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Abstract 

 

Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a master regulator of cellular 

protective processes. Rheumatic diseases are chronic conditions characterized 

by inflammation, pain, tissue damage and limitations in function. Main examples 

are rheumatoid arthritis, systemic lupus erythematosus, osteoarthritis and 

osteoporosis. Their high prevalence constitutes a major health problem with an 

important social and economic impact. A wide range of evidence indicates that 

Nrf2 may control different mechanisms involved in the physiopathology of 

rheumatic conditions. Therefore, the appropriate expression and balance of 

Nrf2 is necessary for regulation of oxidative stress, inflammation, immune 

responses, and cartilage and bone metabolism. Numerous studies have 

demonstrated that Nrf2 deficiency aggravates the disease in experimental 

models while Nrf2 activation results in immunoregulatory and anti-inflammatory 

effects. These reports reinforce the increasing interest in the pharmacologic 

regulation of Nrf2 and its potential applications. Nevertheless, a majority of Nrf2 

inducers are electrophilic molecules which may present off-target effects. In 

recent years, novel strategies have been sought to modulate the Nrf2 pathway 

which has emerged as a therapeutic target in rheumatic conditions.  

 

Keywords: Nrf2, rheumatic conditions, rheumatoid arthritis, systemic lupus 

erythematosus, osteoarthritis, osteoporosis 

 

1. Introduction 
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 The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway is involved 

in the regulation of many antioxidant, anti-inflammatory and cell survival genes. 

Activation of this signaling pathway which contributes to detoxification and 

protective processes has encouraged a wealth of studies on its potential health 

benefits and therapeutic applications. Nrf2 is a CNC-bZIP (Cap‘n’collar-basic 

region leucine zipper) transcription factor [1]. In unstressed conditions, Nrf2 

binds to the cytosolic inhibitor Kelch-like ECH-associated protein 1 (Keap1) an 

adaptor protein to the cullin-3 E3 ubiquitin ligase complex [2], which targets Nrf2 

for proteasomal degradation. Nrf2 contains two Keap1 binding motifs, ETGE 

and DLG. Keap1 is a main regulator of Nrf2 and a sensor of oxidative and 

xenobiotic stress. Under basal intracellular redox conditions, Keap1 drives Nrf2 

regulation but in the presence of cellular stress, Nrf2 can be regulated by both 

Keap1-dependent and -independent mechanisms [3]. Nrf2 accumulates in the 

nucleus and binds to the antioxidant-response element (ARE) sites in the 

promoter of target genes as a heterodimer with a small musculoaponeurotic 

fibrosarcoma (sMaf) protein (Figure 1). In addition, Nrf2 has been reported to 

form heterodimers with proteins such as c-Jun, activating transcription factor 4, 

and others depending on cell type and stimuli [4,5]. Genes targeted by Nrf2 

include genes involved in the synthesis and conjugation of glutathione, heme 

and iron metabolism, drug metabolism and transport, as well as antioxidant 

proteins, enzymes and transcription factors. Nrf2 is essential for the 

transcriptional induction of phase II detoxifying enzymes and antioxidant 

proteins which represent a main defense mechanism. For instance, glutathione 

reductase, glutathione S-transferase, γ-glutamylcysteine synthetase, 
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NAD(P)H:quinone oxidoreductase-1 (NQO1) and heme oxygenase-1 (HO-1) 

(reviewed in [6]).  

Oxidants and electrophiles modify Keap1 cysteine residues which causes 

a conformational change in this protein leading to cessation of Nrf2 

polyubiquitination. Then, Nrf2 translocates to the nucleus to initiate the 

transcription of target genes [7,8]. Phosphorylation mediated by glycogen 

synthase kinase 3 (GSK-3) creates a recognition motif for the E3 ligase adapter 

β-transducin repeat containing E3 ubiquitin protein ligase (β-TrCP) leading to an 

alternative pathway for ubiquitin-dependent proteasomal degradation of Nrf2 [3]. 

Nrf2 can be regulated by acetylation by p300/cAMP response element-

binding protein (CREB)-binding protein (CBP) [9]. Thus, acetylation of Nrf2 

results in binding to the ARE and activation of gene transcription, whereas 

deacetylation releases it leading to transcriptional termination and nuclear 

export [10]. Nrf2 acetylation is determined by the relative activities of histone 

acetyl transferases and histone deacetylases (HDACs) [9]. Bach proteins 

dimerize with sMaf proteins and these complexes compete with Nrf2-sMaf. In 

particular, Bach1 plays significant roles by activating and repressing 

transcriptional activities to regulate the oxidative stress response and suppress 

HO-1 [11].  

