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ABSTRACT  60 

Characterization of a new tomato T-DNA mutant allowed for the isolation of the CALCINEURIN B-LIKE 61 

PROTEIN 10 (SlCBL10) gene whose lack of function was responsible for the severe alterations observed in the 62 

shoot apex and reproductive organs under salinity conditions. Physiological studies proved that SlCBL10 gene is 63 

required to maintain a proper low Na
+
/Ca

2+
 ratio in growing tissues allowing tomato growth under salt stress. 64 

Expression analysis of the main responsible genes for Na
+
 compartmentalization [i.e. Na

+
/H

+
 EXCHANGERs 65 

(LeNHX3 and LeNHX4), SALT OVERLY SENSITIVE (SlSOS1 and SlSOS2), HIGH-AFFINITY K+ 66 

TRANSPORTER 1;2 (SlHKT1;2), H
+
-pyrophosphatase AVP1 (SlAVP1) and V-ATPase (SlVHA-A1)] supported 67 

a reduced capacity to accumulate Na
+
 in Slcbl10 mutant leaves, which resulted in a lower uploading of Na

+
 68 

from xylem, allowing the toxic ion to reach apex and flowers. Likewise, the tomato CATION EXCHANGER 1 69 

(SlCAX1) and TWO-PORE CHANNEL 1 (SlTPC1), key genes for Ca
2+

 fluxes to the vacuole, showed abnormal 70 

expression in Slcbl10 plants indicating an impaired Ca
2+

 release from vacuole. Additionally, complementation 71 

assay revealed that SlCBL10 is a true orthologue of the Arabidopsis CBL10 gene supporting that the essential 72 

function of CBL10 is conserved in Arabidopsis and tomato. Together, the findings obtained in this study 73 

provide new insights into the function of SlCBL10 in salt stress tolerance. Thus, it is proposed that SlCBL10 74 

mediates salt tolerance by regulating Na
+
 and Ca

2+
 fluxes in the vacuole, cooperating with the vacuolar cation 75 

channel SlTPC1 and the two vacuolar H
+
-pumps, SlAVP1 and SlVHA-A1, which in turn are revealed as potential 76 

targets of SlCBL10. 77 

 78 

Keywords: Salinity, Solanum lycopersicum, CBL10, TPC1 channel, vacuolar H
+
-pumps, Na

+
 and Ca

2+ 
79 

homeostasis. 80 

  81 
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INTRODUCTION  82 

The development of crop plants tolerant to abiotic stress is crucial to meet the growing food demand through 83 

sustainable agriculture. Along their life cycle, plants need to balance development and adaptive responses to 84 

unfavourable conditions, salinity being one of the most severe factors limiting the productivity of agricultural 85 

crops (Flowers et al., 2010; Shabala, 2013). Significant advances have been made in the study of genes involved 86 

in salt stress tolerance and ion homeostasis (Maathuis, 2014), especially in the model species Arabidopsis 87 

thaliana, whereas knowledge about species of agronomic interest such as tomato remains scarce. Salt tolerance 88 

is determined by the ability of the plant to regulate Na
+
 transport rate from the root to the shoot through the 89 

xylem and by the capacity to accumulate Na
+ 

ion into the vacuoles of the adult leaves and stem, which allows 90 

the plants to protect young developing tissues from Na
+
 toxicity (Shabala, 2013; Maathuis, 2014). Na

+
 efflux is 91 

mediated by the plasma membrane Na
+
/H

+
 antiporter SALT OVERLY SENSITIVE 1 (SOS1; Hasegawa, 2013), 92 

whereas HIGH-AFFINITY K+ TRANSPORTER (HKT) proteins, particularly those belonging to class I 93 

(Platten et al., 2006), are critical determinants of Na
+
 unloading from xylem vessels to other cells in the stele 94 

(Hasegawa, 2013). In tomato, two HKT1-like isoforms have been identified, SlHKT1;1 and SlHKT1;2, which 95 

underlie a major tomato QTL for Na
+
/K

+
 homeostasis (Asins et al., 2013). Mainly, SlHKT1;2 has been involved 96 

in the regulation of Na
+
 movement from root to shoot through xylem and therefore, in the Na

+
 concentration in 97 

leaves under saline conditions (Almeida et al., 2014; Asins et al., 2015). Compartmentalization in the vacuole of 98 

Na
+
 ions is an effective mechanism to avoid the toxic effects of Na

+
 in the cytoplasm (Maathuis, 2014). The 99 

transport of Na
+
 from the cytoplasm into the vacuole occurs via tonoplast Na

+
/H

+
 EXCHANGERs (NHXs). 100 

Four NHX isoforms have been identified in tomato; among them, LeNHX3 and LeNHX4 show the strongest 101 

induction upon salinity (Galvez et al., 2012). In addition, LeNHX3 has been associated with a QTL for Na
+
 102 

concentration in leaves (Villalta et al., 2008). In Arabidopsis, the Na
+
 compartmentalization process mediated 103 

by vacuolar Na
+
/H

+
 antiporters is driven by the electrochemical gradient of protons across the tonoplast 104 

generated by the vacuolar H
+ 

pumps, H
+
- pyrophosphatase (H

+
-PPase) AVP1 and V-ATPase (Maeshima, 2000, 105 

Hasegawa, 2013). Two full-length cDNA clones (SlVHA-A1 and SlVHA-A2) coding for two isoforms of the V-106 
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ATPase catalytic subunit (V-ATPases A1 and A2) have been isolated in tomato. In response to salinity, the 107 

abundance of the SlVHA-A1 transcript in leaves was nearly doubled with respect to control conditions, while 108 

SlVHA-A2 did not change and was mostly expressed in roots (Bageshwar et al., 2005).  109 

Salt tolerance in plants also required a proper balance of Ca
2+

 and Na
+
 ions (Manaa et al., 2013). Thus, it has 110 

been well documented that Ca
2+

 has a direct inhibitory effect on Na
+
 entry into the cell by decreasing Na

+
 influx 111 

through non-selective cation channels and acting as a counter-cation inside storage organelles (Shabala et al., 112 

2005). However, a Ca
2+

 deficit situation can occur in plants growing under salinity, since the elevated 113 

concentration of Na
+
 hinders Ca

2+
 uptake by roots (Zhai et al., 2015). The large central vacuole of a typical 114 

mature cell is by far the largest intracellular Ca
2+

 storage in plants, therefore, the mobilization of Ca
2+

 vacuolar 115 

reservoirs by the plant in this unfavourable situation is crucial to maintain the growth of young tissues (Bonales-116 

Alatorre et al. 2013). A steady state level of vacuolar Ca
2+

 depends on the balance between active Ca
2+

 import 117 

to vacuoles and vacuolar channels mediating Ca
2+

-induced Ca
2+

 release (Conn et al., 2011). CATION 118 

EXCHANGER (CAX) are ion transporters located on the tonoplast membrane (Hirschi, 1999; Manohar et al., 119 

2011) and several studies in A. thaliana have suggested they play a critical role in plant adaptation to certain 120 

stresses such as salinity (Cheng et al., 2003; Park et al., 2005). These antiporters also use the driving force of the 121 

proton gradient generated by the vacuolar pumps (V-ATPase and AVP1) to accumulate Na
+
 into the vacuole 122 

against its electrochemical gradient. In addition, the TWO-PORE CHANNEL 1 (TPC1) gene encodes for most 123 

prominent cation Slow Vacuolar channel which represents the major cation conductance of the largest organelle 124 

in most plant cells (Kintzer and Stroud, 2016), mainly Ca
2+

, but also other ions such as K
+
 and Na

+
 (Hedrich 125 

and Marten, 2011). In Arabidopsis, it has been proven that TPC1 mediates a voltage-activated Ca
2+

 influx in 126 

leaf cells (Furuichi et al., 2001), contributing to the cytosolic calcium elevation and therefore to stress signalling 127 

(Hedrich and Marten, 2011; Choi et al., 2014).  128 

CALCINEURIN B-LIKE PROTEIN 10 (CBL10), the last CBL family member to be identified so far, has 129 

also been involved in the regulation of salt stress response in A. thaliana (Kim et al., 2007; Quan et al., 2007). 130 

CBLs are EF-hand Ca
2+

 protein sensors and upon Ca
2+

 binding, they undergo conformational changes to 131 
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associate with a group of CBL-INTERACTING PROTEIN KINASES (CIPKs) (for review see Kolukisaoglu et 132 

al., 2004; Luan, 2008; Kim, 2013). Different combinations of CBLs and CIPKs complexes may generate 133 

temporal and spatial specificity in Ca
2+

 signalling, integrating various stimuli to determine cellular responses 134 

(Batistic et al., 2010). Previous studies have determined that CBL10 interacts and recruits CIPK24 (SOS2) 135 

towards the tonoplast, speculating that the CBL10-CIPK24 complex might phosphorylate and activate a 136 

tonoplast Na
+
 channel or transporter yet unknown in order to transport cytosolic Na

+
 into the vacuole (Kim et 137 

al., 2007; Quan et al., 2007; Waadt et al., 2008; Lin et al., 2009). Moreover, a recent study has also 138 

demonstrated that A. thaliana CBL10 is critical for reproductive development under salt stress, although this 139 

function occurs independently from SOS2 interaction (Monihan et al., 2016). Likewise, Kang and Nam (2016) 140 

have provided an additional explanation for the positive role of CBL10 in salt tolerance by regulating sensitivity 141 

to brassinosteroids. Following the initial discovery of CBL10 in A. thaliana, a homologue has been reported in 142 

