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Abstract: There is an increasing interest in the automatic digitization of medieval music documents.
Despite efforts in this field, the detection of the different layers of information on these documents
still poses difficulties. The use of Deep Neural Networks techniques has reported outstanding
results in many areas related to computer vision. Consequently, in this paper, we study the so-called
Convolutional Neural Networks (CNN) for performing the automatic document processing of music
score images. This process is focused on layering the image into its constituent parts (namely,
background, staff lines, music notes, and text) by training a classifier with examples of these parts.
A comprehensive experimentation in terms of the configuration of the networks was carried out,
which illustrates interesting results as regards to both the efficiency and effectiveness of these models.
In addition, a cross-manuscript adaptation experiment was presented in which the networks are
evaluated on a different manuscript from the one they were trained. The results suggest that the CNN
is capable of adapting its knowledge, and so starting from a pre-trained CNN reduces (or eliminates)
the need for new labeled data.

Keywords: Optical Music Recognition; music document processing; music score images; Medieval
manuscripts, convolutional neural networks

1. Introduction

Significant efforts for the preservation of music heritage have occurred in recent decades.
The digitization process has significantly improved the access to these sources while ensuring their
physical preservation; however, to make the music contained in these documents truly browsable and
searchable, it is necessary to encode the symbolic information into a structured digital format such
as MusicXML or Music Encoding Initiative (MEI). The full process of digitization and encoding not
only allows the preservation of that cultural heritage, but also provides means to perform other
interesting tasks such as search and retrieval by content, conversion between different musical
notations, or large-scale computational music analysis.

A digitized music document can be manually converted into a structured digital format, but this
approach has two big disadvantages. On the one hand, users must label every single symbol in the
document, leading to a tedious and hardly scalable process. On the other hand, the transcription
should ideally be conducted by experts in the particular notational style of the piece, and so the whole
process becomes expensive as well. Furthermore, manual transcription tends to be prone to human
error due to fatigue, hence needing the use of precautionary measures such as double entry.
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The research field known as Optical Music Recognition (OMR) focuses on the automatic detection
and encoding of musical content from scanned images [1]. Once musical documents have been
digitized, and their information encoded in a structured format, aforementioned computational studies
can be carried out with the symbolic corpora. Nevertheless, the usual bottleneck of this process is the
automatic transcription by OMR systems, whose current performance is far from optimal [2]. The main
problems of OMR are three-fold: (i) music notation is complex to analyze, compared with other
documents such as text; (ii) music symbols are usually connected and overlaid, which makes them
hard to isolate and classify; and (iii) music documents, especially from the Medieval and Renaissance
era, come in a wide variety of notational styles and formats, resulting in a heterogeneous collection.

In comparison to other similar domains such as text, the processing of music score images can be
quite difficult given the complexity of music notation and the wealth of information contained in these
documents. In addition to the musical notes that are usually placed over the staff lines, music scores
may also contain several types of information such as alterations, lyrics, decorations, or bibliographic
information about the piece. Therefore, before any attempt of automatic recognition of the content,
it is useful to perform a document processing to separate and classify the different zones of the image
into their corresponding categories. Note that this categorization must be performed in the first stages
of the process and, quite often, represents a difficult barrier to overcome before moving on to the
remaining stages.

Thus far, OMR researchers have mainly developed heuristic strategies and systems for document
processing that deal only with the specific type of scores at hand, as can be seen in more detail in
Section 2, exploiting specific details of the images to improve the performance of the recognition.
This approach seems beneficial in the short term but it is not flexible or generalizable. In many cases,
a new OMR system is developed anew for dealing with different manuscripts (e.g., with a different
notation, from a different time period, or with a different level of image degradation), resulting in
a slow progress in the field.

In this article, we discuss a general framework for the document processing of music scores
based on pure machine learning that can be applied to any music notation style or musical document.
Although in this paper we circumscribe the experiments to corpora from Medieval music manuscripts,
we believe that their difficulty and wealth of information (at the image level) allows us to generalize
the conclusions to any type of music score image.

In comparison to systems with hand-crafted heuristic rules, the advantage of using machine
learning-based techniques lies in their generalizability, only needing labeled examples to train
a new classification model [3]. Historically, machine learning techniques had been underused
for document image processing domain because they did not achieve competitive performance.
In turn, image processing algorithms were typically preferred, such as thresholding, morphological
operators, connected-component analysis, or histogram analysis [4,5]. However, since the rise of
Deep Learning [6], Convolutional Neural Networks (CNN) have completely changed the scenario,
outperforming traditional techniques in most image processing tasks [7].

The approach we consider in this article addresses the classification of each pixel of the input
image according to the layer that the pixel belongs to (e.g., music symbol, staff line, text, or background).
Although the proper categorization of every pixel into its correct layer is only a part of the problem,
the framework presented in this paper allows developing general and scalable document processing
for music score images, enabling a breakthrough towards successful OMR systems.

A preliminary introduction to this approach has been described previously [8]. In this article,
we thoroughly test the approach by considering a more comprehensive evaluation of the network
configuration. This allows us to analyze how the different hyper-parameters affect the performance—in
terms of both accuracy and computational cost—for the present task. We also analyze the glass ceiling
of accuracy that may be reached following this approach. In addition, we evaluate for the first time the
generalization of the learning process when the CNN is applied to a different source from which it
was trained.
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The paper is organized as follows: a review of related work is presented in Section 2;
the proposal of the framework for document processing of music score images is detailed in Section 3;
the experimental methodology is described in Section 4, while actual results and analysis are given in
Section 5; and, finally, the main conclusions of the work are summarized in Section 6.

2. Background

The traditional workflow for OMR comprises several stages [9], the first of which is the document
analysis of the music score image (see Figure 1), followed by symbol classification, in which each
meaningful symbol of the image is assigned a category. Music notation itself is reconstructed in the
next stage, after which the music is encoded into the desired symbolic music format.

Score
image

Document
  analysis

Symbol
classification

Music
reconstruction

Music
encoding

Symbolic
score

Figure 1. Traditional workflow for Optical Music Recognition.

