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Abstract

In this paper, we define weak θm− contraction mappings and give a
new class of Picard operators for such class of mappings on a complete
metric space. Also, we obtain some new results on the existence and
uniqueness of attractor for a weak θm− iterated multifunction system.
Moreover, we introduce (α, β, θm)− contractions using cyclic (α, β)−
admissible mappings and obtain some results for such class of mappings
without the continuity of the operator. We also provide an illustrative
example to support the concepts and results proved herein.
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1. Introduction

The iterated function system (IFS) is the main generator of fractals. It is
introduced by Hutchinson [7] and generalized by Barnsley [2]. An IFS is a finite
family of contractions {fi}Ni=1 on a complete metric space (M,d). For an IFS

there is always a non-empty set A ⊂ M such that A =
⋃N
i=1 fi(A), such A is

known as attractor of the respective IFS.
In this paper, we study the concept of weak θ -contraction used by Imdad

and Alfaqih [8] which is an extension of θ -contraction (or JS contraction) in-
troduced by Jleli and Samet [9]. We consider the family Θ1,2,4 and introduce
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weak θm-contraction and prove that every (continuous) weak θm -contraction
is a Picard operator in section 3. In section 4, we study about iterated multi-
function system (IMS) and obtain some results on the existence and uniqueness
of attractor for a weak θm− IMS. Also, we obtain some results on (α, β, θm)−
contractions using cyclic (α, β)− admissible mappings without the continuity
of the operator in the last section.

2. Preliminaries

In this section, we recall some notations, basic definitions and results to be
used in the sequel.

Definition 2.1 (see [12, 13]). Let (M,d) be a metric space and f : M → M
be a self mapping. A sequence {un} defined by un = fnu0 is called a Picard
sequence based at the point u0 ∈ M . A self-mapping f is said to be a Picard
operator if it has a unique fixed point z ∈M and z = lim

n→∞
fnu for all u ∈M .

Definition 2.2 (see [12, 13]). Let (M,d) be a metric space, and let K(M)
be the class of all non-empty compact sets of M . The function η : K(M) ×
K(M)→ [0,∞) define by η(A,B) = max{D(A,B), D(B,A)} whereD(A,B) =
supa∈A infb∈B d(a, b) for all A,B ∈ K(M) is a metric known as Hausdorff-
Pompeiu metric. It is well known that if (M,d) is complete then (K(M), η) is
also complete.

Alizadeh et al. [1] introduced the notion of cyclic (α, β)-admissible mapping
which is defined as follows:

Definition 2.3. Let M be a nonempty set, f be a self-mapping on M and
α, β : M → [0,∞) be two mappings. We say that f is a cyclic (α, β)-admissible
mapping if x ∈ M with α(x) ≥ 1 implies β(fx) ≥ 1 and β(x) ≥ 1 implies
α(fx) ≥ 1.

The following results will be needed in the proof of our main results.

Lemma 2.4 ([10]). Let (M,d) be a metric space and let {xn} be a sequence in
M such that

(2.1) lim
n→∞

d (xn, xn+1) = 0.

If {xn} is not a Cauchy sequence in M , then there exist ε > 0 and two sequences
{m (k)} and {n (k)} of positive integers such that n (k) > m (k) > k and the
following sequences tend to ε+ when k → +∞:

(2.2) d
(
xm(k), xn(k)

)
, d
(
xm(k), xn(k)+1

)
, d
(
xm(k)−1, xn(k)

)
,

d
(
xm(k)−1, xn(k)+1

)
, d
(
xm(k)+1, xn(k)+1

)
.

Remark 2.5. Let {xn}n∈N be a sequence in a metric space (X, d) . If for all
n ∈ N holds d (xn+1, xn) < d (xn, xn−1), then n 6= m implies xn 6= xm whenever
n,m ∈ N.
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Lemma 2.6 ([14]). Let A,B,C ∈ K(M). Then we have the following:
(i) A ⊂ B if and only if D(A,B) = 0;
(ii) D(A,B) ≤ D(A,C) +D(C,B).

Lemma 2.7 ([15]). If {Ei}i∈τ and {Fi}i∈τ are finite collection of elements in
K(M), then

η(
⋃
i∈τ

Ei,
⋃
i∈τ

Fi) ≤ sup
i∈τ

η(Ei, Fi).

3. Weak θm-contraction

Now we use the definition of an auxiliary function and utilize the same to
introduce weak θm-contraction.

Definition 3.1 (see [6, 8, 9]). Let θ : (0,∞) → (1,∞) be a function and
consider the following conditions:
Θ1 : θ is non-decreasing.
Θ2: for each sequence {αn} in (0,∞),

lim
n→∞

θ(αn) = 1⇔ lim
n→∞

(αn) = 0.

