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During the last years, subwavelength grating (SWG) 
structures are gaining increasing attention in the area of 
evanescent-field photonic sensors. Here, we present for 
the first time an experimental demonstration of real-
time refractive index (RI) sensing using SWG bimodal 
interferometric structures. Two different configurations 
are considered in order to compare the effect of the non-
linear phase shift, obtained between the two first TE 
propagating modes, in the measured bulk sensitivity. 
Very high experimental values up to 2270nm/RIU are 
reached, which perfectly match the numerical 
simulations and significantly enhance other existing SWG 
and spectral-based sensors. By measuring the spectral 
shift, the experimental sensitivity obtained does not 
depend on the sensor length. As a result, a highly 
sensitive and compact single-channel interferometer is 
experimentally validated for RI sensing, opening new 
possible paths in the field of optical integrated sensors. 
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A periodic dielectric configuration having a lattice constant being smaller than the wavelength of light can be considered as a homogeneous anisotropic material in which electromagnetic wave propagation is feasible [1]. This is the case of the so-called subwavelength gratings (SWGs), firstly described in [2–4] as an alternative type of silicon waveguides and later on extended to all kind of integrated photonic applications [5,6]. More recently, SWG structures have been reported in the literature for refractive index (RI) sensing [7], providing very high bulk and surface sensitivities due to a stronger light-matter interaction with the surrounding media than for conventional waveguides. As a consequence, several sensor configurations such as ring resonators (RR) have been redesigned using SWG structures [8–11], exhibiting a superior performance in terms of both sensitivity and limit of detection. Moreover, SWG also offer additional dispersive properties [12] that can be exploited to develop, for instance, broadband directional couplers [13], beam-splitters [14], polarization controllers [15] and densely integrated waveguides [16]. Within this context, we proposed in a previous 

work the use of a bimodal SWG waveguide as a spectral-interrogation based sensor [17], where high sensitivity values were theoretically obtained as a result of the inherent dispersive behavior of SWG structures. On the other hand, similar single-channel interferometers in homogeneous structures have been extensively studied and validated for biosensing purposes [18–20]. In these cases, the sensing performance has been determined by measuring the phase shift, which scales directly with the sensor length, and with the main drawback that large dimensions are required to reach high sensitivities.  In this letter, we experimentally demonstrate for the first time the use of SWG bimodal waveguides as high performance single-channel interferometric sensors. The underlying idea is to take advantage of the SWG dispersion properties to enhance the spectral shift of a certain interference dip in the spectra. As a result, we show an experimental bulk sensitivity of 2270nm/RIU for a compact SWG bimodal device being only ~125μm long. The sketch of the proposed configuration is depicted in Fig. 1(a), where a single transverse electromagnetic (TE) mode waveguide, acting as input port, excites the first two TE modes of the bimodal SWG waveguide. Similarly, these two modes will contribute to the excitation of the fundamental mode of the output single-mode waveguide. At this point, the transferred power will depend on the phase shift between the propagating modes of the SWG structure, creating an interference pattern in the transmission spectrum. By tracking the position of a certain spectral dip in the spectrum, caused by a destructive interference between both modes, we can determine the sensitivity of the sensor under different bulk RI variations. In this kind of spectral-interrogation based sensors, bulk sensitivity can be mathematically expressed as follows  [17]:                              λ / ,
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                                   (1)  where  ∂λ௙ is the differential shift of the spectral dip in nm, ∂݊௖ is the differential RI change of the cladding in refractive index units (RIU) and ∂߮ is the differential phase shift in radians between the two interfering modes.  According to Eq. (1), low slopes of the phase shift as a function of wavelength will increase the sensitivity 
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the full width at half maximum (FWHM) of the most sensitive spectral dip located at 1580nm is twice that for the lowest dip at 1523nm. Therefore, a trade-off between sensitivity and narrower spectral dips is observed, although the FWHM of the most sensitive dips could be reduced by increasing the number of elements N.    In order the compare results with simulations, the dispersion relations of both SWG modes have been computed under different cladding RI scenarios of pure DIW and 6% ethanol volume in DIW. The computed absolute wavelength shift of each spectral dip and the experimental results are depicted in Fig. 2(b) for both configurations, showing a good agreement between theory and measurements for a RI increment of 3.2×10-3RIU. Moreover, it should be noted again that in Fig. 2(b) the shift is strongly dependent on wavelength because of the non-linear phase shift behavior of the SWG structure. This fact provokes higher sensitivities for those spectral dips located at higher wavelengths. Likewise, several time evolution measurements have been carried out by covering the SWG sensor with different ethanol dilutions. To this end, real-time spectrum data has been collected for 35 minutes and subsequently processed to properly track the minimum of each spectral dip over time. Figure 3(a) shows the tracking of the spectral dip located at 1580nm for Λ1=260nm and Λ2=280nm configurations. Ethanol dilutions of 2%, 4% and 6% in DIW have been considered for the experiments, corresponding to a RI of 1.3183, 1.3194 and 1.3205, respectively. The absolute wavelength shift versus RI variations is depicted in Fig. 3(b) for both configurations. In this graph, we obtain a bulk sensitivity of 2270nm/RIU for the SWG configuration with Λ1=260nm and a value of 1253nm/RIU for the SWG with Λ2=280nm. These results are in good agreement with the numerically simulations previously calculated and are consistent with the phase shift slopes presented in Fig. 1(c). Note that there is a period of time that the measurements take to stabilize, this is due to the RI variations occurring when new ethanol dilutions are added.   