The approach presented here only deals with the document processing stage, a sub-stage of the
general document analysis. We define the document processing as the detection and categorization of
the different layers of information contained in the music score image. This step is key for providing
robustness to the system. That is, if subsequent stages can assume the correct separation of the
different layers, systems tend to generalize more easily. Given its importance, many researchers have
proposed different algorithms to deal with specific steps within the document processing stage of the
OMR workflow.

A common first step of document processing is binarization. This process consists in separating
the background (i.e., the superfluous part of the image) from the foreground (i.e., the relevant content),
and is usually considered the starting point for the subsequent steps. Binarization is a critical step that
is also relevant in other document-processing domains [10–12]. Therefore, a number of binarization
techniques have been developed for general documents that can be applied for music documents as
well [13–15]. Additionally, some music-specific document binarization techniques that take advantage
of prior knowledge about music scores have been proposed. For example, BLIST method [16] consists
of an adaptive local thresholding algorithm based on the estimation of features of staff lines in the
score. In the work of Vo et al. [17], a Markov Random Field is used to binarize the documents from
a foreground modeling based on the color of the staff lines. However, the main problem found in these
options is the varying performance depending on the characteristics of the document [18,19].

A specific feature that OMR has to deal with is the presence of the staff. Although these lines
are necessary for human readability and music interpretation, most OMR workflows are based
on detecting and removing the staff lines before classifying the remaining elements in the score.
Staff-line removal has been an active research field for many years. A comprehensive review and
comparison of the first attempts considered for this task can be consulted in the work of Dalitz et al. [20].
Dos Santos Cardoso et al. [21] proposed a method that considers the staff lines as connected paths
between the two margins of the score. The strategy was later improved and extended to be used
on grayscale scores [22]. Dutta et al. [23] developed a method that considers the staff line segment
as a horizontal connection of vertical black runs with a uniform height. Su et al. [24] estimated the
properties of the staves in order to predict the direction of the lines. Géraud [25] developed a method
that entails a series of morphological operators, which eventually removes staff lines in binary images.
Montagner et al. [26] followed a similar approach but learning the parameters of the morphological
image operators. Calvo-Zaragoza et al. [27] used Support Vector Machines to classify pixels belonging
to the categories staff or non-staff, which was later extended by incorporating the use of CNN [28]
and Auto-Encoders [29].

Another relevant step related to the document processing of music score images is the
segmentation of text regions. This layer needs to be detected as well, since it usually contains relevant
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information, for instance, metadata or lyrics. Although the automatic recognition of this information
is usually performed by Optical Character Recognition (OCR) systems, the document processing
stage is in charge of detecting the corresponding regions. Few contributions have been made in this
regard. Burgoyne et al. [30] proposed an approach for lyric extraction in early music manuscripts.
The pipeline proposed in their work first binarizes the image, corrects the skew, and removes the
staff lines. Then, lyrics are found on denser zones of the horizontal projections. Another strategy for
music and text separation on music scores uses Hidden Markov Models (HMMs) [31], performing
a concurrent detection and categorization of rows of the input image into either text or music notation.

In addition to the tasks mentioned previously, there are many other OMR pre-processing strategies
that have been proposed for dealing with less studied steps such as frontispiece detection [32], measure
delimitation [33], or page border removal especially designed for Medieval manuscripts [34].

Despite the aforementioned efforts, we identify two main drawbacks with respect to the
situation of document processing for OMR. On the one hand, most of the proposed methods
are based on heuristic rules tailored to the music corpus at hand, but music documents have
a high level of heterogeneity. In addition, they exhibit many sources of variability, such as image
degradation, bleed-through, different notation types, handwritten styles, or ink differences, among
others. Therefore, if the procedures are implemented by taking advantage of specific characteristics of
the documents, new algorithms may be needed when working with different manuscripts. As a result,
the implementation of these systems will lack of generalizability and may be one of the factors
hindering the progress of OMR technology. For example, the software application Aruspix, which to
our knowledge is the only OMR system that provides means for the detection and categorization of
layers within music images, was developed specifically for early typographic music prints [35].

On the other hand, most of the approaches proposed so far focus on sub-tasks that only cover
a small part of the full workflow of the document processing stage, and assume that previous steps
have achieved an optimal performance (i.e., staff-line removal algorithms tend to assume that a perfect
binarization is first attained). However, this is difficult to fulfill in practice. Consequently, traditional
document processing workflows comprise a complex pipeline of sequential steps with unpredictable
performance and usability.

Our contribution to document processing of music score images is the use of CNN to learn to
classify each pixel of the image according to its category. Given that the classification is performed
at pixel level, thin elements, such as staff lines, note stems, as well as small artifacts, can be properly
detected. Additionally, this allows us to solve the drawbacks mentioned above: the entire document
processing is carried out in a single step, and, since it is based on machine learning, it can be generalized
to any type of document as long as there is an appropriate training set.

It is important to mention that using a CNN that classifies the image at the pixel level is not the
only option to perform this kind of segmentation with machine learning. One could consider the use
of fully-convolutional neural networks (FCNN), which perform an image-to-image prediction [36].
Although this favors a global view of the document, it is more complex to perform a fine-grained
segmentation such as that necessary to detect the elements of musical documents. Energy-based
algorithms such as Markov Random Fields or Graph Cuts have also been widely considered for image
segmentation tasks [17,37]. However, they require greater prior knowledge of the application context,
given that an appropriate energy function has to be established. In addition, as in the case of FCNN,
they are more convenient when a region-based segmentation is pursued [38].

As discussed previously, the pixelwise CNN approach has been studied preliminarily,
demonstrating that it is capable of improving the performance of state-of-the-art algorithms [8].
In this article we further analyze this idea by performing a thorough experimentation in regard to
the topology and parameters of the CNN, so that we can analyze how its configuration affects the
performance and the computational cost, and whether there is a glass ceiling in its performance. We will
also study how these models perform in manuscripts that were not used for training, which represents
the first work that studies this possibility.
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3. Framework

Although rarely formulated in this way, the document processing of music score images can be
seen as a pixel-level problem. For instance, for the input image depicted in Figure 2a, we want to know
whether each pixel belongs to the foreground or to the background (Figure 2b). This corresponds to the
document image binarization step, from which the background layer is ignored. Hence, those classified
as foreground are further categorized into text or music elements, because they shall be processed by
different automatic algorithms (Figure 2c). In the latter case, we want to know whether a pixel belongs
to a staff line or not, as this information is valuable for several reasons such as the segmentation of
single notes as well as determining the pitch (Figure 2d). In the framework described in this paper,
we propose to tackle all these processes in a single step.