 Rheumatic diseases are chronic conditions affecting the musculoskeletal 

system. Arthritis and related illnesses cause inflammation, changes in the joints, 

pain and limitations in motion and function. These conditions have a profound 

effect on work capacity and quality of life of affected people. In the industrialized 

world rheumatic diseases affect more individuals than any other disease group 

(European League Against Rheumatism: www.eular.org, and American College 
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of Rheumatology: www.acr.org) and constitute a major health problem with an 

important social and economic impact. The burden related to these conditions is 

expected to increase in the near future as the population ages.  

 In recent years, several lines of evidence have supported the notion that 

Nrf2 plays a regulatory role not only in oxidative stress, but also in inflammation, 

immunity and cartilage and bone metabolism. The results of many in vitro and in 

vivo studies have led to propose that Nrf2 activation may control different 

processes and mediators involved in the physiopathology of rheumatic 

conditions. Some relevant examples can be rheumatoid arthritis (RA), systemic 

lupus erythematosus (SLE), osteoarthritis (OA) and osteoporosis. The aim of 

this Commentary is to focus on Nrf2 as a new therapeutic target in these 

conditions. 

 

 

2. Nrf2 regulation of inflammatory and immune responses 

 

 A wide range of evidence indicates that Nrf2 plays an important role in 

the regulation of inflammation as well as in innate and adaptive immune 

responses. The control of redox activity by Nrf2 and antioxidant downstream 

targets may play a role in the activation of the NLR family, pyrin domain 

containing 3 (NLRP3) inflammasome. NLRP3 is involved in homeostasis and 

tissue repair although its dysregulation contributes to inflammatory and 

degenerative diseases [12]. The activation of the cytosolic inflammasome 

complex results in inflammatory caspase activation leading to the secretion of 

interleukin(IL)-1β and IL-18 mainly in monocytes/macrophages and dendritic 
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cells (DCs) [13]. Increased NLRP3 inflammasome activity is a key feature of 

both autoinflammatory and autoimmune diseases [14] and Nrf2 has recently 

been proposed as a potential target for the therapeutic modulation of NLRP3-

associated diseases [15].  

Nevertheless, Nrf2 deficiency in mice results in defective activation of 

NLRP3 and absent in melanoma 2 (AIM2) inflammasomes in bone marrow 

macrophages after treatment with a variety of stimuli including monosodium 

urate and non crystalline agents [16]. In contrast, it has been reported that Nrf2 

is an inhibitor of NLRP3 expression at the transcriptional level and thus, Nrf2 

activation inhibited lipopolysaccharide-induced NLRP3 production in THP1 cells 

[15]. These conflicting findings clearly emphasize the need of studying the 

precise molecular mechanisms involved in Nrf2 interaction with inflammasomes. 

Nrf2 not only inhibits inflammation through redox control but also 

downregulates pro-inflammatory cytokines, chemokines, adhesion molecules 

and enzymes. Nrf2 and HO-1 have shown the ability to control the migration of 

inflammatory cells, a key process in the development of chronic inflammatory 

conditions. The inhibition of adhesion molecules and matrix metalloproteinase 

(MMP) expression can mediate these anti-inflammatory effects [17,18]. 

Nrf2 activity is essential to control cellular mechanisms contributing to the 

resolution of the inflammatory process. For this purpose, Nrf2 interplays with 

nuclear factor-κB (NF-κB) through multiple molecular interactions (reviewed in 

[19]). Phosphorylation of NF-κB inhibitor (IκBα) by IκB kinase (IKKβ) leads to 

IκBα degradation which results in nuclear translocation and DNA binding of NF-

κB. Hydroperoxides can regulate NF-κB activation by several mechanisms. For 

instance, in basal redox conditions, Keap1 is responsible for IKKβ ubiquitination 
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and degradation but in the presence of oxidants, Keap1 is inhibited and NF-κB 

can be activated [20]. Nrf2 decreases NF-κB activation by interacting with 

Keap1. In addition, Nrf2 can interact with the sMaf protein MafK. This protein 

enhances the acetylation of p65 and thus the DNA-binding activity of NF-κB. 

Therefore, Nrf2 may maintain low levels of MafK avoiding excessive p65 

acetylation [21]. 

Nrf2 contains several κB sites in its proximal promoter, which are 

subjected to regulation by p50 and p65. In turn, NF-κB may play a dual role in 

the regulation of Nrf2 activity. NF-κB activation induces Nrf2 expression in cells 

such as human monocytes and acute myeloid leukemia cells, leading to 

enhanced activation of Nrf2-dependent antioxidant defense responses but it can 

also inhibit Nrf2 by several mechanisms such as the competition for the 

transcriptional co-activator p300/CBP. In addition, NF-ĸB increases the 

recruitment of HDAC3 to the ARE region and thus Nrf2 transcriptional activation 

is prevented [18]. 

