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Maŕıa José Felipe
Instituto Universitario de Matemática Pura y Aplicada,
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Abstract

Suppose that G is a finite group and K is a non-trivial conjugacy class
of G such that KK−1 = 1 ∪D ∪D−1 with D a conjugacy class of G. We
prove that G is not a non-abelian simple group and we give arithmetical
conditions on the class sizes determining the solvability and the structure
of 〈K〉 and 〈D〉.
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1 Introduction

There are many studies about the structure of a finite group focused on the
product of its conjugacy classes. Perhaps, the most relevant problem was posed
by Z. Arad and M. Herzog ([4]) who conjectured that if S is a non-abelian sim-
ple group and A and B are non-trivial conjugacy classes of S, then AB (defined
as the set {ab | a ∈ A, b ∈ B}) cannot be a single conjugacy class of S. This
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conjecture still remains open although some specific cases have been solved. For
instance, in [15], the conjecture is verified for several families of finite simple
groups of Lie type. On the other hand, Arad and E. Fisman proved in [3] that
if C and D are non-trivial conjugacy classes of a finite group G such that either
CD = C ∪ D or CD = C−1 ∪ D, then G is not a simple group. However, no
solvability information of the subgroups 〈C〉 or 〈D〉 was given. Recently, G.
Navarro and R.M. Guralnick ([9]) have proved that when a conjugacy class K
of a finite group G satisfies that K2 is a conjugacy class, then 〈K〉 is a solvable
(normal) subgroup of G by appealing to the Classification of the Finite Simple
Groups (CFSG). This is, of course, consistent with Arad and Hergoz’s conjec-
ture.

In general, for any G-invariant subset X of G, we denote by η(X) the num-
ber of distinct conjugacy classes appearing in X. Let K be a conjugacy class of
a finite group G. When we multiply K by its inverse class, K−1, then KK−1

is a G-invariant set. We will prove that if η(KK−1) = 2, then G is not simple.
The fact that η(KK−1) = 3 does not imply that 〈K〉 or 〈KK−1〉 is solvable. In
fact, 〈KK−1〉 may be even simple. For instance, if G = Sn for any n ≥ 5 and K
is the conjugacy class of transpositions, then η(KK−1) = 3 and 〈KK−1〉 = An.
In this paper we study the particular case in which KK−1 = 1∪D∪D−1 with D
a conjugacy class of G, and we demonstrate that G cannot be simple by means
of the CFSG and a character theoretical property characterizing such condition
for conjugacy classes.

Theorem A. Let K be a non-trivial conjugacy class of a finite group G
and suppose that KK−1 = 1 ∪ D ∪ D−1, where D is a conjugacy class of G.
Then G is not a non-abelian simple group. In particular, this theorem holds if
KK−1 = 1 ∪D.

We remark that KK−1 = 1 ∪D forces that D is real, but it does not nec-
essarily imply that K is a real class too (see section 5). Moreover, under the
assumption of Theorem A, if K is real, then we see (Lemma 3.1) that D is real
too, and thus, K2 = 1 ∪D. In this case, the structure and solvability of 〈K〉 is
obtained in [5], without employing the CFSG.

In order to prove Theorem A, we use the following characterization in terms
of characters of the property appearing in such theorem. We denote by Irr(G)
the set of all irreducible complex characters of G.

Theorem B. Let G be a group and x, d ∈ G. Let K = xG and D = dG.
The following are equivalent:

a) KK−1 = 1 ∪D ∪D−1

b) For every χ ∈ Irr(G)

|K||χ(x)|2 = χ(1)2 +
(|K| − 1)

2
χ(1)(χ(d) + χ(d−1)).
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In particular, if D = D−1, then KK−1 = 1 ∪D if and only if for every χ ∈
Irr(G)

|K||χ(x)|2 = χ(1)2 + (|K| − 1)χ(1)χ(d).

Under the hypotheses of the particular case of Theorem A the group G need
not be solvable. The typical non-solvable situation in this case is a group of
type Z.S.2, where |Z| = 3, Z is in the center of Z.S, and in addition, S is a non-
solvable group acted by an automorphism of order 2, such that the non-trivial
elements of Z are conjugate by this automorphism.

If K is the conjugacy class in Theorem A such that KK−1 = 1 ∪D ∪D−1,
then we conjecture that the subgroup 〈K〉 is solvable. Unfortunately, we have
only been able to prove this solvability in some specific cases.

