD) in order to estimate a point beyond which one
should find no more than, let’s say, 0.1% of the distribution. In
the Appendix A (Supplementary Material), the Listing 1 shows
a quick python command line in order to estimate this point
in the case of the young_gng experiment. The result informs
us that, in principle, one should not expect to have more than
0.1% measurements of reaction times bigger than 1472.84 ms
if the parameters of the distribution are the ones adjusted by
maxLKHD for the young_gng empirical data. In fact, in this
experiment, one has 2396 measurements of reaction times, from
those, 8 are bigger than 1472.8 ms (0.33%). If one now calculates
the statistics for the data, removing these 8 outliers, one obtains:

moments: M = 593.80 S = 154.30 K = 1.91 µ = 441.82

σ = 26.67 τ = 151.98

minSQR: M = 590.11 S = 142.44 K = 1.67 µ = 455.96

σ = 47.89 τ = 134.14

maxLKHD: M = 593.80 S = 148.44 K = 1.69 µ = 453.52

σ = 48.52 τ = 140.29

In Figure 3 one can see the histogram of data plotted along with
three ex-Gaussians resulting from the above parameters.

Now, one might ask, having these different fits for the same
experiment, how to decide which one is the best? Accepting the
parameters of a fit is the same as accepting the null hypothesis
that the data measurements come from a population with an
ex-Gaussian distribution with the parameters given by the ones
obtained from the fit. In Clauset et al. (2009) the authors suggest
a procedure in order to estimate a p-value for this hypothesis
when the distribution is a power-law. One can generalize the
procedure for any probability distribution, like the ex-Gaussian,
for example:

3In the cases where K was bigger than 2, the inicial parameters were calculated as

if K = 1.9. Note that the final result of the search should not depend on the inicial

search point if it starts close to the local maximum/minimum.
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FIGURE 3 | Data for the young_gng experiment trimmed for outliers with three

fitted ex-Gaussians.

• Take a measure that quantifies the distance between the data
and the fitted theoretical distribution. One could use lnL or
χ2, but, as our fitting procedures maximize or minimize these
measures, as the authors in Clauset et al. (2009) suggest, in
order to avoid any possible bias, we evaluate the Kolmogorov-
Smirnov statistic, which can be calculated for reaction-time
data without the need of any parametrization.

• Randomly generate many data samples of the same size as
the empirical one using the theoretical distribution with the
parameters obtained from the fit to the empirical data.

• Fit each randomly generated data sample to the theoretical
distribution using the same fit procedure used in the case of
the empirical data.

• Evaluate the Kolmogorov-Smirnov statistic between the
random sample and its fitted theoretical distribution.

Following this procedure, one can evaluate the probability that a
random data sample, obtained from the fitted distribution, has a
bigger distance to the theoretical curve than the distance between
the empirical data and its fitted distribution. If this probability
is higher than the confidence level one is willing to work with,
one can accept the null hypothesis knowing that the probability
that one is committing a type I error if one rejects the null
hypothesis is p.

In the Appendix A (Supplementary Material) we provide
listings with the implementation, in python via the ExGUtils
package, of the functions that evaluate this p probability and the
Kolmogorov-Smirnov statistic. In Table 3 we provide the values
of p obtained for the experiments, using minSQR and maxLKHD
approaches (p1 and p2, respectively).

We can see that there are some discrepancies in Table 3.
Sometimes minSQR seems to perform better, sometimes
maxLKHD. One might now remember that the minSQR method
depends on a parametrization of the data. In order to perform the
fit, one needs to construct a histogram of the data, and there is an
arbitrary choice in the number of intervals one divides the data
into. In the fits performed till now, this number is set to be the

TABLE 3 | Probabilities p1 and p2 for the fits.

Experiment minSQR maxLKHD

KS p2 (K̄S ± sd) KS p1 (K̄S ± sd)

elder_gng 64.52 0.001 (29.47 ± 8.12) 38.89 0.096 (29.96 ± 12.54)

elder_hfgng 44.32 0.001 (20.85 ± 5.73) 49.61 0.003 (21.33 ± 5.86)

elder_hfyn 34.10 0.019 (20.10 ± 5.35) 35.30 0.021 (20.44 ± 7.49)

elder_lfgng 42.83 0.005 (21.73 ± 5.98) 31.70 0.043 (20.96 ± 5.94)

elder_lfyn 17.25 0.634 (19.76 ± 5.18) 29.00 0.028 (19.15 ± 5.63)