(a) Input image (b) Binarization (c) Text detection (d) Staff-line detection

Figure 2. Typical sub-tasks related to documents processing for musical documents.

The document processing can be reformulated as a supervised classification task in which a model
is trained to distinguish the category to which every pixel belongs. Formally, our approach considers
a model that categorizes a given pixel into four possible classes: background, text, staff line, and symbol.
Although we instantiate our approach to this specific label set, the framework is rather general and
can be used for any number of categories.

In our framework, this classification process is carried out by means of Deep Learning. Recently,
Deep Neural Networks (DNN) have shown a remarkable leap of performance in pattern recognition.
Specifically, CNN have been applied with great success for the detection, segmentation, and recognition
of objects and regions in images, approaching human performance on some of these tasks [7].

CNN are composed of a series of filters (i.e., convolutions) that obtain several intermediate
representations of the input image. These filters are applied in a hierarchy of layers, each of which
represent different levels of abstraction; while filters of the first layers may enhance details of the
image, filters of the last layers may detect high-level entities [6]. The key to this approach is that,
instead of being fixed, these filters are modified through a gradient descent optimization algorithm
called backpropagation [39].

One of the main advantages of CNN is its ability to learn the representation that is needed for the
classification task without any human intervention, achieving greater generalization and adaptability
when applied to different manuscripts. In other words, these networks learn a suitable representation
from raw data, without the need of performing a feature extraction process. Since collections of music
documents are a rich source of highly complex information—often more heterogeneous than other
types of documents—a framework based on CNN is promising.

Implementation Details

With our method, a classifier was trained to differentiate pixels belonging to different categories.
To analyze the organization of musical documents, we hypothesized that a pixel can be correctly
classified by using neighboring information. In other words, we assumed that the surrounding
region of a pixel contains enough discriminative information to classify it into a class. For example,
whereas zones in the image with staff lines usually indicate sectors where music notation is present,
areas without staff may indicate other type of content. Our approach, therefore, exploits these local
features to correctly distinguish the categories of the different elements within a musical document.
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In our framework, the input to the CNN is a rectangular patch of the input image centered at
the pixel of interest. In principle, the size of this block should be determined according to the scale
of the documents and the content in them, since they affect the information that is retrieved in such
portion. As an illustrative example, we can see in Figure 3 the neighborhood of some pixels of interest,
with different window sizes. It can be observed that the choice of the block size establishes a trade-off
between localization and representativeness: in the smallest blocks, the neighborhood might provide
insufficient information but the pixel of interest is well located; on the other hand, larger blocks have
much more information to discriminate but it is more complicated to know which pixel in particular is
being classified. In fact, large portions from near pixels will depict very similar blocks.

11x11

25x25

51x51

75x75

Background Text Symbol Staff line

Figure 3. Block extraction examples for different CNN input size.

If the CNN has been properly trained to classify blocks into one of the considered categories,
it can be used to perform the document processing of a music score image. To do so, each pixel of the
image is queried, and its feature block is forwarded and processed by the network, as illustrated in
Figure 4. As a result of this process, a probability is obtained for each category, and then we label that
pixel according to the category that retrieves the highest probability.

Figure 4. Graphical scheme of the prediction process for a given pixel (represented by its extracted block).

Concerning the CNN configuration, it is still an open question what hyper-parameters
(e.g., number of layers, number of filters per layer, size of the filters, etc.) are useful to a greater or
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lesser extent for this task. This is why we carried out a thorough study of different CNN configurations.
The idea is not to find an optimal configuration, which would be unfeasible to demonstrate, but to study
what hyper-parameter configurations make a greater difference in performance and computational
cost, as well as to analyze the best level of accuracy that can be attained using this approach.

Regardless of the specific configuration, the training stage is based on pairs of images depicting
original sources with their corresponding human-labeled ground-truth image, as illustrated in Figure 5.
Thus, the creation of the training set consists in extracting the blocks of each pixel from the original
source, indicating the category given by the pixel at issue in the ground-truth image.

Figure 5. Example of a small portion from ground-truth data. The original image is used to extract
the input feature blocks, while the labeled page indicates the categories to which each pixel belongs
(white pixels mean background, black pixels mean notes, blue pixels mean staff line, and red pixels
mean text.

The learning process is carried out by means of stochastic gradient descent [40], which modifies
the CNN parameters through backpropagation to minimize the cross-entropy loss function.
Let X = (x1, x2, . . . , xn) and C = {c1, c2, . . . , cm} be the set of training samples and the set of
categories of the problem, respectively. Let us denote the prediction of the network for input x being
the category c as P(x)

c , while its desired activation is denoted by Y(x)
c . Given that the network is used

for classification, the desired activation Y(x)
c is 1 if c is the actual category of input x, and 0 otherwise.

Then, the loss L for X can be computed as:

L = − 1
n

n

∑
i=1

m

∑
c=1

[
Y(xi)

c ln P(xi)
c + (1−Y(xi)

c ) ln(1− P(xi)
c )

]
(1)

This loss function is designed for tasks in which the number of samples is balanced. As mentioned
previously, this is not the case in music score images. However, this problem can be easily solved
during training by simply restricting ourselves to consider the same number of samples from each
class in the training set.

4. Experimental Setup

Recalling from above, the paper presents a purely experimental study of the capabilities that
a CNN can offer for the document processing of music score images. Before moving on to the different
configurations and their results, we introduce below the corpora, the evaluation metrics, and the
evaluation methodology considered.