Nrf2 activation promotes the resolution of inflammation through the 

induction of prostaglandin (PG) D synthase expression in macrophages leading 

to the rapid production of PGD2/15-deoxy-delta(12,14)-prostaglandin J2 (15d-

PGJ2) which sustains a positive feedback loop to limit the inflammatory 

response. It has been shown that 15d-PGJ2 activates Nrf2 leading to the 

induction of CD36 and HO-1 in macrophages to promote efferocytosis and the 

resolution of inflammation [22]. 

Nrf2 deficiency induces autoimmune phenotypes in certain strains of 

mice and increases susceptibility to the development of autoimmune diseases 

[23] whereas Nrf2 activation is associated with the attenuation of these 
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conditions [17,24]. In the presence of Nrf2 dysregulation, oxidative tissue 

damage and apoptosis could increase the production of autoantigens leading to 

activation of T cells and production of autoantibodies by B cells. In addition, loss 

of phase II enzymes causes an elevation in the steady state of reactive 

intermediates by failing to remove them. This can promote the activation of 

immune cells. As Nrf2 is a master regulator of cellular responses against 

environmental stresses [8], it is likely that Nrf2 activation can protect against 

environmental factors contributing to autoimmune pathogenesis.  

Nrf2-mediated regulation of autoimmune function can involve the 

suppression of pro-inflammatory T helper(Th)1 and Th17 cell responses, and 

the enhancement of anti-inflammatory Th2, regulatory T cells (Treg) and 

regulatory B cells functions (Figure 2). In addition, Nrf2 may control the 

differentiation and function of DCs and macrophages. Nrf2 deficiency alters the 

function and phenotype of DCs with increased co-stimulatory molecule 

expression and enhanced antigen-specific T cell stimulatory capacity in 

immature cells [25].  

The influence of Nrf2 on T cell function is complex. Disruption of Nrf2 

limits glutathione availability leading to the inhibition of antigen-induced CD8+ T 

cell proliferation and function [26]. In contrast, Nrf2 activation inhibits secretion 

of the Th1 cytokines, interferon γ (IFN-γ) and tumor necrosis factor α (TNFα), 

promotes early production of IL-2 [27] and skews CD4+ T cells toward Th2 

differentiation [28]. Recently, clustered regularly interspaced short palindromic 

repeats (CRISPR) technology has been used for ex vivo Keap1 editing in 

primary human T cells in order to achieve Nrf2 activation and enhanced anti-

inflammatory and immunosuppressive functions [29]. 
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The inhibition of transcription of inflammatory mediators may contribute 

to the therapeutic effects of Nrf2 activation in autoimmune diseases. It also 

appears that HO-1 induction may contribute to the immunosuppressive ability of 

Nrf2 activation. It is known that HO-1 and CO reduce the capacity of antigen-

presenting cells, such as DCs and macrophages to recognize pathogen-

associated molecular patterns thus suppressing both antigen presentation and 

the production of pro-inflammatory cytokines [19]. HO-1 activity was also found 

to modulate the proliferative capacity of T cells, the effector functions of T cells 

and natural killer cells, and the suppressive functions of Treg [30].  

The immunoregulatory effects of Nrf2 have been classically related to the 

control of oxidative stress and phase II enzymes, glutathione levels or NF-κB 

activation [19]. Nevertheless, some data suggest the contribution of other 

mechanisms such as the p38-CREB/activating transcription factor 1 (ATF1) 

signaling axis in DCs [25] or the disruption of RNA polymerase II recruitment 

which results in the inhibition of IL-6 and IL-1β transcription in macrophages 

[17].  

 

 

3. Rheumatoid arthritis 

RA is a chronic autoimmune disease characterized by synovial 

hyperplasia, immune cell infiltration and degradation of cartilage and bone. 

There are activation and migration of neutrophils, macrophages, and 

lymphocytes which result in the increased production of pro-inflammatory 

mediators such as oxidants, eicosanoids, cytokines (IL-17, TNFα, IFN-γ, IL-6, 

and IL-1β) and catabolic enzymes, with hyperproliferation of synovial fibroblasts 
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[31]. This results in joint swelling and progressive destruction of cartilage and 

bone. Excessive oxidant generation may contribute to the pathogenesis of RA. 

In fact, RA patients show a marked increase in lipid peroxidation, protein 

oxidation and DNA damage associated to a reduced activity of the antioxidant 

defense system, which may contribute to tissue damage and the perpetuation of 

disease [32]. As a response to oxidative stress, Nrf2 expression is activated in 

synovial cells from RA patients and also in joints of antibody-induced arthritic 

mice although this response is not enough to counteract arthritis progression 

[33]. In fact, enhanced gene expression of Nrf2/HO-1 in a subgroup of RA 

patients has been related to more severe disease state with an underlying lack 

of apoptosis in synovial fibroblasts, macrophages, lymphocytes, and other cells 

that may contribute to the persistence of RA [34]. 