Θ3: there exist r ∈ (0, 1) and l ∈ (0,∞) such that lim
α→0+

θ(α)−1
αr = l;

Θ4: θ is continuous.
The following notations to be used in the sequel.

• Θ1,2,3 the family of all θ that satisfy Θ1−Θ3.
• Θ1,2,4 the family of all θ that satisfy Θ1,Θ2 and Θ4.
• Θ2,3 the family of all θ that satisfy Θ2 and Θ3.
• Θ2,4 the family of all θ that satisfy Θ2 and Θ4.
• Θ2 the family of all θ that satisfy Θ2.

Example 3.2 ([6]). Define θ : (0,∞) → (1,∞) by θ(α) = e
√
α, for all α ∈

(0,∞).Then θ ∈ Θ1,2,3,4.

Example 3.3 ([6]). Define θ : (0,∞) → (1,∞) by θ(α) = eα, for all α ∈
(0,∞).Then θ ∈ Θ1,2,3.

Example 3.4 ([8]). The following function θ : (0,∞)→ (1,∞) are in Θ2,4:

(1) θ(α) = e
α
2 +sinα;

(2) θ(α) = αr + 1, r ∈ (0,∞).

Example 3.5. Define θ : (0,∞) → (1,∞) by θ(α) = 2
√
α2
− 1√

α
, for all α ∈

(0,∞).Then θ ∈ Θ1,2,4.

Now, we define weak θm-contraction mapping.

Definition 3.6. Let (M,d) be a metric space and f : M → M is a self-
mapping. A mapping f is called a weak θm-contraction if there exist a θ ∈ Θ2,4

(or θ ∈ Θ1,2,4) and h ∈ (0, 1), such that for all u, v ∈M , we have

d(fu, fv) > 0⇒ θ(d(fu, fv)) ≤ [θ(M(u, v))]h,(3.1)
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where M(u, v) = max{d(u, fu), d(v, fv), d(u, v)}.

Remark 3.7. Here, we note that weak θm-contraction mapping has at most one
fixed point. Assume that f has another fixed point say v ∈ M , d(u, v) > 0.
Using (3.1) we have

θ(d(u, v)) = θ(d(fu, fv))

≤ [θ(max{d(u, fu), d(v, fv), d(u, v)})]h

= [θ(d(u, v))]h,

which is a contradiction.

Lemma 3.8. Let (M,d) be a metric space and f : M → M is a weak θm-
contraction. Suppose that there exists a Picard sequence {un} ⊆ M defined by
un+1 = fnu0 = fun for all n ∈ N ∪ {0}. Then d(un, un+1) → 0 as n → ∞,
where un 6= un+1 (Here θ ∈ Θ2,4 or Θ1,2,4).

Proof. Let u0 ∈ M be an arbitrary point. Define the Picard sequence as
{un} ⊆M by un+1 = fnu0 = fun for all n ∈ N∪{0}. Assume that un 6= un+1

for all n ∈ N ∪ {0}. Applying (3.1) we have, for all n ∈ N ∪ {0},

θ(d(un, un+1)) = θ(d(fun−1, fun))

≤ [θ(max{d(un−1, fun−1), d(un, fun), d(un−1, un)})]h

= [θ(max{d(un, un+1), d(un, un−1)})]h

Case 1: When d(un, un+1) > d(un, un−1), then we have θ(d(fun−1, fun)) =
θ(d(un, un+1)) ≤ [θ(d(un, un+1)]h, but α ≥ αh,∀α ∈ R+, h ∈ (0, 1). Thus we
get contradiction.
Case 2: When d(un, un−1) > d(un, un+1), we have θ(d(fun−1, fun)) ≤ [θ(d(un, un−1)]h.
Hence on the same lines, we have

[θ(d(fun−1, fun−2))]h ≤ [θ(max{d(un−1, fun−1), d(un−2, fun−2), d(un−1, un−2)})]h2

=

[θ(max{d(un−1, un), d(un−1, un−2)})]h2 ≤ [θ(d(un−1, un−2))]h
2

.
Proceeding on these lines, we get

θ(d(fun, fun−1)) ≤ [θ(d(fun−1, fun−2))]h

≤ [θ(d(fun−2, fun−3))]h
2

≤ ... ≤ [θ(d(fu0, u0))]h
n

.

Thus, we have θ(d(un, un+1)) ≤ [θ(d(u1, u0))]h
n

. Now, taking n→∞ we have,
lim
n→∞

θ(d(un, un+1)) = 1. Using Θ2, we have lim
n→∞

d(un, un+1) = 0.