4.1. Corpora

For the evaluation of the approach, we make use of high-resolution image scans from two
different old music manuscripts. The first corpus is a subset of 10 pages of the Salzinnes Antiphonal
(CDM-Hsmu 2149.14) (see https://cantus.simssa.ca/manuscript/133/), which is dated 1554–1555.
The second corpus consists of 10 pages of the Einsiedeln, Stiftsbibliothek, Codex 611(89), from 1314
(see http://www.e-codices.unifr.ch/en/sbe/0611/). Example pages from these corpora are shown in
Figure 6a,b, respectively. The image scans of these two manuscripts have zones with different lighting

https://cantus.simssa.ca/manuscript/133/
http://www.e-codices.unifr.ch/en/sbe/0611/
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conditions, which may have affected the performance of the models that were evaluated. Einsiedeln
manuscript scans, in particular, present areas with severe bleed-through that may mislead the learned
model. The images were used with their original codification (RGB) with no pre-processing, given that
CNN is designed to deal with the original data.

(a) Page from Salzinnes (b) Page from Einsiedeln

Figure 6. Example of pages from the corpora used in this work.

Table 1 gives an overview of the two corpora considered here with some specific features. As can
be observed, the distribution of pixels into the considered categories is highly biased: the background
is the most represented category by a wide margin. Therefore, we clearly face a classification problem
with imbalanced data.

Table 1. Overview of the corpora used in our experiments.

Corpus
Number of
Documents

Avg. Size
Per Page (px)

Avg. Staff-Line
Spacing (px)

Class Distribution (%)

Background Text Staff Line Symbol

Einsiedeln 10 5550× 3650 50 79.1 10.0 6.9 4.0
Salzinnes 10 5100× 3200 56 80.6 11.2 4.5 3.7

The ground-truth data from the corpora was created by manually labeling pixels into the
four categories mentioned above. This human labor may take time, and therefore it is interesting to
study the capacity of the CNN to make the most out of the available data.

4.2. Evaluation Metrics

Given the distribution of data in terms of the different categories, we shall consider appropriate
metrics for such imbalanced datasets. For instance, the F-measure (F1) typically represents a fair metric
in these scenarios. In a two-class classification problem, this measure can be computed as

F1 =
2 · TP

2 · TP + FP + FN
, (2)
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where True Positive (TP) stands for the correctly classified elements of the majority class,
False Positive (FP) represents the misclassified elements from the majority class, and False Negative
(FN) stands for the misclassified elements of the minority class.

To compute a single metric encompassing all possible classes, F1 can be reformulated into
two types of averages: macro and micro averages (FM

1 and Fm
1 , respectively); both averages are

typically applied in multi-class data-imbalance classification tasks [41]. The difference between the
two versions is that Fm

1 is obtained from the sum of all class-wise TP, FP, and FN, and the subsequent
application of Equation (2), whereas FM

1 is computed as the average of all class-wise F1. That is:

Fm
1 =

2 ·∑N
i=1 TPi

2 ·∑N
i=1 TPi + ∑N

i=1 FPi + ∑N
i=1 FNi

, (3)

FM
1 =

∑N
i=1 Fi

N
, (4)

where N is the number of categories.
These evaluation metrics can be complemented with precision (P) and recall (R) figures of merit:

P =
TP

TP + FP
(5)

R =
TP

TP + FN
(6)

These metrics are interesting when we want to focus on a single category (the positive one):
P measures the certainty with regard to a sample classified as positive, whereas R estimates the
possibility of missing a positive sample.

The metrics stated above are widely applied to classification problems when the relevance of
each sample is not significant. In our context, the samples can vary in relevance according to their
location within the document itself. Thus, samples that are at the edge of two categories—for example,
background and staff line—are less relevant as long as they are categorized as one of these categories.
This may lead to thinner or thicker elements, which is unlikely to affect the remaining stages of the
OMR system. On the other hand, it may severely affect the evaluation metrics.

Therefore, we considered a novel metric to evaluate the performance of the models taking into
account this issue. This new metric evaluates a pixel and compares the result of its classification
with the actual category of adjacent neighbors—vertical and horizontal. If the prediction of the
CNN matches either the actual category of the pixel or that of any adjacent pixel, it is considered as
a pseudo-TP. Consequently, all metrics computed with pseudo-TP are named with the pseudo prefix.
Note that ground-truth data is often subjective, especially for border pixels, and therefore these metrics
may be more convenient.

Finally, given that, in a real scenario, the CNN must evaluate many pixels, we also considered the
computational cost of the classification process. Specifically, we considered the number of pixels that
can be processed per second as a measure of computational cost. The training process is not considered
within this cost because it can be done asynchronously, before actually using the classification process.

All the experiments were performed in similar conditions on a general-purpose computer with
the following technical specifications: Intel(R) Core(TM) i7-7700HQ CPU @2.8GHz×4, 32GB RAM,
GTX1070 GPU and Linux Mint 18.2 (64 bits) operating system. The code was written using Python
language (v2.7) and Keras framework. The classification step was carried out considering batches of
64 samples for boosting the performance.
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4.3. Evaluation Methodology

The large number of pixels to process—with around 20,000,000 pixels per page—clearly represents
an obstacle to perform a comprehensive experimentation. This is why we must consider a strategy to
reduce the cost of the evaluation process.

The idea is that we did not process documents entirely to compute the evaluation metrics,
but a reduced subset of pixels. The number of samples to process, however, must be large enough so
that the results can be considered reliable, especially in regard to the distribution of pixels per category
(see Table 1). Consequently, we performed a preliminary study in which pixels of the documents were
extracted randomly, and organized them according to the category to which they belong. In Figure 7,
we show the difference between the distribution of pixels of each category that we found in this random
subset and their actual distribution (y-axis), with respect to how many pixels were randomly extracted
(x-axis). It can be observed that the curve stabilizes quickly, and so 100,000 random samples are enough
to attain a difference between both distributions below 0.5% in all categories. Therefore, the evaluation
of the classification process considering a random subset of 100,000 pixels can be considered reliable
enough for our experimental study.
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Figure 7. Difference of class distributions between real documents and random subset of pixels.
The curves show that 100,000 random samples are enough to achieve a very similar distribution of
classes to that of the original. Note that the x-axis presents a logarithmic scale.

Nevertheless, to provide a more robust set of evaluation metrics, a five-fold cross-validation
partitioning was implemented. At each experiment with one corpus, one fold consisting of
two pages—not necessarily consecutive ones—was used as test set from which those 100,000 random
samples are extracted. The remaining 8 pages were used for building the training set.