Theorem C. Let K be a conjugacy class of a finite group G and suppose
that KK−1 = 1 ∪ D, where D is a conjugacy class of G. Then |D| divides
|K|(|K| − 1) and 〈K〉/〈D〉 is cyclic. In addition,

1. If |D| = |K| − 1, then 〈K〉 is metabelian. More precisely, 〈D〉 is p-
elementary abelian for some prime p.

2. If |D| = |K|, then 〈K〉 is solvable with derived length at most 3.

3. If |D| = |K|(|K| − 1), then 〈K〉 is abelian.

We will provide examples showing that each case is feasible as well as an
example in which |D| is a divisor of |K|(|K| − 1) distinct from those appearing
in Theorem C and satisfying dl(〈K〉) = 3. Although in these examples 〈K〉 is
solvable, the general proof remains open as we have said before.

In [13], G. Malle classified the groups G with G/Z(G) almost-simple satis-
fying that there exist χ, ψ ∈ Irr(G) such that χχ = 1 + ψ. A possible problem
could be to classify the groups of this type satisfying the conjugacy class condi-
tion, but we are not attempting that.

2 Preliminary results and proof of Theorem B

We begin this section by presenting several results appeared in the literature
that we need in order to prove Theorem A. The next theorem will be useful in
the interest of discarding the alternating groups An with n > 5 in Theorem A.

Theorem 2.1 (Theorem A of [2]) Let Sn be the symmetric group of n-letters,
n > 5, and α, β ∈ Sn \ 1. Then η(αSnβSn) ≥ 2, and if η(αSnβSn) = 2 then
either α or β is a fixed point free permutation. Assume that α is fixed point
free. Then one of the following holds
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1. n is even, α is the product of n/2 disjoint transpositions and β is either a
transposition or a 3-cycle.

2. n is a multiple of 3, α is the product of n/3 disjoint 3-cycles and β is a
transposition.

The following result due to R.M. Guralnick and G.R. Robinson is an exten-
sion for odd primes of Glauberman’s Z∗-Theorem [8].

Theorem 2.2 (Theorem D of [10]) Let G be a finite group. If x ∈ G has
order p and [x, g] is a p′-element for every g ∈ G, then x is central modulo
Op′(G).

We give a variation of such theorem for p-elements (not necessarily of order
p) by adding an hypothesis to the class size of the p-element. We use the fol-
lowing property (based on the CFSG) so as to obtain our variation, which is
also a key result to prove Theorem 2.2.

Theorem 2.3 (Theorem 4.1 of [10]) Let G be a finite group. If x ∈ G has
order p and is not central modulo Op′(G), then x commutes with some conju-
gate xg 6= x, for some g ∈ G.

Our extension of Theorem 2.2 is the following.

Theorem 2.4. Let G be a finite group. Let x ∈ G be a p-element such that
|xG| is a p′-number and that [x, g] is a p′-element for every g ∈ G. Then x is
central modulo Op′(G).

Proof. Let o(x) = pr. By Theorem 2.2, we can assume that r > 1. We

write y = xp
r−1

, so o(y) = p. We will argue by induction on |G|.

We claim that there is no g ∈ G such that y 6= yg ∈ CG(x). Suppose that
there exists g ∈ G such that yg centralizes x and y 6= yg. Since |xG| is a p′-
number, we can choose P ∈ Sylp(G) such that P ⊆ CG(x) ⊆ CG(y), so there
exists n ∈ CG(y) such that ygn ∈ P ⊆ CG(x). In addition, y−1 ∈ CG(x), so
[y, gn] ∈ CG(x), that is, [gn, y, x] = 1. Moreover, [y, x, gn] = 1, so by the Three
Subgroups Lemma, we get [x, gn, y] = 1. Then x−1xgn = [x, gn] ∈ CG(y). As a
result, xgn ∈ CG(y). Analogously, there is n′ ∈ CG(y) such that xgnn

′ ∈ CG(x)
and hence, x−1xgnn

′
is a p-element. By applying the hypothesis, x = xgnn

′
,

which implies that gnn′ ∈ CG(x) ⊆ CG(y). In particular, g ∈ CG(y), a con-
tradiction. As a consequence, there is no g ∈ G such that y 6= yg ∈ CG(x) as
claimed. As |xG| is a p′-number, it follows that there is no g ∈ G such that
y 6= yg ∈ CG(y). So yOp′(G) ∈ Z(G/Op′(G)) by Lemma 2.3.

