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ABSTRACT

Objective: To describe the development, as part of the European Union MOSAIC (Models and Simulation Tech-

niques for Discovering Diabetes Influence Factors) project, of a dashboard-based system for the management

of type 2 diabetes and assess its impact on clinical practice.

Methods: The MOSAIC dashboard system is based on predictive modeling, longitudinal data analytics, and the

reuse and integration of data from hospitals and public health repositories. Data are merged into an i2b2 data

warehouse, which feeds a set of advanced temporal analytic models, including temporal abstractions, care-flow

mining, drug exposure pattern detection, and risk-prediction models for type 2 diabetes complications. The

dashboard has 2 components, designed for (1) clinical decision support during follow-up consultations and (2)

outcome assessment on populations of interest. To assess the impact of the clinical decision support compo-

nent, a pre-post study was conducted considering visit duration, number of screening examinations, and

lifestyle interventions. A pilot sample of 700 Italian patients was investigated. Judgments on the outcome

assessment component were obtained via focus groups with clinicians and health care managers.

Results: The use of the decision support component in clinical activities produced a reduction in visit duration

(P� .01) and an increase in the number of screening exams for complications (P< .01). We also observed a rele-

vant, although nonstatistically significant, increase in the proportion of patients receiving lifestyle interventions

(from 69% to 77%). Regarding the outcome assessment component, focus groups highlighted the system’s ca-

pability of identifying and understanding the characteristics of patient subgroups treated at the center.

Conclusion: Our study demonstrates that decision support tools based on the integration of multiple-source

data and visual and predictive analytics do improve the management of a chronic disease such as type 2 diabe-

tes by enacting a successful implementation of the learning health care system cycle.
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INTRODUCTION

The availability of powerful information technology (IT) infrastruc-

tures for clinical data management, multiple-source data integra-

tion, and on-the-fly analytics provides novel opportunities for

designing decision support systems (DSS) tightly coupled with re-

search platforms. In particular, new-generation DSS can rely on a

technological layer that may be used to support both clinical

decision-making and outcomes-based research, following a research

paradigm described by Wagholikar et al.1 called the “sidecar”

approach. In a nutshell, a well-designed data warehouse (DW) is

used both as an instrument for querying and analyzing retrospective

clinical data and to support precision medicine interventions by re-

trieving similar patients and highlighting their disease trajectories.

This approach appears especially suitable to dealing with chronic

disease management, where data are collected over time. It is also

useful to highlight a patient’s clinical situation at different temporal

granularities, ranging from days to months and years.

In this context, diabetes mellitus (DM) is a paradigmatic case.

DM, classified as type 1 (T1DM) and type 2 (T2DM), is a multifac-

torial chronic disease that became of worldwide concern because of

its epidemic proportions and complex management. The latter

requires a combination of drugs and lifestyle interventions and life-

long engagement by patients. DM is frequently associated with mi-

cro- and macrovascular complications, which directly or indirectly

derive from the long-term damage caused by suboptimal treatment

of the disease.

The design of effective DSS for supporting DM management has

been widely studied in the literature since the early 1980s.2 Even if

the potential of DSS in DM is widely recognized in the literature, the

actual implementation of such systems faces technological and orga-

nizational barriers.

The increasing availability of electronic data from heterogeneous sour-

ces provides the opportunity to redesign visit-by-visit DSS for DM man-

agement in order to leverage data integration, predictive data mining, and

visual analytics. Visit-by-visit DSSs1 aim to assist caregivers in defining

therapeutic plans by analyzing clinical and home monitoring data.

In this paper, we describe the main architecture, the implementa-

tion, and a first evaluation (in terms of usability and impact on clini-

cal activities) of the DSS that is currently used at the outpatient

diabetes service of the Istituti Clinico Scientifici Maugeri Hospital of

Pavia (ICSM). This DSS was specifically designed to support the

management of T2DM by targeting 2 types of users: health care pro-

viders, who exploit individual patients’ data to define therapeutic

interventions, and health care decision makers, including clinicians,

managers, and policy makers, who analyze the data to identify im-

portant clinical phenomena occurring at the level of the entire co-

hort of treated patients.