5. Experiments

We present in this section the series of experiments for the thorough evaluation of the CNN
approach for document processing of music score images. The experimentation was divided into
several parts. The results reported in Section 5.1 focus on measuring the performance variability
as regards some of the most critical parameters related to CNN. The best models obtained from
these experiments are evaluated and analyzed in Section 5.2. Finally, in Section 5.3, we evaluate the
capabilities of these models for manuscript adaptation—a concept that refers here to using a trained
model to solve the task in a different, albeit similar, manuscript.
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5.1. CNN Parameterization

The specific configuration of a CNN comprises several hyper-parameters that must be fixed
according to the task at issue. Our intention is to assess how modifications in the most relevant
hyper-parameters affect the performance of the classification process. To reduce the complexity of
these experiments, however, we restricted ourselves to considering only the Einsiedeln corpus, which,
as shown below, is the most challenging one—and FM

1 as a summary of the accuracy.
One of the relevant parameters is the size of the input layer; that is, the size of the block used

as input. There is no input size that will work for all manuscripts, as its goodness depends on
unpredictable factors such as the resolution and size of the images. That is why we conducted
experiments in this regard. Note that the spacing between staff lines in the corpora was provided
(Table 1), which is a typical scale reference in OMR, and can be used to generalize the results of our
experiments. We evaluated rectangular portions with different widths and heights, always with the
pixel to classify in the center of them. The depth of the network (number of layers) is another parameter
that must be adjusted. To standardize the experiments, let us assume that a layer always consists of
a variable number of stacked convolutions with Batch Normalization [42] and Rectified Linear Unit
(ReLU) activation [43] followed by a 2× 2 down-sampling operator. The down-sampling operation
is implemented here as a max-pooling operation. Figure 8 shows examples of layers with variable
number of stacked convolutions (1–3). The hyper-parameters of the convolution operators, namely
number of filters and kernel size, were also evaluated. The final set of parameters is listed in Table 2.

Table 2. Set of parameters considered in regard to the CNN configuration.

Parameter Considered Values Units

Block height 11, 25, 51, 101 pixels
Block width 11, 25, 51, 101 pixels
Depth 1, 2, 3, 4, 5 layers
Convolutions per layer 1, 2, 3 convolutions
Number of filters 32, 64, 128, 256, 512 filters
Kernel size 3× 3, 5× 5, 7× 7, 9× 9, 11× 11 pixels

Convolution
Batch normalization

Activation
Down-sampling

Convolution
Batch normalization

Activation

Convolution
Batch normalization

Activation
Down-sampling

Convolution
Batch normalization

Activation

Convolution
Batch normalization

Activation

Convolution
Batch normalization

Activation
Down-sampling

Figure 8. Example of convolutional layers, consisting of a different number of stacked convolution
operators with batch normalization and ReLU activation, followed by a down-sampling operator.

Since the possible combinations of all the different parameters lead to a huge set of different
neural networks to be trained per fold, we propose a serialization of the experiments. That is, we first
fixed some values and varied the parameters that seem most relevant: squared input block sizes,
depth of the network, and convolutions per layer. Following this strategy, we reduced the number of
configurations of the first experiment to only 171. Then, the rest of the parameters were introduced,
namely the number of filters per convolution and the kernel size of the convolutions. In addition,
we considered non-squared input sizes.
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Although the number of training samples may affect the performance of the network, its relevance
is measured separately. Until stated otherwise, the training set consisted of 20,000 random samples
from each class. This way we ensured that the number of samples of each categories in the training
process is equal, which avoids biasing the model towards any of the categories.

5.1.1. Input Size, Depth, and Convolutions Per Layer

We report in Table 3 the first experimental results, varying the squared input block sizes, depth of
the network, and convolutions per layer. The resulting configurations fixed the number of filters per
convolution to 32, the size of the kernel to 3× 3, and the number of random samples of each category
to 20,000. In addition to the accuracy (in terms of FM

1 ), we measured the ability of the model to process
pixels per second.

Table 3. Results in terms of FM
1 and pixels per second of the different configurations. All CNN

are configured to 32 filters per convolution, 3× 3 kernels and trained with 20,000 random samples
per class—being a total of 100,000 prototypes. Results reported represent averages from a five-fold
cross-validation scheme over Einsiedeln corpus.

Input Size (px) Convolution Blocks

FM
1 (%) Pixels (×103) Per Second

Depth (Layers) Depth (Layers)

1 2 3 4 5 1 2 3 4 5

11× 11

1

66.7 71.0 73.0 - - 24 22 19 - -
25× 25 70.4 76.1 81.1 82.6 - 15 16 17 16 -
51× 51 78.9 80.9 85.1 83.2 86.9 6 7 8 8 8
75× 75 75.8 80.6 86.2 85.8 85.5 4 4 5 5 5

101× 101 74.2 83.5 84.2 86.9 86.6 2 3 3 3 3

11× 11

2

69.1 71.8 72.2 - - 21 18 14 - -
25× 25 75.4 79.2 81.1 82.7 - 11 12 12 11 -
51× 51 81.1 82.7 85.1 86.6 86.0 4 4 5 5 5
75× 75 83.9 85.6 84.4 86.9 86.1 2 3 3 3 3

101× 101 49.0 83.8 86.8 85.1 85.6 1 2 2 2 2

11× 11

3

72.1 71.6 72.2 - - 18 15 12 - -
25× 25 76.4 81.5 82.8 82.6 - 9 9 9 8 -
51× 51 83.1 84.4 86.0 86.7 84.9 3 3 3 3 3
75× 75 81.2 85.5 84.6 85.8 86.8 2 2 2 2 2

101× 101 50.9 86.6 86.9 85.7 84.6 1 1 1 1 1

The first thing to remark is that, indeed, the parameters considered here do affect the accuracy
the CNNs attained. For instance, there is a spread of values between the figures of FM

1 of up to 20%
(from 66.7% to 86.9%). In general, some tendency towards improvement can be seen with the highest
image sizes and depths of the network, where the number of convolutions per layer is somewhat
less relevant. The behavior of different combinations of hyper-parameters is not easily predictable,
however, since the set of best solutions (86.9% of FM

1 ) consists of rather heterogeneous configurations.
On the contrary, the computation time follows a much clearer trend: the greater the number of input
pixels and the number of convolutions per layer, the fewer the number of pixels that are processed
per second.