�

Lemma 3.9. Let (M,d) be a metric space and f : M → M is a weak θm-
contraction. Suppose that there exists a Picard sequence {un} ⊆ M defined by
un+1 = fnu0 = fun for all n ∈ N ∪ {0}. Then Picard sequence {un} is a
Cauchy sequence (Here θ ∈ Θ2,4 or Θ1,2,4).
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Proof. Let u0 ∈ M be an arbitrary point. Define the Picard sequence as
{un} ⊆M by un+1 = fnu0 = fun for all n ∈ N∪{0}. Assume that un 6= un+1

for all n ∈ N ∪ {0}. Using Lemma 3.8, we have lim
n→∞

d(un, un+1) = 0. Now we

have to prove that {un} is a Cauchy sequence. We’ll prove this by contradiction.
Assume that {un} is not a Cauchy sequence.

Now, since the sequence {un} is not a Cauchy sequence, then by Lemma
2.4, we have d

(
um(k), un(k)

)
and d

(
um(k)+1, un(k)+1

)
tend to ε > 0, as k →∞.

Using (3.1), we have

θ(d(um(k), un(k))) = θ(d(fum(k)−1, fun(k)−1))

≤ [θ(max{d(um(k)−1, fum(k)−1), d(un(k)−1, fun(k)−1),

d(um(k)−1, un(k)−1)})]h.
Case 1: If max{d(um(k)−1, fum(k)−1), d(un(k)−1, fun(k)−1), d(um(k)−1, un(k)−1)} =

d(um(k)−1, fum(k)−1), then we have θ(d(um(k), un(k))) ≤ [θ(d(um(k)−1, fum(k)−1)]h.
Letting k →∞, from Lemma 2.4 and Θ4, we have

θ(ε) ≤ [θ(0)]h,

which is a contradiction.
Case 2: If max{d(um(k)−1, fum(k)−1), d(un(k)−1, fun(k)−1), d(um(k)−1, un(k)−1)} =
d(un(k)−1, fun(k)−1), then proceeding the same way as in Case 1 we again get
a contradiction.
Case 3: If max{d(um(k)−1, fum(k)−1), d(un(k)−1, fun(k)−1), d(um(k)−1, un(k)−1)} =
d(um(k)−1, un(k)−1), then we have

θ(d(um(k), un(k))) ≤ [θ(d(um(k)−1, un(k)−1)]h.

Letting k →∞ and using Lemma 2.4 and Θ4, we obtain θ(ε) ≤ [θ(ε)]h, which is
again a contradiction. Hence Picard sequence {un} is a Cauchy sequence. �

Theorem 3.10. Every weak θm-contraction on a complete metric space is a
Picard operator. [Here, we consider θ ∈ Θ1,2,4.]

Proof. Let u0 ∈ M be an arbitrary point. Define the Picard sequence as
{un} ⊆M by un+1 = fnu0 = fun for all n ∈ N∪{0}. If there exist n0 ∈ N∪{0}
such that un0

= fun0
, then we are done. Assume that un 6= un+1 for all

n ∈ N ∪ {0}. Using Lemma 3.9, we have {un} is a Cauchy sequence. Now
as (M,d) is a complete metric space so there exist u ∈ M such that {un}
converges to u. From (Θ1) and (3.1), it is easy to conclude that

θ(d(fu, fv)) ≤ [θ(max{d(u, fu), d(v, fv), d(u, v)})]h

≤ θ(max{d(u, fu), d(v, fv), d(u, v)})
for all u, v ∈M with d(fu, fv) > 0. Using (Θ1) and above inequality, we have
d(fu, fv) ≤ max{d(u, fu), d(v, fv), d(u, v)}. Suppose that u 6= fu. Therefore,
we have

d(un+1, fu) = d(fun, fu) ≤ max{d(un, fun), d(u, fu), d(un, u)}
= max{d(un, un+1), d(u, fu), d(un, u)}.
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Taking n → ∞, using Lemma 3.8 we have d(u, fu) ≤ d(u, fu), which is a
contradiction. Hence fu = u, thus we get a fixed point.

Further, now we prove the uniqueness of the fixed point. Assume that f has
another fixed point say v ∈M , v 6= u. Using (3.1) we have

θ(d(fu, fv)) ≤ [θ(max{d(u, fu), d(v, fv), d(u, v)})]h

= [θ(d(u, v))]h,

which is a contradiction. Hence the result. �

Theorem 3.11. Every continuous weak θm-contraction on a complete metric
space is a Picard operator. [Here, we consider θ ∈ Θ2,4.]