elder_pseudo 62.79 0.000 (26.12 ± 6.81) 53.10 0.009 (25.69 ± 10.41)

elder_yn 32.87 0.258 (28.77 ± 7.42) 62.72 0.012 (29.00 ± 14.16)

young_gng 35.92 0.136 (28.60 ± 7.39) 69.38 0.003 (28.66 ± 8.36)

young_hfgng 21.33 0.305 (19.70 ± 4.99) 34.11 0.016 (20.13 ± 6.16)

young_hfyn 29.75 0.049 (19.59 ± 5.04) 45.20 0.009 (19.83 ± 7.03)

young_lf 22.06 0.318 (20.39 ± 5.81) 37.78 0.015 (20.67 ± 7.82)

young_lfgng 22.06 0.299 (20.08 ± 5.25) 37.78 0.012 (20.27 ± 6.52)

young_lfyn 23.62 0.182 (19.66 ± 5.03) 17.66 0.542 (19.56 ± 7.43)

young_pseudo 20.35 0.867 (27.86 ± 7.20) 28.48 0.386 (28.44 ± 10.87)

young_yn 38.34 0.097 (28.07 ± 7.03) 54.20 0.003 (28.13 ± 8.66)

KS is the Kolmogorov-Smirnov statistic calculated between the data and its fitted ex-

Gaussian. In columns p1 and p2, one finds the probabilities that a randomly generated

dataset has a bigger KS statistic than the empirical data. In parenthesis, the average KS

statistic and standard deviation for the generated random samples.

default in the histogram function of the ExGUtils package,
namely two times the square root of the number ofmeasurements
in the data.

In order to study the effect of the number of intervals in
the values for the parameters and of p2, we performed the
procedure of fitting the data through minSQR after constructing
the histogram with different number of intervals. In Figure 4 we
show the evolution of the p2 probability, along with the values for
µ, σ , and τ obtained by minSQR for the histograms constructed
with a different number of intervals for the young_hfgng
experiment.

From the figure one sees that while the number of intervals
is unreasonably small compared to the size of the empirical
dataset, the values for the fitted ex-Gaussian parameters fluctuate,
while the p probability is very small, but, once the number of
intervals reaches a reasonable value, around 40, the values for the
parameters stabilize and the value of p also gets more stable. So
the question remains, why the values for the probability obtained
withmaxLKHDmethod is so small in the case of this experiment?
The fact is that the likelihood of the dataset is very sensible to
outliers. For the value of the probability [f (x) in Equation 5] gets
very small for the extreme values. Therefore, in these cases, it
might be reasonable to make some criterious data trimming. So
we proceed as follows: Given a dataset, we first perform a pre-
fitting bymaxLKHD.Using the parameters obtained in this fit, we
estimate the points where the distribution has a left and right tails
of 0.1% and remove measurements beyond these points. With
the trimmed dataset, removed of outliers, we perform fits again
and evaluate the p1 and p2 probabilities. In Table 4, we show the
results for this new round of fitting and probability evaluations.
In more than half of the experiments where one could see a big
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FIGURE 4 | Fitting results obtained with the minSQR method varying the number of intervals in the histogram for the young_hfgng experiment. The horizontal line

shows the value obtained with the maxLKHD method. (Upper left) Evolution of the p probability. (Upper right) Evolution of µ. (Bottom left) Evolution of σ . (Bottom

right) Evolution of τ .

TABLE 4 | The p1 and p2 probabilities for the fits.

Experiment N N′ (%) minSQR maxLKHD

KS p2 (K̄S ± sd) KS p1 (K̄S ± sd)

elder_gng 2,348 2 (0.09) 66.58 0.000 (28.92 ± 7.32) 50.24 0.040 (30.98 ± 17.55)

elder_hfgng 1,174 8 (0.68) 34.20 0.040 (20.67 ± 5.70) 32.64 0.010 (20.66 ± 5.83)

elder_hfyn 1,175 2 (0.17) 32.09 0.040 (20.01 ± 4.86) 24.76 0.090 (19.22 ± 6.69)

elder_lfgng 1,174 1 (0.09) 43.49 0.000 (21.47 ± 5.83) 33.22 0.030 (20.57 ± 6.90)

elder_lfyn 1,139 4 (0.35) 19.97 0.550 (20.55 ± 6.37) 19.71 0.620 (19.97 ± 6.11)

elder_pseudo 1,910 5 (0.26) 57.26 0.000 (26.91 ± 6.64) 57.11 0.010 (26.61 ± 10.06)

