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Chapter 1

Introduction

1.1 Parallel Computer Architectures

The demand for even more computer power to deal with high-performance

computing has been continuously increasing during the last decades.

Message-passing based systems have been the commonly used approach; ho-

wever, these systems not only lead to high latencies when implemented in very

large machines (e. g., BlueGene/P can be scaled to an 884,736-processor[1]

) but also this approach difficults the programming of parallel applications.

Because of both reasons, industry has moved to shared memory systems

for small to medium number of processors, which can be classified in two main

categories. In the first category, Symmetric shared-Memory Multiprocessors

(SMP) are relatively expensive and they do not scale to large sizes (i. e.,

larger than 32 nodes) since they use a common shared bus to access to

main memory. Projects working on shared memory with coherent cache, like

the NumaChip by Dolphin Interconnect Solutions [2], suffer from limited

scalability introduced by the coherence protocol. Thus, a major concern

is that the access to remote memory become affordable, and efficient both

regarding to latency and price. In the second category, Distributed Shared

Memory (DSM) [3] provide a virtual address space shared among processes
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running on loosely coupled processors.

Both kind of shared-memory architectures offer advantages such as ease of

programming and portability achieved through the shared memory program-

ming paradigm. However, DSMs also include the lower cost of distributed-

memory machines, and higher scalability than SMPs.

On the other hand, current technology constraints have moved chip ma-

nufacturers from complex cores to simpler multicore based processors [4]. In

this context, it is common to find several multicores sharing the same mo-

therboard. Furthermore, it is expected that motherboards include a number

of processors at least one order of magnitude higher in the near future. Their

affordable price and their potential computational power when running pa-

rallel workloads, has lead the industry to use these motherboards as clusters

to implement parallel computers.

In summary, it is common to find a parallel machine consisting of a set of

motherboards connected by an interconnection network. In such a system,

each motherboard can be seen as a block of a cluster. Unfortunately, the

shared memory space that can be seen by a processor is limited to the avai-

lable memory inside the motherboard. We refer to this kind of machine, i.e.,

a cluster of DSMs, as the original machine.

This work is a part of a wider research project working in a real cluster of

DSMs machine where the main goals are: i) to extend the HyperTransport

protocol in order to allow a processor to access to the memory modules in

another motherboards (i. e., to enlarge the shared memory space); ii)to

devise new memory scheduling algorithms targeted to the new machine.

Compared to the original, our approach offers the benefit of being

able to have extra memory available from other motherboards. Besides,

most applications take advantage of having more memory resources but do
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not need more computing nodes. So they can perform without memory

coherence.[5, 6], which is the key to achieve scalability. The most expensive

part– coherent cache among motherboards– could be removed while keeping

the main function: shared memory.

In other words, the aim of this project is to enlarge the shared memory

space and handle it in an efficient way. However, computational resources

management is out of the scope of this work. Nevertheless, this drawback will

be mitigated as the number of processors per board is expected to increase

in the near future.

1.2 Motivation

Large scientific parallel applications demand large amounts of memory space.

Current parallel computing platforms schedule jobs without fully knowing

their memory requirements. This leads to uneven memory allocation in which

some nodes are overloaded. This, in turn, leads to disk paging, which is

expensive in the context of scientific parallel computing.

Data intensive applications, such as data mining and ad hoc query pro-

cessing databases, are considered very important for massively parallel pro-

cessors, as well as conventional scientific calculations. Thus, investigating

the feasibility of data intensive applications on a PC cluster is meaningful.

Association rule mining, one of the best-known problems in data mining,

differs from conventional scientific calculations in its usage of main memory.

It allocates many small data areas in main memory, and the number of those

areas suddenly grows enormously during execution. As a result, the contents

of memory must be swapped out if the requirement for memory space ex-

ceeds the real memory size. However, because the size of each data area is
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rather small and the elements are accessed almost at random, swapping out

to a storage device must degrade the performance severely.