The system has been implemented within the European Union

MOSAIC (Models and Simulation Techniques for Discovering Dia-

betes Influence Factors) project, which is aimed at defining new

models to predict T2DM and its complications from clinical data,

and to use the data to support clinical decision-making.

BACKGROUND

Despite considerable efforts to design computer-based models to es-

timate long-term outcomes and identify the most efficient manage-

ment strategies for T2DM,3 chronic outpatient DSS often produced

inconsistent results on key aspects of diabetes care due to low use

rate or to the organizational complexity of long-term disease

management interventions.4 Available DSS for T2DM focus on dif-

ferent aspects: some of them aim to enhance personalized treatment

and medication recommendations5–10; others target the improve-

ment of glycemic control11–15; and still others focus on the manage-

ment of specific complications, such as diabetic foot,16

retinopathy,17–19 nephropathy,20 or cardiovascular disease.21 In

clinical settings, some DSS have been designed to be integrated into

primary care.22–26 Other types of DSS promote shared care and col-

laborative decision-making across different clinical settings.27–33

Efforts have also been devoted to providing evidence-based care30

with a high level of personalization, with recommendations tailored

to the patient’s clinical condition and behavior28,29 and to the clini-

cal setting.31

In our work, we leveraged the longitudinal nature of clinical

data, designing a DSS that is able to present events over time, as well

as the patient’s evolving clinical state, through visual analytics.34

The DSS has been implemented following a dashboard paradigm.

Dashboards implement a specific user interface approach and are

defined as DSS capable of querying multiple databases to merge in-

formation and provide a visual summary of key performance indica-

tors, in a “car dashboard” format.35–39

Our work is related to the experience reported by Ratwani and

Fong,40 in which a system-level dashboard, summarizing data from

multiple hospitals, and a set of hospital-level dashboards were devel-

oped. The dashboards allowed users to navigate and monitor the

data through coordinated displays in different formats, and to

quickly zoom in to specific variables of interest. Another related sys-

tem is the one presented by Dixon et al.41: the authors implemented

an integrated informatics approach to aggregate and display clini-

cally relevant data able to identify medication adherence problems

and facilitate patient-provider communication about strategies to

improve medication use.

DESIGN AND IMPLEMENTATION OF THE
MOSAIC SYSTEM

The MOSAIC project
MOSAIC is an EU-funded project of the Seventh Framework Pro-

gramme, involving academic partners, companies, and hospitals

from several European countries. The project is devoted to the devel-

opment of innovative models to support prediction and diagnosis of

T2DM and design a DSS for T2DM management, with a special fo-

cus on the risk assessment of related complications.

The implemented DSS focuses explicitly on studying the progres-

sion of diabetes through the analysis of available patient data. The

study was carried out at ICSM, and included >1000 T2DM

patients. Data were collected retrospectively over 10 years and pro-

spectively for 6 months, from 2 sources: the ICSM electronic health

record (EHR) and the local public health agency, Agenzia Tutela Sa-

lute (ATS). While the EHR contains clinical data collected at each

control visit, usually every 3–6 months, ATS data contain adminis-

trative information about all hospitalizations, visits, and exams per-

formed in other hospitals and labs in the country and reimbursed by

the Italian national health care system.

Moreover, ATS records all the drugs prescribed by general practi-

tioners and purchased by patients at pharmacies within its jurisdic-

tion. This data stream includes Anatomical Therapeutic Classification

codes to identify the drugs’ active ingredients, and Authorization to

Market Introduction codes, assigned by the Italian Ministry of Health

to identify pharmaceutical company, drug package features, etc. Each
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purchase reports exposure measures quantified through the Defined

Daily Doses42 system, which offers an indication of the expected aver-

age daily dosage of the prescribed drug.

The integration of EHR and ATS data sources provides a longi-

tudinal view of patients’ metabolic control, concurrent complica-

tions, and treatments.

System architecture and implementation
As already mentioned, our goal was to develop a system able to sup-

port retrospective data analysis and clinical decision support, fol-

lowing the “sidecar” paradigm.43

The architecture of the system, shown in Figure 1, is based on 3

main modules: data integration and warehousing, data querying and

mining, and graphical user interface and data visualization through

the MOSAIC dashboard.

