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Abstract

Our main focus in this paper is to introduce and study various
selection principles in bitopological spaces. In particular, Menger
type, and Hurewicz type covering properties like: Almost p-Menger,
star p-Menger, strongly star p-Menger, weakly p-Hurewicz, almost p-
Hurewicz, star p-Hurewicz and strongly star p-Hurewicz spaces are de-
fined and corresponding properties are investigated. Relations between
some of these spaces are established.
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1. Introduction

Our main focus in this paper is to introduce and study various selection
principles, by using p-open covers in bitopological spaces. We will deal with
variations of the following classical selection principles originaly studied in topo-
logical spaces:

Let A and B be sets whose elements are families of subsets of an infinite set
X and O denotes the family of all open covers of a topological space (X, τ).
Then:

S1(A,B) denotes the selection hypothesis:
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For each sequence (Un : n ∈ N) of elements of A there is a sequence (Un :
n ∈ N) such that for each n ∈ N, Un is a member of Un, and {Un : n ∈ N} is
an element of B (see [12]).

The covering property S1(O,O) is called the Rothberger (covering) property,
and topological spaces with the Rothberger property are called Rothberger spaces.

Sfin(A,B) denotes the selection hypothesis:

For each sequence (Un : n ∈ N) of elements of A there is a
sequence (Vn : n ∈ N) such that for each n ∈ N, Vn is a finite
subset of Un, and

⋃
n∈N Vn is an element of B.

The property Sfin(O,O) is called the Menger (covering) property.

Ufin(A,B) denotes the selection hypothesis:

For each sequence (Un : n ∈ N) of elements of A there is a
sequence (Vn : n ∈ N) such that for each n ∈ N, Vn is a finite
subset of Un, and the family {∪Vn : n ∈ N} is a γ-cover of X.

The property Ufin(O,O) is called the Hurewicz (covering) property. An indexed
family {An : n ∈ N} is a γ-cover of X if for every x ∈ X the set {n ∈ N : x /∈
An} is finite.

The properties of Menger and Hurewicz were defined in [3].
The concept of bitopological spaces was introduced by Kelly [4] in 1969. For

details on the topic we refer the reader to see [2]. According to Kelly, a bitopo-
logical space is a set endowed with two topologies which may be independent
of each other. Some mathematicians studied bitopological spaces with some
relation between the two topologies, but here we consider bitopological spaces
in the sense of Kelly.

In 2011, Kočinac and Özçağ introduced and studied in [8] the selective ver-
sions of separability in bitopological spaces. In particular, they investegated
these properties in function spaces endowed with two topologies with one topol-
ogy of pointwise convergence and the other with compact-open topology. In
2012, Kočinac and Özçağ [9], reviewed some known results of selection princi-
ples in the context of bitopology. They defined three versions of the Menger
property in a bitopological space (X, τ1, τ2), namely, δ2−Menger, (1, 2)-almost
Menger, and (1, 2)−weakly Menger. These results are mainly related to func-
tion spaces and hyperspaces endowed with two arbitrary topologies. They
proposed some possible lines of investigation in the areas. In 2016, Özçağ and
Eysen in [11] introduced the notion of almost Menger property and almost
γ-set in bitopological spaces. Our focus in this paper is to continue study of
selection principles in bitopological spaces.

2. Preliminaries

Throughout this paper a space (X, τ1, τ2) is an infinite bitopological space
(called here bispace X) in the sense of Kelly. For a subset U of X, Cli(U)
(resp. Inti(U)) will denote the closure (resp. interior) of U in (X, τi), i = 1, 2,
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respectively. We use the standard bitopological notion and terminology as in
[2].

A subset F of a bispace X is said to be:

(i) i-open if F is open with respect to τi in X, F is called open in X if it
is both 1-open and 2-open in X, or equivalently, F ∈ (τ1 ∩ τ2);

(ii) i-closed if F is closed with respect τi in X, F is called closed in X if it
is both 1-closed and 2-closed in X, or equivalently, X\F ∈ (τ1 ∩ τ2);

(iii) i-clopen if F is both i-closed and i-open set in X, F is called clopen in
X if it is both 1-clopen and 2-clopen.