A straightforward solution to the previously commented problem is to

oversize RAM memory in the nodes; however, this solution may be pro-

hibitive as RAM memory is one of the most expensive resources on high

performance computers. On the contrary, the solution proposed in this work

is able to perform without extra resources because it takes advantage from

the spare memory in some of the other boards. In fact, our approach could

even do better than oversizing, with regard to performance. See the example

below:

Take a node with an amount of memory X, in which an appli-

cation requiring an amount Z, X < Z, is running. Let’s analyze

the implications which would have each of the two choices above.

Increasing the node’s local memory up to Y, being Y < Z, would

imply to borrow the memory exceeding Y from hard disk. On

the other hand, just taking Z-X from another board (which does

not need it) would avoid accessing to hard disk, whose latency

is several orders of magnitude greater than accessing to RAM

memory.

IBM z series [7] and HP Integrity Superdome [8] mainframes are examples

of shared-memory machines with an amount of memory that can be as large

as two Terabytes, and thus expensive. This research is focused on making

the right modifications on the system in order to be able to lend/ borrow

RAM memory among motherboards, in an efficient way. Starting from what

has been stated up to this point, we aim at taking advantage of free memory

on certain computers in order to increase the available memory for a given

application located on another motherboard; saving the cost of producing
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machines with oversized memory.

Furthermore, the results of this work lead us to conclude that by using

simple hardware (just a couple of counters), the scheduler could access to the

required information in order to dynamically schedule the memory modules

budget among the applications so that the highest performance for the whole

system is provided.

1.3 Magnitude of the Work

This wide scope research requires from several groups to carry out the

whole project. There are people from different universities (Universidad Po-

liẗı¿1

2
cnica de Valencia, Universidad del Valencia, University of Heidelberg)

which are taking part in its development. Each working group deals with a

set of tasks which range from the physical to the logical layer.

1.3.1 Industry Application

The described idea is currently carried out on a real machine (prototype)

detailed in the next chapter. The main goal behind this implementation

apart from simulation is to allow us to perform ”demos” in order to bring

the attention of machine manufacturers. HyperTransport [9] is currently the

lowest latency, highest bandwidth openly licensed standard communication

technology for chip-to-chip and board-to-board interconnects. AMD Opteron

uses HyperTransport to interconnect the processors in a motherboard.

Because of the simplicity and broad application of our mechanism, a

product able to be introduced in commercial systems could be offered, with

the subsequent interest for companies worldwide. Regarding to the devised

HyperTransport extensions, they keep compatibility with the standard.
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1.3.2 Standing of the Research Group

Universidad Poliẗı¿1

2
cnica de Valencia has become an academic member of

HyperTransport Consortium with special conditions to take part in discus-

sions of Technical Working Group (TWG).

Besides, Advanced Technology Group (ATG) inside HyperTransport Con-

sortium has been set up. It is formed by:

• The most important researching academic groups on the ground of

interconnection networks:

– Mannheim University

– Georgia Institute of Technology

– Simula Research Laboratory

• Engineers from the most representative enterprises of HyperTransport

Consortium

• TWG President

• Leader: Parallel Architecture Group Director.
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Proposed Approach

This chapter is focused on describing the proposed approach. This descrip-

tion is structured in three main parts: real system, motherboards connection

and memory scheduling.

2.1 Real System

The tasks of this project are carried out on a cluster prototype which is

equipped with HyperTransport technology. The main characteristics of this

system are listed below.

2.1.1 System Characteristics

Manufacturer: Supermicro
Format: Rack
Number of nodes: 64 nodes with 16 cores Opteron 2.0 GHz
Interconnection between nodes: Gigabit Ethernet, HT with High

Node count extensions by F.O.
Local Hard Disk: 250GB Sata2
RAM Memory: 16GB
Operating System: RHEL5.1
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2.1.2 Standard HyperTransport

HyperTransport is used by AMD Opteron [10] to interconnect the processors

in a motherboard. In these systems, each processor requires to know where

a memory request must be fordwarded. This is achieved by including in each

processor a set of registers configured at the initialization phase that reflect

the system physical memory distribution. In this way, when a processor issues

a load or store operation related to a given memory location, the processor

compares the requested address with those registers, and then forwards the

memory operation to the memory controller handling that memory address,

provided by the previous comparison. Forwarding the memory operation

involves the generation of a HyperTransport message.