Proof. Let u0 ∈ M be an arbitrary point. Define the Picard sequence as
{un} ⊆M by un+1 = fnu0 = fun for all n ∈ N∪{0}. If there exist n0 ∈ N∪{0}
such that un0 = fun0 , then we are done. Assume that un 6= un+1 for all
n ∈ N ∪ {0}. Proceeding as in Theorem 3.10, we have Picard sequence {un}
is a Cauchy sequence. Now as (M,d) is a complete metric space so there exist
u ∈ M such that {un} converges to u. The continuity of f and uniqueness of
limit implies fu = u, thus we get a fixed point. Hence every continuous weak
θm-contraction on a complete metric space is a Picard operator. �

Example 3.12. Let M = {1, 2, 3}. Define the metric d : M ×M → [0,∞)
by d(x, y) = |x − y|, for all x, y ∈ M . Define a function f : M → M as
f(1) = 2, f(2) = 2, f(3) = 1.

Define a function θ : (0,∞)→ (1,∞) by θ(t) = e
√
t. So θ ∈ Θ1,2,3,4.

Case 1. Consider (u, v) = (1, 3). We have θ(d(f1, f3)) = θ(d(2, 1)) = θ(1) =
e. Also, [θ(max{d(1, f1), d(3, f3), d(1, 3)})]h = [θ(d(1, 2), d(1, 3))]h = [θ(2)]h =

[e
√
2]h. Therefore θ(d(f1, f3)) ≤ [θ(max{d(1, f1), d(3, f3), d(1, 3)})]h, for all

h ∈ [ 1√
2
, 1).

Case 2. Consider (u, v) = (2, 3). We have θ(d(f2, f3)) = θ(d(2, 1)) = θ(1) =
e. Also, [θ(max{d(2, f2), d(3, f3), d(2, 3)})]h = [θ(d(3, 1), d(2, 3))]h = [θ(2)]h =

[e
√
2]h. Therefore θ(d(f1, f3)) ≤ [θ(max{d(2, f2), d(3, f3), d(2, 3)})]h, for all

h ∈ [ 1√
2
, 1).

Thus all the conditions of Theorem 3.10 are satisfied and 2 is a unique fixed
point of f .

Here is to note that when (u, v) = (2, 3) in the above example, then
(a) f is not Banach contraction;
(b) f is not weak θ-contraction of Imdad et al. [8];
(c) f is weak θm-contraction.
(d) f is a Picard operator.

Theorem 3.13. Let (M,d) be a complete metric space and let f : M →M be
a self mapping. If there exist n ∈ N such that fn is a weak θm -contraction,
then f is a Picard operator.

Proof. From Theorem 3.10, it is obvious that fn is a Picard operator, thus
there exists a unique z ∈M such that fnz = z and lim

m→∞
tm+1 = (fn)

m
u = z,
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for all u ∈ M . Also, we observe that fn+1z = fnz, that is fn(fz) = fz, thus
fz is also a fixed point of fn. Thus fz = z.
Further, if z∗ is another fixed point of f , then it must be a fixed point of fn.
Hence z = z∗. Therefore f has a unique fixed point.

Now, let m be a positive integer greater than n. Then there exist l ≥ 1 and
s ∈ {0, 1, 2, ..., n− 1} such that m = nl+ s. Here, we notice that for all u ∈M ,
we have

lim
m→∞

um+1 = lim
m→∞

fmu = lim
l→∞

fnl(fsu) = lim
l→∞

(fn)l(fsu) = z.

Hence the result. �

Haghi et al. [5], in 2011, proved a lemma by using the axiom of choice as
follows:

Lemma 3.14. Let M be a nonempty set and f : M → M a function. Then
there exist a set E ⊆M such that f(E) = f(M) and f : E →M is one-to-one.

By using above lemma, we prove common fixed point theorems for two self
mappings on M as follows:

Theorem 3.15. Let (M,d) be a complete metric space and f, g be two self
maps on M satisfying

d(fu, fv) > 0⇒ θ(d(fu, fv))

≤ [θ(max{d(gu, fu), d(gv, fv), d(gu, gv)})]h.(3.2)

for all u, v ∈M and θ ∈ Θ2,4 (or θ ∈ Θ1,2,4). If f(M) ⊆ g(M) and g(M) is a
complete subset of M then f and g have a unique common fixed point in M .

Proof. By using Lemma 3.14, there exist E ⊆ M such that g(E) = g(M) and
g : E →M is one-to-one. Define h : g(E)→ g(E) by h(gu) = fu. Clearly, h is
well defined as g is one-to-one on E. Also,

θ(d(h(gu), h(gv))) ≤ [θ(max{d(gu, fu), d(gv, fv), d(gu, gv)})]h,
for all gx, gy ∈ g(E). Since g(E) = g(M) is complete, then by using Theorem
3.10, we can easily prove that f and g have a unique common fixed point in
M . �

4. Weak θm iterated multifunction system

As application of results proved in the last section, we obtain some results
on the existence and uniqueness of attractor of iterated multifunction system
composed by weak θm-contraction in the setting of complete metric space in
this section.