Populus and attributed similar functions (Tang et al., 2014). A CBL10 homologue has also been reported in 143 

tomato and its function in pathogen response within the reactive oxygen species signaling pathway has been 144 

demonstrated (de la Torre et al., 2013). However, the role for SlCBL10 in the regulation of abiotic stress 145 

responses in tomato remains unexplored. Furthermore, the relationship of CBL10 gene with other genes 146 

involved in the regulation of ion homeostasis (SOS1, HKT1s, AVP1, VHA-A1 and TPC1) has neither been 147 

established so far in any species. This study reports the identification of the tomato Slcbl10 knock-out mutant 148 

which exhibited very high salt-sensitivity. The functional characterization of this mutant revealed a new role of 149 

the SlCBL10 gene in the salt tolerance of tomato by balancing Na
+
 and Ca

2+
 homeostasis. 150 

 151 

RESULTS 152 

Isolation of the pms916 salt hypersensitive T-DNA mutant and molecular cloning of the tagged gene 153 

An in vitro phenotypic screening to identify mutants with altered salt stress responses was performed in a 154 

tomato T-DNA mutant collection by growing T2 segregating families in a basal culture medium (SCM) 155 
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supplemented with 100 mM NaCl (for details, see Materials and Methods). As a result, the pms916 (protecting 156 

meristem from salt stress 916) mutant was isolated, which exhibited abnormal thickening of the hypocotyl, 157 

severe inhibition of vegetative development and a collapse of the apical meristem after 20 days of salt treatment 158 

(20 DST; Fig. 1A). A similar mutant phenotype was observed in three additional repeated assays (Experiments 159 

E1, E2 and E3 in Supplemental Table S1) performed using identical salt stress conditions. Subsequently, the 160 

salt-sensitivity of the pms916 mutant was corroborated in vivo by growing T2 plants under greenhouse 161 

conditions (Experiments E4 and E5 in Supplemental Table S1). In all in vitro and in vivo experiments, genetic 162 

analysis indicated that pms916 mutation was inherited as monogenic and recessive (Supplemental Table S1). 163 

Southern blot analysis showed that the original T1 plant carrying the pms916 mutation harboured three T-164 

DNA copies (Fig. 1B). To identify lines with a single T-DNA insertion, T3 progenies were used for kanamycin 165 

sensitivity test. The results showed a 3:1 (tolerant:sensitive) segregation for kanamycin response in four of the 166 

ten progenies evaluated, indicating a single-locus insertion of the T-DNA. These four T3 progenies were grown 167 

in vitro under identical salt conditions as described above (SCM + 100 mM NaCl). From each T3 progeny, a 168 

single plant showing a pms916 mutant phenotype was analysed by Southern blotting. The results indicated that 169 

two T-DNA insertions were present in all mutant plants (Fig. 1B). Genomic regions flanking T-DNA insertions 170 

were cloned by anchor-PCR, and the sequencing analysis revealed that the two T-DNA copies were inserted in 171 

a head-to-tail tandem orientation (Fig. 1C). Hence, both T-DNA copies were inherited as a single locus, which 172 

agreed with the results of the kanamycin sensitivity test. The T-DNA tandem insertion was located on 173 

chromosome 8 of the tomato genome, within the CALCINEURIN B-LIKE PROTEIN 10 (SlCBL10) gene 174 

(Solyc08g065330). The inserted fragment caused a deletion of 1,836 bp, between 1,634 bp upstream and 202 bp 175 

downstream of the translation start codon of the SlCBL10 gene (Fig. 1C), preventing, in all likelihood, the 176 

translation of a functional protein.  177 

A PCR co-segregation analysis was then carried out to determine whether the T-DNA insertion correlated 178 

with the mutant phenotype. For this purpose, the SlCBL10 genotype of 25 T2 individuals was determined using 179 

G-F, G-R, and T2-R primer combinations (Fig. 1, C and D, and Supplemental Table S2). Among the 18 wild-180 
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type (WT) individuals, 14 plants were heterozygous and 4 homozygous for the WT allele, while the remaining 7 181 

mutant plants carried the mutant allele in the homozygous state (Fig. 1D). These results strongly supported that 182 

the disruption of the SlCBL10 gene by the T-DNA insertion was responsible for the pms916 mutant phenotype 183 

and therefore, the tomato pms916 insertional mutant was renamed as Slcbl10. 184 

 185 

Phenotypic characterization of Slcbl10 mutant plants  186 

In order to more deeply characterize the Slcbl10 mutant phenotype, T3 homozygous and azygous lines for the 187 

Slcbl10 mutation, both belonging to the same T2 family, were grown in a hydroponic system as described in the 188 

Materials and Methods section. In the absence of salt stress, Slcbl10 mutant plants grown normally with the 189 

only exception of a slight chlorosis at the margins of some young leaflets at the moment when plants have 190 

developed a few number of leaves. The sensitive phenotype was accentuated as mutant plants grew, showing 191 

bulging and thickening of the leaflets forming the shoot apex (Supplemental Fig. S1). 192 

Short-term hydroponic salt treatment (HST) assays showed that salinity caused severe damages in the aerial 193 

part of Slcbl10 mutant plants, in both young and adult plants (for further details Materials and Methods section). 194 

Vegetative growth of Slcbl10 homozygous plants was arrested at young stages (HSTy assay) and they showed 195 

swelling and curved appearance of leaves, chlorosis at edge of leaflet and apical collapse (Fig. 2A). Salt 196 

treatment also induced growing abnormalities in Slcbl10 adult plants (HSTa assay). Thus, after 2 DST, mainly 197 

young apical tissues became burnt and wilted, and subsequently mutant plants stopped growing as a 198 

consequence of apical collapse just after 6 DST (Fig. 2B). However, it was surprising that leaves and stems at 199 

basal positions on Slcbl10 mutant plants did not show evident symptoms of salt sensitivity. Instead; their 200 

external appearances were similar to that of WT plants after 6 DTS (Fig. 2B), indicating that in a first instance, 201 

loss of SlCBL10 function mainly affects shoot apex and growing tissues although finally the whole plant is 202 

affected and dies from apical collapse.  203 

To corroborate that the salt hypersensitivity phenotype of the Slcbl10 mutant was due to the loss of SlCBL10 204 

gene function, two clonal replicates of 14 independent RNAi SlCBL10 lines and 13 independent regenerants, 205 

 www.plantphysiol.orgon December 12, 2017 - Published by Downloaded from 
Copyright © 2017 American Society of Plant Biologists. All rights reserved.

http://www.plantphysiol.org


 

10 
 

these latter obtained under the same conditions except for the use of the RNAi gene construct (control plants), 206 

were grown and characterized under hydroponic salt treatment (HSTa assay conditions). All RNAi SlCBL10 207 

lines displayed salt stress sensitivity, showing an altered phenotype almost equal to that of mutant plants (Fig. 208 

2C), including decreased fresh weight of shoots and roots (Fig. 2D). These results confirmed that the T-DNA 209 

mutation affecting the SlCBL10 gene was responsible for the salt-hypersensitivity initially observed in the 210 

pms916 mutant.  211 

 212 

Functional complementation of the Arabidopsis cbl10 mutant line 213 

In order to test whether the SlCBL10 gene is an orthologue of the Arabidopsis CBl10, the entire ORF 214 

corresponding to the putative SlCBL10 was cloned under the control of a 35S promoter. This construct was used 215 

to transform and test a functional complementation of the Arabidopsis cbl10 knock-out T-DNA line (Quan et 216 

al., 2007). Salt tolerance of three independent transgenic lines overexpressing SlCBL10 in a cbl10 genetic 217 

background was compared to that of wild-type (Col-0) and the cbl10 mutant plants (Fig. 3A). Whilst growth in 218 

100 mM NaCl is more severely compromised in the cbl10 mutant than in WT plants, heterologous expression of 219 

SlCBL10 in this mutant genetic background restores growth to WT levels (Fig. 3B). Previous studies have 220 

shown that despite being hypersensitive to salinity, the Arabidopsis cbl10 mutant accumulated less Na
+
 after 221 

high salt exposure (Kim et al., 2007). Accordingly, results here obtained demonstrated that the expression of 222 

SlCBL10 restored Na
+
 accumulation to WT levels in cbl10 mutant plants (Fig. 3C). In conclusion, SlCBL10 was 223 

able to reiterate CBL10 function in Arabidopsis indicating that SlCBL10 is a true orthologue of the CBL10 gene. 224 

 225 

The SlCBL10 gene is differentially expressed in tomato tissues, and is induced by salt stress  226 

Changes of SlCBL10 expression induced by salt stress were further analysed in adult WT plants grown in a 227 

hydroponic system (HSTa assay conditions). Salinity induced an increase of SlCBL10 expression in all tissues 228 

analysed (Fig. 4A). In shoot, the highest expression levels were detected in upper adult leaves (3-fold increase), 229 
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followed by young leaves and stems (2-fold increase). The lowest SlCBL10 expression was found in roots, 230 

although a significant increase was also detected in salt-treated plants. 231 

The temporal effect of salt stress on SlCBL10 expression was analysed in the first developed leaf of WT 232 

plants from the same experiment mentioned above (Fig. 4B). Transcript levels of SlCBL10 were significantly 233 

induced by salt treatment after 12 h, reaching the maximum levels between 24 and 48 h. Later, SlCBL10 234 

expression decreased to the basal levels found in the absence of salt stress after 60 h of treatment. At 6 DST, a 235 

further increase of SlCBL10 expression was observed, therefore suggesting that two phases of induction may 236 

occur during exposure to salt stress.  237 

 238 

Na
+
 distribution pattern is altered in Slcbl10 mutant plants 239 

To ascertain whether the salt sensitivity phenotype was associated with changes in Na
+
 distribution patterns 240 

induced by salt stress, ion contents were analysed in several adult plant tissues from the HSTa assay (Fig. 5A). 241 