2.2 Connecting Motherboards To Access Re-

mote Memory

A process must be able to see not only the memory on its board but also

other board’s, so a new hardware component has been devised to make it

possible. The so-called RMC (Remote Memory Controller) will implement

the required functionality. The system described at Section 2.1.2 is the basis

upon which the technology that enables the access to remote memory will

be designed. The new component will be seen by the processors in the

motherboard as a new memory controller. However, the RMC will not be

a typical memory controller as it has no memory banks directly connected

to it, otherwise it relies on the memory banks installed in other nodes in

the cluster. To enable the RMC functionality, the registers mentioned above

must be reconfigured so that some of the memory accesses (i. e., those
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accessing to memory located in other motherboard) are directly forwarded

to the RMC, that will convert those accesses into remote accesses. RMC will

have a regular HyperTransport interface to the local node and a High Node

Count HyperTransport [11] interface to the rest of the cluster and it will be

attached to the motherboard of the nodes in the cluster by means of HTX

compatible cards designed by University of Heidelberg [12].

2.3 Memory Scheduling

2.3.1 Background

In the literature, different research papers dealing with remote memory al-

location mostly related to memory swap can be found. Oleszkiewicz et al.

propose a peer-to-peer solution called parallel network RAM [13]. This ap-

proach avoids the use of disk and better utilizes available RAM resources

in a cluster. This approach reduces the computational, communication and

synchronization overhead typically involved in parallel applications. Shuang

et al. design a remote paging system for remote memory utilization in Infi-

niBand clusters [14]. They present the design and implementation of a high

performance networking block device (HPBD) over InfiniBand fabric, which

serves as a swap device of kernel virtual memory (VM) system for efficient

page transfer to/from remote memory servers. They demonstrate that quick

sort performs 1.45 times slower than local memory system, and up to 21

times faster than local disk. Oguchi et al. investigate the feasibility of using

available remote nodes’ memory as a swap area when application execution

nodes need to swap out their real memory contents during the execution of

parallel data mining on PC clusters [15]. In this work application execution

nodes acquire extra memory dynamically from several available remote nodes
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through an ATM network. Experimental results on a PC cluster show that

the proposed method is considerably better than using hard disks as a swap-

ping device. In [16] the use of remote memory for virtual memory swapping

in a cluster computer is described. The design uses a lightweight kernel-to-

kernel communications channel for fast, efficient data transfer. Performance

tests are made to compare the proposed system to normal hard disk swap-

ping. The tests show significantly improved performance when data access

is random. Oguchi et al. [17] investigated the feasibility of using available

idle nodes’ memory as a swap area when some nodes need to swap out its

real memory contents, during the execution of parallel data mining on PC

clusters. In this paper, they report results in which application executing

nodes acquire extra-memory dynamically from several available idle nodes

through ATM network. Their results improve considerably a solution using

hard disks swapping techniques. Midorikawa et al. propose the distributed

large memory system (DLM), which provides very large virtual memory by

using remote memory distributed over the nodes in a cluster [18]. The per-

formance of DLM programs using remote memory is compared to ordinary

programs using local memory. The results of STREAM, NPB and Himeno

benchmarks show that the DLM achieves better performance than other re-

mote paging schemes using a block swap device to access remote memory.

DLM is a user-level software without the need for special hardware. To ob-

tain high performance, the DLM can tune its parameters independently from

kernel swap parameters.

2.3.2 Scheduling Local and Remote Nodes

All applications running in a system are not affected in the same way by

memory accesses. There are some applications called memory-hungry or
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memory-bounded in which the time to complete a given computational pro-

blem is primarily driven by the amount of fast memory available to hold

data. In other words, the limiting factor of solving a given problem is the

average memory access time and so it is a critical issue for the application

performance. Distributing the memory modules in the same ratio among the

applications running in different nodes could provide poor performance for

this kind of applications.

Moreover, a given application uses to have memory requirements that are

dynamically changing through the execution time; depending on the part of

the application where data are mostly accessed.