We distinguish two cases depending on whether Op′(G) 6= 1 or Op′(G) = 1.
Assume first that Op′(G) = 1, and hence y ∈ Z(G)p 6= 1. Let G = G/Z(G)p.
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We have that 1 6= x is a p-element, |xG| is a p′-number and [x, g] = [x, g] is p′-
element for every g ∈ G. By the inductive hypothesis, xOp′(G) ∈ Z(G/Op′(G)).
But observe that Op′(G) = 1, so x ∈ Z(G). This means that [x, g] ∈ Z(G)p for
every g ∈ G. By hypothesis, [x, g] is also a p′-element, so [x, g] = 1 for every
g ∈ G. This shows that x ∈ Z(G) and the theorem is proved.

Suppose now that Op′(G) 6= 1 and let G = G/Op′(G). Again 1 6= x is

a p-element, |xG| is a p′-number and [x, g] = [x, g] is a p′-element for every
g ∈ G. Notice that Op′(G) = 1. By induction, x ∈ Z(G), or equivalently
[x, g] ∈ Op′(G) for every g ∈ G, so the proof is finished. 2

We state two very well-known Burnside’s results.

Lemma 2.5 (Theorem 1.2.6 of [14]) A non-cyclic 2-group P has only one
involution if and only if P is a generalized quaternion group.

Lemma 2.6 (Lemma 15.1 of [11]) Let χ ∈ Irr(G) and K a conjugacy class
of an element g ∈ G. Suppose that (|K|, χ(1)) = 1. Then either g ∈ Z(χ), that
is |χ(g)| = χ(1), or χ(g) = 0.

For our purposes we need some properties related to the product of class
sums in the complex group algebra C[G] of a finite group G. Let K1, . . . ,Kn be

the conjugacy classes of G and let denote by K̂i the class sum of the elements
of Ki in C[G]. If S is a G-invariant subset of G, then

Ŝ =
∑
g∈S

g =

n∑
i=1

niK̂i

denotes the sum of all elements in S and we denote by ni = (Ŝ, K̂i) = (K̂i, Ŝ)

the multiplicity of K̂i in Ŝ, which is of course a non-negative integer. For more
details, we refer the reader to Chapter 3 of [11].

Proof of Theorem B. Suppose that KK−1 = 1 ∪D ∪D−1. Observe that if
D1, D2 and D3 are conjugacy classes of a finite group G, then it is easy to prove

that (D̂1D̂2, D̂3) = (D̂−11 D̂−12 , D̂−13 ) (see for instance the proof of Theorem A
of [3]), so

(K̂K̂−1, D̂) = (K̂−1K̂, D̂−1) = (K̂K̂−1, D̂−1).

Thus, K̂K̂−1 = |K|1̂ +mD̂ +mD̂−1 where m is a positive integer. Therefore,

|K|2 = |K|+ 2m|D|. (1)

By applying Theorem 3.9 of [11],

|K|2|χ(x)|2

χ(1)2
= |K|+ m|D|χ(d)

χ(1)
+
m|D|χ(d−1)

χ(1)
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for each χ ∈ Irr(G). Taking into account Eq.(1) and rearranging the equality
we get the stated formula in b).

Conversely, suppose that b) is true. Let Ci be the conjugacy classes of G

with 1 ≤ i ≤ n. By exercise 3.9 of [12], for any pair of conjugacy class sums Ĉm
and Ĉn with representatives cm and cn we have

ĈmĈn =
∑
k

αkĈk

where

αk =
|Cm||Cn|
|G|

∑
χ∈Irr(G)

χ(cm)χ(cn)χ(ck)

χ(1)

and ck is a representative of Ck. In particular,

K̂K̂−1 =
∑
k

αkĈk with αk =
|K|2

|G|
∑

χ∈Irr(G)

|χ(x)|2χ(c−1k )

χ(1)
. (2)

If we pour out |χ(x)|2 from b) we obtain

|χ(x)|2 =
(|K| − 1)χ(1)(χ(d) + χ(d−1)) + 2χ(1)2

2|K|
, (3)

and by replacing Eq.(3) in Eq.(2) and making easy calculations, it follows that

αk =
|K|2

|G|
(

∑
χ∈Irr(G)

(|K| − 1)(χ(d) + χ(d−1))χ(c−1k )

2|K|
+

∑
χ∈Irr(G)

χ(1)χ(c−1k )

|K|
).