Results showed that although Na
+
 uptake at whole level was lower in Slcbl10 mutant than in WT plants (25% 242 

and 20% lower in mutant after 2 DST and 6 DST, respectively), the Na
+
 distribution pattern along the mutant 243 

plant was completely altered. In WT plants, Na
+
 is preferentially accumulated in roots, and later in adult leaves 244 

and stems to prevent Na
+
 from reaching toxic levels in young developing tissues. In fact, the lowest Na

+
 245 

accumulation was found in the shoot apex of WT plants in salt conditions. Contrarily, the Slcbl10 mutant did 246 

not retain Na
+
 properly in roots or in adult leaves or stems as 30% less Na

+
 is detected in these tissues, and 247 

therefore similar Na
+
 contents were found along the mutant plants. The incapacity of the Slcbl10 mutant to 248 

retain Na
+
 in adult vegetative tissues allows the ion to reach the apex in higher concentration, 70% higher than 249 

in WT, after 6 DST.  250 

An opposite tendency was observed for K
+
 distribution. Thus, during salt treatment, the K

+
 content was 251 

higher in roots, upper adult leaves and stems of mutant plants than in WT plants, while a similar K
+
 content was 252 

detected in the apex (Supplemental Fig. S2). This fact, promoted that the Na
+
/K

+
 ratio was lower in roots and 253 

upper adult leaves of the Slcbl10 mutant, but higher in the apex due to a higher Na
+
 accumulation in these 254 
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tissues (Fig. 5B). Together these results strongly evidence that salt stress induces significant alterations in Na
+
 255 

and K
+ 

homeostasis of Slcbl10 mutant plants. 256 

Transcript levels of main genes involved in Na
+
 homeostasis were analysed in the first developed leaf and 257 

roots (Fig. 5C). With this purpose, expression of genes responsible for the uptake and long-distance Na
+ 

258 

transport in tomato, SlSOS1 and SlHKT1s, (Olias et al., 2009; Asins et al., 2013), as well as genes involved in 259 

Na
+
 accumulation into vacuole, LeNHX3, LeNHX4 (Galvez et al., 2012), SlAVP1 and SlVHA-A1 genes (Gaxiola 260 

et al., 2007) were determined. In addition, expression of SlSOS2 gene, which has been related to both long-261 

distance Na
+ 

transport and Na
+
 accumulation process (Huertas et al., 2013; Olias et al., 2009), was also 262 

analysed. Although no differences in the expression levels of these genes were detected between Slcbl10 mutant 263 

and WT plants when they were grown under control conditions, some significant changes were found when 264 

plants grew under salt stress, mainly affecting leaf tissue (Fig. 5C). Salinity induced up-regulation of all 265 

analysed genes involved in Na
+
 compartmentalization, i.e. LeNHX3, LeNHX4, SlSOS2, SlAVP1 and SlVHA-A1, 266 

in WT but not in mutant leaves where only LeNHX3 and SlVHA-A1 were up-regulated. Furthermore, the 267 

SlHTK1;2 gene was significantly down-regulated in leaves of mutant plants. In roots, the only remarkable 268 

difference was the induction by salinity of SlSOS1 expression in mutant but not in WT plants, which indicated 269 

that Na
+
 extrusion from root to external medium was increased when SlCBL10 expression is knocked-out 270 

(Supplemental Fig. S3).  271 

 272 

Disruption of SlCBL10 gene affects Ca
2+

 homeostasis under salt stress 273 

Another singular feature of Slcbl10 mutant extracted from ion analysis was an altered Ca
2+

 distribution pattern 274 

under salinity (Fig. 6A). Thus, while the hydroponic salt treatment (HSTa assay) caused a significant reduction 275 

of Ca
2+

 content in both stems and upper adult leaves of WT plants after 6 DST, no significant changes of Ca
2+

 276 

content were observed in Slcbl10 mutant plants. Consequently, Ca
2+

 content was 80% and 60% higher in stem 277 

and upper adult leaves, respectively, in Slcbl10 than in WT plants.  278 
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The higher Ca
2+

 levels detected in upper adult leaves and stem of Slcbl10 mutant plants could be due to Ca
2+

 279 

retention or to an increased Ca
2+

 transport from roots to shoots during salt treatment. In order to check these two 280 

possibilities reciprocal grafting experiments were performed between WT and Slcbl10 plants, and Ca
2+

 contents 281 

were measured in grafted plants grown under hydroponic salt treatment (HSTa assay conditions; Fig. 6B). Level 282 

of Ca
2+

 was significantly higher in leaves of grafted plants using Slcbl10 as scion independently of the rootstock 283 

background, while a similar decrease of Ca
2+

 content
 
was found in leaves when WT scion was grafted on either 284 

WT or mutant rootstock. In addition, no significant differences of Ca
2+

 content were found in roots of the 285 

different combinations. Therefore, it is possible to conclude that the higher Ca
2+

 content found in Slcbl10 286 

mutant organs was not due to a higher Ca
2+

 transport from root to shoot but, most likely, to retention in leaves 287 

of Ca
2+

 stores, which did not diminish under salinity. 288 

Under calcium deficit conditions, such as those promoted by salinity (White and Broadley, 2003), plants 289 

need to mobilize their calcium reservoirs to ensure fruit development and yield. Therefore, possible effects on 290 

fruit yield promoted by Ca
2+

 reservoirs improperly retained in leaves and stems of Slcbl110 plants were 291 

analysed in a long term salt treatment assay in a greenhouse (GST assay conditions; see Materials and 292 

Methods). Fruit yield and blossom end rot (BER) incidence, the latter being a well- known symptom of Ca
2+

 293 

deficiency disorders in tomato fruit (de Freitas et al., 2014; Zhai et al., 2015), were determined in adult plants 294 

after 50 DST (Fig. 6C). A considerably decrease of fruit production and higher BER incidence (7-fold) was 295 

detected in Slcbl10 plants with respect to WT). In addition, other phenotypic alterations that coincided with 296 

those promoted by Ca
2+

 deficiency were observed in long term salt-treated Slcbl10 and RNAi SlCBL10 plants, 297 

among others, reduced growth of the apical meristem, small leaves with evident chlorosis symptoms at their leaf 298 

edges and thickened petioles and stems (Supplemental Fig. S4 and Fig. S5). Taken together, these results 299 

indicated that under salinity conditions, Ca
2+

 reservoirs are less available in Slcbl10 plants than in WT, thus 300 

limiting their proper development and productivity.  301 

To corroborate that the low Ca
2+

 availability is responsible for the growth restriction of Slcbl10 mutant in salt 302 

stress conditions, an in vitro assay was carried out using 1 mM suboptimal Ca
2+

 concentration. Under these 303 
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conditions, the Slcbl10 mutant showed higher sensitivity to a Ca
2+

 deficiency condition (Supplemental Fig. S6, 304 

A and B). The first Ca
2+

 deficiency symptom observed was a collapse of the subapical shoot region resulting in 305 

a constriction necrosis below the shoot tip, followed by the apical meristem senescence. Light microscopic 306 

analysis also revealed significant alterations affecting SAM morphology and ground cells of Slcbl10 mutant 307 

plants (Supplemental Fig. S6, C and D). In addition, swollen cells were observed in the submeristematic region 308 

immediately below the collapsed zone leading to thickened stems (Supplemental Fig. S6E) whose appearance 309 

strongly resembled that observed in Slcbl10 young plants grown under salt conditions (Fig. 2). These results 310 

strongly support that tomato plants lacking SlCBL10 are not able to balance their development under Ca
2+

 311 

deficient conditions. 312 

 313 

Expression pattern of key genes involved in vacuolar fluxes of Ca
2+

  314 

To ascertain how SlCBL10 might be involved in the mobilization of Ca
2+

 stores, and taken into account that the 315 

vacuole is by far the largest intracellular Ca
2+

 store in mature cells (Peiter, 2011), the expression profile of key 316 

genes involved in Ca
2+

 fluxes were analysed. Concretely, transcript accumulation of CAX1, AVP1 and VHA-A1 317 

genes, all required for Ca
2+

 compartmentalization into the vacuole (Pittman, et al., 2009), and TPC1 involved in 318 

Ca
2+

 release from vacuole (Herdrich and Marten, 2011), were measured in upper adult leaves of Slcbl10 mutant 319 

and WT plants grown under HSTa assay conditions. Given the essential role of Ca
2+

 as a second messenger of 320 

signalling stress, gene expression analyses were performed at early and later steps of salt treatment (Fig. 7). In 321 

WT plants, salinity induced a down-regulation of SlCAX1, while SlTPC1, the main responsible channel for the 322 

release of Ca
2+ 

from vacuole, was up-regulated. The lowest levels of SlCAX1 transcripts were detected after 48h 323 

of salt treatment which remained low until the end of treatment. SlTPC1 registered two maximum levels of 324 

expression, one soon after 48 hours and the other later, at the end of salt treatment. In Slcbl10 mutant plants, 325 

expression of SlTPC1 was not induced by salinity, but it was down-regulated (65% reduction) after 48 hours of 326 

salt exposure. Moreover, SlCAX1 expression was more pronounced and earlier repressed in Slcbl10 mutant than 327 

in WT plants. Indeed, after 60 hours of salt exposure, the level of SlCAX1 transcripts was almost null in the 328 
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mutant (98% of inhibition). The expression pattern of these genes in WT indicated that salinity induced an 329 

efflux of Ca
2+

 from vacuole, while in mutants this efflux may be impaired by the strong down-regulation of 330 