Given that there are several equally-optimal solutions as regards accuracy, we selected the one
with the best efficiency as representative for the next experiments: 51× 51 input blocks, five layers,
and one convolution operation per layer.

5.1.2. Number of Filters, Kernel Size, and Non-Squared Input

According to the results in the previous section, we fixed the base CNN to five layers,
and one convolution operation per layer. We now evaluate the performance with different number of
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filters per convolution and different kernel sizes. In addition, we consider non-squared input sizes,
restricting any of the dimensions to 51. The results of this experiment are reported in Table 4.

Table 4. Results in terms of FM
1 and pixels per second of the different configurations. All CNN were

configured to five layers and one convolution per layer. Results reported represent averages from
a five-fold cross-validation scheme over Einsiedeln corpus.

Input Size (px) Number of Filters

FM
1 (%) Pixels (×103) Per Second

Kernel Size (px) Kernel Size (px)

3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 3 × 3 5 × 5 7 × 7 9 × 9 11 × 11

51× 51

32

86.0 87.2 86.9 85.6 86.6 7 6 6 5 5
51× 75 85.1 86.4 86.7 84.5 86.0 6 5 4 4 3
75× 51 86.0 86.6 86.2 86.7 86.1 6 5 4 4 3
51× 101 86.9 86.7 86.8 85.4 86.4 5 4 4 3 3
101× 51 86.6 86.6 86.3 84.7 85.7 4 4 4 3 3

51× 51

64

86.6 85.5 87.0 86.1 85.4 5 4 4 3 3
51× 75 87.8 86.5 83.8 83.3 84.3 4 3 3 2 2
75× 51 86.5 86.3 86.3 85.8 85.6 3 3 3 2 2
51× 101 86.8 85.6 84.8 81.7 86.0 3 3 2 2 2
101× 51 87.7 87.2 87.6 84.8 87.1 3 3 2 2 2

51× 51

128

87.0 87.0 87.5 87.7 86.8 3 3 2 1 1
51× 75 87.5 85.5 86.5 87.1 86.4 2 2 1 1 1
75× 51 86.9 85.4 87.0 84.6 83.7 2 2 1 1 1
51× 101 87.3 86.7 86.5 86.6 85.4 2 2 0.9 0.8 0.8
101× 51 86.3 85.4 84.1 86.6 86.2 2 2 0.9 0.9 0.8

51× 51

256

86.5 87.5 86.0 86.8 86.7 2 1 1 0.6 0.5
51× 75 87.7 87.4 87.0 85.8 85.1 1 1 0.6 0.5 0.5
75× 51 87.0 86.7 86.7 84.9 86.8 1 1 0.6 0.5 0.5
51× 101 88.0 85.3 87.4 87.4 82.8 0.9 0.9 0.5 0.4 0.3
101× 51 87.6 86.1 86.7 87.0 85.5 0.9 0.9 0.5 0.4 0.3

51× 51

512

87.0 85.1 82.7 84.0 85.1 0.8 0.7 0.3 0.1 0.1
51× 75 85.2 84.8 83.6 81.3 86.2 0.6 0.5 0.1 0.1 0.1
75× 51 87.4 87.2 86.4 86.6 85.9 0.6 0.5 0.1 0.1 0.06
51× 101 86.4 84.7 82.0 85.8 86.0 0.4 0.4 0.1 0.1 0.04
101× 51 87.1 86.9 86.0 72.7 81.9 0.5 0.4 0.1 0.1 0.04

The results confirm that these parameters have a less influence than the previous ones on the
accuracy, although their relevance is still high for the computation time. Initially, the base CNN
improved by adding more filters—to some extent—while the best results maintained smaller kernel
sizes. The upward trend of the computational cost is also clear with respect to increasing the number
of filters and the size of the kernel, suggesting a much stronger influence on the part of the former.

It is also appreciated that considering non-squared image sizes can be beneficial, as the results
vary considerably in this regard. This fact is not accidental, as the relevant information to distinguish
the category of a pixel is usually found on the horizontal (for example, in the case of text) or the
vertical (for example, to find the staff lines) axes of such pixel, so the information of the diagonal
neighborhoods is less relevant.

The best result in terms of accuracy is obtained when 256 filters per convolution are established,
with a kernel size of 3 × 3, and input blocks of 51 × 101 (height and width, respectively).
This configuration improves the accuracy of the base CNN up 1%, from 86.9% to 88.0%. In our
experiments, this neural configuration classified 900 pixels per second, on average. In the manuscripts
considered (Table 1), this represents a cost of around 6 h to completely classify a whole page.

Throughout these experiments, however, we did not make any comments about the time it takes
for each model to train. The training time depends on multiple factors such as the convergence of
the model, the size of the training set, the network model, and the underlying hardware. In our
experiments, the training time ranged from half an hour, for the simplest cases, up to 10 h, being the
size of the input patch the most relevant factor in this regard. Although the training time may become
important in some scenarios because it imposes restrictions on parameter optimization and evaluation,
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in this article, we are more concerned about the network topology and the parameter values that allow
to achieve the best accuracy in our corpora.

5.1.3. Training Set Size

Finally, the relevance of the training set size in regard to the CNN performance is presented below.
Starting with a reduced training set size, we incrementally increased the size of that training set to
measure the amount of data that the selected model needs to solve the task successfully.

Figure 9 shows the performance curve. Note that, for the sake of visualization, the graphic does
not use a linear x-axis. In addition to the curve obtained by the selected network (plain blue line),
the average of the five best configurations in Table 4 is also added to draw more general conclusions.
Some confusing results are observed for the smallest training set sizes. However, given the limited
number of samples per class, they can be considered negligible. Afterwards, the curve is stabilized
from 1000 samples per class, obtaining residual improvements by further increasing the size of the
training set.
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Figure 9. Evolution of the learning process (in terms of FM
1 ) with respect to the size of the training set,

measured as the number of samples per class. The plain blue curve shows the evolution of the best
model considered in our experiments, while the dashed red one is the average of the five best models.
Note that the x-axis presents a logarithmic scale.