In the following section, we consider (M,d) is a complete metric space,
N ∈ N and θ ∈ Θ1,2,4.

Definition 4.1. Let {fi}Ni=1 be a finite family of self mappings on M . If
fi : M →M is a weak θm−contraction (for each i), then the family {fi}Ni=1 is
called a weak θm− iterated function system (weak θm−IFS).
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The set function G : K(M) → K(M) define by G(B) =
⋃N
i=1 fi(Y ) (for all

Y ∈ K(M)) is said to be associated Hutchinson operator. A set A ∈ K(M) is
called an attractor of the weak θm− IFS if G(A) = A.

Let (M,d) be a metric space and F1, F2, ...Fn : M → K(M) be multivalued
operator. Then the system F = (F1, F2, ..., Fn) is called an iterated multifunc-
tion system (abbreviated as IMS).

Definition 4.2. Let {Fi}Ni=1 be a finite family of iterated multifunction system.
If Fi : M → K(M) is a weak θm−contraction (for each i), then the family
{Fi}Ni=1 is called a weak θm− iterated multifunction system (weak θm−IMS).

Define P (M) = {Y ⊂ M : Y is nonempty}. If T : M → P (M) is a
multivalued operator then T (Y ) :=

⋃
x∈Y T (x), Y ∈ P (M). Let F1, F2, ...Fm :

M → K(M) be a finite family of multivalued operators, we define multifractal
operator TF generated by the iterated multifunction system F = (F1, F2, ...Fm)
byGF : K(M)→ K(M), GF (Y ) =

⋃m
i=1 Fi(Y ). In this framework, a nonempty

compact subset A∗ of M is said to be a multivalued fractal with respect to the
iterated multifunctions system F = (F1, F2, ...Fm) if and only if it is a fixed
point for the associated multifractal operator.

In particular, if the operators Fi = fi are singlevalued, then a fixed point
for the fractal operator Gf : K(M) → K(M), Gf (Y ) = ∪mi=1fi(Y ) generated
by generated by iterated function system f = (f1, f2, ...fm) is said to be a self
similar set or a fractal. Throughout, Fix(f) denotes the set of fixed points of
f (see [2, 4, 7]).

Definition 4.3. If {Fi}Ni=1 is weak θm− IMS such that Fi : M → K(M) is
continuous for i = 1, 2, . . . , N then the operator

GF : K(M)→ K(M), GF (Y ) =
⋃N
i=1 Fi(Y )

is well defined and is called weak θm− multi-fractal operator. A fixed point of
GF is called a multivalued fractal.

Now we will use the following lemma to show that a weak θm− multi-fractal
operator has a unique multivalued fractal.

Lemma 4.4. Let f : M → K(M) is a continuous weak θm- multivalued op-
erator. Then the mapping A 7→ f(A) is also a weak θm-multivalued operator
from K(M) into itself.

Proof. Let A,B ∈ K(M) be such that η(f(A), f(B)) > 0. Assume that

η(f(A), f(B)) = D(f(A), f(B))

= sup
u∈A

inf
v∈B

D(fu, fv), for all A,B ∈ K(M).(4.1)

As f is a continuous weak θm-multivalued operator so there exist h ∈ (0, 1)
such that

θ(D(fu, fv)) ≤ [θ(max{D(u, fu), D(v, fv), d(u, v)})]h,
for all u, v ∈M .
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Now using (4.1), compactness of A, and continuity of f , we can find a ∈ A
such that D(f(A), f(B)) = infv∈B D(fa, fv) > 0, so that D(fa, fv) > 0, for
all v ∈ B. Hence, for all v ∈ B, we have

θ( inf
v∈B

D(fa, fv)) ≤ θ(D(fa, fv)

≤ [θ(max{D(a, fa), D(v, fv), d(a, v)})]h.

Therefore, for all v ∈ B we get

(4.2) θ(η(f(A), F (B)) ≤ [θ(max{D(a, fa), D(v, fv), d(a, v)})]h.