(iv) τi-regular open if F is regular open set with respect to τi.
(v) τi-regular closed if F is regular closed set with respect to τi.

A bitopological space X is said to be (i, j)-regular (i, j = 1, 2, i 6= j) if, for
each point x ∈ X and each τi-open (i-open) set V of X containing x, there
exists an i-open set U such that x ∈ U ⊆ Clj(U) ⊆ V . X is said to be pairwise
regular if it is both (1, 2)-regular and (2, 1)-regular.

A cover U of a bispace X is said to be a p-open cover if it is τ1τ2-open and
U ∩ (τ1\φ) 6= φ and U ∩ (τ2\φ) 6= φ, where U is τ1τ2-open if U ⊂τ1 ∪ τ2. p−O
denotes the family of all p-open covers of X. A p-open cover U of a bispace
X is a p-ω-cover [9] if X /∈ U and each finite subset of X is contained in a
member of U . U is a p-γ-cover if it is infinite and each x ∈ X belongs to all
but finitely many elements of U . The symbols p-Ω and p-Γ denote the family
of all p-ω-covers and p-γ-covers of a bispace respectively.

Definition 2.1 ([9]). A bispace X is called:

(1) p-Lindelöf if every p-open cover has a countable subcover.
(2) d-paracompct if every dense family of subsets of X has a locally finite

refinement.
(3) p-metacompact if every p-open cover U of X has a point-finite p-open

refinement V (that is, every point of X belongs to at most finitely many
members of V).

(4) p-metaLindelöf if every p-open cover U of X has a point-countable,
p-open refinement V.

(5) p-Menger if for each sequence (Un : n ∈ N) of p-open covers of X, there
is a sequence (Vn : n ∈ N) such that for every n ∈ N, Vn is a finite
subset of Un and

⋃
n∈N Vn is a p-open cover of X. A ⊂ X is p-Menger

in X if for each sequence (Un : n ∈ N) of covers of A by p-open sets in
X, there is a sequence (Vn : n ∈ N) such that for every n ∈ N, Vn is a
finite subset of Un and A ⊂

⋃
n∈N Vn.

(6) p-Rothberger if for each sequence (Un : n ∈ N) of p-open covers of X,
there is a sequence (Un : n ∈ N) such that for every n ∈ N, Un∈Un and
{Un : n ∈ N} is a p-open cover of X.

(7) p-Hurewicz (or simply pairwise Hurewicz), if it satisfies: For each se-
quence (Un : n ∈ N) of elements of p-O, there is a sequence (Vn : n ∈ N)
such that for each n ∈ N, Vn is a finite subset of Un, and for each x ∈ X,
for all but finitely many n, x ∈ ∪Vn.
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A bispace X is called a p-space, if every countable intersection of open sets
is open in X.

3. p-Menger and related bispaces

Following the fact that every p-ω-cover of X is a p-open cover of X, we state
the following theorem:

Theorem 3.1.

(1) If a bispace X is p-Menger then X satisfies Sfin(p−Ω,p−O).
(2) If a bispace X is p-Rothberger then X satisfies S1(p−Ω,p−O).
(3) If a bispace X is p-Hurewicz then X satisfies Ufin(p−Ω,p−O).

In [7], the notion of almost Menger topological space was introduced, and in
[5] Kocev studied this class of spaces. We make use of this concept and define
almost p-Menger and almost p-Rothberger bispaces with the help of p-open
covers.