The system has been designed as a Service Oriented Architecture,

where components from different modules access the whole func-

tionality of the system through Web services.

These components are linked in an asynchronous way through a

message-oriented architecture and interact with each other over the

Internet using Simple Object Access Protocol messages. The data-

mining module components were developed using R and Matlab,

and they communicate with the other components exchanging data

in JavaScript Object Notation format. The technologies exploited to

develop the graphical user interface (GUI) are based on JavaScript,

Hypertext Markup Language, and Cascading Style Sheets. Commu-

nication occurs through asynchronous JavaScript and Extensible

Markup Language requests. The technology used to create all the

charts in the GUI was provided by Google Charts.

a. Data integration and warehousing

The data integration and repository module relies on the i2b2 DW43

and is devoted to gathering, integrating, and storing data from het-

erogeneous sources.

Clinical data for each patient are extracted from the hospital

EHR, while administrative data are collected from the ATS DW.

Identity matching is provided by the national fiscal code. Clinical

and administrative data are preprocessed and loaded into the i2b2

DW through suitable extraction, transformation, and loading proce-

dures, performed with the Pentaho data integration tool.44

Data are described by an ad hoc model, which takes into account

the temporal qualitative description of data. According to the i2b2

structure, each clinical event (follow-up visit, hospitalization, laboratory

test, or drug prescription) is represented as an encounter (an encoded

patient visit number) in the i2b2 DW, provided with a start and end

time and connected to the specific concepts related to that event.

b. Data-mining and query module

The data-mining module implements the predictive models and lon-

gitudinal analytics algorithms developed during the project to re-

trieve meaningful patterns in patient follow-ups and determine the

distribution of complications in specific groups. The data-mining

algorithms and tools are invoked by the query engine, a Java back-

end service that retrieves data from the DW, calls the appropriate

data-mining algorithm, and sends results back to the GUI.

The following models are implemented and integrated into the

system:

• Temporal abstractions (TAs)45 to extract qualitative temporal

patterns from time series data. TAs are extracted using the Java

Time Series Abstractor (JTSA) tool.46 JTSA offers a library of algo-

rithms that can be used for time series preprocessing and abstrac-

tion. Thanks to JTSA’s modular structure, algorithms can be

combined to form a workflow that, once executed by the JTSA en-

gine, extracts arbitrarily complex patterns from time series data.

The JTSA framework is grounded in a comprehensive ontology

that models temporal entities, data types, and TA algorithms.45

• The care flow mining algorithm (CFM)47 leverages the temporal

sequence of patients’ events to identify the most frequent clinical

pathways across the studied population. The algorithm that was

exploited for patient stratification and electronic phenotyping48

detects frequent patterns from process events (eg, hospitalizations,

encounters) and can therefore identify the clinical pathways that

patients experience during the whole process of care, automatically

creating clusters of patients with similar care histories.
• Drug exposure pattern detection algorithms. Data gathered from

administrative sources are exploited to trace patients’ behavioral

patterns of drug purchases. The indicator selected to summarize

purchasing patterns is the Proportion of Days Covered.49,50 This

quantity can be calculated both for single active principles and for

groups of drugs on the basis of the data stored in the i2b2 DW.

Drug consumption patterns are used as a proxy for the complexity

of clinical conditions, as also suggested in previous studies.51,52

• Risk-prediction models of the onset of T2DM-related complica-

tions. We developed and validated multivariate predictive mod-

els53 to estimate the risk of developing microvascular

complications (retinopathy, neuropathy, and nephropathy) tai-

lored to the ICSM hospital population. Regarding macrovascular

events, we used a risk score based on a validated version of the

Framingham risk score adapted to the Italian population.54

c. GUI and the MOSAIC dashboard

The GUI was designed to cover 2 different scenarios of use, the first

aimed at supporting clinicians and health care practitioners in their

Figure 1. The Dashboard Service Oriented Architecture. The architecture

components include: a) a data module, composed of the i2b2 DW, which col-

lects data from Administrative Data stream (updated every six-months) and

clinical data from the T2DM dedicated EHR (continuously updated during fol-

low-ups); b) a logical module, which implements the analytics algorithms and

models upon the gathered data. The Query Engine is the central service be-

tween users of the Dashboard and data stored in the i2b2 DW. The Temporal

Abstraction and Data mining Algorithms modules, once tuned with appropri-

ate configuration parameters, extract meaningful patterns from the data se-

lected through the query engine; c) a graphical module, composed by all the

visualization instruments that allow user interactions: data selection (from the

i2b2 DW), information retrieval (from the logical module) and graphical pre-

sentation of results (in the Dashboard).
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day-to-day activities, and the second at facilitating periodic reviews