Case 1: If max{D(a, fa), D(v, fv), d(a, v)} = D(a, fa), then we have:

θ(infv∈B D(fa, fv)) ≤ [θ(D(a, fa))]h,

Now from (4.2) we have

θ(η(f(A), f(B))) ≤ [θ(D(a, fa′))]h

≤ [θ(sup
a∈A

inf
fa∈f(A)

d(a, fa))]h

= [θ(D(A,A))]h,

which is a contradiction.
Case 2: If max{D(a, fa), D(v, fv), d(a, v)} = D(v, fv), then proceeding in

the same way as in Case 1 we again get a contradiction.
Case 3: If max{D(a, fa), D(v, fv), d(a, v)} = d(a, v), then for all v ∈ B we

have θ(η(f(A), f(B))) ≤ [θ(d(a, v))]h.
Now let v ∈ B be such that d(a, v) = infv∈B d(a, v). From (4.2) we have,

θ(η(f(A), f(B))) ≤ [θ(d(a, v))]h,

= [θ( inf
b∈B

d(a, v))]h,

≤ [θ(sup
a∈A

inf
v∈B

d(a, v))]h

= [θ(D(A,B))]h

≤ [η(A,B)]h.

Hence we get the result. �

Theorem 4.5. Let (M,d) be a complete metric space and Fi : M → K(M),
i = {1, 2, ...,m} be continuous multivalued operator satisfying

θ(η(Fiu, Fiv)) ≤ [θ(max{d(u, Fiu), d(v, Fiv), d(u, v)})]h,

for all u, v ∈ M and h ∈ (0, 1). Then there exists a unique multivalued fractal
with respect to the iterated multifunction system F = (F1, F2, ...Fm), that is,
Fix(GF ) = {A∗} and {GnF (A)}n∈N converges to A∗, for each A ∈ K(M).

Proof. First we prove that the operator GF : K(M) → K(M), GF (Y ) =
∪mi=1Fi(Y ) satisfies the conditions of Theorem 3.10. Let B,C ∈ K(M) such
that
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0 < η(GF (B), GF (C)) = η(
⋃m
i=1 Fi(B),

⋃m
i=1 Fi(C)).

Now Lemma 2.7 implies that

η(GF (B), GF (C)) = η(

m⋃
i=1

Fi(B),

m⋃
i=1

Fi(C)) ≤ sup
1≤i≤N

η(Fi(B), Fi(C))

= η(Fi0(B), Fi0(C)),

for some i0 ∈ {1, 2, 3, . . . , N}. Using Θ1 and Lemma 4.4, we have

θ(η(GF (B), GF (C)) ≤ θ(η(Fi0(B), Fi0(C))) ≤ [θ(η(B,C))]hi0 .

Therefore GF is also a continuous weak θm contraction on the complete metric
space (K(M), η). Theorem 3.11 ensures the existence and uniqueness of A∗ ∈
K(M) such that GF (A∗) = A∗ and A∗ = lim

n→∞
GnF (B) for all B ∈ K(M). This

completes the proof. �

In particular, when the operators are single valued, we have the following
result.

Theorem 4.6. If {fi}Ni=1 is a continuous weak θm -IFS, then it has unique
attractor. Moreover, A = lim

n→∞
Gn(B) for all B ∈ K(M), the limit being taken

with respect to the Hutchinson-Pompeiu metric.

Proof. For each i ∈ {1, 2, . . . N}, let hi be constant such that hi ∈ (0, 1) and is
associated with fi. Let B,C ∈ K(M) such that

0 < η(G(B), G(C)) = η(
⋃N
i=1 fi(B),

⋃N
i=1 fi(C)).

Now Lemma 2.7 implies that

η(G(B), G(C)) = η(

N⋃
i=1

fi(B),

N⋃
i=1

fi(C)) ≤ sup
1≤i≤N

η(fi(B), fi(C))

= η(fi0(B), fi0(C)),

for some i0 ∈ {1, 2, 3, . . . , N}. Using Θ1 and Lemma 4.4, we have

θ(η(G(B), G(C)) ≤ θ(η(fi0(B), fi0(C))) ≤ [θ(η(B,C))]hi0 .

Therefore G is also a continuous weak θm contraction on the complete metric
space (K(M), η). Theorem 3.11 ensures the existence and uniqueness of A ∈
K(M) such that G(A) = A and A = lim

n→∞
Gn(B) for all B ∈ K(M). This

completes the proof. �

Example 4.7. Let M=[0, 1] ⊂ R, with the metric given by the usual metric.
We define, F : K(M)→ K(M) by

F (A) = f1(A) ∪ f2(A),

where

f1(x) = 1
3x, f2(x) = 1

3x+ 2
3 , 0≤x≤1.
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First we verify that f1 and f2 are weak θm contraction.
Take θ = ex and d(x, y) = |x−y|, thus d(x, f1x) =

∣∣x− x
3

∣∣ =
∣∣ 2x
3

∣∣ for all x ∈
M . Therefore, max{d(x, f1x), d(y, f1y), d(x, y)} = max{ 2x3 ,

2y
3 ,
|x−y|

3 }.
Case 1: If x > y, max{d(x, f1x), d(y, f1y), d(x, y)} = 2x

3 . We know that

(4.3)
x− y

3
≤ 2xy

3
for all x, y ∈M.