Definition 3.2. A bitopological space (X, τ1, τ2) is almost p-Menger if for each
sequence (Un : n ∈ N) of p-open covers of X there exists a sequence (Vn : n ∈ N)
such that for every n ∈ N, Vn is a finite subset of Un and⋃

n∈N
{Cli(V) : V ∈ Vn; i =

{
1 if V ∈ τ1
2 if V ∈ τ2

}
} = X

Definition 3.3. A bitopological space (X, τ1, τ2) is almost p-Rothberger if for
each sequence (Un : n ∈ N) of p-open covers of X there exists a sequence
(Un : n ∈ N) such that for every n ∈ N, Un∈Un and⋃

n∈N
{Cli(Un) ; i =

{
1 if Un ∈ τ1
2 if Un ∈ τ2

}
} = X

We note that every p-Menger (resp. p-Rothberger) bispace is almost p-
Menger (resp. almost p-Rothberger).

A subset of a bitopological space is said to be dense if it is dense with respect
to both topologies.

Proposition 3.4. If a bispace X contains a dense subset which is p-Menger
in X, then X is almost p-Menger.

Proof. Let A be a p-Menger dense subset of a bispace X and let (Un : n ∈ N)
be a sequence of p-open covers of X. Since A is p-Menger in X therefore there
exist finite sets Vn, n ∈ N such that A ⊂

⋃
n∈N{V : V ∈ Vn} ⊂

⋃
n∈N{Cli(V ) :

V ∈ Vn ; i =

{
1 if V ∈ τ1
2 if V ∈ τ2

}
}. Since A is dense in X, we have

X =
⋃
n∈N
{Cli(V ) : V ∈ Vn; i =

{
1 if V ∈ τ1
2 if V ∈ τ2

}
}

�
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The following theorem shows: when an almost p-Menger bispace becomes
p-Menger?

Theorem 3.5. Let X be a pairwise regular bispace. If X is an almost p-
Menger, then X is a p-Menger bispace.

Proof. Let (Un : n ∈ N) be a sequence of p-open covers of X. Since X is a
pairwise regular bispace, by definition there exists for each n a p-open cover

Vn of X such that V ′n = {Cli(V ) : V ∈ Vn; i =

{
1 if V ∈ τ1
2 if V ∈ τ2

}
} form a

refinement of Un. By assumption, there exists a sequence (Wn : n ∈ N) such
that for each n, Wn is a finite subset of Vn and

⋃
(W ′n : n ∈ N) is a cover

of X, where W ′n = {Cli(W ) : W ∈ Wn; i =

{
1 if W ∈ τ1
2 if W ∈ τ2

}
}. For every

n ∈ N and every W ∈ Wn we can choose UW ∈ Un such that Cli(W ) ⊂ UW .
Let U ′n = {UW : W ∈ Wn}. We shall prove that U ′n is a p-open cover of X.
Let x ∈ X. There exists n ∈ N and Cli(W ) ∈ W ′n such that x ∈ Cli(W ).
By construction, there exists UW ∈ U ′n such that Cli(W ) ⊂ UW . Hence,
x ∈ UW . �

Theorem 3.6. A bispace X is almost p-Menger if and only if for each sequence
(Un : n ∈ N) of covers of X by τi-regular closed sets (i =1 or i = 2), there
exists a sequence (Vn : n ∈ N) such that for every n ∈ N, Vn is a finite subset
of Un and

⋃
n∈N Vn is a cover of X.

Proof. Let X be an almost p-Menger bispace. Let (Un : n ∈ N) be a sequence of
covers of X by τi-regular closed sets (i =1 or i = 2), (Un : n ∈ N) is a sequence
of p-open covers of X. By assumption, there exists a sequence (Vn : n ∈ N)
such that for every n ∈ N, Vn is a finite subset of Un and

⋃
n∈N Vn is a cover of

X, where Cli(V ) = V for all V ∈ Vn; i=

{
1 if V ∈ τ1
2 if V ∈ τ2

}
.