Figure 9 also shows that the selected CNN reaches a fair performance with few samples:
from 500 samples, results are already above 80%, while from 5000 the results are less than 2% below the
final accuracy. On average, the behavior is quite similar—yet slightly lower—so it can be assumed that
this is a rather general trend. As a positive conclusion, the CNN does not need an inordinate amount
of data to obtain results that can be useful in practice. Note that each pixel of an image represents
a sample, so labeling a relatively small portion of an image provides a large training set.

5.2. Detailed Results

In this section, we analyze in detail the performance that was attained using the best CNN
configuration of the previous section as shown in Table 4. Specifically, the network configuration
finally considered consists of five layers, each of which contains one convolution operator composed
of 256 filters of size 3× 3. It accepts 51× 101 input blocks. In addition, the network was trained
with 50,000 samples of each class. Results of this model taking into account all the metrics previously
described over the two corpora considered are reported in Table 5.
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Table 5. Final results obtained by the best CNN configuration. Results reported represent averages
from a five-fold cross-validation scheme.

Metrics (%)

Corpus

Einsiedeln Salzinnes

Actual Pseudo Actual Pseudo

FM
1 88.0 93.3 91.3 96.7

Fm
1 94.1 96.7 96.7 98.2

Pbackground 98.9 99.5 98.8 99.3
Pnote 82.5 90.3 94.8 96.2

Pstaff line 71.3 81.7 77.4 88.1
Ptext 85.9 91.7 92.8 95.6

Rbackground 94.5 96.8 98.0 99.4
Rnote 93.3 95.0 81.0 84.3

Rstaff line 86.7 94.4 98.8 99.6
Rtext 97.2 98.4 91.7 94.2

According to these figures, we can observe that the results vary visibly between the two corpora.
While results are closer to the optimum in Salzinnes, the CNN finds more difficulties in Einsiedeln.
In general, however, we can consider that the performance is reasonable to cope with the document
processing task in practice, given that actual metrics (FM

1 and Fm
1 ) are around 90% in all cases.

Concerning specific categories, it can be observed that the results follow similar trends in both
corpora: the background pixels are quite well estimated, whereas a lower accuracy is obtained in
the other categories—particularly, Pstaff line is remarkably below average results, as well as Rnote in
Salzinnes. In general, the P metric is slightly worse than R, which means that the CNN misses few
elements of each category but produces noisy pixels.

As regards the pseudo-metrics introduced above, it is obvious that these lead to significantly
better results. That is to say, the hypothesis that many errors occur near the borders between symbols
is verified; otherwise, the pseudo-metrics would not have increased noticeably. As an example of
this phenomenon, Figure 10 shows a qualitative example from Salzinnes manuscripts. It depicts the
difference between the CNN prediction and the human-labeled ground-truth data, highlighting the
areas where there are discrepancies (see Figure 10d).

(a) Input example (b) Ground-truth (c) Prediction (d) Actual errors

Figure 10. Qualitative example from Salzinnes manuscript of the document processing achieved by
the CNN.

It can be clearly observed that many of the errors are found around the edges, obtaining thinner
elements in the prediction. Although it seems that this especially affects the text elements, note that
the boundaries of the characters represent a small percentage of their pixels. However, the edge of the
staff lines represents a higher percentage of their area, for which the difference between actual and
pseudo metrics is more relevant (Pstaff line).
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This phenomenon should not severely affect the quality of the document processing and, therefore,
it can be considered that the pseudo-metrics report values closer to performance in practice. In addition,
the labeling of ground-truth is subjective, which further justifies the use of these pseudo-metrics.

Finally, we evaluated classic schemes for the different stages of document processing in musical
score images, in order to compare their performance with the CNN-based approach. The evaluation
was based on the comparison made in previous work for the binarization and staff-line removal
stages [8], but adding here the detection of lyrics as well. The set of heuristic strategies to segment the
images into the considered categories consists of: the document binarization algorithm proposed by
Wolf et al. [44], the Stable Paths algorithm for staff-line removal [21], and the algorithm proposed by
Burgoyne et al. [30] to extract lyrics. To actually obtain the four categories considered, we assumed
that background are those pixels removed by the binarization algorithm and text corresponds to pixels
belonging to the elements detected during lyrics extraction. From the remaining pixels, staff line are
those removed by the staff-line removal algorithm, while the rest are thus considered as belonging to
the note category.

Table 6 shows the comparison in terms of FM
1 (actual and pseudo) between our CNN and

the aforementioned strategies. In general, trends are similar (higher accuracy in Salzinnes than
in Einsiedeln, and higher figures of pseudo FM

1 than actual FM
1 ). However, it can be observed that

the CNN approach is clearly superior to the set of classical strategies. Thus, in Einsiedeln, the CNN
improves up to 8% the set of classical strategies (actual FM

1 ), while in Salzinnes the improvement is
around 4% in both metrics.

Table 6. Performance comparison between the CNN-based approach and a set of classical algorithms
for the document processing task, in terms of FM

1 .

Einsiedeln Salzinnes

Actual FM
1 Pseudo FM

1 Actual FM
1 Pseudo FM

1

CNN 88.0 93.3 91.3 96.7

Classical 80.1 86.8 87.7 92.9

The objective of studying a machine learning approach for document processing of music score
images is to provide a general framework that can be applied to different manuscripts. Nevertheless,
we empirically demonstrated that it leads to substantial improvements in classification accuracy at
pixel level in comparison with classical algorithms.

5.3. Cross-Manuscript Adaptation

We also studied how CNN models behave when analyzing a different manuscript from that of
the training set. The idea is to give some insights on how to take advantage of the knowledge acquired
by the CNN when a new type of manuscript is to be processed. Ideally, it would not be necessary to
have new ground-truth data when working with similar music manuscripts, thus we wanted to assess
whether starting from a pre-trained network reduces the amount of new labeled data; that is, if we can
train the CNN in an incremental learning fashion. In such a case, it would help to reduce the initial
effort in dealing with a new manuscript.