TPC1. 331 

As regards the vacuolar proton-pumps coded by SlAVP1 and SlVHA-A1 genes, salinity induced a similar 332 

profile expression to that described for SlTPC1 in wild-type plants, as a peak of induction was detected at 48 333 

hours of salt treatment (Fig. 7). However, the level of transcripts of both SlAVP1 and SlVHA-A1 genes were 334 

significantly lower in Slcbl10 mutant plants than in WT. It is interesting to highlight that the expression patterns 335 

of SlTPC1 and the two vacuolar proton pumps, SlAVP1 and SlVHA-A1 followed a very similar temporal pattern 336 

expression, suggesting that they may cooperate to regulate proper Ca
2+

 flux in the vacuole under salt stress in 337 

tomato. 338 

 339 

SlCBL10 gene is needed to maintain a proper ratio Na
+
/Ca

2+
 in flowers and apex under salinity 340 

It is known that under salinity conditions, the maintenance of a proper Na
+
/Ca

2+
 low ratio in growing tissues, 341 

such as shoot apex and flowers, is essential to maintain plant growth (Manaa et al., 2013). Thus, in order to 342 

ascertain when the lack of SlCBL10 gene prevents the maintenance of a proper Na
+
/Ca

2+
 ratio that ensures the 343 

growth in tissues such as apex and flowers under salinity, Na
+
/Ca

2+
 ratio was assessed in WT, Slcbl10 mutant 344 

and RNAi SlCBL10 plants. After 6 DST Na
+
 and Ca

2+
 contents were analysed in upper adult leaf, apex and 345 

flowers (first flower truss immediately below 1
st
 fully developed leaf). In RNAi SlCBL10 and Slcbl10 mutant 346 

plants, a higher Ca
2+

 content but a lower Na
+
 content were registered in upper adult leaves as compared to WT 347 

(Fig. 8, A and B). Contrarily, in apex and flowers, Na
+
 levels increased and Ca

2+
 levels decreased both in 348 

Slcbl10 mutant and in RNAi plants (Fig. 8, A and B), causing the Na
+
/Ca

2+
 ratios in these tissues to be 349 

improperly high (Fig. 8C), which might be the ultimate responsible factor for the observed alterations in 350 

mutants cultivated under salinity. 351 

 352 
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DISCUSSION 353 

This study reports the identification and functional characterization of the tomato Slcbl10 knock-out mutant 354 

identified from a screening of a T-DNA tomato mutant population (Pineda et al., 2012; Pérez-Martín et al., 355 

2017). Through an anchor-PCR approach, SlCBl10 was identified as the tagged gene responsible for the salt 356 

hypersensitive mutant phenotype. Molecular complementation experiments proved that SlCBL10 is orthologous 357 

to the A. thaliana CBL10 gene, and encodes a calcium sensor CALCINEURIN B-LIKE PROTEIN 10. 358 

Although SlCBL10 was previously involved in a signaling pathway mediating tomato plant immunity (de la 359 

Torre et al., 2013), its role in regulating abiotic stress has not been studied so far in this model species. 360 

 361 

SlCBL10 protects growing tissues from salt stress by Na
+
 retention in adult tissues  362 

Results here reported indicate that the salt sensitivity phenotype of Slcbl10 mutant plants (i.e. growth inhibition, 363 

hypocotyl thickening and apical necrosis) was similar both under in vitro and in vivo stress conditions and that 364 

such phenotype was also corroborated in RNAi SlCBL10 lines. In all cases, the lack of the SlCBL10 finally 365 

drove plants to die from apical collapse (Fig. 2). In addition, expression analysis showed that SlCBL10 was up-366 

regulated in WT plants cultivated under salinity conditions, the highest expression level being detected in upper 367 

adult leaves close to the shoot apex. Together, these results indicate that transcriptional activity of SlCBL10 368 

plays a key role in the adaptive response of tomato plants to salt stress by protecting shoot apical meristem and 369 

growing tissues from physiological damages caused by salinity.  370 

Previous studies have shown that CBL10 is also involved in salt response in A. thaliana (Kim et al., 2007; 371 

Quan et al., 2007) and Populus (Tang et al., 2014). Indeed, Arabidopsis cbl10 mutant plants accumulated lower 372 

Na
+
 and a higher K

+
 content as a consequence of salt treatment, being the first salt-hypersensitive mutant with a 373 

lower Na
+
/K

+
 ratio reported so far (Kim et al., 2007). Here it has been showed that tomato Slcbl10 mutant also 374 

accumulates lower Na
+
 and higher K

+
 than wild-type plants; in addition, functional complementation of the 375 

Arabidopsis cbl10 mutant by SlCBL10 leads to the recovery of Na
+
 levels. Under these premises, it is necessary 376 
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to explain how plants accumulating less Na
+
, as are the cases for Slcbl10 and cbl10 mutants, showed a salt-377 

hypersensitive phenotype when the opposite would be expected. A precise dissection of Na
+
 relative content in 378 

young versus adult leaves as well as in leaves versus stems in tomato allowed for the elucidation of the role 379 

played by SlCBL10 in Na
+ 

homeostasis. It is known that the mechanism of salinity tolerance in tomato involves 380 

a preferential Na
+
 accumulation in adult leaves and stems, which prevents Na

+
 from reaching the shoot apex 381 

(Cuartero et al., 2010). Our results proved that this physiological mechanism was totally altered in Slcbl10 382 

mutant, which was not able to retain Na
+
 in adult tissues. This alteration leads to a 7-fold increase in Na

+
 383 

content that reaches the shoot apex, which results in an inadequate high Na
+
/K

+
 ratio in growing tissues. 384 

Changes in Na
+
/K

+
 ratios are consistent with the physiological damages detected in the apical part of mutant 385 

plants and strongly support a functional role of the SlCBL10 gene in protecting shoot apex and developing 386 

tissues from salt stress conditions.  387 

 388 

SlCBL10 function is required for Na
+
 compartmentalization into vacuole  389 

In the cytoplasm, inappropriate Na
+
 levels cause important metabolic alterations as this ion inhibits enzyme 390 

activity (Maathuis, 2009); for that reason, cytoplasmic Na
+
 content have to be kept at low level by exporting 391 

Na
+
 into the vacuole (Albaladejo et al., 2017). Results from expression analysis revealed that the decreased 392 

capacity of Slcbl10 plants to retain Na
+
 in adult leaf was associated with a significant lower salt-induced 393 

expression of genes involved in Na
+
 compartmentalization into vacuole, such as LeNHX4, SlAVP1, SlVHA-A1, 394 

and SlSOS2. Moreover, in the leaves of Slcbl10 plants it was observed both a reduced expression of SlHKT1;2, 395 

the main responsible for uploading Na
+ 

from the xylem into the cells (Asins et al., 2013; 2015), as well as an 396 

increase of SlSOS1 gene expression, responsible for Na
+
 extrusion from leaf cells to xylem (Olias et al., 2009). 397 

Hence, expression analysis support the hypothesis that Na
+
 compartmentalization into vacuoles as well as Na

+
 398 

upload from xylem into cells were severely inhibited in Slcbl10 mutant plants, while Na
+
 extrusion from leaf 399 

cells to xylem was favoured (Fig. 9). Such physiological changes allow the toxic ion to reach the apex and 400 

flowers promoting their collapse and the subsequent death of the plants. Therefore, results indicate that 401 
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SlCBL10 is needed for regulating Na
+
 homeostasis through the activity of genes involved in the 402 

compartmentalization of Na
+
 into vacuole. 403 

In Arabidopsis, the CBL10-SOS2 complex has been proposed as a positive regulator of a still unknown 404 

vacuolar protein triggering Na
+
 compartmentalization into vacuoles (Kim et al., 2007; Waadt et al., 2008). 405 

Additionally, it has been determined that SOS2 regulates AtNHX1 antiporter activity (Qiu et al., 2004) and 406 

directly activates the vacuolar H
+
 pump V-ATPase (Batelli et al., 2007). However, a previous study in Populus 407 

suggested that CBL10 is not directly related to the function of NHX proteins (Tang et al., 2014), which points at 408 

the vacuolar H
+
-pumps as the potential candidates for protein targets of CBL10 (Fig. 9). In tomato, the lack of 409 

SlCBL10 function was associated with a repression of SlSOS2, and the constitutive expression of SlCBL10 410 

rescued the phenotype of the Arabidopsis cbl10 mutant, indicating that the molecular mechanism underlying 411 

Na
+
 compartmentalization into vacuole mediated by SlCBL10 may be shared between Arabidopsis and tomato. 412 

 413 

SlCBL10 promotes Ca
2+

 mobilization and availability under salt stress conditions  414 

Ca
2+

 deficit usually occurs in plants growing in salinized soils, since elevated Na
+
 concentrations hinder Ca

2+
 415 

uptake by roots (Zhai et al., 2015), which usually induces a reduction of Ca
2+

 content in upper leaves and stem. 416 

Decreased Ca
2+

 levels were detected in WT but not in Slcbl10 mutant plants when they grew under salinity 417 

conditions (Fig. 6). Using reciprocal grafting between WT and the Slcbl10 mutant, it was also proved that the 418 

higher Ca
2+

 levels detected in Slcbl10 mutant leaves resulted from Ca
2+

 retention in these tissues rather than 419 

from a higher Ca
2+

 transport from the root to the shoot during salt treatment. Likewise, given that Ca
2+

 stores in 420 

apical leaves and stem could be exchanged and mobilized to other tissues (apical meristem, flower and fruit) 421 

according to the physiological Ca
2+

 needs of plants (White and Broadley, 2003; Dayod et al., 2010), the 422 

retention of Ca
2+

 in Slcbl10 upper leaves could cause an inefficient supply of Ca
2+

 to other demanding tissues, 423 

such as flowers and shoot apex, thus contributing to their collapse under salinity. Several specific abnormalities 424 

have been reported due to Ca
2+

 deficit, mainly reduced growth of apical meristems, chlorotic leaves, tissue 425 
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softening and high BER incidence in fruits (Robertson, 2013; Uozumi et al., 2012; de Freitas et al. 2014). 426 