Conversely, let (Un : n ∈ N) be a sequence of p-open covers of X. Let
(U ′n : n ∈ N) be a sequence defined by U ′n = {Cli(U) : U ∈ Un}. Then each
U ′n is a cover of X by τi-regular closed sets. Thus there exists a sequence
(Vn : n ∈ N) such that for every n ∈ N, Vn is a finite subset of U ′n and

⋃
n∈N Vn

is a cover of X. By construction, for each n ∈ N and V ∈ Vn there exists
UV ∈ Un such that V = Cli(UV ). Hence,

⋃
n∈N{Cli(UV ) : V ∈ Vn} = X. So,

X is an almost p-Menger bispace. �

3.1. Star p-Menger bispaces. A number of results in the literature shows
that many topological properties can be defined and studied in terms of star
covering properties. In particular, such a method is also used in investigation
of selection principles for topological spaces. This investigation was initiated
by Kočinac in [6] and then studied in many papers. We extend this idea for
bitopological spaces.
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Let A be a subset of a topological space (X, τ) and U be a collection of
subsets of X. Then

St(A,U) = ∪{U ∈ U : U ∩A 6= ∅},

Stn+1(A,U) = ∪{U ∈ U : U ∩ Stn(A,U) 6= ∅}.
We usually write St(x, U) for St({x},U).

Definition 3.7 ([6]). In a topological space (X, τ),

(1) Sfin
∗(A,B) denotes the selection hypothesis: For each sequence (Un :

n ∈ N) of elements of A there is a sequence (Vn : n ∈ N) such that for
each n ∈ N, Vn is a finite subset of Un, and

⋃
n∈N{St(V,Un) : V ∈ Vn}

is an element of B.
(2) SSfin

∗(A,B) denotes the selection hypothesis: For each sequence (Un :
n ∈ N) of elements of A there is a sequence (Fn : n ∈ N) of finite
subsets of X such that {St(Fn,Un) : n ∈ N} is an element of B.

The symbols Sfin
∗(O,O) and SSfin

∗(O,O) denotes the star-Menger property
and strongly star-Menger property, respectively in topological spaces.

In a similar way we introduce the following definition for bitopological spaces.

Definition 3.8. A bitopological space (X, τ1,τ2) is said to have:

(1) the star p-Menger property if it satisfies Sfin
∗(p−O,p−O).

(2) the strongly star p-Menger property if it satisfies SSfin
∗(p−O,p−O).

Theorem 3.9. Every strongly star p-Menger, p-metacompact bispace is p-
Menger bispace.

Proof. Let X be a strongly star p-Menger p-metacompact bispace. Let (Un :
n ∈ N) be a sequence of p-open covers of X. For each n ∈ N, let Vn be a point-
finite p-open refinement of Un. Since X is strongly star p-Menger, there is a
sequence (Fn : n ∈ N) of finite subsets of X such that

⋃
n∈N St(Fn,Vn) = X.

As Vn is a point-finite refinement and each Fn is finite, elements of each
Fn belongs to finitely many members of Vn say Vn1 , Vn2 , Vn3 , . . . , Vnk

. Let
V ′n = {Vn1 , Vn2 , Vn3 , . . . , Vnk

}. Then St(Fn,Vn) =
⋃
V ′n for each n ∈ N. We

have that
⋃

n∈N(
⋃
V ′n) = X. For every V ∈ V ′n choose UV ∈ Un such that

V ⊂ UV . Then, for every n, Wn := {UV : V ∈ V ′n} is a finite subfamily of Un
and

⋃
n∈N

⋃
Wn = X, that is X is p-Menger bispace. �

Theorem 3.10. Every strongly star p-Menger, p-metaLindelöf bispace is Lin-
delöf bispace.

Proof. Let X be a strongly star p-Menger p-metaLindelöf bispace. Let U be
a p-open cover of X and let V be a point-countable, p-open refinement of U .
Since X is strongly star p-Menger, there is a sequence (Fn : n ∈ N) of finite
subsets of X such that

⋃
n∈N St(Fn,Vn) = X.
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For every n ∈ N, denote by Wn the collection of all members of V which
intersects Fn. Since V is point-countable and Fn is finite, Wn is countable.
So, the collection W =

⋃
n∈NWn is a countable subfamily of V and is a cover

of X. For every W ∈ W pick a member UW ∈ U such that W ∈ UW . Then
{UW : W ∈ W} is a countable subcover of U . Hence, X is Lindelöf bispace. �

Definition 3.11. A bispace X is an almost star p-Menger if for each sequence
(Un : n ∈ N) of p-open covers of X, there exists a sequence (Vn : n ∈ N) such
that for every n ∈ N, Vn is a finite subset of Un and {Cli(St(∪Vn,Un)) : n ∈
N; i = 1 or i = 2} is a cover of X.