of the ICSM Diabetology service data. For both scenarios, decision

support is delivered by a dashboard that presents results through vi-

sual analytics solutions. The functionalities of these scenarios, which

we refer to as the clinical decision support system (CDSS) scenario

and the outcome assessment and research system (ORSS) scenario,

are presented in the next 2 paragraphs. Design of the system fol-

lowed a user-centered technique, involving users and stakeholders in

an iterative approach.55,56

Clinical decision support system
The CDSS helps care providers to explore patients’ temporal data

and assess the risk of developing complications or disease progres-

sion. The CDSS dashboard is divided into 3 main sections, which

summarize (1) metabolic control, (2) frequent temporal patterns,

and (3) drug purchase patterns.

(i) Metabolic control evaluation and complications risk assessment

This section of the CDSS dashboard is based on a “traffic light”

metaphor to allow quick assessment of the control level of specific

parameters (see Figure 2). These are HbA1c, blood pressure, self-

reported diet, body mass index (BMI), and the results of risk calcula-

tors for both macro- (cardiovascular) and microvascular complica-

tions. Traffic light colors describe the variables at the last follow-up

visit. Green indicates normal values, yellow indicates values close to

an alarm threshold, and red indicates values higher than the alert

threshold. Thresholds are variable-specific and were defined based

on clinical knowledge. Arrows and equal symbols next to the traffic

lights indicate trends (increasing, decreasing, or stable) between the

last 2 visits. If a complication has already been diagnosed for a pa-

tient, a red traffic light is shown and the onset date is displayed (see,

eg, retinopathy and neuropathy in Figure 2).

(ii) TAs and visualization of long-term complication episodes

TAs are an effective and compact way to identify and highlight tem-

poral patterns in data, ranging from simple mapping of variables

into meaningful intervals (so-called state abstractions) to more com-

plex behaviors including trends and multivariable episodes. The

TAs57,58 applied by the MOSAIC Clinical Care dashboard include:

• TAs for diet: intervals of “good” or “bad” diet (as assessed after

interviews by caregivers in follow-up visits) show if the patient

has been following a correct (good) or an incorrect (bad) diet reg-

imen and for how long.
• TAs for weight: (i) time intervals in which the patient’s weight

shows an increasing, decreasing, or stationary trend and (ii)

time-to-target intervals, defined as the time interval from the first

out-of-target value to the moment a patient reaches a specific

weight target (Figure 3). The target weight loss is patient-specific

and has been set as 10% of the patient’s baseline weight.

(iii) Drug purchases

The CDSS dashboard (see Figure 4) depicts all the purchases made

by a patient for each drug class. This allows assessment of the regu-

larity of purchase and highlighting of possible treatment changes or

dosage modifications (as in the case of metformin in Figure 4 [OK?],

where a dose adjustment took place at the end of 2008). The box

under each graph reports the results of comparisons between the

patient’s purchase behavior and that of all the other patients in the

population purchasing the same drugs. Such comparisons are per-

formed on the proportion of days covered value for a patient against

the population over the entire observation period through a Wil-

coxon test. For each patient, and for each of the purchased drugs,

the result reports whether the patient behavior was in line with the

rest of the population or if he/she displays a trend of purchasing

more or less of a specific drug (P< .05).

Outcome assessment and research support system
The ORSS is designed to support clinicians and researchers in get-

ting an overview of the outcomes of the current treatments on the

population of T2DM patients treated at the center, thus facilitating

decision-making at the organizational level, as well as performing

outcomes research studies.

