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Abstract. A fully-coupled thermodynamic-based transient finite element formulation is pro-
posed in this article for electric, magnetic, thermal and mechanic fields interactions limited
to the linear case. The governing equations are obtained from conservation principles for
both electric and magnetic flux, momentum and energy. A full-interaction among different
fields is defined through Helmholtz free-energy potential, which provides that the constitu-
tive equations for corresponding dual variables can be derived consistently. Although the
behavior of the material is linear, the coupled interactions with the other fields are not con-
sidered limited to the linear case. The implementation is carried out in a research version
of the research computer code FEAP by using 8-node isoparametric 3D solid elements. A
range of numerical examples are run with the proposed element, from the relatively simple
cases of piezoelectric, piezomagnetic, thermoelastic to more complicated combined coupled
cases such as piezo-pyro-electric, or piezo-electro-magnetic. In this paper, some of those
interactions are illustrated and discussed for a simple geometry.

Keywords: Electromagnetic-Thermomechanic Coupling; Elasticity; Thermodynamics; Finite
Element Formulation

1. Introduction

Multi-coupled sensors and actuators are currently used in many state-of-the-art tech-
nological applications. The main interest of these materials do not reside in their strong
primary interactions but in their secondary coupled interactions. In this paper, we are
studying full-coupling of four different fields: thermal, electric, magnetic and mechanic.

Although the secondary coupled interactions are not as potent as the primary ones, with
the proper conditioning can be suitable for sensing or triggering some circuits; for instance,
by means of an electric amplifier or a relay. The main advantages of these materials is that
their response is fast, trustworthy and, in a reasonable interval, linear. In addition, they can
be inserted directly in a structure due to their reduced dimensions.

This work seeks to provide a consistent thermodynamic development (Moreno-Navarro
et al. 2017) for fully-coupled dielectric materials. First a set of state variables and their
corresponding dual ones are defined for each field in establishing the governing equations
based on conservation principles. Second, by settling a full quadratic form of the free-
energy potential, the linear constitutive equations can be derived from it in a consistent
way, providing a hyperelastic response instead of a hypoelastic. Finally, the theoretical
formulation is accompanied by the discrete approximation, based upon 3D Finite Elements
with thermo-electro-magneto-mechanic degrees of freedom, along with simultaneous solution
procedures of the weak form for all governing equations.

In the literature there are numerous scientific articles on the coupling formulation of just
two or three of the mentioned fields, such as piezoelectric (Allik and Hughes 1970), (Lezgy-
Nazargah et al. 2013), (Safari and Akdogan 2008) and a special mention to (Duczek and
Gabbert 2013) for the development of a piezoelectric element based on p-version finite ele-
ment formulation first introduced in (Babuska et al. 1981); thermo-electro-elastic as in (Ryu
et al. 2001), (Wang and Zhong 2003), (Ferrari and Mittica 2013); or electro-magneto-elastic
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as in (Ramirez et al. 2006), (Görnandt and Gabbert 2002), (Fung et al. 2000), (Rao and
Sunar 1993), (Jiang and Li 2007), (Hou et al. 2006) and (Pan 2001). Others couple all fields
but without a very consistent thermodynamic approach as in (Li 2000) or (Aboudi 2001).
The recent ones that come closest to this work, not only because of their full-interaction ap-
proach but also for their thermodynamic framework are (Chen et al. 2004), (Pérez-Aparicio
et al. 2015).

The outline of this paper is as follows. In Section 2, the theoretical formulation for
thermo-electro-magnetic-mechanical coupling is presented first by giving all pertinent con-
servation principles and then by introducing the Helmholtz free-energy potential to obtain
the constitutive equations for dual variables. The details for finite element implementa-
tion are given in Section 3 for 3D cases, using a discrete approximation constructed with
isoparametric finite elements along with the time-integration Newmark scheme introduced
in Section 4. Several numerical simulations are presented in Section 5, and the concluding
remarks are given in Section 6.

2. Formulation

2.1 Kinematic equations

Four fields are considered in formulating the thermo-electro-magneto-mechanic coupling:
displacement u, temperature T , electric potential V and magnetic scalar potential ϕ. The
state variables are obtained as the corresponding gradients of these fields. The set of resulting
”kinematic” equations can be written as:

ε =
1

2

[

∇⊗ u+ (∇⊗ u)T
]

E = −∇V

H = −∇ϕ

(1)

where ε is the strain tensor, E is the electric field, H is the magnetic field, while a convenient
notation for the nabla operator of partial derivatives ∇ = [∂/∂x ∂/∂y ∂/∂z]T is used.
With the hypothesis of small displacement gradient theory, we are limited here to strains
defined in terms of the symmetric part of displacement gradient. Hence, the operator ∇s

can be used to define the strain tensor, which can be written in Voigt notation as:

ε = ∇su ; ∇s =
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2.2 Conservation principles

2.2.1 Conservation of electric and magnetic flux

The conservation of electric flux is given by the Gauss Law for electric field pertaining
to a closed Gaussian surface, written by the following integral relationship:

Φe =

‹

Γ
E · dΓ =

Q

ǫ0
(3)

Here, Φe is the electric flux given by the closed surface integral of the electric field and the
differential surface vector (normal to the outer surface Γ) scalar product. The flux is also
equal to the total electric charge Q inside this surface divided by the vacuum (denoted by 0
subindex) permittivity ǫ0.