Consequently, by using the second orthogonality relation, if D 6= D−1, we de-
duce

αk =


|K| if Ck = 1

|K|(|K|−1)
2|D| if Ck = D or D−1

0 in other case

This means that

K̂K̂−1 = |K|1̂ +
|K|(|K| − 1)

2|D|
D̂ +

|K|(|K| − 1)

2|D|
D̂−1

and in particular, KK−1 = 1 ∪D ∪D−1, so a) is proved.2

The following elementary property concerning commutators is basic for prov-
ing Theorem C.
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Lemma 2.8. Let G be a finite group and let K = xG, D = dG where x and d
are elements of G and KK−1 = 1∪D. Then, 〈D〉 = [x,G] and 〈K〉 = 〈x〉[x,G].

Proof. If K = {x1, . . . , xn}, then K−1K = x−11 K∪· · ·∪x−1n K. If y ∈ x−1i K,
then y = x−1i xgi ∈ [xi, G] for some g ∈ G. If i 6= j, then xj = xhi for some h ∈ G.
Thus, [xj , G] = [xhi , G] = [xi, G]h = [xi, G]. Consequently, KK−1 ⊆ [x,G] and
〈D〉 ⊆ [x,G]. On the other hand, since any element [x, t] lies in KK−1 for all
t ∈ G, then [x,G] ⊆ 〈KK−1〉 = 〈D〉 and hence, 〈D〉 = [x,G]. The equality
〈K〉 = 〈x〉[x,G] is standard, so the lemma is proved.

3 Proof of Theorem A

Before proving Theorem A, we analyze a particular case under the assumption
KK−1 = 1∪D ∪D−1 appearing in Theorem A. If, in addition, we assume that
K = K−1, we prove in Lemma 3.1 that D = D−1, that is, K2 = 1 ∪ D, and
there is no need to use the CFSG to show the non-simplicity of G. In fact, 〈K〉
is solvable and its structure is completely determined by the authors in Theorem
A of [5].

Lemma 3.1. Let K and D be conjugacy classes of a finite group G such
that KK−1 = 1 ∪D ∪D−1. If K is real, then D is real.

Proof. Assume that K = K−1 and let x ∈ K. If o(x) = 2 we can assume
that any two different elements of K do not commute, because otherwise the
elements of D (and of D−1) would have order 2 and D would trivially be a real
class. If |K| = 2, say for instance K = {x, xg}, then KK−1 = 1 ∪ {xxg, xgx}.
Notice that {xxg, xgx} cannot be decomposed into two central classes. In fact,
if xxg and xgx are central elements, then x and xg would commute. There-
fore, |K| ≥ 3 and we write K = {x1, . . . , xn} with n ≥ 3. If xi, xj ∈ K
are distinct, we have x

xj

i = xl ∈ K for some positive integer l. Furthermore,
xi 6= xl, otherwise xi and xj would commute. Thus, x

xj

l = (x
xj

i )xj = xi and
(xixl)

xj = xlxi = (xixl)
−1. Since xixl ∈ D or xixl ∈ D−1, we conclude that D

is real too.

Suppose now that o(x) > 2. We can clearly assume that x2 ∈ D (analogous
if x2 ∈ D−1). Moreover, since there exists g ∈ G such that xg = x−1, we have
(x2)g = (xg)2 = (x−1)2 = x−2. Now, if x2 = x−2, then o(x2) = 2 and D is real
and if x2 6= x−2, then x2, x−2 ∈ D and D is real.2

Proof of Theorem A. Let x, d ∈ G such that K = xG, D = dG and
KK−1 = 1 ∪ D ∪ D−1. We suppose that G is simple and we will look for
a contradiction. We distinguish three parts appealing to the CFSG. We show
that for any alternating group, simple group of Lie type or sporadic group there
is no conjugacy class satisfying the hypotheses of the theorem.
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Case 1. Suppose that G = An with n ≥ 5.