The first section of the ORSS dashboard (Figure 5) presents

charts that show patient counts grouped by demographic and clini-

cal variables. The developed CFM is integrated into the data-mining

module of the ORSS and extracts the most frequent clinical path-

ways from process and clinical data collected in the i2b2 DW. Click-

ing on a chart section, the CFM algorithm extracts the frequent care

flows associated with a group of patients selected on the basis of

medication purchases, cardiovascular risk evolution, and disease

complexity stages.

The algorithm output is visualized as timelines. Subgroups with

similar health care trajectories are segments of the studied cohort

that can be considered “temporal phenotypes.”47 Figure 6 shows the

mined level of complexity care flows, representing disease complex-

ity stages: stable: no complication; first level: occurrence of the first

complication; second level: occurrence of multiple complications;

third level: hospitalization due to previous complications.

The last step of the process is triggered when the user selects a

specific cohort from one of the visualized care flows. For example,

the user can choose to investigate one of the subcohorts defined by

mining on level of complexity. The last section of the use case shows

the drill-down results as the distribution of complications for the se-

lected group of patients. On this page, the user can also select a spe-

cific complication and retrieve a list of patients exhibiting it.

EVALUATION OF THE DASHBOARD SYSTEM

The evaluation study was carried out by assessing (1) the impact on

clinical activities of the CDSS with a pre-post approach and (2) the

opinions of experts in focus groups about the usefulness of ORSS in

supporting the activities of health care managers.

The different strategies for CDSS and ORSS components are mo-

tivated by the different health care processes the 2 systems are in-

volved in. While the CDSS dashboard is deployed in standard

outpatient practice at ICSM, the ORSS dashboard is designed for

health care managers and policy-makers. Profiles of the health care

professionals who used and evaluated the system are summarized in

Table 1. Clinicians and focus group participants involved in the

evaluation did not participate in the design and development of the

system. Moreover, the 2 modules were evaluated by distinct groups

of users.

In order to assess the behaviors of end users when interacting

with both components of the dashboard, we also collected the sys-

tems’ log files for all users who took part in the evaluation.

Evaluation of the CDSS
Nine clinicians were monitored for 6 months for evaluation of the

CDSS. In the first 3 months (September 15 to December 1, 2015),
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Figure 2. The traffic lights section of the CDSS dashboard. HbA1c, blood pressure, self-reported diet, BMI, and the results of risk calculators are shown. Traffic

light highlight the situation of each metabolic control variable at the last follow-up. Thresholds are variable-specific and are defined based on clinical knowledge.

Arrows and equal symbols next to the traffic lights indicate trends (increasing, decreasing, or stable) between the last 2 visits. If a complication has already been

diagnosed for the patient, the onset date is displayed. Clicking on the “View Details” hyperlink enables visualization of the complete time series of the variables.

Figure 3. Hba1c time series and weight TAs, as calculated by the JTSA module. The scatter plot shows the Hb1Ac measures during follow-ups. The timeline plot

shows weight temporal abstractions. The upper time line indicates basic TA, which reports the intervals where measures increase, decrease, or stay steady. The

bottom one indicates the time-to-target TAs, which report whether the patient’s weight has decreased by 10% in 6 months.

Figure 4. Drug purchase graphs. The graphs show drug purchases during the disease evolution, quantified with the DDD associated with each active principle.

Gray boxes indicate whether the patient purchased larger or smaller quantities of the drug (with the arrow pointing up or down) compared to other patients who

are treated with the same drug, and whether this difference is significant.
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352 T2DM patients were visited without the CDSS dashboard; in

the second phase (December 1, 2015 to March 30, 2016), 353

T2DM patients were visited using the CDSS dashboard. During

each visit, clinicians filed a report including visit duration, actions

performed during the visit (whether they referred the patient for fur-

ther screening exams to assess T2DM complications and/or special-

ist visits), changes in treatment (medications, physical activity, and

diet), and time to the next follow-up visit.

The evaluation results are shown in Table 2, in which the param-

eters measured with and without the system are compared using a

chi-squared test. (To exclude potential confounders related to the

day of the week and work shifts, a multivariate mixed effects model

was run for each of the outcome measures. None of the potential

confounders was found to be significant.)