Nrf2 deficiency enhances joint alterations in experimental RA models. In 

K/BxN serum transfer arthritis and antibody-induced arthritis, Nrf2 deletion 

accelerates the incidence and aggravates the disease, with important 

inflammation and lesions [33,35]. Nrf2 deficiency dramatically upregulates 

oxidative stress, cell migration, cyclooxygenase-2 (COX-2) and inducible nitric 

oxide synthase expression, the pro-inflammatory cytokines TNFα and IL-6, as 

well as the chemokine CXCL-1. In addition, we showed that Nrf2 may be a 

protective factor for bone metabolism in the presence of arthritis [35]. On the 

contrary, Nrf2 activation and HO-1 induction exert anti-inflammatory and 

antioxidant effects in animal models of RA and in human RA synovial fibroblasts 

[36,37]. 

Many molecules have shown anti-inflammatory and immunoregulatory 

properties via the oxidative stress-responsive transcription factor Nrf2. There is 
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a variety of Nrf2 inducers, most of which are electrophilic and react with 

cysteine thiols of Keap1. In particular, Cys151, Cys273, and Cys288 play an 

important role in Nrf2 activation. Therefore, modification of thiol moieties in 

Keap1 leads to disturbance of the structure and the decline of ubiquitin ligase 

activity [38]. As a main example, sulforaphane (SFN, Figure 3) can exert 

immunoregulatory effects leading to the inhibition of T cell proliferation and the 

production of IL-17 and TNFα by RA CD4+ T cells [39]. This compound is also 

able to polarize pro-inflammatory M1 macrophages into anti-inflammatory M2 

cells [40]. In cultured human synoviocytes, SFN induced apoptosis by 

modulating the expression of Bcl-2/Bax, p53, and pAkt and inhibited 

inflammation [39]. Intraperitoneal administration of SFN to mice reduced the 

clinical severity of collagen-induced arthritis, anti-collagen II antibody levels, T 

cell responses and the production of IL-17, TNFα, IL-6, and IFN-γ by lymph 

node cells and spleen cells [39]. Part of the anti-inflammatory effects of SFN 

would be dependent on Nrf2 activation which indirectly inhibits NF-κB via HO-1-

mediated CO production but part of them are independent of Nrf2 as SFN can 

directly inhibit NF-κB [41].  

The Nrf2 activator and immunoregulatory agent dimethyl fumarate (DMF) 

is used in systemic sclerosis and severe plaque psoriasis. It has been reported 

that DMF partly exerts its anti-inflammatory effects via inflammasome inhibition 

[42]. Furthermore, blockade of T cell activation by DMF may be related to 

binding specific cysteine residues in protein kinase C (PKC)θ which is a key 

kinase in T cell signaling [43], and DMF and monomethylfumarate (MMF) may 

activate the hydroxycarboxylic acid receptor 2 (HCAR2) which results in 

downregulation of NF-κB [44].  
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Many studies have reported the effects of polyphenols, and mainly of the 

green tea's active ingredient, epigallocatechin 3-gallate in preclinical models of 

RA as well as in vitro, in cartilage and bone protection and synovial fibroblast 

regulation. This compound induces Nrf2 and HO-1 in different cell types while 

decreasing NF-κB activity and the production of inflammatory and extracellular 

matrix degradative mediators [45]. The activation of synovial fibroblasts and the 

production of inflammatory cytokines are crucially involved in the pathogenesis 

of RA. It is interesting to note that calycosin, an isoflavone from the Chinese 

medicinal herb Radix Astragali, has been reported to downregulate pro-

inflammatory cytokines and COX-2 via p62-Nrf2-HO-1 induction in RA synovial 

fibroblasts [46].  

Antirheumatic gold(I)-containing compounds stimulate the antioxidative 

stress response through activation of Nrf2/sMaf leading to the upregulation of 

HO-1 and γ-glutamylcysteine synthetase [47]. Nrf2-HO-1 activation also 

mediates the anti-inflammatory effects of H2S and related compounds which are 

able to modify by sulfydrylation the cysteine residue of Keap1. For instance, the 

endogenous H2S modulator S-propargyl-cysteine is able to reduce the 

generation of inflammatory mediators, oxidants, and MMP-9 as well as the cell 

invasive activity in rheumatoid fibroblast-like synoviocytes MH7A. In vivo, this 

compound ameliorated the severity of arthritis in the adjuvant model in rats [37]. 