 Fig. 2.  (a) Experimental normalized transmission spectra respect to a reference waveguide, obtained for a bimodal SWG sensor of N=480 elements, Λ1=260nm, wi=160nm (upper blue graph) and Λ2=280nm, wi=180nm (lower red graph). A Lorentzian fitting is also depicted over the spectral dips to ease the determination of the minimum location. (b) Experimental comparison between the numerical simulations and the absolute wavelength shifts of each spectral dip for a refractive index change of 3.2×10-3RIU as a function of wavelength, and for periods of Λ1=260nm and Λ2=280nm. The lines show the numerical simulations for a continuous range of wavelengths and the markers show the experimental values of each spectral dip located at a certain wavelength. 

 Fig. 3.  (a) Time evolution of the spectral dips located at 1580nm with N=480 elements for Λ1=260nm, wi=160nm (blue curve) and Λ2=280nm, wi=180nm (red curve) under three different dilutions of 2%, 4% and 6% of ethanol volume in DIW. (b) Representation of the absolute wavelength shift of the spectral dips under different RI variations. The linear fitting represents the bulk sensitivity experimentally obtained for both configurations.  In comparison with the literature, SWG spectral based sensors such as multi-box ring resonators [23] have reported an experimental bulk sensitivity of 580nm/RIU, and other configurations like slot ring resonators [24] have been experimentally demonstrated for RI sensing  with sensitivities up to 1300nm/RIU; as well as slotted photonic crystal sensors [25] with a reported sensitivity of 1538nm/RIU. On the other hand, similar bimodal interferometers [26] using homogeneous waveguides have been presented as spectral based sensors with sensitivity values of 789nm/RIU. Therefore, our proposed sensor presents a markedly higher bulk sensitivity than previous examples while keeping a very low structural complexity, thus confirming the high potential of SWG bimodal waveguides as a promising alternative for sensing applications in CMOS-compatible integrated devices. To investigate the dependence of the experimental sensitivity with the sensor length, the spectral shift of several dips with SWG configurations of N=120, N=240, N=360 and N=480 elements for a RI change of 5.39×10-3RIU has been also measured.  The rest of the design parameters are the same used in the previous analysis (ws=450nm, w=1400nm, h=220nm, d=350nm, Λ2=280nm and wi=180nm). Figure 4(a) depicts numerical simulations for the numerator and the denominator of Eq. (1), varying the number N of SWG elements. In this graph we can clearly see that the value of the numerator and denominator highly depends on N and wavelength. However, when we apply Eq. (1) and divide both expressions, the theoretical sensitivity obtained remains constant for any value of N, although it still depends on wavelength. This theoretical sensitivity curve is shown in Fig. 4(b) as a function of wavelength. The colored bars represent the experimental sensitivity of each spectral dip obtained for different N at a certain wavelength. All the measurements are in a good agreement with the simulations and remain on the line of Eq. (1). These results demonstrate that the bulk sensitivity, measuring the wavelength shift, does not depend on the sensor length, as it occurs in interferometric configurations when measuring the phase shift. Despite this, as it has been explained before, the quality factor of the spectral dip increases with N since they are more grouped in the spectrum and narrower spectral features are obtained. As a result, longer SWG structures will facilitate the tracking of those dips and thus enhance the limit of detection of the sensor, although it will increase its footprint, which is not very suitable for 
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