Therefore, there is a need to schedule memory modules among applica-

tions in order to maximize the system performance of the whole system. A

first and simpler approach to tackle this concern would be a static approach.

That is, the scheduler would provide all the memory modules assigned to a

given application before starting its execution. This work is aimed at explo-

ring the potential of this approach. To this end, we analyze several choices or

heuristics which an hypothetical RAM Memory Scheduling Algorithm could

have considered. As shown in results in Chapter 4, depending on the assign-

ment criterion, performances vary indeed.
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Chapter 3

Modeling The System

3.1 Introduction

To study the impact on performance and due to practical constraints (some

parts of the system are not properly working yet), our approach has been

decided to be evaluated through simulation. The system has been modeled

with SIMICS 3.0.31 and extended by GEMS 2.1.

Other members of the research group are using or have used Simics 2.X

with Solaris as Target Operating System. This system was not used because

of the reasons stated further in this introduction section.

Several aspects such as interaction with the other working groups had in-

fluence on all the decisions which have been made along the system modeling,

as described below.

At this point, we are working on regular processes although we are starting

to work with Virtual Machines, which can be seen as a kind of process. After

a deep analysis of some virtualization solutions, in which Universidad de

Valencia also takes part, we finally concluded that KVM ( Kernel-based

Virtual Machine) is the most suitable choice for our purpose.

The kernel component of KVM is included in mainline Linux, as of 2.6.20.

So a Linux based Operating System with 2.6 kernel version has to be modeled
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in order to get closer to the real system we are dealing with. Simics Version

2.X caused several problems when trying to simulate a 2.6 Linux Kernel; but

we managed to do it on Simics 3, which is more up-to-date. Among all the

possibilities that Simics offers, we selected the one described below.

3.2 Simics Target: Sunfire

The memory system has to be evaluated, so it is necessary to use Simics

module GEMS (it will be described further on the text), which implies using

Sparc Architecture. In addition, Linux is the desired target Operating Sy-

stem, as KVM is going to be used at the next researching step.

Because of the mentioned requirements, Simics/SunFire has been chosen

from the available Simics targets, as it fits all the needs quite well. On one

hand, it models the Sun Enterprise 3500 - 6500 class of servers. A SunFire

server can be configured with up to 30 UltraSPARC II processors and 60GB

of memory. On the other hand, both Solaris and Linux are supported as

target Operating Systems.

3.2.1 Sunfire Simulated Machine: Cashew

• Cashew is a Sun Enterprise 6500 server with a single UltraSPARC II

processor running at 168 MHz with 256 MB of memory. It has one

Ethernet adapter, one SCSI disk and one SCSI CD-ROM.

– Cashew is configured for an existing Aurora Linux 2.0 disk dump,

that can be downloaded from the Virtutech web site.

– Additional information:

* Aurora 2.0 Linux (Fedora Cora 3), installed directly on Simics.
* Linux kernel 2.6.13
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* SimicsFS support.
* Configured to get IP address using DHCP.

3.3 Additional Modules: Gems

GEMS [19] is a set of modules for Virtutech Simics that enables detailed si-

mulation of multiprocessor systems, including Chip-Multiprocessors (CMPs).

It leverages the power of Virtutech Simics to simulate a Sparc multipro-

cessor system.

Figure 3.1: A view of the GEMS architecture. Ruby, the memory
simulator.
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3.3.1 Submodules: Ruby

Ruby is a timing simulator of a multiprocessor memory system that models:

caches, cache controllers, system interconnect, memory controllers, and banks

of main memory. It combines hard-coded timing simulation for components

that are largely independent of the cache coherence protocol (e.g., the inter-

connection network) with the ability to specify the protocol-dependent com-

ponents (e.g., cache controllers) in a domain-specific language called SLICC

(Specification Language for Implementing Cache Coherence).

Some modifications to the original Ruby code have been necessary in

order to adapt it to the requirements. The main change consists in imple-

menting the Remote Memory Controller. These changes not only imply code

extensions on Ruby itself but also on the coherence protocol. RMC functions

have been added to AMD Hammer protocol, which has been chosen in order

to model a system closely resembling the Opteron processor.