Therefore, abnormal Ca
2+

 retention detected in upper adult leaves may also be responsible for the almost null 427 

production of fruits and high BER incidence detected in Slcbl10 plants characterized under salinity conditions. 428 

The fact that the Slcbl10 mutant was not able to balance its development in a Ca
2+

 deficient medium (1 mM 429 

Ca
2+

) also indicates that SlCBL10 is required for an appropriate Ca
2+

 partitioning in tomato plants. Results 430 

showed that under suboptimal Ca
2+

 concentration, SlCBL10 promotes the adequate expansion and division of 431 

pith cells below the shoot apical meristem. Indeed, the truncation of SlCBL10 resulted in the collapse of 432 

subapical cells, and finally caused the death of the shoot apical meristem; said symptoms have been previously 433 

described as resulting from a suboptimal concentration of calcium reaching growing tissues (Busse, 2008). 434 

Therefore, under salt stress conditions, SlCBL10 gene function makes it possible that Ca
2+

 reservoirs can be 435 

mobilized, a feature which is essential to regulate plant growth and survival of developing tissues.  436 

 437 

SlCBL10 and SlTPC1 cooperate in the proper Ca
2+

 release  438 

The vacuole is by far the largest intracellular Ca
2+

 store in mature cells (Peiter, 2011), and constitutes the main 439 

Ca
2+

 reservoirs from which Ca
2+

 is exchanged and mobilized according to the physiological Ca
2+

 needs of plant 440 

(White and Broadley, 2003; Dayod et al., 2010). Expression profile of key vacuolar genes involved in Ca
2+

 441 

homeostasis suggest that the mechanism required to originate Ca
2+

 fluxes in vacuole was severely affected when 442 

Slcbl10 plants grew in salt stress conditions (Fig. 9). Thus, salinity did not induce the expression of SlAVP1 and 443 

SlVHA-A1 genes, which implies that the proton gradient, which is necessary to energize the Ca
2+

 transport 444 

towards the vacuole through CAX1 antiporters (Manohar et al., 2011), was impaired by the lack of SlCBL10 445 

gene function. Also, the stronger inhibition of SlCAX1 observed in Slcbl10 mutant plants could contribute to 446 

altering the proton gradient. Indeed, an indirect feedback mechanism has been proposed between CAX 447 

transporters (CAX1, CAX2, CAX3) and H
+
-pump V-ATPase in Arabidopsis, which would generate H

+
 flux 448 

across the tonoplast (Cheng et al., 2003). Since TPC1 has been reported as the main responsible factor for 449 
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promoting Ca
2+

 efflux from vacuole to cytoplasm in leaf cells (Furuichi et al., 2001), the lower H
+
 pump into 450 

the vacuole of Slcbl10 plants might result in an inefficient opening of the SlTPC1 channel since a low luminal 451 

pH is required to regulate the aperture of this channel (Kintzer and Stroud, 2016). Moreover, the fact that the 452 

expression of SlTPC1 was not induced by salinity in Slcbl10 mutant, as occurred in WT plants, together with a 453 

probable loss of efficiency for opening of SlTPC1 channel suggest that in mutant plants, the Ca
2+

 release from 454 

vacuole induced by salinity is disturbed, which in turn could cause a defective calcium mediated salt-stress 455 

signalling and therefore, salt sensitivity (Choi et al., 2014). Indeed, it has been proven that TPC1 is involved in 456 

the generation of Ca
2+

 cytoplasmic concentration elevation waves directed to stress signalling purposes (Evans 457 

et al., 2016). Based on this study’s results, it seems possible to suggest that SlCBl10 plays a role in Ca
2+

-458 

mediated stress signalling through direct or indirect TPC1 channel regulation (Fig. 9). Direct regulation of 459 

TPC1 by CBL10 would imply that TPC1 is a target for the CBL10-CIPK24 complex to be phosphorylated and 460 

activated. In support of that hypothesis, it has been proposed that the TPC1 channel is regulated by 461 

phosphorylation (Kintzer and Stroud, 2016). Indirect regulation of TPC1 by CBL10 could be mediated by the 462 

acidification of vacuole through the regulation of vacuolar H
+
-pumps, as a low pH is required to open the 463 

channel (Kintzer and Stroud, 2016). In such a way, SlAVP1 or SlV-ATPase would be the potential target for 464 

SlCBL10, which would agree with the mechanism discussed for Na
+
 compartmentalization (Fig. 9).  465 

The role of SlCBL10 in Ca
2+

 releases from vacuole could also contribute to adaptation mechanism to salinity, 466 

allowing mobilization of Ca
2+

 vacuolar stores in leaf cells towards fast-growing tissues in order to compensate 467 

for the lower Ca
2+

 uptake by root under salinity. The hypothesis of a double function of SlCBL10, although 468 

associated with the same mechanism (regulation of Ca
2+

 fluxes in vacuole), is supported by the profile 469 

expression registered in WT tomato leaves during salt treatment, in which two induction phases of expression 470 

were detected. The first induction took place during short-time periods (after 24 h of salt treatment) which could 471 

be involved in the signaling of the salt stress process. Later, a second increase of expression could be attributed 472 

to an increasing Ca
2+

 demand by fast-growing tissues as a consequence of Ca
2+

 deficiency caused by salinity 473 
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(Fig. 9). The same expression profile was recorded by SlTPC1, SlAVP1 and SlVHA-A1 which reinforces the idea 474 

of a functional relationship between these genes.  475 

 476 

CONCLUSIONS  477 

This study has proved that the SlCBL10 gene function is required to maintain a proper Na
+
/Ca

2+
 ratio in growing 478 

tissues allowing plant growth under salt stress conditions. Although the functional role of CBL10 in controlling 479 

Na
+
 homeostasis has been previously demonstrated in Arabidopsis (Kim et al., 2007), the regulation of Ca

2+
 480 

homeostasis by CBL10 has not been proposed until now. Nevertheless, Monihan et al., (2016) determined that 481 

CBL10 is critical for reproductive development under salt stress conditions and detected a higher Na
+
 and lower 482 

Ca
2+

 accumulation in Arabidopsis flowers. Such results together with the functional complementation of the 483 

Arabidopsis cbl10 mutant phenotype by SlCBL10 strongly support that SlCBL10 is a true orthologue of the 484 

Arabidopsis CBL10 and its function is conserved. Thus, it is proposed that the mechanism by which SlCBL10 485 

participates in salt tolerance mechanism is directly related to the regulation of Na
+
 and Ca

2+
 fluxes in the 486 

vacuole of leaf cells, through the activation of a tonoplast target, being the cation channel SlTPC1 and the two 487 

vacuolar H
+
-pumps, SlAVP1 and SlV-ATPase the potential targets of SlCBL10 (Fig. 9). Accordingly, under 488 

salinity conditions, CBL10 confers to adult leaves the capacity to retain Na+ avoiding toxic ion accumulation in 489 

young developing tissues as well as facilitates activation of Ca2+ release from vacuoles in leaves 490 

counterbalancing Ca2+ deficiency caused by salt stress. 491 

 492 

MATERIALS AND METHODS 493 

Screening and identification of pms916 (Slcbl10) tomato mutant 494 

The tomato (Solanum lycopersicum L.) cv Moneymaker was used to generate a collection of T-DNA mutants by 495 

means of the enhancer trap vector pD991 (Atarés et al., 2011; Pineda et al., 2012; Campos et al., 2016; Pérez-496 

Martín et al., 2017). The in vitro screening of 1200 T2 families of tomato T-DNA lines (10-12 plants per 497 
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family) grown in basal culture medium (SCM) supplemented with 100 mM NaCl led to the detection of a 498 

mutant initially named pms916 (protecting meristem from salt stress 916) due to its hypersensitive phenotype to 499 

salt stress. To estimate the number of inserts bearing a functional NPTII marker gene, a segregation analysis of 500 

T2 progeny in kanamycin-containing medium (KCM) consisting of Murashige and Skoog (MS) salts 501 

(Murashige and Skoog, 1962), sucrose (10 g l
−1

) and kanamycin 100 (mg l
−1

) was carried out. The identification 502 

of the insert responsible for the mutation and the co-segregation analysis between the insert and the mutant 503 

phenotype were performed by segregation analysis with T2 and T3 progenies in both kanamycin-containing 504 

medium (KCM) and NaCl-containing medium (SCM). To corroborate the in vitro salt sensitivity phenotype of 505 

the pms916 mutant, two new experiments were conducted under in vivo conditions. In both experiments, pre-506 

germinated seeds of the T2 segregating progeny were sown into pots containing coconut fiber and grown under 507 

controlled climatic conditions: 26 ± 3 °C day/18 ± 1 °C night and extra lighting provided by wide-spectrum 508 

tubes (450 μmol s
−1

 m
−2

; Gro-lux, Sylvania, Germany) to expose plants to 16 h day length. To assess salt 509 

hypersensitivity, T2 plants were irrigated with half-strength Hoagland solution (Hoagland and Arnon, 1950). 510 

Salt treatment (100 mM NaCl) was initiated when the plants had developed two true leaves. 511 

The number of T-DNA copies was determined by Southern blot hybridization experiments. Genomic DNA 512 

was isolated from young leaves as described by Dellaporta et al. (1983). Ten µg of genomic DNA were digested 513 

with EcoRI and HindIII endonucleases, electrophoresed in 0.8% agarose gel and blotted onto Hybond N+ 514 

membranes (GE Healthcare - Piscataway, NJ) as described by Ausubel et al. (1993). Hybridization was 515 

performed with a chimeric probe, fusing the complete coding sequence of the NEOMYCIN 516 

PHOSPHOTRANSFERASE II (NPTII) gene to 811 pb of coding sequence from the endogenous tomato 517 