The results reported in Table 2 show that, when the CDSS was

used, visits were significantly shorter (P� .01). This suggests that

Figure 5. Summary charts of the ORSS dashboard. Charts show patient counts grouped by demographic variables, BMI, risk indexes, and HbA1c at the last visit,

and complications distribution. The user starts from this view to run the CFM algorithm. By clicking on a chart section, the CFM mining algorithm extracts the

care flows associated with the selected population, and in the following step it is possible to select and extract patients with similar temporal clinical patterns.

Figure 6. CFM and drill-down results. Timeline graphs show the most frequent temporal patterns of the population selected in the previous step. In this figure,

the patients are clustered on the basis of their level of complexity, which illustrates sequence and duration of stay in the different levels of disease evolution, as

defined by the MOSAIC project. Clicking on each bar, the subcohort following the selected path is chosen. The drill-down results show the complication distribu-

tions of the patients belonging to the subcohort and the distributions of the times of stay in the complexity level.

Table 1. Profiles of the users of CDSS and ORSS tools

Dashboard Component Numbers and

type of users

Age Years of professional

experience

Type of expertise IT literacy (self-evaluation)

CDSS (pre-post study) Male¼ 3; female¼ 6 41 6 15 13 6 12 Medical doctor High¼ 2; medium¼ 5; low¼ 2

ORSS (qualitative, based

on focus groups)

Male¼ 1; female¼ 6 42 6 9 14 6 10 Medical doctor,

health care manager

High¼ 3; medium¼ 3; low¼ 1
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the opportunity to have a snapshot of the current patient status and

of the temporal evolution of the disease helps to reduce visit

duration, while avoiding time-consuming consultations of the EHR,

especially for patients whose histories include several follow-up

visits.

After the introduction of the system, more visits included pre-

scriptions of screening exams for complications (P< .01). This result

confirms that the system allows prompt identification of groups of

patients who need specific interventions to screen for and prevent

the onset of complications. This finding, however, should be

carefully assessed after considering the results of the screening

exams, in order to identify possible false positives to quantify the

real accuracy of the system.

Interventions on physical activity increased from 69% during

visits without the system to 77% during visits with the system. Even

if not statistically significant (P¼ .053), this result is relevant, as in-

formation on physical activity was not easily accessible before the

introduction of the system. Thanks to the traffic light section in the

CDSS, this information is now efficiently conveyed (Figure 2), and

patients who need an intervention can be immediately identified by

clinicians.

Finally, the log files report use of the CDSS system for 55 days,

for a total of 305 sessions. Each session corresponds to one clinician

using the system for daily visits. Access to the CDSS sections was

uniformly distributed: 30% metabolic control, 38% frequent tem-

poral patterns, and 32% drug purchase patterns. Table 3 shows the

statistics regarding CDSS usage during follow-ups, in terms of

number of sessions per day, number of patients for each session, and

number of patients per day. The results are in line with the MOSAIC

evaluation study protocol, with a mean of about 8 MOSAIC

patients per day, and 1 or 2 patients visited during each session.

ORSS assessment through a focus group
The ORSS was used to assess the entire ICSM cohort over time.

Given that the system was designed for health care managers, we

evaluated it through a focus group, which included a small number

of qualified experts. We qualitatively assessed the results of their

discussion. Two discussion sessions were held involving a focus

group composed of 4 clinicians from the ICSM hospital and 3 health

policy makers from the Pavia ATS (described in Table 1).

The results of the meetings are summarized in Table 4. In this ta-

ble, we report the main points that were raised during the discussion

and descriptions of the main findings related to each one.

The ORSS log files, collected during focus group meetings,

allowed information to be acquired about the number of times users

accessed the main menu options, and the use of filters selected for

the analyses. Gender and cardiovascular risks were almost never

used as filters, while age at diagnosis, BMI, and complications were

used at equal rates. For the filter on age, the most selected ranges

were 40–50 and 50–60 years; the categories of overweight and se-

vere obesity were explored through the BMI filter, whereas macro-

vascular complications was the category most frequently inspected.