Ruby code is also extended with support to configure memory scheduling.

Local to Node, Local to Board and Remote memory regions were defined (See

description of these regions in Section 3.4). Some parameters are added to

model the assignment of the desired amount of memory to each region.
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3.4 System Model

Figure 3.2: System Model. Each node has both processor and memory.

The whole system has been scaled down to achieve a reasonable simulation

time. The diagram of the modeled system is shown in Fig. 3.2. Its main

characteristics are listed below:

• The system is composed of two motherboards, which is the minimum

configuration to let us define both local and remote memory. We agreed

to set three different regions of memory:

– Local to Node: Number of memory modules which are located in

the processor in which the application is launched (see node0).

– Local to Board: Number of memory modules which are located on

the same board but in the other processor .

– Remote: Number of memory modules which are located in the

other motherboard.

• Number of Processors: 2 per motherboard

• Number of Memory Modules: 32. 8 memory modules per processor,

which will be distributed among the applications in the system as ap-

propriate. Each different combination will be subjected to analysis.
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• L1 Cache Rows : 2

• L1 Cache Number of Sets: 29 = 512

• L2 Cache Rows : 16

• L1 Cache Number of Sets: 210 = 1024

• Block Size (bytes): 64

• Memory Size (bytes): 268435456

• Network Topology: Non-Uniform Cache Access architecture network

(NUCA) [20]

• Local Cache Latency: 1

• Other Node’s Cache Latency : 1

• Local Memory Latency : 100

• Remote Memory Latency: 2700

• RMC has been assumed with no internal storage capacity (i.e, cache

memory) during all the experiments.

• Coherence Protocol: AMD Hammer protocol.

– Extended with RMC functionality.

All the latencies are expressed in cycles.
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3.4.1 Binding a Process to a Specific CPU

In order to control local and remote execution, we overrided the kernel’s

process scheduling and bind a certain process to a specific CPU on the DSM

system. The Schedutils command taskset is used to set or retrieve the CPU

affinity of a running process given its PID or to launch a new COMMAND

with a given CPU affinity. So we used it to our purpose; that is, each time

an application is launched, one of the nodes is selected as the local node.

By editing GEMS Network Files and specifically creating certain Ruby

parameters and functions, we managed to locate the desired number of me-

mory modules in each either node or motherboard. In this way, we have full

control of memory distribution on the system.

3.4.2 Workload Characterization

This work aims to deduce how the specified memory parameters impact on

performance, depending on the workload. To this end, we selected four

different benchmarks to carry out the experiments.

Selecting Benchmarks

We are mainly interested on memory access, so the characteristics that have

been taken into account for all the considered workloads (Stream, SPLASH

suite) are:

Total Instructions
Total Reads
Total Writes
Cache Miss Rate
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Workload Description

Stream [21]

The STREAM benchmark is a synthetic benchmark program, written in

standard Fortran 77 (with a corresponding version in C). It measures the

performances of four long vector operations. These operations are: Copy:

measures transfer rates in the absence of arithmetic.

Scale: adds a simple arithmetic operation.

Sum: adds a third operand to allow multiple load/store

ports on vector machines to be tested.

Triad: allows chained/overlapped/fused multiply/add operations. These

operations are representative of the “building blocks” of long vector ope-

rations. The array sizes are defined so that each array is larger than the

cache of the machine to be tested, and the code is structured so that data

re-use is not performed. The intent of STREAM is not to suggest that “real”

applications have no data re-use, but rather to decouple the measurement

of the memory subsystem from the hypothetical “peak” performance of the

machine.

Before designing the experiments aimed at exploring different memory

scheduling policies, we run experiments for each individual benchmark in

order to select the appropriate problem size. For illustrative purpose, we

only show two of them, that is, Stream and FFT benchmarks.

As explained in Section 3.4.1, thanks to taskset command we are able

to control local and remote execution. So we defined a system with only

one motherboard containing two nodes (node 1 and node 2) two memory

modules, and run experiments in which we varied the local node (where

application is run) and remote node (the other node in the system), as well
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as the node which contained the two memory modules . That is:

1. Application is running in node 1.

(a) Memory in node 1.