FALSIFLORA (FA) gene, which was employed as hybridization positive control (Yuste-Lisbona et al., 2016).  518 

 519 

Cloning of T-DNA flanking sequences and PCR genotyping 520 
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The sequences flanking T-DNA were isolated by anchor-PCR according to the procedure previously established 521 

by Pérez-Martín et al. (2017). The sequences of primers used are listed in Supplemental Table S2. The cloned 522 

sequences were compared with SGN Database (http://solgenomics.net/) to assign the T-DNA insertion site on 523 

tomato genome. 524 

Co-segregation analysis of the T-DNA insertion site with the mutant phenotype in the T2 progeny was 525 

checked by PCR using i) the specific genomic forward (G-F) and reverse (G-R) primers to amplify the WT 526 

allele (without T-DNA insertion) and ii) one specific genomic primer (G-F) and the specific T-DNA border 527 

primer (T2-R) to amplify the mutant allele (carrying the T-DNA insertion). Primers were designed based on 528 

sequence information available from SGN Database (http://solgenomics.net/). The sequences of genotyping 529 

primers used are listed in Supplemental Table S2. Amplification of the genotyping primers was performed in a 530 

30 μl volume using 25 ng of total DNA, 50 ng of each primer, 0.25 mM dNTPs, 2.5 mM MgCl2, and 1 U of 531 

REDTaq DNA polymerase (SIGMA-Aldrich) in 1X Taq buffer. DNA was amplified under the following 532 

thermal cycling conditions: 94ºC for 5 min, followed by 35 cycles at 94ºC for 30 s, 60ºC for 30 s, and 72ºC for 533 

2 min, and a final extension of 5 min at 72ºC. PCR products were analysed in 1% agarose gels in SB buffer (10 534 

mM sodium boric acid) and visualized with ethidium bromide. 535 

 536 

Generation of transgenic tomato lines  537 

In order to generate SlCBL10 silencing lines, a RNA interference (RNAi) approach was followed. With this 538 

aim, a 123-bp fragment of the SlCBL10 cDNA was amplified using the SlCBL10-RNAiF and SlCBL10-RNAiR 539 

primers (Supplemental Table S2), and the PCR product was cloned in sense and antisense orientation separated 540 

by intronic sequences into the pKANNIBAL vector (Wesley et al., 2001) to generate a pKANNIBAL-SlCBL10 541 

plasmid. The resulting plasmid was digested with NotI, and the entire construct was cloned into the binary 542 

vector pART27 (Gleave, 1992). In all cases, the binary plasmids generated were electroporated into 543 

Agrobacterium tumefaciens LBA 4404 strain for further use in genetic transformation experiments. 544 
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Agrobacterium-mediated transformation was performed following the protocol described by Gisbert et al. 545 

(2000). Fourteen independent diploid transgenic lines silencing SlCBL10 were generated in tomato. The 546 

SlCBL10 expression level was measured by RT-qPCR as described below. Regenerant plants (control plants) 547 

were also obtained under the same conditions except for the use of the RNAi gene construct. 548 

 549 

Arabidopsis thaliana transformation and complementation test 550 

The Arabidopsis cbl10 mutant line (SALK_056042) was kindly donated by Professor Karen Schumaker 551 

(University of Arizona). To generate transgenic lines over-expressing SlCBL10, a 774 bp fragment was cloned 552 

spanning the entire ORF of SlCBL10 (Solyc08g065330) in the vector pK7WG2D.1. The resulting construct was 553 

electroporated into A. tumefaciens GV3101 and transformed into cbl10 mutant by floral dip method (Clough 554 

and Bent, 1998). 555 

Seeds were surface-sterilized in 100% hypochlorite sodium for 5 minutes, washed five times in sterilized 556 

water and sown in petri dishes containing 0.5X MS medium supplemented with 1% sucrose and 0.9% agar. 557 

Seeds were stratified for 2 days at 4 °C before growth at 22 °C under long-day photoperiod (16h/8h light/dark). 558 

Five-day-old seedlings were transferred to MS medium supplemented with 100 mM NaCl. Na
+
 contents were 559 

determined by atomic emission spectrophotometry. 560 

 561 

Treatment assays  562 

Tomato WT (cv. Moneymaker), T3 homozygous and azygous plants for the Slcbl10 mutation, RNAi SlCBL10 563 

and regenerant plants were used for the phenotypic and physiological characterization of the Slcbl10 mutant and 564 

the functional analysis of the SlCBL10 gene. Seeds were surface-sterilized briefly with 20% (v/v) commercial 565 

bleach for 15 min, and then washed with sterilized water four times and suspended in sterile water at 4ºC for 72 566 

h. Germination was performed in darkness, in a 8:3 (v/v) mixture of peat:perlite, at 28°C temperature and 90% 567 

relative humidity. Seedlings were then maintained in a controlled-environment chamber (8 h/16 h day/night 568 
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cycle at 345 µmol m
-2

 s
-1

 light, 23-25 ºC, 50 -60% relative humidity) until they reached the desired 569 

developmental stage for each experimental assay. During this period, plants were irrigated daily with half-570 

strength Hoagland solution (Hoagland and Arnon, 1950). 571 

Hydroponic salt treatment assay (HST) and grafting experiments 572 

Short-term HST assays were performed in a controlled-environment chamber (conditions above described). 573 

Tomato plants were grown hydroponically in an aerated half-strength Hoagland solution. Two types of salt 574 

treatments were performed depending on the development stage of plants: i) young plants at cotyledon stage 575 

were treated at 50 mM NaCl for 24 hours and then at 100 mM for 10 additional days (HSTy assay conditions), 576 

and ii) adult plants at the 5
th

 fully developed leaf stage were treated at 100 mM NaCl for 24 hours and then at 577 

200 mM for 5 additional days (HSTa assay conditions). In HSTa assays, shoot and root fresh weights were 578 

taken prior to salt treatment and after 2 and 6 days of salt treatment (DST). Ions content was analysed in root, 579 

stem (taken at the 1
st
-2

nd
 leaves insertion), upper adult leaf (1

st
 fully developed leaf) and shoot apex (leaf 580 

primordial and apical meristem) at 0 DST and after 6 DST. Expression induction by salinity of interesting genes 581 

was determined in shoot apex, young leaf (not fully developed leaf), upper adult leaf, stem and root of plants 582 

after 2 DST. Additionally, gene expressions were also determined in upper adult leaf after 12, 24, 30, 60 and 583 

144 hours of salt stress. All samples were previously frozen in LN2 and kept at -80ºC until further gene 584 

expression analysis. For each genotype, three biological replicates constituted by five plants each were 585 

analysed. Two independent assays were carried out in the same experimental hydroponic conditions described 586 

above. 587 

An additional HSTa assay was performed using reciprocal grafting between WT and Slcbl10 mutant plants 588 

as well as autografting with WT and Slcbl10 mutant plants in which Ca
2+

 content was analysed in root and 589 

upper adult leaf of grafted plants at 0 DST and after 6 DST. 590 

Greenhouse salt treatment assay (GST) 591 
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A long-term salt experiment was conducted in a greenhouse of South-eastern Spain with adult plants. At the 7
th

-592 

8
th

 fully developed leaf stage, WT and Slcbl10 plants were transferred from the controlled culture chamber to a 593 

polyethylene greenhouse and grown on cocoa peat, using a drip irrigation system, as previously described 594 

(García-Abellán et al., 2014). The fertirrigation solution was prepared in 2000-liter tanks with local irrigation 595 

water (Electrical Conductivity (EC) = 0.9 dS m
-1

). Before salt treatment, plants were grown under those 596 

conditions for 21 additional days until 10 leaves were fully developed. Then, fifteen plants per genotype were 597 

salt-treated (100 mM NaCl), keeping fifteen additional plants per genotype growing in the absence of salt. Salt 598 

treatment was performed by adding 100 mM NaCl to the tanks under 30/15 ºC day/night temperatures, 40% 599 

relative humidity and 500 µmol m
-2

 s
-1

 of natural light irradiance. After 50 days, fruits of each plant were 600 

counted (number of fruits), weighed (reproductive biomass) and the BER incidence calculated (percentage of 601 

fruit with BER symptoms). 602 

Calcium deficiency in vitro assay 603 

Pregerminated WT and Slcb110 mutant seeds were grown on MS medium supplemented with a suboptimal 604 

calcium concentration of 1 mM using calcium chloride as a source. Culture media contained 3 g L
-1

 sucrose, 0.1 605 

g L
-1

 myo-inositol, and 0.9% agar. The pH was adjusted to 5.6 ± 0.02. Media was autoclaved at 121ºC for 20 606 

min before use. Plants were cultured in 20 x 150 mm glass capped tubes containing 10 mL of media. Culture 607 

tubes were placed under 8 h/16 h day/night cycle light at 76 µmol m
-2

 s
-1

 photosynthetic photon flux density 608 

from cool white fluorescent lamps measured at the top of the culture tubes. The temperature was maintained at 609 

23 ± 2 ºC. Fifty plants per genotype were examined after 20 and 35 days of in vitro culture. After 20 days of 610 

culture in a suboptimal calcium concentration medium, five shoot tips were taken from each genotype and fixed 611 

with 2.5% glutaraldehyde and 4% paraformaldehyde in 0.1 M sodium phosphate buffer (pH 7.2) for 3 h at 4º C. 612 

Afterwards, samples were washed thrice with phosphate buffer, and then incubated with 1% osmium tetroxide 613 

in the same buffer for 2 h. Subsequently, three washes with phosphate buffer were performed. Fixed tissues 614 

were dehydrated in a graded series of ethanol (35, 50, 70, 96 and 100%), and then infiltrated with a propylene 615 

oxide and JB4 resin mixture. After that, they were immersed in JB4 resin overnight at 4º C and finally 616 
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transferred to flat embedding molds filled with JB4 resin that polymerized at 68º C for 24 h. Polymerized blocks 617 

were sectioned (0.5–0.7 mm thick) with a Leica EM UC6 ultramicrotome (Leica Mikrosysteme, Vienna, 618 