Theorem 3.12. A bispace X is an almost star p-Menger if and only if for
each sequence (Un : n ∈ N) of covers of X by τi−regular open sets there exists
a sequence (Vn : n ∈ N) such that for every n ∈ N, Vn is a finite subset of Un
and {Cli(St(∪Vn,Un)) : n ∈ N} is a cover of X.

Proof. Since every cover by τi−regular open sets is p-open, necessity follows.
Conversely, let (Un : n ∈ N) be a sequence of p-open covers of X. Let

U ′n = {Cli(U) : U ∈ Un and i =

{
1 if U ∈ τ1
2 if U ∈ τ2

}
}. Then U ′n is a cover

of X by τi−regular open sets. Then by assumption there exists a sequence
(Vn : n ∈ N) such that for every n ∈ N, Vn is a finite subset of U ′n and
{Cli(St(∪Vn,U ′n)) : n ∈ N}a cover of X.

First we shall prove that St(U,Un) = St(Cli(U),Un) for all U ∈ Un. It is ob-
vious that St(U,Un) ⊂ St(Cli(U),Un) since U ⊂ Cli(U). Let x ∈ St(Cli(U),Un).
Then there exists some U ′ ∈ Un such that x ∈ U ′ and U ′ ∩ Cli(U) 6= ∅. Then
U ′∩Cli(U) 6= ∅ implies that x ∈ St(U,Un). Hence, St(Cli(U),Un) ⊂ St(U,Un).

For each V ∈ Vn we can find UV ∈ Un such that V = Cli(UV ). Let V ′n =
{UV : V ∈ Vn}.

Let x ∈ X.Then there exists n ∈ N such that x ∈ Cli(St(∪Vn,U ′n)). For
each p-open set V , we have V ∩ St(∪Vn,U ′n) 6= ∅. Then there exists U ∈ Un
such that (V ∩ Cli(U) 6= ∅ and ∪Vn ∩ Cli(U) 6= ∅) imply that (V ∩ U 6= ∅
and ∪Vn ∩Cli(U) 6= ∅). We have that ∪V ′n ∩ U 6= ∅, so x ∈ Cli(St(∪V ′n,Un)).
Hence, {Cli(St(∪V ′n,Un)) : n ∈ N} is a cover of X. �

4. p-Hurewicz and related bispaces

Definition 4.1. Call a bitopological space (X,τ1,τ2):

(1) weakly p-Hurewicz if for every sequence (Un : n ∈ N) of p-open covers of
X, there exists a sequence (Vn : n ∈ N) such that for every n ∈ N, Vn is
a finite subset of Un and each non-empty set U ∈ τ1∪τ2, U∩(∪Vn) 6= φ
for all but finitely many n.

(2) almost p-Hurewicz if for every sequence (Un : n ∈ N) of p-open covers
of X, there exists a sequence (Vn : n ∈ N) such that for every n ∈ N, Vn
is a finite subset of Un and each x ∈ X belongs to ∪{Cli(V ) : V ∈ Vn; i

=

{
1 if V ∈ τ1
2 if V ∈ τ2

}
} for all but finitely many n.
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Theorem 4.2. Let X be a pairwise regular bispace. If X is an almost p-
Hurewicz, then X is p-Hurewicz bispace.