It is easy to check that A5 does not satisfy the property of the statement for
any non-trivial conjugacy class K. Suppose that n > 5. Note that x and x−1

are permutations of the same type. We distinguish two cases: xSn = xAn or
xSn 6= xAn . If xSn = xAn , it follows that xSn(x−1)Sn = 1 ∪DSn ∪ (D−1)Sn =
1 ∪ DSn and hence η(xSn(x−1)Sn) = 2. By applying Theorem 2.1, we get a
contradiction because x and x−1 should be permutations of different type and
this case is finish. We remark that if xSn 6= xAn the result can be obtained by
applying an unpublished result for alternating groups by Adan-Bante which is
similar to Theorem 2.1. Nevertheless, we provide an alternative proof by em-
ploying Theorem B.

Suppose then that xSn 6= xAn = K. It is well-known that in this case x is a
permutation that is product of disjoint cycles whose lengths are odd and different
to each other (including cycles of length 1). Let us see that |K| > (n− 1)2 for
every n ≥ 6. We know that if C = xSn , then

|C| = n!∏n
j=1(j)ajaj !

,

where aj is the multiplicity of the cycle of length j for each j. In particular, for
K we obtain

|K| = |C|/2

where aj = 0 if j is even, aj is either 0 or 1 if j is odd, and
∑n
j=1 jaj = n. The

fact that |K| > (n − 1)2 for every n ≥ 6 can be easily proved by arguing by
induction on n.

Now, let χ be the natural permutation character of An and ψ := χ − 1 ∈
Irr(G) with ψ(1) = n− 1 (see for instance Corollary 5.17 of [12]). In particular,
for the permutation x we have either χ(x) = 0 or χ(x) = 1 and ψ(x) = −1
or ψ(x) = 0. Assume first that χ(x) = 0. By replacing ψ in the equation of
Theorem B we deduce

ψ(d) =
|K| − (n− 1)2

(|K| − 1)(n− 1)
,

which certainly is an integer less than 1. Consequently, ψ(d) may only take the
values -1 or 0. In the first case we deduce |K| = n − 1 and in the second case
|K| = (n− 1)2, contradicting the above property in both cases. Assume finally
that χ(x) = 1. Again by using Theorem B we obtain

(n− 1)2 + (|K| − 1)(n− 1)(χ(d)− 1) = 0.

If χ(d) > 0, then the left side of the equality is bigger than 0, a contradiction,
and if χ(d) = 0, it follows that |K| = n, a contradiction too.
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Case 2. Suppose that G is a finite simple group of Lie type.

If G is a finite simple group of Lie type in characteristic p, we can always
take the Steinberg character ψ ∈ Irr(G) which satisfies ψ(t) = ±|CG(t)|p for
every p-regular element t ∈ G and ψ(t) = 0 for every p-singular element t ∈ G.
Furthermore, ψ(1) = |G|p (see for instance Chapter 6 of [6]). Assume that
there exists a non-trivial pair of elements x, d ∈ G such that the assertion b) of
Theorem B holds and we will work to get a contradiction.

Case 2.1. Suppose that x is p-regular. We know that ψ(x) = ±|CG(x)|p 6= 0.
By the equivalence of Theorem B we have

|K||CG(x)|2p − |G|2p =
|K| − 1

2
|G|p(ψ(d) + ψ(d−1)). (4)

If ψ(d) = ψ(d−1) = 0, then |K| = |K|2p and this contradicts pa-Burnside’s
Lemma (see for instance Theorem 15.2 of [11]). Thus, ψ(d) = ψ(d−1) =
±|CG(d)|p and by replacing in Eq.(4) we obtain

(|K|p′ − |K|p)|CG(x)|p = (|K| − 1)(±|CG(d)|p).

If p divides |K|, it follows that |K|p′−|K|p = |K|−1, which implies |K| = |K|p′
and |K|p = 1, a contradiction. Consequently, p does not divide |K| and since
ψ(1) = |G|p we conclude by Lemma 2.6 that either ψ(x) = 0 or 1 6= x ∈ Z(ψ).
Both possibilities yield to a contradiction.

Case 2.2. Suppose that x is p-singular. We know that ψ(x) = 0 and ψ(1) =
|G|p. By the assertion b) of Theorem B,

ψ(d) + ψ(d−1) =
−2|G|p

(|K| − 1)
< 0.

This means that d is a p-regular element and we necessarily have

ψ(d) = ψ(d−1) = −|CG(d)|p.

As a consequence, by the two equalities above, |K| = |D|p + 1. Thus, p does
not divide |K|.