(b) Memory in node 2.

2. Application is running in node 2.

(a) Memory in node 1.

(b) Memory in node 2.

In this way, the performance improvement between sub-cases (a) and

(b) was deduced. We proceeded similarly for different vector sizes, searching

for a size for which this improvement was as similar as possible for both

cases 1 and 2 above. Firstly, we did a coarse grain analysis of sizes, and

then, a fine grain one (See Fig. 3.3) to find the proper size.

From Fig. 3.3 we can see that 275K is the lower vector size which leads

to an improvement percentage stabilization. We chose the lower one as si-

mulation time considerably grows with vector size.

SPLASH-2 The SPLASH (Stanford Parallel Applications for Shared

Memory) [22][23] benchmark suite has been selected because it is commonly

used to evaluate the performance of multiprocessor systems. This suite

offers several kernels and applications which were evaluated regarding the

Choosing Criterion presented in Fig. 3.4.
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Source: [24]
Cache line size: 64 bytes
Criterion= (Total Reads + Total Writes) / Instr) * Cache Miss Rate

Figure 3.4: Splash2 benchmarks characteristics.

From the data shown in Fig. 3.4 we can conclude that the best SPLASH

workloads for our study are Radix (criterion value= 0.636), FFT (criterion

value= 0.240) and Cholesky (criterion value= 0.182), as they have the higher

values for the established criterion.

FFT The FFT program is a complex, one-dimensional version of the

Six-Step FFT described in [25]. Four command-line parameters must be

specified: the number of points to transform, the number of processors, the

log base 2 of the cache line size, and the number of cache lines. The number

of data points must be an even power of 2. The number of processors must

be a power of 2.

The method for choosing the most suitable matrix size (number of points

to transform) was the same as the one explained for Stream benchmark. The

results obtained for FFT are shown at Fig. 3.5.
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Figure 3.5: FFT Size Fine Grain Analysis

So, we chose 216 = 65536 total complex data points transformed.

Regarding the rest of the command line options, we used the following:

• 1 processor (default value)

• 1024 cache lines.

• 26 = 64 cache line length in bytes.

Radix The RADIX program implements an integer radix sort based on

the method described in [26]. Four command line parameters can be speci-

fied. The number of keys to sort, the radix for sorting, and the number of

processors are those parameters that would normally be changed. The radix
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used for sorting must be a power of 2. The values of these parameters are

listed below:

• 1 processor (default value)

• Radix for sorting (Must be power of 2)= 1024 (default value)

• Number of keys to sort (Must be power of 2)= 524288= 1M/2

– The value of this parameter used for evaluation at [24] is 1M

integers. However, when executing the application with this size,

we got excessive simulation times, so we agreed to use 50% of 1M.

• Maximum key value= 524288(default value). Integer keys k will be

generated such that 0 <= k <= 524288.

Cholesky The blocked sparse Cholesky factorization kernel factors a

sparse matrix into the product of a lower triangular matrix and its transpose.

The size of the cache (in bytes) should be specified on the command line,

as well as the number of processors being used. The postpass partition size

should be kept at the default value of 32.

• Postpass partition size= 32(default value)

• Cache size in bytes= 65536

• 1 processor (default value)

• Input file= tk15.O
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Figure 3.3: Stream Size Fine Grain Analysis.
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Chapter 4

Experimental Results

Several distributions of memory modules on three different memory regions

–local (i. e., local to the processor, refered as L), local to board (refered

as Lb), remote (refered as R)– are defined. Once the system is configured

with a given distribution, analysis is made for each pair of benchmarks,

that is, every experiment consists of two applications running on the system,

each one on a different processor of the board. The system is assumed to

include 32 modules, which must be scheduled to the benchmarks. As modules

reside in three different places, many combinations appear when scheduling

them among the workload. To simplify the large amount of alternatives, we

assumed that both applications have the same number of memory modules.

In this way, a given scheduling for an application only combines with a single

scheduling of the other one. These alternatives are shown in Fig. 4.1 for

both applications concurrently running.