Proof. Let (Un : n ∈ N) be a sequence of p-open covers of X. Since X is a
pairwise regular bispace, using the definition, there exists for each n a p-open
cover Vn of X such that V ′n = {Cli(V ) : V ∈ Vn, V ∈ τi; i = 1 or i = 2} forms
a refinement of Un. By assumption, there exists a sequence (Wn : n ∈ N) such
that for each n, Wn is a finite subset of Vn and each x ∈ X belongs to ∪W ′n
for all but finitely many n, where W ′n = {Cli(W ) : W ∈ Wn,W ∈ τi; i = 1, 2}.
For every n ∈ N and every W ∈ Wn we can choose UW ∈ Un such that
Cli(W ) ⊂ UW . Let U ′n = {UW : W ∈ Wn}. We shall prove that each x ∈ ∪U ′n
for all but finitely many n. Let x ∈ X. There exists n0 ∈ N and Cli(W ) ∈ W ′n
such that x ∈ Cli(W ) for all n > n0. By construction, there exists UW ∈ U ′n
such that Cli(W ) ⊂ UW . Hence, x ∈ UW for all n > n0. �

Theorem 4.3. A bispace X is almost p-Hurewicz if and only if for each se-
quence (Un : n ∈ N) of covers of X by τi−regular closed sets, there exists a
sequence (Vn : n ∈ N) such that for every n ∈ N, Vn is a finite subset of Un
and each x ∈ X belongs to ∪Vn for all but finitely many n ∈ N.

Proof. Let X be an almost p-Hurewicz bispace. Let (Un : n ∈ N) be a sequence
of covers of X by τi-regular closed sets; i =1 or i = 2. This implies that
(Un : n ∈ N) is a sequence of p-open covers of X. By assumption, there exists
a sequence (Vn : n ∈ N) such that for every n ∈ N, Vn is a finite subset of Un
and each x ∈ X belongs to ∪Vn for all but finitely many n, where Cli(V ) = V

for all V ∈ Vn; i =

{
1 if V ∈ τ1
2 if V ∈ τ2

}
.

Conversely, let (Un : n ∈ N) be a sequence of p-open covers of X. Let
(U ′n : n ∈ N) be a sequence defined by U ′n = {Cli(U) : U ∈ Un}. Then each
x ∈ X belongs to ∪U ′n for all but finitely many n and elements of U ′n are τi-
regular closed sets.Then there exists a sequence (Vn : n ∈ N) such that for
every n ∈ N, Vn is a finite subset of U ′n and each x ∈ X belongs to ∪Vn for all
but finitely many n. By construction, for each n ∈ N and V ∈ Vn there exists
UV ∈ Un such that V = Cli(UV ). Hence, x ∈ Cli(UV ) : V ∈ Vn for all but
finitely many n. So X is almost p-Hurewicz bispace. �

Theorem 4.4. If a bispace X is weakly p-Hurewicz and d-paracompact, then
X is almost p-Hurewicz.

Proof. Let (Un : n ∈ N) be a sequence of p-open covers of a bispace X.
Since X is weakly p-Hurewicz, there exists a sequence (Vn : n ∈ N) such
that for every n ∈ N, Vn is a finite subset of Un and every non-empty set
U ∈ τ1 ∪ τ2, U ∩ (∪Vn) 6= φ for all but finitely many n. Let x ∈ X. By
the assumption {Vn : n ∈ N} has a locally finite refinement say W. Then
∪W = ∪n∈N ∪Vn and therefore Cli(∪W) =Cli(∪n∈N ∪ Vn). As W is locally
finite family, Cli(∪W) = ∪W∈WCli(W ). Since for every W ∈ W there exists
VW ∈ Vn, so that W ⊂ VW , we have that each x ∈ Cli(V ) where V ∈ Vn, for
all but finitely many n. Hence, it is shown that X is almost p-Hurewicz. �
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Theorem 4.5. If a p-space X is weakly p-Hurewicz, then X is almost p-
Hurewicz.