First, we check how the CNN behaves when it is directly used to process another manuscript,
without any new information. In particular, we measured the performance obtained by the network
trained for Einsiedeln over Salzinnes, and vice versa. Table 7 summarizes the performance comparison
of this experiment. For simplicity, the performance is only presented in terms of actual FM

1 .
The most interesting conclusion that can be drawn from these figures is that the cross-manuscript

adaptation is actually feasible. Thus, training in Einsiedeln attains results in Salzinnes that are close to
those obtained with its own model. The difference is only 6% (from 93.4% to 87.2%). Furthermore,
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it is observed that the network trained in Salzinnes obtains fair results when analyzing the Einsiedeln
manuscript, while producing some accuracy loss with respect to the network trained specifically for it
(from 88.6% to 73.3%).

Table 7. Performance comparison in terms of FM
1 with respect to the training and evaluation manuscripts.

Terms
Evaluation

Einsiedeln Salzinnes

Training
Einsiedeln 88.0 87.2
Salzinnes 73.3 91.3

Although the networks do not guarantee the same accuracy on different manuscripts,
using a pre-trained network involves a great improvement with respect to training a network anew.
In fact, if we compare the results of the initial performance between the cross-manuscript adaptation
experiment shown in Table 7 with the evolution of the learning process in regard to the size of the
training set in Figure 9, we can see that the adapted model outperforms all training set sizes with less
than the optimal minimum value that reported a fair performance, with 500 samples per class.

Thus, as the last experimental analysis, we wanted to certify that starting from a pre-trained
network will bear a lesser need of new labeled data. We show in Figure 11 the FM

1 curves obtained for
an incremental training set size, depicting the evolution curves of starting from a pre-trained network
and starting from scratch (taken from Figure 9). In addition, we have indicated the best result obtained
with manuscript-specific data.
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Figure 11. Comparison of the evolution of the learning process (in terms of FM
1 ) with respect to

the size of the training set. The plain blue curve shows the evolution starting from a pre-trained
network, while the broken red one represents the results when the network is trained from scratch.
The green broken line indicates the best result obtained for this manuscript. Note that the x-axis
presents a logarithmic scale.

It can be seen that the CNN approaches the optimum much faster when it starts with prior
knowledge. This comes as no surprise as we know that it already attained a fair result before providing
it with new data. Furthermore, it is observed that modest improvements can be obtained by providing
more than 1000 samples per class. In the case the network is pre-trained, it achieves results above 80%
with only 100 samples of each class. In contrast, when training a network from scratch, that amount of
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samples leads to very poor results (less than 40% of FM
1 ), and more than 500 samples of each class are

needed to reach a similar performance.
The main conclusion drawn from this cross-manuscript adaptation experiment is that the CNNs

are able to transfer knowledge across manuscript types. In some cases it might not be necessary to
retrain the models, as happens here for classifying the Salzinnes manuscript, with a model trained for
Einsiedeln. Additionally, the convergence towards a good performance is much faster, thereby needing
fewer manuscript-specific training data. As a result, according to our experiments, starting from
a pre-trained network is profitable in any situation.

6. Conclusions

In this work, we studied exhaustively the use of CNN to perform the task of document processing
in musical score images. Specifically, the task was posed as a problem of classification at pixel level:
each pixel must be categorized by the model from its contextual graphic information into background,
note, text, or staff line. The advantage of this approach is twofold. On the one hand, it allows to perform
the complete process in a single step. On the other hand, being a machine learning approach, it is
generalizable to any type of score as long as training data is available. The main objective of this work
was to conduct an experimental study of the capabilities offered by this approach in various aspects.

In the first experiment, the performance of CNNs was measured according to their configuration,
and parameters such as the size of the input, the depth of the network, or the configuration of the
convolutions were analyzed. It was established that some parameters, such as the size of the input
block or the depth of the CNN, have a larger impact on the performance, while other parameters,
such as the number of filters per convolution or the kernel size, affect the performance to a lesser extent.
In addition, the computation time varies considerably amongst the different configurations, so that if
this parameter is relevant in practice, it would be necessary to consider configurations with a better
trade-off between effectiveness and efficiency. Furthermore, it has been observed that the models do
not need a large number of training samples to produce good results.

In addition, we analyzed the performance limit that can be achieved by tuning the CNN.
The results showed that a limit of around 90% is achieved in the general cases with a good CNN
tuning. A more in-depth analysis with the proposed pseudo-metrics, in which the pixels over the edges
between symbols are treated in a particular way, reflects that the tuning approaches the optimum in
the practical sense.

Finally, a cross-manuscript adaptation experiment was carried out, in which the CNN were
evaluated in a different type of manuscript than the one with which they have been trained. The results
indicate that this approach of starting from a pre-trained network is very effective, requiring much less
training data for the new manuscript.

Although it was shown that the margin for improvement as regards to accuracy is rather limited,
there are other issues on which this line of research can be extended. For instance, it has been observed
that the approach of document processing presented in this paper involves a high computational time.
Since OMR—especially for ancient manuscripts—is a process that is not necessarily intended to be
performed in real time, this cost could be detrimental in an interactive scenario in which user and
machines collaborate to solve the task together [45]. Therefore, a research path aiming at accelerating
the processing of complete documents without losing classification quality is of interest. In this regard,
our idea is to replace the current model, which performs an independent classification for each pixel of
the image, by a model able to classify complete patches of the image.

Furthermore, it would be interesting to study schemes that allow a greater adaptability of the
networks. To this end, specific semi-supervised learning algorithms could be used, in which the
networks learn to adapt to a new manuscript by just providing them with new (unlabeled) images.
This can be performed by promoting convolutional filters that are both useful for the classification task
and invariant with respect to the difference between manuscript types [46].
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Abbreviations

The following abbreviations are used in this manuscript:

OMR Optical Music Recognition
CNN Convolutional Neural Network
OCR Optical Character Recognition
DNN Deep Neural Networks
HMM Hidden Markov Models
FCNN Fully-Convolutional Neural Network
P Precision
R Recall
TP True Positive
FP False Positive
FN False Negative
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