4.1 Environment

As we can see in Fig. 4.2, the studied system is composed of:

• 2 motherboards

• 2 nodes per motherboard
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Figure 4.1: Scheduling alternatives considered.

• 8 memory modules per node (refered as “Directory” in the figure)

• Total Memory Modules of the system: 32

Figure 4.2: Modeled System

In this study, as mentioned above, there are two applications concurren-

tly running on the system. Each application is launched on one of the nodes

of Motherboard 1 (see Fig. 4.3): Node0 is the local node to Application1

and Node1 is the local node to Application2. Each application does not ne-

cessarily use the eight memory modules on its local node: it can use 0, 2,
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4, 6 or 8 modules, leaving the remaining memory (grey-shaded on Fig. 4.3)

available to be borrowed to the other application. The remote motherboard

has the same node structure as the local motherboard, but it is assumed to

be a black box with 16 memory modules. By defining a memory schedu-

ling providing less or more remote memory modules, the performance of the

corresponding application would be benefited or adversary affected, as local

memory is faster than remote one. The aim of this study is to deduce the

way in which the overall performance is affected depending on the available

local and remote memory assigned to each of the two applications running

concurrently on the system.

Figure 4.3: Number of modules per node/motherboard and application
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4.2 Evaluation Criteria

From each experiment, we gathered a statistical file. It contains some useful

data such as execution time, total instructions executed, total cache misses,

cache miss rate... per node and per application. These parameters provide

useful information to evaluate the memory scheduling from different points

of view. Different criteria have been explored for performance comparison

purposes.

The optimum memory scheduling is computed on the basis of each diffe-

rent criterion. The priority of each benchmark can be estimated attending

to the impact of giving more or less local memory to that benchmark depen-

ding on the application running on the other processor. In this way, the four

benchmarks can be ordered with respect to its priority. The different priority

orders obtained from each criterion are compared and help us to understand

the influence of the memory scheduling in the overall performance (i. e.,

considering both co-runners).

Firstly, the most intuitive criterion to use is Execution Time. For each

memory scheduling alternative, the sum of both execution times was taken

as the value to identify the optimum case. In this case, the higher priority

corresponded to FFT benchmark, as the optimum of the combinations of

FFT with any other benchmark always implies as much as local memory to

FFT, with the corresponding degrading (i. e., more remote memory space)

to the other one of the pair. The following benchmark regarding to priority

was Stream, then Radix, and finally Cholesky.

To corroborate these results we used the L2 cache miss rate criterion.

This criterion was used since accessing to other motherboards has a strong

impact on performance (i. e., 2700- cycle latency). In this case, the deduced

priority order slightly differed the one described above for the Execution



4.3 Optimization 31

Time. Stream seemed to have the higher priority and then the three SPLASH

benchmarks ordered in the same way: FFT, Radix and the last one Cholesky.

Notice that this order differs from the provided when applying the Execution

Time criterion.

Finally, the IPC criterion was considered in order to explain the anoma-

lous Stream behaviour. IPC measures the processing speed. The aspects

which have influence on IPC are, among others, the machine characteristics

(branch predictor, in-order or out-of-order execution, issue-width, ...) and

workload characteristics (dependance chains of a load instruction, Floating

Point or Integer instructions, branch instructions, ...). We found why Stream

has a characteristic behaviour: the main problem is that its IPC is, in gene-

ral, much lower (about one order of magnitude) than its co-running SPLASH

benchmarks. For instance, as shown in Fig. 4.4, for the (8,0,8) configuration,

Stream has an IPC of 0.029 while its co-runner FFT has a value of 0.196.

Stream takes, on average, hardly 50 cycles to execute an instruction, so gi-

ving more local memory space to it does not benefit the overall performance

as much as giving more local memory space to any of its co-runners. In this

way, the best memory scheduling which includes Stream, will always give all

the local (i. e., local to node and local to board) memory to its co-runner,

forcing Stream to fully run on remote memory space.

As being the stronger criterion, only the IPC results will be shown in the

next section.