Austria). The sections were stained for 5 min at 60º C in 1% (w/v) toluidine blue and rinsed with de-ionized 619 

water. Finally, stained sections were observed under light microscopy and digital images were obtained. 620 

 621 

Ion content analysis 622 

Concentration of Na
+
, K

+ 
and Ca

2+ 
was measured in plant material dried for 48 h at 80°C, milled to powder and 623 

digested in a concentrated HNO3:HClO4 (2:1 v/v) solution. Na
+
, K

+
 and Ca

2+
 were analysed by inductively 624 

coupled plasma spectrometry (ICP) (Ionomic Service of CEBAS-CSIC, Murcia, Spain). 625 

 626 

Gene expression analysis 627 

Different vegetable tissues previously frozen in LN2 and
 
stored at -80ºC were analysed by RT-qPCR. Total 628 

RNA was isolated using a RNeasy kit (Qiagen); contaminating DNA was removed with RNAse-free DNase 629 

(DNA-free kit, Ambion) and RNA quality was assessed by electrophoresis on a denaturing agarose gel. Total 630 

RNA was quantified in a GeneQuant II spectrophotometer (Pharmacia Biotech) and 5 μg were used for cDNA 631 

synthesis with the First Strand cDNA Synthesis Kit (Thermo Fisher Scientific). RT-qPCR was performed using 632 

1 μl of undiluted cDNA mixed with iQSyBr Green Supermix (BioRad), and 0.45 μM of forward and reverse 633 

primers using assay conditions as previously described (Asins et al., 2013). All reactions were performed in 634 

triplicate. The presence of a single band on an agarose gel electrophoresis and of a single peak in the melting 635 

temperature curve confirmed the specificity of RT-qPCR amplification. Relative expression data were 636 

calculated as described by Asins et al. (2013) using the tomato elongation factor 1α (LeEF1α, acc. AB061263) 637 

as housekeeping gene. The expression level was calculated from 2
–ΔΔCt

 (Livak and Schmittgen, 2001), using the 638 

expression level of each gene from non-treated untransformed tissue as the calibrator sample. Data were 639 

statistically analysed using the SPSS 13.0 software package. All data are given as mean ± SE of three biological 640 
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replicates of five plants each. Significant differences among means were analysed by Student’s t and ANOVA 641 

tests (P <0.05). 642 

Specifically, it was evaluated the expression level of SlCBL10 (Solyc08g065330), SlSOS1 (Solyc01g005020), 643 

SlSOS2 (Solyc12g009570), SlHKT1;1 (Solyc07g014690), SlHKT1;2 (Solyc07g014680), LeNHX3 644 

(Solyc01g067710), LeNHX4 (Solyc01g098190), SlAVP1 (Solyc06g068240), SlVHA-A1 (Solyc12g055800) and 645 

SlTPC1 (Solyc07g053970) genes. Regarding tomato CAX homologues, two genes homologous to Arabidopsis 646 

CAX1 and CAX3, i.e. Solyc09g005260 (83.9% and 79.1% similarity to CAX3 and CAX1, respectively) and 647 

Solyc06g006110 (79.7% and 77.1% similarity to CAX3 and CAX1, respectively) were identified. Out of the two 648 

CAX genes analysed, only Solyc06g006110 was responsive to salinity, and therefore it was named as SlCAX1 649 

and used for further analysis. Sequences of evaluated genes are available in SGN Database (ITAG 2.5; 650 

http://solgenomics.net/). All primers used for RT-qPCR are listed in Supplemental Table S2. 651 

 652 

SUPPLEMENTAL DATA 653 

The following supplemental materials are available. 654 

Supplemental Table S1. Genetic analysis of the T2 progeny of pms916 mutant. 655 

Supplemental Table S2. Primers used for standard and RT-qPCR analyses. 656 

Supplemental Figure S1. Phenotype of T3 azygous (WT phenotype, left) and homozygous (Slcbl10 mutant 657 

phenotype, right) plants for the Slcbl10 mutation grown in absence of salt stress. 658 

Supplemental Figure S2. The lack of SlCBL10 alters K
+
 content in tomato plant under salt stress. 659 

Supplemental Figure S3. Na
+
 extrusion is increased in Slcbl10 under salinity.  660 

Supplemental Figure S4. Phenotype of Slcbl10 tomato mutant plants salt-treated for a long time in a 661 

greenhouse.  662 

Supplemental Figure S5. Phenotype of RNAi SlCBL10 plants salt-treated for a long time in a greenhouse.  663 
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Supplemental Figure S6. Effects of calcium deficiency on shoot apex development.  664 
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 671 

FIGURE LEGENDS 672 

Figure 1. Molecular cloning of pms916 salt hypersensitive T-DNA mutant. (A) Phenotype of pms916 mutant 673 

plants grown in vitro after 20 days of 100 mM NaCl salt treatment (DST). (B) Southern blot analysis using a 674 

chimeric probe which includes the complete coding sequence of the NEOMICIN PHOSPHOTRANSFERASE II 675 

(NPTII) gene fused to 811 pb of the coding sequence of FALSIFLORA (FA) gene (used as hybridization positive 676 

control). (C) Genomic organization of the SlCBL10 gene and the two T-DNA copies inserted in a head-to-tail 677 

tandem orientation in the pms916 mutant. The tandem T-DNA insertion resulted in a 1,836 bp deletion between 678 

−1,634 and 202 bp in the SlCBL10 gene. Number 1 indicates the translation start site, and 8,766 indicates the 679 

last nucleotide of the coding region. Exons are depicted as black boxes; the lines between boxes are introns. The 680 

dotted lines indicate the position where the insertion is located. The grey arrows indicate the primers used for 681 

genotyping the T2 population. G-F and G-R: specific genomic forward and reverse primers, respectively, used 682 

to amplify the wild-type allele (without T-DNA insertion). G-F and T2-R: specific genomic forward and 683 

specific T-DNA border primers, respectively, used to amplify the mutant allele (carrying the T-DNA insertion). 684 

(D) Genotyping of T2 individuals. All T2 plants homozygous for the mutant allele (1, 5, 7, 8, 12, 13, and 15) 685 

displayed pms916 mutant phenotype, while T2 plants heterozygous (2, 3, 4, 6, 9, 10, 11, 14, 16, 17, 18, 20, 23, 686 

and 24) and homozygous for the Wild-type allele (19, 21, 22, and 25) showed wild-type phenotype. 687 
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 688 

Figure 2. SlCBL10 protects the tomato shoot apex and young tissues from salt stress conditions. (A) WT and 689 

Slcbl10 mutant plants grown in a hydroponic system and salt-treated at cotyledon development stage (HSTy 690 

assay). Framed in red a Slcbl10 mutant plant severely damaged by salinity, particularly in the shot apex (arrow). 691 

(B) Phenotype of adult WT and Slcbl10 mutant plants grown in a hydroponic system and salt-treated at the 5
th

 692 

fully developed leaf stage (HSTa assay). Note that shoot apex and young tissues of mutant plants are severely 693 

affected by salinity while adult leaves display a similar appearance to WT (pointed with red arrows). (C) 694 

Phenotype of RNAi SlCBL10 and control plants subjected to hydroponic salt treatment (HSTa assay 695 

conditions). Note that RNAi SlCBL10 plant phenocopies the mutant phenotype under saline conditions. (D) 696 

Changes in shoot and root fresh weights of WT, Slcbl10 mutant and RNAi SlCBL10 plants during salt 697 

treatment. Values are the mean ± SE of two independent assays, each with three biological replicates. Asterisks 698 

indicate significant differences (Student’s t-test, P < 0.05). 699 

 700 

Figure 3. Ectopic SlCBL10 expression restores salt tolerance in the Arabidopsis cbl10 mutant. Five-day-old 701 

seedlings of WT (Col-0), cbl10 mutant and three transgenic lines (L3-5) overexpressing SlCBL10 in an 702 

Arabidopsis cbl10 mutant genetic background were transferred to MS supplemented with 100 mM NaCl. (A) 703 

Representative plants 10 days after transfer. (B) Fresh weight per seedling. Black bars, without NaCl treatment; 704 

hatched bars 100 mM NaCl treatment. (C) Sodium accumulation in plants of the indicated genotypes after 10 705 

days.  706 

 707 

Figure 4. Expression pattern of SlCBL10 gene in WT plants under salt stress conditions. WT plants grown in a 708 

hydroponic system and salt-treated at the 5
th

 fully developed leaf stage (HSTa assay). (A) Levels of SlCBL10 709 

transcripts were quantified by RT-qPCR in apex, young leaf, upper adult leaf (1
st
 fully developed leaf), stem (1

st
 710 

internode) and root of WT plants developed in absence of salt (0 DST) and after 2 days of salt treatment (2 711 
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DST). (B) Time-course analysis of SlCBL10 gene expression during 6 days of salt treatment (144 h) was 712 

analysed in upper adult leaf. Values are the mean ± SE of two independent assays, each with three biological 713 

replicates. Different lowercase letters indicate significant differences determined by ANOVA (P <0.05). 714 

 715 

Figure 5. The salt-hypersensitivity phenotype of Slcbl10 mutant is associated with an altered Na
+
 long distance 716 

distribution promoted by an impaired capacity to compartmentalize Na
+
 into leaf vacuole. WT and Slcbl10 717 

mutant plants were cultivated in a hydroponic system under salt conditions (HSTa assay). (A) Na
+
 content and 718 