Proof. Let (Un : n ∈ N) be a sequence of p-open covers of X. Since X is
weakly p-Hurewicz, there exists a sequence (Vn : n ∈ N) such that for every
n ∈ N, Vn is a finite subset of Un and every non-empty set U ∈ τ1 ∪ τ2,
U ∩ (∪Vn) 6= φ for all but finitely many n. Let x ∈ X and U contains x. By
the condition X is p-space, the intersection of every countable family of open
subsets of X is open and hence, every countable union of closed sets is closed.
So, Cli(∪n∈N ∪ Vn) = ∪n∈N{Cli(V ) : V ∈ Vn} implies that x ∈ Cli(V ) for all
but finitely many n where V ∈ Vn, which shows that X is an almost p-Hurewicz
space. �

Theorem 4.6. Every i−clopen subset of an almost p-Hurewicz bispace is al-
most p-Hurewicz; i =1 or i = 2.

Proof. Let F be an i−clopen subset of an almost p-Hurewicz bispace X and let
(Un : n ∈ N) be a sequence of p-open covers of F . Then Vn = Un∪{X−F} is a
p-open cover for X for every n ∈ N. Since X is an almost p-Hurewicz bispace,
there exist finite subsets Wn of Vn for which x ∈ X belongs to Cli(W ) : W ∈
Wn for all but finitely many n ∈ N. Since, Cli(X−F ) = X−F and each a ∈ F
belongs to Cli(W ) : W ∈ Wn,W 6= X − F for all but finitely many n. �

Theorem 4.7. Every i−closed subset of a weakly p-Hurewicz bispace is weakly
p-Hurewicz. i =1 or i = 2.

Proof. Let F be an i−closed subset of a weakly p-Hurewicz space and let (Un :
n ∈ N) be a sequence of p-open covers of F . Then Vn = Un ∪ {X − F}
is a p-open cover of X for every n ∈ N. Since X is a weakly p-Hurewicz
space, there exists finite subsets Wn of Vn for each n ∈ N such that every
non-empty i-open set U ⊂ X and U ∩ (∪Vn) 6= φ for all but finitely many
n. Put W = ∪n∈N{W : W ∈ Wn,W 6= X − F}. Then every non-empty
i-open set U ⊂ X, U ∩ (W ∪ (X − F )) 6= φ for all but finitely many n. Since
F = Cli(Inti(F )) we have Inti(F )∩Cli(X −F ) = φ. So, Inti(F ) ⊂ Cli(∪W)
and F = Cli(Inti(F )) ⊂ Cli(∪W). Every non-empty i-open set A ⊂ F ,
A ∩ (∪W) 6= φ for all but finitely many n. �

4.1. Star p-Hurewicz bispaces. The method of stars is one of classical pop-
ular topological methods. It has been used, for example, to study the problem
of metrization of topological spaces, and for definitions and investigations of
several important classical topological notions [1],[10].

Definition 4.8. A bitopological space (X,τ1,τ2) is said to have:

• star p-Hurewicz property, if it satisfies: For each sequence (Un : n ∈ N)
of elements of p-O there is a sequence (Vn : n ∈ N) such that for
each n ∈ N, Vn is a finite subset of Un, and each x ∈ X belongs to
St(∪Vn,Un) for all but finitely many n.
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• strongly star p-Hurewicz property, if it satisfies: For each sequence
(Un : n ∈ N) of elements of p-O there is a sequence (An : n ∈ N) of
finite subsets of X, and each x ∈ X belongs to St(An,Un) for all but
finitely many n.

Every strongly star p-Hurewicz bispace is star p-Hurewicz. The implications
among the mentioned covering properties are as follows:

p −Hurewicz ⇒ star p − Hurewicz

⇓ ⇓
p −Menger ⇒ star p − Menger

A bitopological space X is called strongly star pairwise-compact if for each
p-open cover U of X there is a finite set F ⊂ X such that St(F,U) = X. Call
a space X strongly star pairwise σ-compact if it is union of countably many
strongly star pairwise-compact bispaces. Clearly, every strongly star pairwise-
compact bispace is stongly star p-Hurewicz. A bitopological space X is called
star-p-Lindelöf if for every p-open cover U of X there is a countable set F ⊂ U
such that St(F,U) = X.