It is possible to obtain the equivalent differential expression from (3) by applying the
divergence theorem to the closed surface integral, and by identifying Q =

˝

Ω ρq dΩ with
ρq, the electric charge density:

∇ ·E =
ρq
ǫ0

(4)

In the absence of other fields and by taking into account the constitutive relation between E

and the electric displacement D = ǫ0E +P (P is the polarization), it is possible to rewrite
the result in (4) in terms of D, which is more suitable for macroscopic description:

∇ · (D −P ) = ρq (5)

Finally, the decomposition ρq = ρf
q + ρb

q into free and bound terms is introduced; the free
term is associated with the movements of electrons in a conductor material and the bound
term is related to the orientation of dipoles in a dielectric. By bringing in now the relation
∇ · P = −ρb

q, the result in (5) can be recast as:

∇ ·D = ρf
q (6)

An analogous expression can be found for the magnetic flux in terms of the Gauss Law
for magnetism:

Φh =

‹

Γ
B · dΓ = 0 (7)

where Φh is the magnetic flux, given by the closed surface integral of the scalar product
of the magnetic induction B with the differential surface vector, that is equal to 0 stating
the non-existence of magnetic monopoles. The local form of (7) can be obtained as the
differential expression:

∇ ·B = 0 (8)

Both (6) and (8) belong to Maxwell’s equations in terms of the set of partial differential
equations that fully define the electromagnetic behavior. These equations can be written in
differential form (e.g. Balanis 1989) as follows:







∇×E = −Ḃ

∇×H = j + Ḋ

∇ ·D = ρf
q

∇ ·B = 0

(9)
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where j is the free electric charge flux. Since the targeted applications are dielectric materials,
it can be assumed from here on that j = 0 and ρf

q = 0 due to the absence of free electric
charges (Balanis 1989).

2.2.2 Conservation of momentum

The classical approach to conservation of momentum (e.g. Ibrahimbegovic 2009) is now
generalized to account for the electromagnetic field. First, by enforcing the angular mo-
mentum conservation we obtain the symmetry of stress tensor (e.g. Ibrahimbegovic 2009).
Second, by postulating the linear momentum conservation principle for a domain, and in
the limit case of the domain shrinking to a point, we obtain the local form of momentum
conservation equation (de Groot and Mazur 1984):

ρmü
︸︷︷︸

ṗm

+
Ṡ

c2
︸︷︷︸

ṗeh

= (σC + σM )∇+ b (10)

where ρm is the mass density, pm the mechanical linear momentum, S = E×H the Poynting
vector, peh the electromagnetic linear momentum, σC the Cauchy stress tensor, σM the
Maxwell electromagnetic stress tensor, b the volume forces and c the speed of light, related
to the permeability and permittivity of the vacuum through the following expression:

c2 =
1

ǫ0 µ0
(11)

This expression can be changed to transform the Maxwell stress tensor and the elec-
tromagnetic linear momentum into a single corresponding force. With the definition of the
dielectric constitutive relations for electromagnetic field:

D = ǫ0E + P = (ǫ0I + χe)E = ǫE

B = µ0 (H +M) = µ0 (I + χh)H = µH
(12)

with I being unit second order tensor, χe,χh the electric and magnetic susceptibilities, ǫ
the permittivity tensor and µ the permeability tensor. For dielectric materials, the polar-
ization P and the magnetization M are proportional to E and H , respectively. Taking into
account the last expression, the time derivative of the electromagnetic momentum (10) can
be expanded into:

ǫ0 µ0
∂ (E ×H)

∂t
=
∂ (D ×B)

∂t
− ǫ0 µ0

∂ (E ×M)

∂t
−
∂ (P ×B)

∂t
(13)

By using the Maxwell’s equations (9) and the following identity:

(∇× u)× v = [v ⊗ u− (u · v) I]∇− u (∇ · v) + (∇⊗ v)u (14)

it is possible to obtain an alternative expression for the first term of the right hand side:

∂ (D ×B)

∂t
= [D ⊗E +B ⊗H − (D ·E +B ·H) I]∇+ (∇⊗D)E + (∇⊗B)H (15)
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The last equation can also be transformed by using the following:

(∇⊗D)E =

[(

P ·E +
1

2
ǫ0E ·E

)

I

]

∇− (∇⊗E)P

(∇⊗B)H =

[
1

2
µ0 (B ·B) I

]

∇− (∇⊗B)M

(16)

By introducing all these identities into (15), we can write:

∂ (D ×B)

∂t
=

[

D ⊗E +B ⊗H −
I

2
(ǫ0 E ·E + µ0 B ·B − 2B ·M)

]

∇

− (∇⊗E)P − (∇⊗B)M

(17)

With these results at hand, we return to (13), with three terms set apart:

ṗeh = σM∇+ beh (18)

where by identification:







beh ··= − (∇⊗E)P − (∇⊗B)M − ǫ0 µ0
∂ (E ×M )

∂t
−
∂ (P ×B)

∂t

σM ··= D ⊗E +B ⊗H −
I

2
(ǫ0 E ·E + µ0 B ·B − 2B ·M)

(19)

The electromagnetic force beh, which accounts for the distributed electric and magnetic force
that can arise due to the possible presence of a non-uniform electrical or magnetic field in
the material (Ferrari and Mittica 2013). Finally, the conservation of momentum (10) can be
expressed in terms of beh simply as:

ρmü = σ∇+ beh + b (20)

where the Cauchy superscript C has been drop from σ for simplicity.