Therefore,

e
x−y
3 ≤ e

2xy
3 = [e

2x
3 ]y = [e

2x
3 ]h, where h = y ∈ (0, 1).

Hence we have θ(d(f1x.f1y)) = e
x−y
3 ≤ [θd(x, f1x)]h, h = y ∈ (0, 1).

Now choose f2(x) = 1
3x + 2

3 , d(x, f2x) =
∣∣x− ( 13x+ 2

3

)∣∣ =
∣∣ 2x
3 −

2
3

∣∣ for all
x ∈M . As we know that

(4.4)
x− y

3
− 2

3
≤ 2xy

3
− 2

3
for all x, y ∈M.

Therefore,

e
x−y
3 −

2
3 ≤ e

2xy
3 −

2
3 ≤ e

2xy
3 = [e

2x
3 ]y = [e

2x
3 ]h, we have h = y ∈ (0, 1).

Thus we have θ(d(f2x.f2y)) = e
x−y
3 −

2
3 ≤ [θd(x, f2x)]h, h = y ∈ (0, 1).

Case 2: Now take y > x, we have max{d(x, f1x), d(y, f1y), d(x, y)} = d(y, f1y).
In this case we also obtain same conclusion as in Case 1.

Therefore, d(x, y) 6= max{d(x, f1x), d(y, f1y), d(x, y)}, for any value of x, y ∈
[0, 1]. Hence from both cases we can say that f1 is a weak θm-contraction for
θ = ex.

In the similar way, we can prove that f2 is also a weak θm-contraction for
θ = ex. Thus F = (f1, f2) is iterated multifunction system. The unique fixed
point of F must satisfy

A = F (A) = f1(A) ∪ f2(A).

Considering the nature of the two transformations, we get a unique fractal
A ⊂ K(M) which is Cantor subset of [0, 1].

5. Cyclic (α, β)-admissible mappings

Definition 5.1. Let (M,d) be a complete metric space, f : M →M be a map-
ping and α, β : R→ [0,∞) be two functions. Then S is said to be a generalized
(α, β, θm)− contraction mapping if f satisfies the following conditions:

(1) f is cyclic (α, β)-admissible;
(2) there exits a θ ∈ Θ2,4 and h ∈ (0, 1) such that for all u, v ∈M , we have

α(u)β(v) ≥ 1, d(fu, fv) > 0⇒ θ(d(fu, fv)) ≤ [θ(M(u, v))]h,(5.1)

where M(u, v) = max{d(u, fu), d(v, fv), d(u, v)}.

Theorem 5.2. Let (M,d) be a complete metric space, f : M → M be a
mapping and α, β : M → [0, 1) be two functions. Suppose that the following
conditions hold.

(1) f is a generalized (α, β, θm)− contraction mapping;
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(2) There exists an element x0 ∈M such that α(x0) ≥ 1 and β(x0) ≥ 1;
(3) f is continuous;

or
If sequence {xn} in M converges to x ∈M with the property α(xn) ≥ 1
(or β(xn) ≥ 1) for all n ∈ N, then α(x) ≥ 1 (or β(x) ≥ 1).

Then f is a Picard operator.

Proof. Assume that there exist x0 ∈ M such that α(x0) ≥ 1. Define a Picard
sequence {xn} by xn+1 = fxn = fnx0, for all n ∈ N ∪ {0}. If there exist
n0 ∈ N∪{0} such that un0

= fun0
, then we are done. Assume that un 6= un+1

for all n ∈ N ∪ {0}. Assume that there exist x0, x1 ∈ M such that α(x0) ≥
1 =⇒ β(fx0) = β(x1) ≥ 1 and β(x0) ≥ 1 =⇒ α(fx0) = α(x1) ≥ 1. By
continuing above process, we have α(xn) ≥ 1 =⇒ β(fxn) = β(xn+1) ≥ 1 and
β(xn) ≥ 1 =⇒ α(fxn) = α(xn+1) ≥ 1.

Since α(xm) ≥ 1 =⇒ β(fxm) = β(xm+1) ≥ 1 and β(xm) ≥ 1 =⇒
α(fxm) = α(xm+1) ≥ 1, for all m,n ∈ N with n < m. Moreover, since
α(xm) ≥ 1 =⇒ β(xm+2) ≥ 1 and β(xm) ≥ 1 =⇒ α(xm+2) ≥ 1, for all
m,n ∈ N with n < m.