Now we prove that x is a p-element. We consider the decomposition x =
xpxp′ . Notice that CG(x) = CG(xp) ∩ CG(xp′) ⊆ CG(xp′), which shows that
|xGp′ | divides |K|, and then p does not divide |xGp′ | either. By applying Lemma
2.6 again, we obtain either ψ(xp′) = 0, which leads to a contradiction because
xp′ is p-regular, or xp′ ∈ Z(ψ) = 1. Consequently, x is a p-element. Since d
is p-regular, we apply Theorem 2.4 and this straightforwardly contradicts the
simplicity of G.
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Case 3. Suppose that G is a sporadic finite simple group.

By using the character tables of the sporadic groups (for instance in GAP
[7]) we can check that the equivalence of Theorem B does not hold for any of
these groups and any two non-trivial conjugacy classes of it. In fact, for any
sporadic simple group, the only character satisfying such assertion for fixed el-
ements x, d ∈ G with x 6= 1 is the principal character.

The non-simplicity of G when KK−1 = 1∪D is a direct consequence of our
previous arguments when D = D−1 taking into account the corresponding case
of Theorem B. 2

We provide an example illustrating the non-simplicity of a group satisfying
the hypothesis of Theorem A. Let G = 〈a〉o 〈b〉 where 〈a〉 ∼= Z7, 〈b〉 ∼= Z3 and
ab = a2. Let K be one of the two classes of elements of order 3, which satisfies
|K| = 7. It holds KK−1 = 1∪D∪D−1 where D is a conjugacy class of elements
of order 7 and size 3. We have 〈K〉 = G and 〈D〉 ∼= Z7. In fact, this is the
example of the smallest order group satisfying the property of Theorem A with
D 6= D−1.

4 Proof of Theorem C

Proof of Theorem C. Let K = xG with x ∈ G. We write K̂K̂−1 = |K|1̂ +mD̂,
so |K|2 = |K| + m|D| and |D| divides |K|(|K| − 1). The fact that 〈K〉/〈D〉 is
cyclic follows immediately from Lemma 2.8.

1) Suppose that |D| = |K| − 1. Then |KK−1| = |K|. Note that xK−1 ⊆
KK−1 and, since |xK−1| = |K|, we obtain xK−1 = KK−1. Then K−1 =
x−1KK−1, which implies that K−1 = 〈x−1K〉K−1. This means that K−1 is
union of right classes of 〈x−1K〉. Also, 〈x−1K〉 = 〈KK−1〉 = 〈D〉, so we get that
|〈D〉| divides |K|. As |K| = |KK−1| ≤ |〈KK−1〉| = |〈D〉|, then |〈D〉| = |K|.
Since x−1K ⊆ 〈KK−1〉 and |x−1K| = |K| = |〈KK−1〉|, we obtain 〈D〉 = x−1K.
Thus, 〈D〉 = xK−1 ⊆ 1 ∪D ⊆ 〈D〉, so 〈D〉 = 1 ∪D is p-elementary abelian for
some prime p. As 〈K〉/〈D〉 is cyclic, this case is finished.

2) Assume that |K| = |D|. It is clear that xK−1 ∪ x−1K ⊆ K−1K. We
divide the proof of this case into two subcases: whether xK−1 = x−1K or not.
Suppose first that xK−1 = x−1K. We have K = x2K−1 and, analogously,
K−1 = (xg)−2K for every g ∈ G. By replacing K−1 in the former equality, we
deduce that K = x2(xg)−2K for every g ∈ G. We define

N = 〈x2(xg)−2 | x ∈ K , g ∈ G〉.

Then K = NK and, as a consequence, |N | divides |K|. In addition, KK−1 =
NKK−1, so |N | also divides |KK−1| = 1+|D| = 1+|K|, which allows to N = 1.
As a result, x2 ∈ Z(G). If y ∈ K, then y = xg ∈ K for some g ∈ G and note that
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y2 = (xg)2 = (x2)g = x2. On the other hand, we can write KK−1 = xK−1∪{z}
for some z ∈ D. Since xK−1 = x−1K = (xK−1)−1 and KK−1 coincides with
its inverse, both facts show that z = z−1, that is, z has order 2. Now, if we
take two distinct elements y, yg ∈ K with g ∈ G, then y−1yg ∈ D, so we write
yg = yd for some d ∈ D. Then y2 = (yg)2 = (yd)2 = yyd and consequently,
y = yd. This means that [y, d] = 1 and hence [y, yg] = 1. Therefore, 〈K〉 is
abelian, so the assertion 2) holds.