2.2.3 Conservation of energy

The global form of the first principle of thermodynamics can be stated in a closed domain
Ω:

∂

∂t
E = Wm +Weh +Q (21)

where E is the total energy, Wm is the mechanical power, Weh is the electromagnetic power
and Q is the total heat supplied to that domain. The total energy can be split into potential
P and kinetic K energy terms:

E = P+ K =

ˆ

Ω
e (ε, s,D,B) dΩ +

1

2

ˆ

Ω
ρmu̇ · u̇ dΩ (22)

where e is the scalar potential of the internal energy density that depends on the state
variables. The list of state variables is defined in Table 1, along with their corresponding
dual variables (with s as the entropy per unit volume).
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Table 1 List of the state variables and their corresponding dual variables for coupled thermoelasticity
and electromagnetism

Fields Mechanic Thermal Electric Magnetic
State var. ε s D B

Dual var. σ T E H

The source of mechanical power inserted within the particular domain Ω can be written
as:

Wm ··=

ˆ

Ω
(b+ beh) · u̇ dΩ +

ˆ

Γ
tn · u̇ dΓ =

ˆ

Ω
(b+ beh) · u̇ dΩ +

ˆ

Ω
∇ · (σ u̇) dΩ (23)

where n is unit normal vector. The last term is defined from the boundary traction vector tn

by the Cauchy principle tn = σ n; this vector has been transformed into the corresponding
volume integral with the divergence theorem. A similar integral transformation can be done
for the boundary term of the electromagnetic power source (see Balanis 1989), and it is
defined as:

Weh ··= −

ˆ

Γ
(E ×H) · n dΓ = −

ˆ

Ω
∇ · (E ×H) dΩ (24)

We note in passing that the negative sign is in agreement with the above expression
representation of total power exiting the volume Ω bounded by the surface Γ. Similar
transformation can finally be made for the heat power source that stems from the outgoing
heat flux q, along with the heat source r, which results in:

Q ··=

ˆ

Ω
r dΩ−

ˆ

Γ
q · n dΓ =

ˆ

Ω
r dΩ−

ˆ

Ω
∇ · q dΩ (25)

In the limit case of Ω shrinking to a point, we obtain from (21) the local form of the first
principle, which can be written as:

ė (ε, s,D,B) + ρmü · u̇ = (b+ beh) · u̇+∇ · (σ u̇) + r −∇ · q −∇ · (E ×H) (26)

Furthermore, by substituting the kinematic equations in (1) and the equation of motion in
(20), along with the identity ∇ · (σ u̇) = (σ ∇) · u̇+σ · (∇⊗ u̇), we can obtain the reduced
form of the first principle or energy conservation:

ė (ε, s,D,B) = σ · ε̇+ r −∇ · q −∇ · (E ×H) (27)

The final ingredient left is to provide the definition of the heat flux through Fourier’s
law:

q = −κ ∇T (28)

where κ is the thermal conductivity.
By scalar multiplication of the first two Maxwell’s equations of (9) with H and E re-

spectively, and by exploiting the following identity:

∇ · (E ×H) = H · (∇×E)−E · (∇×H) (29)
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the reduced form of energy conservation (27) can be recast in an equivalent format:

ė (ε, s,D,B) = σ · ε̇+ r −∇ · q +E · Ḋ +H · Ḃ (30)

The second principle of thermodynamics imposes that the rate of increase of entropy Ṡ
should never be smaller than the amount of heat divided by the absolute temperature. For
a particular domain Ω we can write:

Ṡ ≥
Q

T
; S =

ˆ

Ω
s dΩ (31)

In the limit case of shrinking the domain to a point, we can obtain the local form of
the second principle. In the simplest case of a rigid conductor (corresponds to neglecting
all fields but the thermal), the second principle provides the proper definition of dissipation
by conduction Dc (Ibrahimbegovic 2009), which always remains positive as long as Fourier’s
law applies:

−
1

T
q · ∇T

︸ ︷︷ ︸

Dc

··= T ṡ− (r −∇ · q) ≥ 0 (32)

The second principle, combined with the result of the first principle in (30) can be used
to define the local dissipation, which always remains non-negative:

D ··= T ṡ− ė (ε, s,D,B) + σ · ε̇+E · Ḋ +H · Ḃ ≥ 0 (33)

In the result above we dropped the dissipation by conduction. We can introduce the free
energy potential by appealing to the Legendre transformation (e.g. Ibrahimbegovic 2009),
which allows to exchange the roles between the state variables and their dual, s,D,B versus
T,E,H :

ψ (ε, T,E,H) = e (ε, s,D,B)− T s−E ·D −H ·B (34)

Deriving with respect to time the last expression we can obtain:

ė =
∂ψ

∂ε
· ε̇+

∂ψ

∂T
Ṫ +

∂ψ

∂E
· Ė +

∂ψ

∂H
· Ḣ + Ṫ s+ T ṡ+E · Ḋ+ Ė ·D+H · Ḃ + Ḣ ·B (35)

With this result on hand, the dissipation (33) can be expressed as:

0 ≤ D =

(

σ −
∂ψ

∂ε

)

· ε̇−

(

s+
∂ψ

∂T

)

Ṫ −

(

D +
∂ψ

∂E

)

· Ė −

(

B +
∂ψ

∂H

)

· Ḣ (36)

The dissipation inequality will become an equality providing the set of constitutive equations
to be defined in agreement with the chosen free energy potential. Here, we choose a quadratic
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form of the free energy potential, which can be written as follows:

ψ (εe, ζ, T,E,H) = ψm + ψt + ψe + ψh + ψmt + ψme + ψmh + ψte + ψth + ψeh ;

ψm =
1

2
ε · Cε ; ψme = −ε · eeE ;

ψt = ρm cv

[

(T − T0)− T ln
T

T0

]

; ψmh = −ε · ehH ;

ψe = −
1

2
E · ǫE ; ψte = − (T − T0)πe ·E ;

ψh = −
1

2
H · µH ; ψth = − (T − T0)πh ·H ;

ψmt = − (T − T0)β · ε ; ψeh = −E · υH

(37)

where C is the elasticity tensor, cv the specific heat, β = Cα
T
I the thermal isotropic stress

tensor (with α
T
as the expansion coefficient), ee the piezoelectric tensor, eh the piezomagnetic

tensor, πe the pyroelectric vector, πh the piezomagnetic vector and υ the magnetoelectric
tensor. The corresponding hyperelastic constitutive equations can easily be obtained by
derivatives of such a potential with respect to the state variables:







σ ··=
∂ψ

∂ε
= Cε− β (T − T0)− eeE − ehH

s ··= −
∂ψ

∂T
= β · ε+ ρm cv ln

(
T

T0

)

+ πe ·E + πh ·H

D ··= −
∂ψ

∂E
= eeε+ πe (T − T0) + ǫE + υH

B ··= −
∂ψ

∂H
= ehε+ πh (T − T0) + υE + µH

(38)

Again, with these results on hand, we can write from (32) the heat equation for an elastic
case as:

T ṡ = r −∇ · q (39)

where all terms in the expression for dissipation (36) are zero due to the constitutive equation
definitions. Furthermore, by using the entropy s from (38), we can rewrite the heat equation:

ρm cv Ṫ = r −∇ · q − T
(

β · ε̇+ πe · Ė + πh · Ḣ
)

(40)

In summary, the strong form of the balance equations regroups the results written in (6),
(8), (20) and (40), here restated in tensor notation:







ρmü = σ∇+ beh + b

∇ ·D = 0
∇ ·B = 0

ρmcvṪ = r −∇ · q − T
(

β · ε̇+ πe · Ė + πh · Ḣ
)

(41)
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3. Finite element implementation

In this section we present the details of the discrete approximation constructed by the
the finite element method, as a particular case of the Galerkin method. The starting point
is provided by the weak form of the conservation equations, which can be stated in tensor
notation as follows:







−

ˆ

Ω
∇sδu · σ + δu · (ρmü− beh − b) dΩ +

ˆ

Γ
δu · t̄

c dΓ = 0 ;
ˆ

Ω
∇δV ·D dΩ−

ˆ

Γ
δV D̄ dΓ = 0 ;

ˆ

Ω
∇δϕ ·B dΩ−

ˆ

Γ
δϕ B̄ dΓ = 0 ;

ˆ

Ω
∇δT · q − δT

[

ρm cv Ṫ − r + T
(

β · ε̇+ πe · Ė + πh · Ḣ
)]

dΩ

−

ˆ

Γ
δT q̄ dΓ = 0

(42)

The overbar denotes prescribed magnitudes. We can readily obtain the discrete approxima-
tions for all the fields (Ibrahimbegovic 2009), along with their space and time derivatives by
appealing to separation of variables in Einstein summation convention:

u ≈ Nb a
U
b ; V ≈ Nb a

V
b ; ϕ ≈ Nb a

ϕ
b ; T ≈ Nb a

T
b ;

δu ≈ Na w
U
a ; δV ≈ Na w

V
a ; δϕ ≈ Na w

ϕ
a ; δT ≈ Na w

T
a ;

∇su ≈ B
s
b a

U
b ; ∇V ≈ Bb a

V
b ; ∇ϕ ≈ Bb a

ϕ
b ; ∇T ≈ Bb a

T
b ;

∇sδu ≈ B
s
a w

U
a ; ∇δV ≈ Ba w

V
a ; ∇δϕ ≈ Ba w

ϕ
a ; ∇δT ≈ Ba w

T
a ;

∇su̇ ≈ B
s
b ȧ

U
b ; ∇V̇ ≈ Bb ȧ

V
b ; ∇ϕ̇ ≈ Bb ȧ

ϕ
b ; Ṫ ≈ Nb ȧ

T
b ;

ü ≈ Nb ä
U
b ; a = 1, 2, . . . , 8 b = 1, 2, . . . , 8

(43)

where a represents the nodal values of different fields (often called degrees of freedom),
whereas w represent the nodal values of their variations or virtual nodal degrees of freedom.
In the last expression, Na denotes the standard isoparametric shape function for node a (e.g.,
Ibrahimbegovic (2009)). The subscript a and b respond to the need of splitting the shape
functions associated with virtual nodal values and real nodal values for posterior summations.
The gradients of the shape functions are gathered in convenient forms as:

Ba = ∇Na ;
B

s
a = ∇sNa

(44)

By introducing the corresponding finite element approximations into the weak form of
the conservation equations, and by changing from tensors to matrices by means of the Voigt
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notation, we can finally obtain:







−

ˆ

Ω

(
B

s
a w

U
a

)T
σ +

(
Na w

U
a

)T
(

ρm Nb ä
U
b − beh − b

)

dΩ +

ˆ

Γ

(
Na w

U
a

)T
t̄
c dΓ = 0 ;

ˆ

Ω

(
Ba w

V
a

)T
D dΩ−

ˆ

Γ
Na w

V
a D̄ dΓ = 0 ;

ˆ

Ω
(Ba w

ϕ
a )

T
B dΩ−

ˆ

Γ
Na w

ϕ
a B̄ dΓ = 0 ;

ˆ

Ω

(
Ba w

T
a

)T
q −Na w

T
a

[

ρm cv Nb ȧ
T
b − r +Nb a

T
b

(

βT
B

s
b ȧ

U
b − πT

e Bb ȧ
V
b

−πT

h Bb ȧ
ϕ
b

)]

dΩ−

ˆ

Γ
Na w

T
a q̄ dΓ = 0

(45)
where we introduced the discrete approximations into the dual variables:







σ = CB
s
b a

U
b − β

(
Nb a

T
b − T0

)
+ eTe Bb a

V
b + eThBb a

ϕ
b ;

D = eeB
s
b a

U
b + πe

(
Nb a

T
b − T0

)
− ǫBb a

V
b − υBb a

ϕ
b ;

B = ehB
s
b a

U
b + πh

(
Nb a

T
b − T0

)
− υBb a

V
b − µBb a

ϕ
b

(46)

By considering that the nodal values of virtual field ∀w can be picked up arbitrarily, it
is possible to obtain from (45) the final set of residuals equations that need to be solved:







R
U
a = −

ˆ

Ω
B

s
a
T σ +Na

(

ρm Nb ä
U
b − beh − b

)

dΩ +

ˆ

Γ
Na t̄

c dΓ ;

RV
a =

ˆ

Ω
B

T

a D dΩ−

ˆ

Γ
Na D̄ dΓ ;

Rϕ
a =

ˆ

Ω
B

T

a B dΩ−

ˆ

Γ
Na B̄ dΓ ;

RT
a =

ˆ

Ω
B

T

a q −Na

[

ρm cv Nb ȧ
T
b − r +Nb a

T
b

(

βT
B

s
b ȧ

U
b − πT

e Bb ȧ
V
b

−πT

h Bb ȧ
ϕ
b

)]

dΩ−

ˆ

Γ
Na q̄ dΓ

(47)

4. Time Discretization by Newmark scheme

The Newmark scheme is used for the time discretization of the global solution step. This
scheme requires two parameters γ and β that will determine the numerical damping and
order of the scheme (e.g. Ibrahimbegovic 2009):

ab,n+1 = ab,n +∆t ȧb,n +∆t2
[(

1

2
− β

)

äb,n + β äb,n+1

]

;

ȧb,n+1 = ȧb,n +∆t [(1− γ) äb,n + γ äb,n+1]
(48)

where we denoted the time step as ∆t = tn+1 − tn. These expressions, often referred to as
Newmark equations and are accompanied by the equation enforcing the zero value of the
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residuals at time step n+ 1, which can be explicitly written as:







R
U,(i)
a,n+1 = −

ˆ

Ω
B

s
a
T σ

(i)
n+1 +Na

(

ρm Nb ä
U,(i)
b,n+1 − b

(i)
eh,n+1 − bn+1

)

dΩ +

ˆ

Γ
Na t̄

c
n+1 dΓ ;

R
V,(i)
a,n+1 =

ˆ

Ω
B

T

a D
(i)
n+1 dΩ−

ˆ

Γ
Na D̄n+1 dΓ ;

R
ϕ,(i)
a,n+1 =

ˆ

Ω
B

T

a B
(i)
n+1 dΩ−

ˆ

Γ
Na B̄n+1 dΓ ;

R
T,(i)
a,n+1 =

ˆ

Ω
B

T

a q
(i)
n+1 −Na

[

ρm cv Nb ȧ
T,(i)
b,n+1 − rn+1 +Nb a

T,(i)
b,n+1

(

βT
B

s
b ȧ

U,(i)
b,n+1

−πT

e Bb ȧ
V,(i)
b,n+1 − πT

h Bb ȧ
ϕ,(i)
b,n+1

)]

dΩ−

ˆ

Γ
Na q̄n+1 dΓ

(49)
Thus, this type of time stepping scheme will render the set of nonlinear algebraic equa-

tions. To solve such a nonlinear problem, we use Newton’s iterative method where at each
iteration (i+ 1) we perform the consistent linearization of residuals leading to:

R
(i+1)
a,n+1 = 0 ⇒ R

(i)
a,n+1+

∂Ra,n+1

∂bb,n+1

∣
∣
∣
∣

(i)

δb
(i)
b,n+1 = 0 ; R

(i)
a,n+1 =

[
R

U ,RV ,Rϕ,RT
]T,(i)

a,n+1
(50)

where δbb are iterative contributions to nodal values of the degrees of freedom and its time
derivatives. In this case, we are using the displacement description b ··= a. At each iterative
sweep, we can then perform the corresponding state variable updates according to:

a
(i+1)
b,n+1 = a

(i)
b,n+1 + δa

(i)
b,n+1 (51)

In the first iteration within each time step we will assume the starting guess equal to the
converged value at the previous step:

a
(0)
b,n+1 = ab,n (52)

The mechanical part of the residual vector at particular iteration (i) can be compressed,
reducing it to the form presented explicitly in (49). Namely, the derivative term in (50) can
be reduced to so-called effective tangent stiffness for the mechanical part, which is directly
used to compute the iterative contributions to the displacement increments:

S
U,(i)
ab = −

∂RU
a

∂ab

∣
∣
∣
∣

(i)

−
∂RU

a

∂ȧb

∂ȧb

∂ab

∣
∣
∣
∣

(i)

−
∂RU

a

∂äb

∂äb

∂ab

∣
∣
∣
∣

(i)

(53)

where the time-step subscript n + 1 was dropped to simplify notation. By exploiting the
relations between the nodal displacements and its first and second derivatives provided by
the Newmark scheme, we can write the closed form final linearized problem to be solved.
More precisely, in view of the Newmark result for constructing discrete approximations for
nodal velocities and accelerations in (48), we can write:

∂äb

∂ab

=
1

β ∆t2
;

∂ȧb

∂ab

=
∂ȧb

∂äb

∂äb

∂ab

=
γ

β ∆t
(54)
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Thus, the final form of the tangent operator for the mechanical part can now be written as:

S
U,(i)
ab = K

(i)
ab +

γ

β ∆t
Cab +

1

β ∆t2
Mab (55)

where K
(i)
ab = −

∂Ra

∂ab

is the tangent stiffness matrix, Cab = −
∂Ra

∂ȧb

is the damping matrix

and Mab = −
∂Ra

∂äb

is the mass matrix.