4.3 Optimization

Results of all the experiments are shown at Figs. 4.4 to 4.9. Each of these

figures shows a set of memory scheduling combinations for a pair of applica-

tions concurrently running in the system and should be interpret as follows:
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For each of the two applications in the system, the number of available

memory modules of the three types assumed (Local, Local to Motherboard,

Remote) are defined by the 3-tuple (L, Lb, R). Each 3-tuple of an applica-

tion only matches a single 3-tuple of the other one, as we assume that each

application is provided with 16 modules.

Each line in the table represents a different evaluated memory scheduling.

Performances in Processor Cycles as well as the Total Instructions Executed

have been obtained for each different memory scheduling. From these two

parameters, the Instructions Per Cycle value is calculated, for each applica-

tion executed as well as the sum of them.

Finally, the best case is highlighted in bold in each IPC column.

To see more clearly the effect of scheduling on performance, some repre-

sentative memory modules distributions from each pair of applications have

been graphically represented in Fig. 4.10. The total of local memory mo-

dules of the first application is on the x axis. Under each value of the x

axis, the corresponding scheduling for each application is specified. The IPC

is on the y axis. In this way, it can be observed how the IPC trend of a

single application as well as the total of the pair of applications changes as

getting more or less local memory space. Take the particular case on Fig.

4.10 (a). The amount of local memory for Stream benchmark increases along

the x axis, so its IPC value grows. On the contrary, local memory space is

decreasing for the FFT benchmark (and consequently increasing its remote

memory space), so its performance degrades. The higher point of the Total

IPC line gives the optimum scheduling for the given pair of applications. In

this particular case, the optimum configuration corresponds to all the local

memory modules for FFT and all the remote ones for Stream; that is, Stream

(0,0,16)- FFT(8,8,0).
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Figure 4.4: IPC and memory modules distribution for the Stream and
FFT benchmarks.

Figure 4.5: IPC and memory modules distribution for the Stream and
Radix benchmarks.



34 Experimental Results

Figure 4.6: IPC and memory modules distribution for the Stream and
Cholesky benchmarks.

Figure 4.7: IPC and memory modules distribution for the Radix and FFT
benchmarks.
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Figure 4.8: IPC and memory modules distribution for the Cholesky and
FFT benchmarks.

Figure 4.9: IPC and memory modules distribution for the Radix and
Cholesky benchmarks.
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(a) Stream vs FFT (b) Stream vs Radix

(c) Stream vs Cholesky (d) Radix vs FFT

(e) Cholesky vs FFT (f) Radix vs Cholesky

Figure 4.10: IPC and memory scheduling diagrams.



Chapter 5

Conclusions and Future

Work

The analysis of the influence of scheduling memory on the performance of

applications concurrently running in computing platforms has been presen-

ted. This work takes part of a larger project. To carry out this work, some

previous steps must be performed.

In this context, an extension of hypertransport protocol in a Supermicro

scientific parallel cluster, to support memory scheduling among different ser-

vers, has been proposed in the group and assumed in this work to perform.

Also, a remote memory controller that allows the management of the me-

mory of all the motherboards of the system linked with hypertransport, not

only the onboard memory but the abroad memory as well, has been designed

in the overall project.

A static assignment of memory for scientific parallel applications has been

set up.

The evaluation of these distributions has shown that the performances of

the applications depends on the memory assignment heuristic.

It is remarkable the fact that the information (i. e., Instructions Per

Cycle) to apply the heuristics can be easily implemented in simple hardware.

For instance, some hardware counters to keep track of executed instructions
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and cycles. Then, this information could be read by the Operating System.

As for future work heuristics will be applied dynamically depending on

the memory requirements of the applications. Different heuristics will be ex-

plored because they have different effect on the performance. The disk swap

will be considered since large computing systems are composed of huge disks,

in this case results are expected to be improved. A parameter estimating the

Quality Of Service will be included to avoid excesive performance degradaton

in a given application. Furthermore, a non-uniform criterion of distributing

memory modules will be applied (i. e., not limiting each application to a

half of the available memory, and permiting different proportions). Finally,

it would be also interesting to test more workloads with different memory

requirements concurrently running.
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