DISCUSSION

Modern health IT infrastructures based on data integration and ana-

lytics allow effective coupling of decision support with outcomes re-

search. Integrated data repositories, designed for data mining and

retrieval, are crucial instruments to effectively implement the learn-

ing health care system cycle, enabling the introduction of clinical

data in outcomes research and, at the same time, the translation of

research findings into care to better inform clinicians about patients’

behavior and guide their decision-making.59 Designing dashboard-

based infrastructure is an important approach to fully exploit col-

lected data, enabling fast visual analytics,60 which speeds up the

decision-making process, in the context of both clinical care and ret-

rospective data analysis. In our work, we applied these concepts in

the context of T2DM management.

To the best of our knowledge, the MOSAIC system is one of the

first examples of a tool that integrates results from research on pre-

viously collected data to support clinical decision-making during the

care process. The models integrated into the system go beyond basic

statistical analysis and include predictive models and advanced tem-

poral data-mining solutions previously validated on routinely col-

lected clinical and administrative data.

This paper illustrates the solutions developed for T2DM special-

ist care, which are only a part of the whole MOSAIC project. The

developed system also includes a tool for predicting and preventing

T2DM onset61,62 that was tested with health care professionals and

Table 2. Visit counts for each measure defined to evaluate clinical

action when supported or not by the MOSAIC system

Without the system

(n¼ 352)

With the system

(n¼ 353)

P-value

(chi-squared test)

Visit duration

�25 min 201 298 �.01

>25 min 151 55

Screening exams for complications prescribed

Yes 137 189 .00013

No 215 164

Further lab tests prescribed

Yes 340 341 1

No 12 12

Specialist visits prescribed

Yes 19 27 .29

No 333 326

Therapy change

Yes 160 167 .675

No 192 186

Physical activity intervention

Yes 244 273 .052

No 108 80

Diet intervention

Yes 325 318 .358

No 27 35

Time to next follow-up

�6months 172 151 .089

>6months 173 199

Each variable has a binary value; when the measures were continuous (eg,

in visit and time to next follow-up duration) thresholds were defined on the

basis of routine clinical practice, guidelines, or median values. The last col-

umn reports P-values obtained using a chi-squared test to compare propor-

tions of “positive” outcomes in the 2 scenarios (with and without the system).

Table 3. Distribution of sessions for CDSS use (number, number of

patients per day and per session)

Mean (SD) Min Max

Number of sessions per day 5.35 (2.79) 1 14

Number of patients per session 1.56 (1.38) 0 9

Number of patients per day 8.34 (4.59) 1 28
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in a primary care context. Within the MOSAIC project, we designed

and implemented a DSS with 2 components, one to support visit-by-

visit decision-making (CDSS), and one to support long-term DM

center revision and potentially outcomes research (ORSS). The sys-

tem allows specialist medical doctors and health care managers to

fully exploit all the information coming from local health care agen-

cies and primary care practices (ie, drug purchases, outpatient visits,

screening exams) when making decisions, and sets the basis for cre-

ating a link between research, clinical practice, and administrative

procedures.

The evaluation carried out in the clinical settings showed a sig-

nificant decrease in the duration of visits, which has an impact on in-

creasing the efficiency of the care process. Thus, the implemented

system allows clinicians to focus their attention on the most critical

aspects of each patient and to optimize visit duration on the basis of

the complexity of the patient’s state. The system is able to highlight

new information, thanks to the integration of different data sources,

including clinical and administrative data. This integration has

allowed clinicians to have access to information that is not available

through the standard EHR (eg, data on drug purchases) and to visu-

alize already available information in a more informative way (eg,

traffic lights and time-oriented overviews of multiple clinical

aspects).

In order to plan future versions of our system, we are currently

taking into account the usability aspects. As a preliminary step, we

have asked 4 users to assess all of the system functionalities, includ-

ing CDSS and ORSS components of the dashboard, by completing

the system usability scale63 and Attrakdiff questionnaires.64 Three

users were already involved in the evaluation of the CDSS (2 medical

doctors) and the ORSS (1 health care manager). The last participant

(a graphic designer) was enrolled only for this test. Attrakdiff ques-

tionnaires scores were >3.5 for pragmatic quality, stimulation, and

identification, and >3 for attractiveness, on a scale of 0 to 4.5, while

the score of the system usability scale was 79.32, which equates to a

percentile rank of 80%. This preliminary study confirms that the

dashboard, although well designed, can be improved by implement-

ing a more detailed human-computer interaction study. We are

aware of other limitations of the present work. First, the system was

evaluated to test its impact on the patient management process, but

it was not possible to assess any clinical outcomes. This issue is re-

lated to the time span of T2DM evolution, which is longer than the

available evaluation period. A dedicated prospective study to evalu-

ate specific clinical outcomes is currently being designed.