Given the solution for displacement increment at iteration (i), we proceed to compute

the displacement updates a
(i+1)
n+1 by using the result in (51). The corresponding values for

ȧ
(i+1)
n+1 and ä

(i+1)
n+1 are obtained by isolating ä

(i+1)
n+1 from the first of (48), and ȧ

(i+1)
n+1 directly

from the second, resulting with:

ä
(i+1)
b,n+1 =

a
(i+1)
b,n+1 − ab,n −∆t ȧb,n

β ∆t2
+

(

1−
1

2β

)

äb,n ;

ȧ
(i+1)
b,n+1 = ȧb,n +∆t

[

(1− γ) äb,n + γ ä
(i+1)
b,n+1

]
(56)

5. Numerical examples

In this section, several applications are studied as examples of the constructed element ca-
pabilities. All computations are performed in a research version of the well-known computer
code FEAP (Zienkiewicz and Taylor 2005).

The polarized and magnetized materials have a preferential direction due to their internal
structure (Smith 2005). As a result, a transverse isotropic model is taken into consideration,
model that leads into vectors for πe and πh, diagonal tensors for µ, ǫ, υ and β, the last
four with a component different than the others (the polarized direction). For the remaining
coefficients, a simplification from a full form tensor into a symmetric one with many null
entries is necessary; the non-zero coefficients are related among them. All strain related
coefficients are expressed in what follows in Voigt notation: β, ee, eh, C.

Introducing the notation of a second order diagonal tensor:

diag (a1, a2, a3) =





a1 0 0
0 a2 0
0 0 a3



 (57)

unless otherwise said, the properties extracted from (Ferrari and Mittica 2013), (Ramirez
et al. 2006) and (Pérez-Aparicio et al. 2015) for the materials studied in this section are
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presented here:

ρm = 5700 kg/m3 cv = 434 J/kg K
κ = 2.61 W/m K T0 = 293 K
ǫ = diag (11.2, 11.2, 12.6) × 10−9 F/m µ = diag (5, 5, 10) × 10−6 H/m

υ = diag (5.37, 5.37, 2737.5) × 10−12 s/m β = [1.67, 1.67, 1.96, 0, 0, 0]TMPa/K

πe = [58.3, 58.3, 58.3]T × 10−5 C/m2 K πh = [5, 5, 5]T × 10−2 kg/s2 A K

ee =





0 0 0 0 0 11.6
0 0 0 0 11.6 0

−4.4 −4.4 18.6 0 0 0




C

m2
eh =





0 0 0 0 0 5.5
0 0 0 0 5.5 0
5.8 5.8 7 0 0 0



T

C =











116 77 78 0 0 0
77 116 78 0 0 0
78 78 162 0 0 0
0 0 0 89 0 0
0 0 0 0 86 0
0 0 0 0 0 86











GPa

(58)
These properties correspond to different materials: PZT, Terfenol-D, BaTiO3 or CoFe2O4;
however, in this paper, they artificially belong to the same material just for calculation
purposes.

5.1 Piezoelectricity

A piezoelectric material is considered having null coefficients and tensors in (38) except
for C, ee and ǫ. Therefore, only electric and mechanic field variables matter in this section.
This material works two ways: as actuator, which can induce movements when an electric
field is applied, or as generator, for which when a displacement or a force is applied, an
electric potential distribution is generated.

V = 10 V

x

y

z

1

y

x

3

3

Fig. 1 Sketch of the boundary conditions considered for the actuator validation example. Three planes
of symmetry considered in x = y = z = 0; electric potential prescriptions at the top and bottom
planes. Measures in mm.
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In Fig. 1, the boundary conditions for the first validation example can be seen with
the piezoelectric working as actuator. Regarding the mechanical field, symmetry conditions
have been taken into account so that an eighth of a simple box geometry with dimensions
6 × 6 × 2 mm is represented. As for the electric field, V = 10 V at the top and ground at
the z symmetry plane have been set.

 1.31E-09
 2.63E-09
 3.94E-09
 5.25E-09
 6.57E-09

 0.00E+00

 7.88E-09

Displacement in x direction

-4.66E-09
-3.73E-09
-2.79E-09
-1.86E-09
-9.31E-10

-5.59E-09

 0.00E+00

Displacement in z direction

 1.67E+00
 3.33E+00
 5.00E+00
 6.67E+00
 8.33E+00

 0.00E+00

 1.00E+01

Electric Potential (V)

Fig. 2 Displacement in directions x and z and electric potential distributions for the actuator valida-
tion piezoelectric case.

The voltage difference between the top and the bottom faces is generating a component of
E in direction z while the others remain zero. The piezoelectric coefficient couples the electric
with the mechanic field generating displacements. Since the z direction is the polarized, the
induced displacements in all directions are proportional to coefficients ee,31, ee,32 and ee,33
respectively. As the boundary conditions do not prevent these movements, no stresses appear
and the equality Cε = eeE holds.

The appearance of strains modifies the electric displacement D field. However, no change
is expected in E since the electric potential is not affected by the coupling in this particular
example.

In Fig. 2, a summary of all relevant distributions calculated by FEAP is shown; these
distributions are linear as expected. All displacements are proportional to the piezoelectric
coefficients mentioned before (y direction distribution not displayed but equal to the one
of x). Note that uz is negative while ux and uy are positive, due to the numerical values
assigned to ee,31 and ee,32. The also linear V cause a constant distribution of Ez, not shown
in the figure for simplicity.

The complementary case, for which the piezoelectric material is used as generator is also
run for another validation. The problem is set with the same boundary conditions as in
Fig. 1, but instead of V = 10 V, a vertical uniform displacement of a hundreth of the z
length is prescribed at the top.

-9.84E-06
-7.87E-06
-5.90E-06
-3.94E-06
-1.97E-06

-1.18E-05

 0.00E+00

Displacement in x direction (m)

 1.67E-06
 3.33E-06
 5.00E-06
 6.67E-06
 8.33E-06

 0.00E+00

 1.00E-05

Displacement in z direction (m)

 2.92E+03
 5.84E+03
 8.76E+03
 1.17E+04
 1.46E+04

 0.00E+00

 1.75E+04

Electric potential (V)

Fig. 3 Displacement in directions x and z and electric potential distributions for the generator vali-
dation piezoelectric case.