Theorem 4.9. Every star p-Hurewicz bispace is star-p-Lindelöf.

Proof. Let X be a star p-Hurewicz bispace. Let U be a p-open cover of X. Let
(Un : n ∈ N) be a sequence such that each Un = U . Then, by definition, there
is a sequence (Vn : n ∈ N) such that for each n ∈ N, Vn is a finite subset of
Un, and each x ∈ X belongs to ∪n∈N(St(∪Vn,U)) for all but finitely many n.
Let V = ∪n∈N Vn. Now ∪n∈N(St(∪Vn,Un)) = St(∪V,U). Then V = ∪n∈N Vn
is a countable subfamily of U satisfying St(∪V,U) = ∪n∈N (St(∪Vn,Un)) = X,
that is X is star-p-Lindelöf. �

Theorem 4.10. Every strongly star p-Hurewicz bispace is strongly star p-
Lindelöf.

Proof. Let X be a strongly star p-Hurewicz bispace. Let U be a p-open cover
of X. Let F be the collection of all finite subsets of X. Then, by definition,
there is a sequence (Fn : n ∈ N) of elements of F such that each x ∈ X
belongs to St(Fn,Un) for all but finitely many n. Let A = ∪n∈NFn; then A is a
countable set being countable union of finite sets. Also, ∪n∈NSt(Fn,Un)=∪n∈N
(St(∪n∈NFn,Un)) = St(A,Un) = X. Hence, X is strongly star-p-Lindelöf
bispace. �

Theorem 4.11. Every strongly star p-Hurewicz, p-metacompact bispace is p-
Hurewicz bispace.

Proof. Let X be a strongly star p-Hurewicz metacompact bispace. Let (Un :
n ∈ N) be a sequence of p-open covers of X. For each n ∈ N, let Vn be a point-
finite p-open refinement of Un. Since X is strongly star p-Hurewicz, there is a
sequence (Fn : n ∈ N) of finite subsets of X such that each x ∈ X belongs to
St(Fn,Vn) for all but finitely many n.
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Since Vn is a point-finite refinement and each Fn is finite, elements of each
Fn belongs to finitely many members of Vn say Vn1 , Vn2 , Vn3 , ..., Vnk

. Let V ′n =
{Vn1 , Vn2 , Vn3 , ..., Vnk

}. Then St(Fn,Vn) = ∪V ′n for each n ∈ N. We have that
each x ∈ X belongs to ∪V ′n for all but finitely many n. For every V ∈ V ′n
choose UV ∈ Un such that V ⊂ UV . Then, for every n, {UV : V ∈ V ′n} = Wn

is a finite subfamily of Un and each x ∈ X belongs to ∪Wn for all but finitely
many n, that is X is p-Hurewicz bispace. �

Theorem 4.12. Every strongly star p-Hurewicz, p-metaLindelöf bispace is p-
Lindelöf.

Proof. Let X be a strongly star p-Hurewicz, p- metaLindelof bispace. Let U be
a p-open cover of X then there exists V, a point-countable p-open refinement of
U . Since X is strongly star p-Hurewicz, there exists a sequence (Fn : n ∈ N) of
finite subsets of X such that for each x ∈ X,x ∈ St(Fn,Vn) for all but finitely
many n.

For every n ∈ N denote by Wn the collection of all members of V which
intersects with Fn. Since V is point-countable and Fn is finite,Wn is countable.
So, the collection W = ∪n∈NWn is countable subfamily of V and is a cover of
X. For every W ∈ W pick a member UW ∈ U such that W ⊂ UW . Then
{UW : W ∈ W} is a countable subcover of U . Hence, X is a p-Lindelof
bispace. �
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[3] W. Hurewicz, Über die verallgemeinerung des borelschen theorems, Math. Z. 24 (1925),

401–425.

[4] J. C. Kelly Bitopological spaces, Proc. London Math. Soc. 13, no. 3 (1963), 71–89.
[5] D. Kocev, Almost Menger and related spaces, Mat. Vesnik 61 (2009), 173–180.
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