Oxidized phospholipids able to regulate antioxidant gene expression via 

Nrf2 signaling in vivo have been detected under chronic inflammatory 

conditions. Interestingly, epoxycyclopentenone derivatives have been shown to 

activate Nrf2 leading to inhibition of pro-inflammatory cytokines and chemokines 

in myeloid cells. These effects were similar to those of the pro-resolving lipid 
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mediator 15d-PGJ2 which has been reported to interact with the nuclear 

hormone receptor peroxisome proliferator-activated receptor-γ (PPAR-γ) as well 

as with Nrf2. Of note, 15d-PGJ2 was active in PPAR-γ-deficient cells but not in 

Nrf2-deficient cells implying that the anti-inflammatory activity of 15d-PGJ2 was 

mediated via Nrf2 rather than PPAR-γ [48]. 15d-PGJ2 forms an adduct to Keap1 

and disrupts Nrf2 ubiquitination, leading to the accumulation of Nrf2 in the 

nucleus. In addition, 15d-PGJ2 ameliorated adjuvant-induced arthritis with 

suppression of pannus formation and mononuclear cell infiltration [49].  

Polyunsaturated fatty acids are able to inhibit inflammation in 

macrophages through the induction of Nrf2 [50]. It is interesting to note that 

eicosapentaenoic acid and docosahexaenoic acid inhibit inflammatory cartilage 

degradation. The last compound also ameliorates disease activity in patients 

with RA and enhances plasma levels of pro-resolving maresin/resolvin 

precursors [51]. 

 

4. Systemic lupus erythematosus  

An increased production of oxidative stress may contribute to immune 

cell death and autoimmunity in SLE. Necrosis secondary to deregulated cell 

death and removal processes results in the generation of autoantigens and 

formation of immune complexes which induce inflammation and tissue damage 

in organs such as the kidney, skin and joints. SLE patients show alterations in 

repair mechanisms of oxidative DNA damage, high serum levels of oxidized 

proteins, apoCIII, oxidized phospholipids and autoantibodies to oxidatively 

modified lipoproteins [52].  
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Nrf2 polymorphisms have not been associated to lupus susceptibility 

although the Nrf2 -653 G/A polymorphism is related to the risk of nephritis 

among Mexican childhood-onset female SLE patients [53]. Increased levels of 

Nrf2, NQO1 and 8-oxo-7,8-dihydro-2'-deoxyguanosine were observed in 

glomeruli from human lupus nephritis. Nrf2 is also induced in other types of 

nephritis and may result from immune-complex deposition [54].  

 Female mice deficient in Nrf2 develop with age a multi-organ 

autoimmune disorder similar to SLE with increased DNA oxidation and lipid 

peroxidation, splenocyte apoptosis, presence of antibodies against dsDNA and 

the Smith antigen, and tissue damage (vasculitis, glomerulonephritis, hepatitis, 

and myocarditis) [55]. According to the genetic background of mice, there are 

differences in the age necessary to develop these changes [23]. Although 

oxidative damage due to Nrf2 deficiency is present in both male and female 

mice, only female mice show progression to SLE suggesting that gender-

specific factors are involved in breaking of immune tolerance to self antigens 

[55]. In addition to deficiency in phase 2 detoxification enzymes and antioxidant 

genes in hepatic and lymphoid cells which results in oxidative damage to 

tissues, Nrf2 knock-out results in enhanced proliferative responses of CD4+ T 

cells, altered CD4+/CD8+ ratios and promotion of Th17 cells differentiation and 

function [56]. Nrf2 deletion has also been shown to promote Th17 differentiation 

and function during lupus nephritis development by regulating the suppressor of 

cytokine signaling 3 (SOCS3)/signal transducer and activator of transcription 

(STAT) 3 pathway and IL-1β [56].  

Nrf2 inducers inhibit the development of disease in animal models such 

as pristane-induced lupus nephritis and spontaneous lupus in MRL/lpr mice. 
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Therefore, induction of Nrf2 by SFN protects renal cells from developing lupus 

nephritis by downregulation of oxidative stress and inhibition of NF-κB and 

extracellular matrix deposition [57]. Interestingly, fumaric acid esters have been 

used as systemic combination therapy in the treatment of severe, extensive and 

recalcitrant cutaneous manifestation of SLE. They were well-tolerated and 

showed excellent efficacy and a steroid-sparing effect [58], supporting the 

interest of this approach in the therapy of lupus. As another example, 

epigallocatechin-3-gallate prevents lupus nephritis development via the 

upregulation of the Nrf2 antioxidant pathway, which inhibits NLRP3 

inflammasome activation [59]. 

 

 

5. Osteoarthritis 

 

 OA is characterized by a progressive cartilage degradation associated 

with hypertrophic differentiation of chondrocytes, synovitis and alterations in 

subchondral bone and periarticular tissues. Long-time exposure to a low-grade 

chronic inflammation concomitant with a failure in oxidant-antioxidant balance 

has an important impact on the pathogenesis of disease. Catabolic and pro-

inflammatory mediators are produced by the inflamed synovium leading to 

excess production of proteolytic enzymes responsible for cartilage breakdown 

[60].  