The displacement uz is linear due to the applied prescription (see Fig. 3), while ux appears
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because of the crossed coefficients C13 and C23 being negative due to the Poisson ratio.
The piezoelectric coupling generates a linear V distribution and therefore a constant E3.
Analogously to the previous example, the boundary conditions enforce a zero D, therefore
eeε = −ǫE.

V = 10 V
z

x

y

2

y

x

3

3

Fig. 4 Sketch of the boundary conditions for the third piezoelectric example. Two planes of symmetry
considered in x = y = 0; electric potential prescriptions at the top and bottom planes; the latter face
clamped. Measures in mm.

Another example, not so straightforward, is run under the boundary conditions prescribed
of Fig. 4. This time a quarter of the box is being modeled, due to the non-symmetric
mechanic boundary conditions: at the bottom all the degrees of freedom, including the
electric potential, are set to zero. The other boundary conditions remain equal, that is, with
symmetry in planes x = y = 0 and voltage of 10 V at the top.

In this case, the plane z = 0 is clamped, concentrating all stresses there as can be seen in
Fig. 5. Both ux and uy displacements are skewed due to the boundary conditions. To fully
appreciate the movement, the deformed configuration is also given.

The electric potential may seem linear, but it can be appreciated in the figure that near
the bottom the isolines are closer among themselves than at the top; near the right free edge
the isolines are also closer and not straight. Hence, the Ez component is not constant and
for Ex some concentrations appear near the lower frontal edge (the distribution for Ey is the
same). The value of the latter is an order of magnitude lower than the former.

5.2 Piezo-electro-magnetism

First, a simple piezomagnetic case with the same configurations as before is studied;
the only non-zero tensors are C, eh and µ. Instead of electric potential for the boundary
conditions, magnetic potential is applied. The obtained results give similar values to the
previous ones, but with different numbers due to the difference in eh and µ with respect to
ee and ǫ. This coincidence is due to the similarities between the electric and magnetic field.

A more complex piezo-electro-magnetic material is simulated ; therefore all the previous
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 5.62E-10
 1.12E-09
 1.69E-09
 2.25E-09
 2.81E-09

 0.00E+00

 3.37E-09

Displacement in x direction (m)

-5.45E-09
-4.36E-09
-3.27E-09
-2.18E-09
-1.09E-09

-6.54E-09

 0.00E+00

Displacement in z direction (m)

 1.67E+00
 3.33E+00
 5.00E+00
 6.67E+00
 8.33E+00

 0.00E+00

 1.00E+01

Electric potential (V)

-3.58E+01
 4.38E+01
 1.23E+02
 2.03E+02
 2.83E+02

-1.16E+02

 3.62E+02

Electric !eld in x direction (V/m)

-6.50E+03
-5.94E+03
-5.39E+03
-4.83E+03
-4.27E+03

-7.06E+03

-3.72E+03

Electric !eld in z direction (V/m)

-3.69E+05
-2.85E+05
-2.01E+05
-1.18E+05
-3.43E+04

-4.52E+05

 4.92E+04

Stress in z direction (Pa)

-3.42E+05
-2.70E+05
-1.97E+05
-1.25E+05
-5.33E+04

-4.14E+05

 1.88E+04

Stress in x direction (Pa)

 

Fig. 5 Displacement in directions x and z and deformed configuration amplified 105.

piezoelectricity and piezomagnetism tensors and also υ are active now. With this hypothet-
ical material, the same example as in Fig. 4 but with ϕ = 10 C/m at the top and ϕ = 0
C/m at the bottom is run.

In Fig. 6, a mosaic with the most important magnitudes calculated by FEAP can be seen.
The displacements come from the superposition of electric and magnetic fields; for instance,
the electric field generates positive ux while the magnetic field induces negative ones. Since
eh,31 is higher than ee,31, the sum of both displacements is a negative one. Otherwise, both
fields generate negative displacements for uz, so that all contribute are in the same direction.
The deformed configuration amplified by 2× 104 times, and it is given in the central figure
for better understanding of the displacements.

As for the electric and magnetic fields, their distributions are basically the same: for Ex

and Hx a concentration appears near the bottom front edge due to the boundary conditions,
and for Ez andHz the concentration is near the bottom plane; in the free edge a homogeneous
distribution can be seen. The higher value of µ with respect to ǫ is what causes the almost
insignificant variation of Hz and a negligible Hx. For the electric field, Ex is only one order
of magnitude lower than Ez. Since H is the predominant field, the uz distribution is more
regular than the one displayed in Fig. 5.
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 5.00E+00
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 1.00E+01
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Fig. 6 Displacement in directions x and z and deformed configuration amplified 105.

5.3 Thermoelasticity

For the thermoelastic behavior the only tensors or coefficients not null from the consti-
tutive (38) are β, C and ρm cv. A first benchmark example is calculated under the same
geometry and mechanical boundary conditions as in Fig. 1. Temperature boundary condi-
tions are required instead of the electric ones: the value for T at the top and the bottom is
T0 + 20 K and the other faces have adiabatic boundary conditions.

This example is run in FEAP for static case obtaining the results in Fig. 7. Since T is
both a degree of freedom and a dual variable, the regular benchmark result could only be
obtained with constant temperature. In this case, a linear distribution for all displacements
is obtained and the distributions are the same as expected from analytical results. All
displacements are positive since T is greater than the reference temperature. Despite the
fact that that the expansion coefficient is isotropic α

T
= 6.16 × 10−6 1/◦C, β is not due to

the elasticity tensor C.
An opposite benchmark result could be obtained imposing a constant and homogeneous

value for ε̇ = 0.01 and keeping only the boundary for T = T0 at the bottom, imposing the
adiabatic condition also at the top side so that the temperature can change. The imposed
displacement is introduced at the top first with an increasing ramp until t = 1 s and then
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Fig. 7 Displacement in directions x and z and temperature .

returning to zero with the same pace until t = 2 s; the movement at the bottom is restrained.
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Fig. 8 Left, transient temperature distribution at the top of the geometry of a thermoelastic case;
right, temperature distribution along the vertical direction for time slightly lower than t = 1, 2 s.