(B) Na
+
/K

+
 ratio were analysed in apex, upper adult leaves (1

st
 fully developed leaf), stem (1

st
 internode) and 719 

root after 2 and 6 days of salt treatment (DST). (C) Relative expression of key genes involved in long-distance 720 

Na
+
 distribution (SlSOS2, SlSOS1 and SlHKT1;2) and in Na

+
 compartmentalization into the vacuole (SlNHX3, 721 

SlNHX4, SlAV1, SlVHA-A1) was analysed in upper adult leaves at 0 DST and after 2 DST. Values are the mean 722 

± SE of two independent assays, each with three biological replicates. Asterisks indicate significant differences 723 

(Student’s t-test, P < 0.05). 724 

 725 

Figure 6. SlCBL10 disruption promoted the retention of Ca
2+ 

in leaf and stem under salinity conditions. (A) WT 726 

and Slcbl10 mutant plants grown in a hydroponic system under salt conditions (HSTa assay). Ca
2+

 content was 727 

analysed in stem (1
st
 internode) and in the 1

st
 developed leaf prior to salt treatment (0 DST) and after 2 and 6 728 

DST. (B) Grafted plants between WT and Slcbl10 mutant were subjected to hydroponic salt treatment (HSTa 729 

assay conditions). Ca
2+

 content was analysed in the 1
st
 developed leaf and in root at 0 DST and 6 DST. (C) Fruit 730 

yield, fruit number and BER incidence in WT and mutant plants at 0 DST and after 50 DST. Values are the 731 

mean ± SE of three biological replicates of five plants each. Asterisks indicate significant differences between 732 

WT and Slcbl10 mutant (Student’s t-test, P < 0.05). Different lowercase letters indicate significant differences 733 

in each tissue (root or leaf) determined by ANOVA (P < 0.05). 734 

 735 
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Figure 7. SlCBL10 disruption alters the influx and efflux of Ca
2+ 

in vacuole. WT and Slcbl10 mutant plants 736 

grown in a hydroponic system under salt conditions (HSTa assay). Relative gene expression of SlCAX1, 737 

SlTPC1, SlAVP1 and SlVHA-A1 was recorded in upper adult leaf of WT and Slcbl10 mutant during 6 days of 738 

salt stress. Values are the mean ± SE of two independent assays, each with three biological replicates. Asterisks 739 

indicate significant differences (Student’s t-test, P < 0.05).  740 

 741 

Figure 8. SlCBL10 gene is involved in maintaining a suitably low Na
+
/Ca

2+
 ratio in tomato apex and flower 742 

under salinity conditions. WT, Slcbl10 mutant and RNAi SlCBL10 plants grown in a hydroponic system and 743 

salt-treated at the 5
th

 fully developed leaf stage (HSTa assay). Na
+
 (A) and Ca

2+
 contents (B) were analysed in 744 

upper adult leaf, apex and flower after 6 days of salt treatment (DST), and then the Na
+
/Ca

2+
 ratio was 745 

calculated (C). Values are the mean ± SE of two independent assays, each with three biological replicates. 746 

Different lowercase letters represent significant differences (P > 0.05) calculated by ANOVA. (D) 747 

Representative images of WT and Slcbl10 mutant flowers after 10 DST. 748 

 749 

Figure 9. Hypothetical model of the genetic and physiological mechanism proposed to explain the functional 750 

role of SlCBL10 gene in regulating Na+ and Ca2+ homeostasis under salt stress conditions. On the right side, it 751 

is indicated the activity of Na+ antiporters (SOS1, NHK and KKT), Ca2+ antiporter (CAX), the vacuolar pumps 752 

(AVP1 and V-ATPase) and the cation vacuolar channel TPC1, all of them involved in maintaining Na+/Ca+2+ 753 

balance through the vacuolar transport. On the left side, the mechanism would be impaired due to the lack of 754 

SlCBL10 (see Discussion section for details). Red and green colours mean down-regulated and up-regulated 755 

genes under salt stress, respectively, while grey colour represents absence of gene expression changes in salinity 756 

conditions. Different lightness of red and green colours indicate different levels of gene expression in Slcbl10 757 

mutant (left) respect to WT plants (right) grown in salt conditions, where darker hues represent higher induction 758 
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(green) or inhibition (red). The names of the proteins correspond to those of Arabidopsis thaliana, although 759 

results provided in this work indicate that, in general terms, this mechanism could be conserved in tomato. 760 
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mutant plants grown in vitro after 20 days of 100 mM NaCl salt treatment (DST). (B) Southern blot
analysis using a chimeric probe which includes the complete coding sequence of the NEOMICIN
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and G-R: specific genomic forward and reverse primers, respectively, used to amplify the wild-type allele
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respectively, used to amplify the mutant allele (carrying the T-DNA insertion). (D) Genotyping of T2
individuals. All T2 plants homozygous for the mutant allele (1, 5, 7, 8, 12, 13, and 15) displayed pms916
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Figure 2. SlCBL10 protects the tomato shoot apex and young tissues from salt stress conditions. (A) WT
and Slcbl10 mutant plants grown in a hydroponic system and salt-treated at cotyledon development stage
(HSTy assay). Framed in red a Slcbl10 mutant plant severely damaged by salinity, particularly in the shot
apex (arrow). (B) Phenotype of adult WT and Slcbl10 mutant plants grown in a hydroponic system and
salt-treated at the 5th fully developed leaf stage (HSTa assay). Note that shoot apex and young tissues of
mutant plants are severely affected by salinity while adult leaves display a similar appearance to WT
(pointed with red arrows). (C) Phenotype of RNAi SlCBL10 and control plants subjected to hydroponic salt
treatment (HSTa assay conditions). Note that RNAi SlCBL10 plant phenocopies the mutant phenotype
under saline conditions. (D) Changes in shoot and root fresh weights of WT, Slcbl10 mutant and RNAi
SlCBL10 plants during salt treatment. Values are the mean ± SE of two independent assays, each with
three biological replicates. Asterisks indicate significant differences (Student’s t-test, P < 0.05).
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Figure 3. Ectopic SlCBL10 expression restores salt tolerance in the Arabidopsis cbl10 mutant. Five-day-
old seedlings of WT (Col-0), cbl10 mutant and three transgenic lines (L3-5) overexpressing SlCBL10 in an
Arabidopsis cbl10 mutant genetic background were transferred to MS supplemented with 100 mM NaCl.
(A) Representative plants 10 days after transfer. (B) Fresh weight per seedling. Black bars, without NaCl
treatment; hatched bars 100 mM NaCl treatment. (C) Sodium accumulation in plants of the indicated
genotypes after 10 days.
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in a hydroponic system and salt-treated at the 5th fully developed leaf stage (HSTa assay). (A) Levels of
SlCBL10 transcripts were quantified by RT-qPCR in apex, young leaf, upper adult leaf (1st fully developed
leaf), stem (1st internode) and root of WT plants developed in absence of salt (0 DST) and after 2 days of
salt treatment (2 DST). (B) Time-course analysis of SlCBL10 gene expression during 6 days of salt
treatment (144 h) was analysed in upper adult leaf. Values are the mean ± SE of two independent assays,
each with three biological replicates. Different lowercase letters indicate significant differences determined
by ANOVA (P <0.05).
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Figure 5. The salt-hypersensitivity phenotype of Slcbl10 mutant is associated with an altered Na+ long
distance distribution promoted by an impaired capacity to compartmentalize Na+ into leaf vacuole. WT and
Slcbl10 mutant plants were cultivated in a hydroponic system under salt conditions (HSTa assay). (A) Na+

content and (B) Na+/K+ ratio were analysed in apex, upper adult leaves (1st fully developed leaf), stem (1st

internode) and root after 2 and 6 days of salt treatment (DST). (C) Relative expression of key genes
involved in long-distance Na+ distribution (SlSOS2, SlSOS1 and SlHKT1;2) and in Na+

compartmentalization into the vacuole (SlNHX3, SlNHX4, SlAV1, SlVHA-A1) was analysed in upper adult
leaves at 0 DST and after 2 DST. Values are the mean ± SE of two independent assays, each with three
biological replicates. Asterisks indicate significant differences (Student’s t-test, P < 0.05).
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Figure 6. SlCBL10 disruption promoted
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lowercase letters indicate significant
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determined by ANOVA (P < 0.05).
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Figure 8. SlCBL10 gene is involved in maintaining a suitably low Na+/Ca2+ ratio in tomato apex and flower
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and salt-treated at the 5th fully developed leaf stage (HSTa assay). Na+ (A) and Ca2+ contents (B) were
analysed in upper adult leaf, apex and flower after 6 days of salt treatment (DST), and then the Na+/Ca2+

ratio was calculated (C). Values are the mean ± SE of two independent assays, each with three biological
replicates. Different lowercase letters represent significant differences (P > 0.05) calculated by ANOVA.
(D) Representative images of WT and Slcbl10 mutant flowers after 10 DST.
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Figure 9. Hypothetical model of the genetic and physiological mechanism proposed to explain the
functional role of SlCBL10 gene in regulating Na+ and Ca2+ homeostasis under salt stress conditions. On
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the vacuolar pumps (AVP1 and V-ATPase) and the cation vacuolar channel TPC1, all of them involved in
maintaining Na+/Ca+2+ balance through the vacuolar transport. On the left side, the mechanism would be
impaired due to the lack of SlCBL10 (see Discussion section for details). Red and green colours mean
down-regulated and up-regulated genes under salt stress, respectively, while grey colour represents
absence of gene expression changes in salinity conditions. Different lightness of red and green colours
indicate different levels of gene expression in Slcbl10 mutant (left) respect to WT plants (right) grown in
salt conditions, where darker hues represent higher induction (green) or inhibition (red). The names of the
proteins correspond to those of Arabidopsis thaliana, although results provided in this work indicate that,
in general terms, this mechanism could be conserved in tomato.
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