By continuing this process, we have α(xn) ≥ 1 =⇒ β(xm) ≥ 1 and
β(xn) ≥ 1 =⇒ α(xm) ≥ 1, for all m,n ∈ N. Thus α(xn)β(xn+1) ≥ 1, for all
n ∈ N ∪ {0}. Therefore, using (5.1) we have

θ(d(fxn, fxn+1))

≤ [θ(max{d(xn, fxn), d(xn+1, fxn+1), d(xn, xn+1)})]h

= [θ(max{d(xn, xn+1), d(xn+1, xn+2), d(xn, xn+1)})]h

= [θ(max{d(xn, xn+1), d(xn+1, xn+2)})]h(5.2)

Analysis similar to that in the proof of Theorem 3.11 shows that d (xn, xn+1)→
0, as n→∞.

Now, we prove that {xn} is a Cauchy sequence. On the contrary, suppose
that {xn} is not a Cauchy sequence. By Lemma 2.4, there exist ε > 0 and two
sequences {n (k)} and {m(k)} of positive integers such that n(k) > m(k) > k
and the sequences {d(xm(k), xn(k))} and {d(xm(k)+1, xn(k)+1)} tend to ε+ > 0
as k →∞. Substituting x = xm(k) and y = xn(k) into the inequality (5.1), we
obtain

α
(
xm(k)

)
β
(
xn(k)

)
≥ 1⇒ θ

(
d
(
fxm(k), fxn(k)

))
≤ [θ

(
M
(
xm(k), xn(k)

))
]h,(5.3)

where

M
(
xm(k), xn(k)

)
= max

{
d
(
xm(k), xn(k)

)
, d
(
xm(k), xm(k)+1

)
, d
(
xn(k), xn(k)+1

)}
.

Since d
(
xm(k), xm(k)+1

)
→ 0 and d

(
xn(k), xn(k)+1

)
→ 0 as k →∞. Then using

the fact that α
(
xm(k)

)
β
(
xn(k)

)
≥ 1 holds and that d

(
xm(k)+1, xn(k)+1

)
and

d
(
xm(k), xn(k)

)
are both positive numbers, by using the property Θ4, Lemma
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2.4 and similar arguments as in Theorem 3.11, we obtain

α
(
xm(k)

)
β
(
xn(k)

)
≥ 1⇒ θ

(
d
(
fxm(k), fxn(k)

))
≤ [θ

(
d
(
xm(k), xn(k)

))
]h.

For sufficiently large k, k →∞, we get θ(ε) ≤ [θ(ε)]h, which is a contradic-
tion.

Hence, {xn}n∈N∪{0} is a Cauchy sequence.

Now as (M,d) is a complete metric space so there exist x ∈ M such that
{xn} converges to x.

The continuity of f and uniqueness of limit implies fx = x, thus we get a
fixed point.

Now, suppose that the sequence {xn} in M converges to x ∈ M with the
property α(xn) ≥ 1 (or β(xn) ≥ 1) for all n ∈ N, then α(x) ≥ 1 (or β(x) ≥ 1).
Hence α(x)β(x) ≥ 1

Further, we claim that fx = x. Suppose not, that is, fx 6= x. So d(fx, x) > 0
and lim

n→∞
d(xn+1, fx) 6= 0. Using (5.1) we have

θ(d(xn+1, fx)) = θ(d(fxn, fx))

≤ [θ(max{d(xn, fxn), d(x, fx), d(xn, x)})]h

= [θ(max{d(xn, xn+1), d(x, fx), d(xn, x)})]h.(5.4)

Taking n→∞ and using property Θ4, we have θ(d(x, fx)) ≤ [d(x, fx)]h, which
is a contradiction. We, thus, obtain that f has a fixed point fx = x. It is easy
to prove the uniqueness of fixed point. �

Remark 5.3.

• Note that, throughout this paper, Lemma 2.4 and the contractive con-
ditions imply that the iterative sequence, i.e. Picard sequence is a
Cauchy.

• For different variants of inequality (3.1), we have many interesting re-
sults. For example, when, we replace M(u, v) in (2.1) and (5.1) with
M(u, v) = max{d(u, f(u)), d(v, f(v)))} (type of Bianchini [3]), we may
extend Theorem 3.11, Theorem 3.13, Theorem 3.15, Theorem 4.6 and
Theorem 5.2 to these different variants of inequality. Also when, we
replace M(u, v) in (2.1) with M(u, v) = d(u, v), we have the corre-
sponding results of Imdad et al. [8].
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