In Fig. 8 left the transient distributions of T on the top surface are plot for two different
heights measured along the coordinate z. When ε̇ is positive T significantly decreases up to
0.25 s and after remains constant until the ramp sign is changed, stabilizing the temperature
in a steady-state that can be calculated analytically. When ε̇ is negative a smooth transition
to a T symmetric increase is observed. The effect is much less pronounced when the height
is small (l = 1 mm), since it is analytically demonstrated that it depends on l2.

This analytic solution is obtained solving a more easy version of the heat equation with
constant ε̇, assuming that Poisson modulus is null and unidimensionality. The temperature
expression derived is:

T (z) =
T0 β3 ε̇3

2κ
z (z − 2l) + T0 (59)

In the right figure, results for this solution (solid line) and for the numerical FEAP (circles)
along the height are shown; the bottom two lines are at an instant right before 1 s, the top
ones right before 2 s, all of them when T is stabilized. It is clear that this temperature varies
quadratically with the height and that again the effect of the thermoelasticity coupling is
much more evident for the large height.
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5.4 Elastic pulse under complete coupling

In this example we consider a transient problem for which different coupling effects can
be presented, thus providing the sort of qualitative benchmark result. Namely, we compute
a thermo-electro-magneto-mechanical coupling in 3D domain in the form of a bar, with z
dimension significantly larger than the other two (1× 1× 100 mm); this dimension is chosen
for preferential polarization and magnetization. The boundary conditions are chosen taking
into account the propagation to be studied along the bar: a displacement varying in time is
imposed at the bar left end, while the right end is free. We also impose adiabatic boundaries
for the thermal and isolated contours for the electromagnetic fields (see Fig. 9). The choice
of Newmark scheme parameters γ = 0.5 and β = 0.25 is in agreement with the trapezoidal
second order scheme.

u(0, t)

u(0, t)

t250 ∆t
l = 100 mm

z

Fig. 9 Scheme of the geometry considered and the pulse applied to the left end of the bar.

The bar is set in motion by a sinusoidal displacement pulse imposed on the left end of
maximum amplitude uz,max = 10 mm; this pulse propagates through the bar, with a period
much lower than that of the bar. This displacement produces the corresponding local change
in strain and in its time derivative, which further generates the couplings in (38).

In Fig. 10 we present the computed response for the displacement in the longitudinal
direction of the bar, for the electric potential, for the magnetic potential and for the tem-
perature in the middle z = l/2, through the transient sequence. The time scale used for all
of them is the step size ∆t = 5× 10−8 s.

Regarding the evolution of the mechanical field (first figure), this problem can be exam-
ined as a wave propagation: when the wave arrives to the right end, the reflected wave keeps
the same sign due to the free end of the bar. However, when the reflected wave arrives to
the left, the sign changes due to the built-in boundary. Since there is no dissipation imple-
mented in the formulation, the wave conserves its maximum value and its period along the
simulation.

This displacement wave creates perturbations in the other dual variables through the
tensors ee, eh and β, creating variations in the other degrees of freedom.

The temperature is analyzed first; this degree of freedom is proportional to the strain
rate and also depends on the direction of the wave through (40). Thus, when a wave of
positive displacement comes from the left to the right (inducing a positive heat gradient), T
experiences first a decrease and second an increase, driven by first a negative strain rate and
second a positive one in the same wave. After the wave bounces off the free end, the heat
gradient is now negative, then T first increases and second decreases. The contrary happens
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Fig. 10 Computed displacement, electric potential, magnetic potential and temperature in the bar
middle point z = l/2.

when the displacement wave is negative.
As for the electric and magnetic fields, their response cannot be interpreted directly

since the absence of essential boundary conditions prevents the uniqueness of the solution.
In Fig. 11, the waves in a contour plot from FEAP for both V and ϕ can be appreciated.
The images are taken at the instant when the maximum value of uz is at the bar middle.
The shape of both waves is equal to that of the elastic field, but the zones outside this wave
influence have values different than zero.

6. Conclusions

In this paper, several novelties have been implemented for linear elastic mechanical sys-
tem coupled with thermo-electro-magnetic in dielectrics. In particular, a complete formu-
lation is developed in a consistent manner by using conservation principles along with the
quadratic form of the free-energy potential, providing a hyperelastic response (rather than a
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Fig. 11 Contour plot for electric and magnetic potential at t = 1.7× 10−5 s.

hypoelastic) with the full coupling between all state variables and their duals. The proposed
coupling results in the corresponding linear constitutive expressions for this kind of behavior.
However, this still allows for nonlinear evolution of other field variables.

The formulation has been implemented in a 3D framework by using 8-node hexaedral
finite elements, as the first basic equal-order discrete approximation. The time integration
is performed by using the second order Newmark scheme with the optimal choice of the
parameters. The nonlinear part of the system is handled by Newton-Raphson iterative
scheme.

The main novelty of such a comprehensive formulation is in providing the basis for the
analysis of practical cases going beyond the classical ones such as piezoelectric, thermoelastic
or magnetostrictive towards more complex combinations of the coupled fields. The chosen
numerical simulations have tested the model capabilities to represent for piezoelectric and
piezomagnetic static cases, as well as their combination. The results illustrate the wealth of
coupled responses simulations, including the transient fully-coupled pulse propagation in 3D
setting.
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