Regarding the implementation of a similar system in other health

care settings, it should be pointed out that some of its core features

rely on an agreement among several health care institutions to share

Table 4. ORSS discussions points

Discussion point System functionalities, examples of their use, and findings

Usefulness of the tool to inspect specific clinical questions The drill-down functionality (Figure 6) allows identification of subjects not com-

pliant with guidelines and inspection of their individual data using the CDSS.

Example: Analysis of patients who experienced a myocardial infarction (starting

from their slice on the general charts page of the MOSAIC tool). Such patients

should be treated with lipid-lowering drugs, but the analysis of the treatment

histories revealed that some of them were not.

Results: Thanks to this functionality, health care managers discussed reasons for

noncompliance and planned an in-depth study of the issue, also leveraging the

CDSS.

Analysis of disease progression through care flows The CFM functionality (Figure 6) allows identification of frequent clinical path-

ways and their temporal features in the population of patients treated at the

hospital.

Example: Analysis of subjects who experienced progression at a similar level of

complexity. First, users considered the question of what distinguished patients

who remained stable from those who did not. Then they considered in more de-

tail patients who reached the highest complexity level, to understand how

much time passed between the second complication and hospitalization.

Results: Thanks to this functionality, users can identify and understand the char-

acteristics of subgroups of patients (temporal phenotypes) treated at the center.

Comparison of the patient population at 2 different time points The Summary Charts functionality (Figure 5) allows assessment of the patient

population at different time points.

Example: A comparison of the patient population between the start and the end

of the highlighted validation period showed:
• an increase in the number of patients with high cardiovascular risk (28.2% at

the beginning vs 30.8% at the end of the validation period), and
• an increase in the percentage of patients who were within the normal weight

range (from 19.9% to 21%).

Results: One hypothesis formulated by the experts to explain the increase of car-

diovascular risk was that, when the CDSS was used, patients who seemed to

have more severe conditions were prescribed additional exams that turned out

to confirm an increased risk level. The second example can be a consequence of

the significant increase in the number of physical activity interventions during

the evaluation period. Both of these results are consistent with the CDSS out-

comes data showing that patients were prescribed more screening exams and

lifestyle interventions during system usage.
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data on specific patients. Thus, this is a constraint that must be satis-

fied in order to exploit the system in a different setting. If data from

administrative sources are not available, one option could be to in-

clude self-monitored information from patients, such as data col-

lected through activity or medication tracking devices.

In terms of results generalization, it must be noted that the in-

volved clinicians came from the same hospital and their number was

limited. Moreover, the activity indicators were self-measured by

clinicians without an independent assessment. Therefore, our

quantitative evaluation must be seen as a proof-of-principle to

demonstrate the potential of an advanced IT system based on het-

erogeneous data integration and advanced analytics.

Furthermore, it is worth noting that the tool was evaluated in

the setting of a diabetes specialty clinic. This necessarily limits the

generalizability of the findings to primary care, which would proba-

bly require revising the system design and the evaluation strategy.

Looking at future developments, the Lombardy region in Italy

started a continuity of care program for highly complex chronic

patients delivered by hospital providers. As the MOSAIC dashboard

concepts and results closely match the aims of this program, the

framework will be adequately modified and exploited to support

this institutional intervention. The MOSAIC system will therefore

be redesigned to manage other chronic diseases (eg, heart failure,

pulmonary disease) and the dashboard will be improved in terms of

visual analytics and information delivery.

Our experience shows that the developed framework represents

a general model that can be successfully applied not only in T2DM

management specialty clinics, but also to the majority of chronic dis-

eases, since it is able to support all clinical decision-making pro-

cesses, including diagnosis, therapy planning, and disease

monitoring, and can be used in a coordinated fashion to improve the

scientific discovery process.
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