Mitochondrial dysfunction and oxidative damage are involved in the 

pathogenesis of OA. Oxidative stress is involved in the production of 

inflammatory and catabolic mediators and also contributes to joint degradation 
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by mechanisms such as the reduction in extracellular matrix synthesis, the 

induction of chondrocyte apoptosis and MMP activation [61]. Therefore, the 

control of oxidative stress and chronic inflammation by Nrf2 would result in 

protective effects against joint alterations in OA (Figure 4). Furthermore, as 

revised in the osteoporosis section, Nrf2 is an important factor to regulate the 

balance between osteoclast-driven bone resorption and osteoblast-driven 

remodeling which may play a role in the control of bone metabolism in OA. 

 The appropriate expression and balance of Nrf2 is necessary for normal 

chondrogenesis and regulation of cartilage metabolism. In fact, sustained 

overexpression of Nrf2 can inhibit chondral differentiation markers as collagen 

II, collagen X and osteopontin [62], but downregulation of Nrf2 could result in 

inhibition of chondrogenesis through apoptotic cell death [63]. In agreement with 

these findings, Nrf2 and glutathione transferase A4-4 expression is significantly 

lower in OA cartilage from humans and mice in comparison to normal controls 

[64]. 

The control of excessive oxidative stress and pro-inflammatory and 

catabolic mediators may sustain a protective role of Nrf2 in OA. In this context, 

Nrf2 knock-out mice display more severe cartilage damage in both the 

monoiodoacetate (MIA) and the surgical destabilization of medial meniscus 

(DMM) models of OA [65]. Induction of HO-1 by Nrf2 activation can also play a 

role in its anti-inflammatory and chondroprotective effects as HO-1 is able to 

reduce NF-κB activity and inflammatory and degradative mediators in OA 

chondrocytes, synoviocytes and osteoblasts [66-68].  

Recent investigations have shown that induction of Nrf2 by protandim (a 

commercial dietary supplement composed of five antioxidant phytochemicals) 
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and 6-gingerol mediates their protective effects in OA chondrocytes, where both 

drugs were able to attenuate the production of oxidative stress and 

inflammatory mediators as well as 6-hydroxynonenal-induced cell death. In 

addition, protandim administration to mice significantly reduced joint destruction 

in the DMM [64]. Piceatannol is another Nrf2 inducer with protective effects in 

this model of OA that also inhibits the production of inflammatory mediators, 

MMP-13 and aggrecanase-2 in OA chondrocytes stimulated with IL-1β [69]. 

Recently, the natural flavonoid wogonin has been reported to exert anti-

inflammatory and protective effects in human OA chondrocytes and cartilage 

explants [70]). Wogonin modulates the oxidant-mediated activation of Nrf2 

signaling axis and also disrupts Keap 1/Nrf2 interaction by blocking the binding 

site of Nrf2 in Keap 1 protein. 

 Nrf2 acetylation, mediated by histone acetyltransferase/HDAC enhances 

its transcriptional ability and the expression of downstream targets. Therefore, 

inhibition of HDAC results in Nrf2 activation. This is the mechanism of action of 

trichostatin A, a pan-HDAC inhibitor which protects against cartilage 

degradation and inflammation in the MIA and DMM models of OA through the 

induction of Nrf2 in joint tissues [65]. Besides trichostatin A, other HDAC 

inhibitors such as sodium butyrate and vorinostat have been shown to reduce 

inflammatory responses and the upregulation of MMPs and aggrecanase 2 in 

human OA chondrocytes. As a result, HDAC inhibitors have demonstrated 

protective effects against cartilage degradation through mechanisms such as 

Nrf2 activation and the inhibition of NF-κB and MAPK [71]. 

 Thus, strategies aimed at stimulating antioxidant gene expression, as 

HO-1 and NQO-1, through Nrf2 activation in aging cartilage may hold promise 
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for OA therapy [72]. Nevertheless, it should be taken into account that some 

Nrf2 inducers can protect against cartilage degradation by other mechanisms. 

For instance, SFN inhibited cytokine-induced MMP expression in human 

articular chondrocytes and fibroblast-like synovial cells independently of Nrf2 

and HDAC activity [73]. 

 

 

6. Osteoporosis 

 

 Formation and maintenance of bone tissues are regulated by two main 

mechanisms, bone formation by osteoblasts and bone resorption by 

osteoclasts. Many factors can disturb bone remodeling and break the balance 

between bone resorption and formation, which contribute to osteoporosis. 