elder_yn 2,314 5 (0.22) 36.83 0.240 (28.57 ± 7.46) 29.72 0.230 (30.54 ± 14.33)

young_gng 2,396 10 (0.42) 38.93 0.250 (27.82 ± 6.32) 43.11 0.020 (30.19 ± 17.07)

young_hfgng 1,200 8 (0.67) 23.28 0.780 (19.25 ± 4.39) 17.82 0.430 (18.07 ± 4.13)

young_hfyn 1,180 9 (0.76) 27.97 0.050 (19.68 ± 4.91) 28.93 0.010 (20.74 ± 7.71)

young_lf 1,196 5 (0.42) 25.11 0.310 (20.09 ± 5.21) 25.32 0.020 (19.69 ± 4.29)

young_lfgng 1,196 5 (0.42) 25.11 0.280 (20.51 ± 5.08) 25.32 0.080 (20.55 ± 5.05)

young_lfyn 1,132 3 (0.27) 25.20 0.230 (19.42 ± 5.40) 16.60 0.780 (20.72 ± 8.53)

young_pseudo 2,326 10 (0.43) 23.33 0.940 (27.59 ± 7.05) 25.85 0.870 (28.45 ± 12.48)

young_yn 2,312 12 (0.52) 46.10 0.130 (27.80 ± 7.87) 28.58 0.210 (31.21 ± 19.74)

KS is the Kolmogorov-Smirnov statistic calculated between the data and its fitted ex-Gaussian. N is the number of data points in each empirical dataset, N′ in the number of points

removed by the trimming and in brackets next to it its proportion in relation to the total data. In columns p1 and p2, one finds the probabilities that a randomly generated dataset has a

bigger KS statistic than the empirical data. In parenthesis, the average KS statistic and standard deviation for the generated random samples.

discrepancy between p1 and p2 in Table 3, the trimmed data
do show better results. For some datasets, the trimming had
no impact on the discrepancy. In any case, one might wonder

about the impact of the trimming in the obtained parameters.
Therefore, in Table 5, we show the results obtained with different
trimming criteria.
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TABLE 5 | Results for different trimming on the data.

Experiment % minSQR maxLKHD

µ σ τ p2 µ σ τ p1

elder_gng 0.1 513.52 73.00 329.54 0.001 518.71 75.02 313.04 0.026

elder_gng 0.5 516.62 76.61 319.50 0.002 521.83 70.31 299.00 0.011

elder_gng 1.0 516.04 76.80 317.93 0.000 523.84 66.32 291.17 0.014

elder_hfgng 0.1 509.10 84.96 285.05 0.043 504.96 65.26 297.06 0.012

elder_hfgng 0.5 509.39 89.51 277.28 0.020 511.19 65.09 277.33 0.020

elder_hfgng 1.0 508.40 83.49 279.35 0.016 512.79 59.89 272.67 0.005

elder_hfyn 0.1 564.82 82.19 246.63 0.052 558.93 71.17 266.45 0.148

elder_hfyn 0.5 565.70 83.88 242.73 0.036 559.98 68.60 261.73 0.143

elder_hfyn 1.0 566.73 87.05 235.38 0.006 561.88 65.77 255.95 0.094

elder_lfgng 0.1 521.64 62.39 368.34 0.006 530.64 68.95 333.51 0.041

elder_lfgng 0.5 523.29 67.46 359.50 0.006 530.25 60.81 329.35 0.011

elder_lfgng 1.0 523.37 67.70 356.20 0.002 533.09 59.45 318.33 0.008

elder_lfyn 0.1 583.03 84.58 301.15 0.562 581.72 76.56 305.56 0.577

elder_lfyn 0.5 584.32 86.07 296.15 0.524 584.60 78.19 296.28 0.329

elder_lfyn 1.0 586.72 85.93 287.48 0.470 589.73 77.85 278.47 0.027

elder_pseudo 0.1 735.04 133.55 498.90 0.001 755.81 134.79 436.48 0.012

elder_pseudo 0.5 733.65 135.57 499.00 0.001 754.68 132.25 438.02 0.017

elder_pseudo 1.0 732.54 135.87 498.14 0.000 752.31 124.65 442.19 0.014

elder_yn 0.1 572.16 81.99 275.26 0.251 567.87 73.30 288.63 0.280

elder_yn 0.5 573.64 84.34 270.01 0.373 570.72 72.30 278.01 0.378

elder_yn 1.0 573.82 84.87 266.60 0.246 573.48 72.59 268.80 0.159

young_gng 0.1 456.35 48.59 133.40 0.292 453.37 47.60 140.66 0.013

young_gng 0.5 456.95 47.02 132.15 0.177 456.29 43.54 134.00 0.167

young_gng 1.0 457.70 46.28 130.55 0.096 457.63 40.37 131.00 0.013

young_hfgng 0.1 449.79 45.31 105.15 0.707 448.42 44.89 109.02 0.565

young_hfgng 0.5 450.77 44.72 103.91 0.500 449.62 40.74 107.45 0.704

young_hfgng 1.0 451.94 44.75 101.09 0.208 451.50 37.51 103.23 0.226

young_hfyn 0.1 493.66 50.92 116.16 0.032 487.17 51.93 126.49 0.009

young_hfyn 0.5 494.62 50.74 114.27 0.054 488.97 51.00 122.73 0.025

young_hfyn 1.0 495.77 50.10 111.55 0.083 493.08 49.40 114.69 0.170

young_lf 0.1 473.36 54.44 151.84 0.287 471.09 54.85 157.76 0.037

young_lf 0.5 474.18 55.22 148.96 0.207 474.72 51.93 148.93 0.117

young_lf 1.0 475.03 54.10 147.35 0.067 475.22 45.69 148.46 0.019

young_lfgng 0.1 473.36 54.44 151.84 0.290 471.09 54.85 157.76 0.054

young_lfgng 0.5 474.18 55.22 148.96 0.201 474.72 51.93 148.93 0.119

young_lfgng 1.0 475.03 54.10 147.35 0.068 475.22 45.69 148.46 0.021

young_lfyn 0.1 508.16 61.53 151.83 0.228 503.17 57.27 162.27 0.776

young_lfyn 0.5 508.79 62.11 148.82 0.306 506.82 56.33 153.58 0.713

young_lfyn 1.0 508.92 59.52 148.67 0.278 508.72 51.89 151.43 0.545

young_pseudo 0.1 555.42 63.03 161.81 0.951 555.36 60.57 162.27 0.858

young_pseudo 0.5 556.11 63.54 159.16 0.364 556.92 57.17 158.77 0.194

young_pseudo 1.0 557.18 62.50 157.25 0.096 559.57 54.06 153.59 0.021

young_yn 0.1 497.56 54.59 136.65 0.141 492.23 53.69 146.70 0.144

young_yn 0.5 498.05 54.18 135.23 0.374 495.25 52.33 139.85 0.605

young_yn 1.0 498.17 53.86 134.10 0.556 496.97 50.70 136.71 0.494

The column % indicates the amount of tail trimmed to the left and right of the data.
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Now, having the full picture, one can realize that some
values of p are indeed small, indicating that either the ex-
Gaussian distribution is not that good a model in order to
fit the empirical results, or there is still some systematic error
in the analysis of the experiments. Most of these empirical
datasets where one sees very low values of p are with elderly
people. These have the τ parameter much bigger than the σ

which indicates a very asymmetric distribution with a long
right tail. Indeed, a careful analysis of the histograms will show
that the tail in these empirical distributions seems to be cut
short at the extreme of the plots, so that the limit time in
the experiment should be bigger than 2,500 ms in order to
get the full distribution. One might argue that the trimming
actually was removing data, but most of the removed points
in the trimming of elderly data, was from the left tail and not
from the right. This issue will result in the wrong evaluation
of the KS statistics, since it assumes that one is dealing with
the full distribution. This kind of analysis might guide better
experimental designs.

6. OVERVIEW

The ex-Gaussian fit has turned into one of the preferable options
when dealing with positive skewed distributions. This technique
provides a good fit to multiple empirical data, such as reaction
times (a popular variable in Psychology due to its sensibility to
underlying cognitive processes). Thus, in this work we present
a python package for statistical analysis of data involving this
distribution.

This tool allows one to easily work with alternative strategies
(fitting procedures) to some traditional analysis like trimming.
This is an advantage given that an ex-Gaussian fit includes all data
while trimming may result in biased statistics because of the cuts.

Moreover, this tool is programmed as Python modules,
which allow the researcher to integrate them with any other
Python resource available. They are also open-source and free
software which allows one to develop new tools using these as
building blocks.

7. AVAILABILITY

ExGUtils may be downloaded from the Python Package index
(https://pypi.python.org/pypi/ExGUtils/3.0) for free along with
the source files and the manual with extended explanations on
the functions and examples.
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