Activation of immune cells in chronic inflammation results in an excessive 

production of bone-resorbing cytokines which are major stimulators of 

osteoclastogenesis. Elevated oxidative stress contributes to alterations in bone 

metabolism. As a consequence, there is systemic or local bone loss associated 

with osteoporosis, RA, etc. [74]. 

 Nrf2 is one of the transcription factors responsible for the regulation of 

differentiation and function of osteoblasts and osteoclasts in normal bone 

metabolism. The results from different studies indicate that Nrf2 is 

indispensable for normal bone microarchitecture and suggest a role for this 

transcription factor in the maintenance of bone integrity in pathological 

situations.  
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 Nrf2 plays an essential role in bone regeneration as Nrf2 knock-out mice 

show impaired fracture healing [75]. The Keap1/Nrf2 axis regulates receptor 

activator of nuclear factor κ-B ligand (RANKL)-dependent osteoclastogenesis 

via expression of enzymes such as HO-1, γ-glutamylcysteine synthetase, and 

glucose-6-phosphate dehydrogenase which modulate intracellular oxidative 

stress signaling [76]. Nrf2 deficiency promotes osteoclast differentiation 

mediated by increased oxidants production and activation of MAPKs and 

nuclear factor of activated T-cells 1 leading to bone resorption [77]. These 

animals show enhanced RANKL and osteoclast numbers accompanied by a 

decrease in osteoblast mineralization which increase their susceptibility to 

radiation-induced bone loss [78]. 

 However, the effects on osteoblast metabolism are more complex. A high 

level of oxidative stress exerts negative effects on osteoblast metabolism and 

results in cell damage which suggests a protective role for Nrf2. Nevertheless, 

there are conflicting reports as Nrf2 regulates the antioxidant endogenous 

response and bone accrual differently depending on factors such as sex and 

age [79]. Stable overexpression of Nrf2 exerts negative effects on MC3T3 

osteoblastic cells differentiation through inhibition of Runx2-dependent 

transcriptional activity [80]. In experiments using Nrf2 knock-out mice, it was 

concluded that Nrf2 exerts inhibitory effects on osteoclastic and osteoblastic 

differentiation with a higher effect on osteoblasts, in 9-week old mice [81]. In 

contrast, it has been reported that female Nrf2 knock-out mice exhibit a marked 

deficit in postnatal bone acquisition, by 3 weeks, related to a low osteoblast 

number and increased oxidants production which might impair early 

osteoblastogenesis and lead to the failure of bone acquisition [82]. In line with 
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these results, we have shown that Nrf2 deficiency in female mice leads to 

increased oxidative stress, bone turnover and bone resorption as a result of the 

predominance of osteoclastic activity over osteoblastic activity [83].  

In addition, data from a model of osteoporosis in ovariectomized mice 

suggest a role for Nrf2 in bone anabolic effects, as an increase in HDAC2 by 

miR-455-3p inhibited the activation of Nrf2/ARE leading to increased oxidative 

stress and inhibition of osteoblast growth exacerbating osteoporosis [84]. 

 Nrf2 inducers may be useful as inhibitors of bone destruction. As an 

example, DMF is able to inhibit RANKL-mediated osteoclastogenesis and 

attenuate bone destruction in lipopolysaccharide-treated mice [85]. SFN, 

epigallocatechin gallate [86], carnosic acid [87], caffeic acid phenethyl ester [88] 

and an ETGE-peptide [89] can also inhibit osteoclastogenesis through Nrf2 

activation while mangiferin protects osteoblasts from oxidative stress by this 

mechanism [90]. 

 Activation of Nrf2 has been suggested as a therapeutic target to avoid 

glucocorticoid-induced osteoporosis. Thus, indole-3-carbinol, a natural product 

found in broadly consumed plants of the Brassica genus [91], alpinumisoflavone 

[92] and icariside II [93] block oxidants overproduction and osteoblast apoptosis 

induced by dexamethasone through Nrf2 induction.  

 Another strategy to control excessive bone resorption may be the 

induction of Bach1 nuclear export which activates Nrf2-dependent antioxidant 

enzyme expression leading to the attenuation of osteoclastogenesis [94].  

 

 

7. Perspectives 



  

21 

 

 

 Our understanding of the significance of Nrf2 activation for the control of 

human disease has so far been greatly hampered by the complexity of signaling 

pathways and biological responses modified by this transcription target as 

exemplified by the knowledge of Nrf2 interactome, regulome and fine-tuned 

regulatory loop [95]. As a consequence, there are discrepancies with regard to 

the reported biological effects of Nrf2 modulation although most results primarily 

reveal an anti-inflammatory effect. 

At present, the possible crosslink between the Nrf2-ARE pathway and 

NLRP3 inflammasome is not well understood. Further in-depth biochemical 

analysis about Nrf2 and inflammasome interactions should provide the 

mechanistic insights necessary to establish the potential interest of Nrf2 in 

inflammasome-related diseases.  

The regulation of Nrf2 opens up new therapeutic opportunities for the 

treatment of rheumatic conditions. Classic Nrf2 activators mimic the 

endogenous process of Nrf2 activation by covalent modification of cysteine 

groups in Keap1. At the same time, they can exert non-specific effects through 

the covalent modification of nucleophilic groups in proteins. Many types of post-

translational oxidation reactions are thus possible leading to protein changes in 

conformation and activity in a wide range of kinases, phosphatases, 

transcription factors, transporters and cytoskeletal proteins [96]. As a 

consequence, significant side effects can be caused by these drugs. In this 

regard, less electrophilic derivatives such as MMF and monoethyl fumarate may 

be safer drugs than DMF [97]. Therefore, chemical modification of classic Nrf2 
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activators can lead to the development of potential therapeutic agents based on 

the Nrf2 pathway. 

Another crucial aspect is the need for efficient control of intensity and 

duration of Nrf2 activation as it has been demonstrated that high-level and/or 

long-term activation of Nrf2 and its target genes, which are associated with the 

stress response in a normal physiological context, may result in deleterious 

effects such as growth of cancer cells and chemoresistance [38]. These 

observations support the importance of approaches for inducible/transient 

expression of cytoprotective enzymes which can be achieved with some drugs 

such as synthetic triterpenoids [98]. 

Other strategies focus on non-canonical mechanisms of Nrf2 activation. 

Nrf2 interaction with Keap1 can be disrupted by protein-protein interaction 

inhibitors such as peptide antagonists. Therefore, the peptide DEETGE-CAL-

Tat has been shown to effectively activate Nrf2 and protect against cerebral 

ischemia in a pre-clinical model [99]. In addition, small-molecule Keap1−Nrf2 

protein-protein interaction inhibitors have been designed [100].  

Activation of Nrf2 can be achieved by Bach1 gene knockout which has 

shown immunoregulatory and protective effects in different disease models 

suggesting that drugs binding Bach1 may be a novel strategy to enhance Nrf2 

activity [96] which may be useful in the control of autoimmune diseases. 

There is a need of selective Nrf2 activation in target cells thus avoiding 

indiscriminated activation throughout the body and possible toxicity. In this 

respect, a number of pro-drugs able to be converted into Nrf2-activating 

molecules in the presence of oxidative stress or specific enzymes are under 

study [96]. In addition, the application of new technologies such as CRISPR 
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have the potential for clinical translation and can help to understand the 

mechanisms involved in Nrf2 effects in rheumatoid conditions.  

These attractive strategies related to the Nrf2 pathway need to be 

validated to allow the development of new therapeutic agents. Activation of Nrf2 

may also lead to adjuvant drugs thus helping improve cellular responses to 

other treatments. More studies are needed for a deep understanding of Nrf2 

mechanisms and effects as a necessary step before entering clinical trials of 

rheumatic diseases. 

On the other hand, the development of biomarkers provides objective 

parameters for diagnostic or prognostic purposes. Clinically validated 

biomarkers are needed in rheumatic diseases largely in early phases of 

disease. Nrf2 activation and expression of its target genes have been 

considered as biomarkers of oxidative stress in different pathological states 

such as cancer or multiple sclerosis. However, the potential of this pathway to 

become a biomarker for rheumatic diseases is not known and it should be 

explored. 
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LEGENDS TO FIGURES 

 

Figure 1. Nrf2 activation: a) basal conditions; b) activation by electrophiles or 

oxidative stress; c) nuclear translocation and gene transcription. ARE, 

antioxidant response element; GST, glutathione-S-transferase; HO-1, heme 

oxygenase-1; Keap-1, Kelch-like ECH-associated protein 1; MAPK, mitogen-

activated protein kinase; NQO1, NAD(P)H:quinone oxidoreductase-1; PI3K 

phosphoinositide 3-kinase; PKC, protein kinase C; sMaf, small 

musculoaponeurotic fibrosarcoma; Ub, ubiquitin. 

 

Figure 2. Regulation of the immune response by Nrf2. In blue: enhancement; in 

red: inhibition (DC, dendritic cell; NK, natural killer cell; Th, T helper cell; Treg, T 

regulatory cell. 

 

Figure 3. Structures of representative Nrf2 inducers. 

 

Figure 4. Nrf2 effects in joint cells. In blue: enhancement; in red: inhibition. 

MMPs, matrix metalloproteinases; NO, nitric oxide; PGs, prostaglandins; PMN, 

polymorphonuclear leukocytes; RANKL, receptor activator of nuclear factor-κB 

ligand. 
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