Assume now that xK−1 6= x−1K. We know that xK−1 ∪ x−1K ⊆ KK−1.
Since |KK−1| = |K|+ 1 and |K| = |xK−1| = |x−1K|, there exists only just one
element z ∈ xK−1 \ x−1K. Moreover, it is easy to prove that z−1 is the only
element contained in x−1K \ xK−1 (notice that z 6= z−1). Therefore, KK−1

can be decomposed as

KK−1 = xK−1 ∪ x−1K = (xK−1 ∩ x−1K) ∪ {z} ∪ {z−1}.

From this equality and the fact that (x−1K)(xK−1) = KK−1, we deduce that

(KK−1)2 = (KK−1) ∪ {z2} ∪ {z−2} = 1 ∪D ∪ {z2} ∪ {z−2}.

On the other hand, (KK−1)2 = (1 ∪ D)(1 ∪ D) = 1 ∪ D ∪ D2. It follows
that D2 ⊆ 1 ∪ D ∪ {z2} ∪ {z−2}. We distinguish two cases. If z2 ∈ D, then
D2 = 1 ∪D and hence, 〈D〉 is p-elementary abelian for some prime p. We get
the assertion 2) by taking into account that 〈K〉/〈D〉 is cyclic. Assume now
that z2 6∈ D. Then 〈z2〉 � G because either {z2} and {z−2} are central con-
jugacy classes or {z2, z−2} is a conjugacy class. We write G = G/〈z2〉 and we
obtain D2 ⊆ 1 ∪ D. So we have two possibilities: D2 = 1 or D2 = 1 ∪ D. If
D2 = 1, then 〈D〉 ∼= Z2, and as a result 〈D〉 is metacyclic. Consequently, 〈K〉 is
solvable with dl(〈K〉) ≤ 3. Finally, if D2 = 1 ∪D, it certainly follows that 〈D〉
is elementary abelian. Then 〈D〉 is metabelian and, again 〈K〉 is solvable with
dl(〈K〉) ≤ 3.

3) Assume that |D| = |K|(|K|−1). Since K̂K̂−1 = |K|1̂+mD̂, we necessarily
have m = 1. We write K = {x1, . . . , xn} and K−1K = x−11 K ∪ . . . ∪ x−1n K.
Notice that 1 ∈ x−1i K for all i = 1, · · · , n. We rewrite the previous equality as
the union

K−1K = 1 ∪ (x−11 K \ 1) ∪ . . . ∪ (x−1n K \ 1).

By counting elements we conclude that x−1i K ∩ x−1j K = 1 for all i = 1, . . . , n

with i 6= j. Let g ∈ CG(xix
−1
j ) with i 6= j. Thus, (xix

−1
j )g = xgi (x

−1
j )g = xix

−1
j .

From the last equality we have x−1i xgi = x−1j xgj = 1, so g ∈ CG(xi) ∩CG(x−1j ).

Hence, CG(xix
−1
j ) = CG(xi)∩CG(x−1j ). As xix

−1
j ∈ CG(xix

−1
j ), then xix

−1
j ∈

CG(xi), so [xi, xj ] = 1. Therefore, 〈K〉 is generated by pairwise commuting
elements, which means that 〈K〉 is abelian.2

We emphasize the feasibility of Theorem C by giving examples. Some of
them have been found by using the SmallGroups library of GAP [7]. The
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m-th group of order n in this library is identified by n#m. If G = 110#1, there
is a class K of elements of order 5 satisfying KK−1 = 1 ∪D where D is a class
of elements of order 11. We have 〈K〉 ∼= Z11 o Z5 and 〈D〉 ∼= Z11. This is an
example of Case 1. Let G = 〈a〉 × A4 where 〈a〉 ∼= Z10 and we take K = xG

where x = at and t is an involution of A4. It follows that KK−1 = 1∪D where
D = tG and 〈K〉 ∼= Z10 × Z2 × Z2 and 〈D〉 ∼= Z2 × Z2. This is an example
of Case 2. The group G = 150#5 has a class K of elements of order 5 which
satisfies KK−1 = 1 ∪ D, where D is a class of elements of order 5. We have
〈K〉 ∼= Z5×Z5. This is an example of Case 3. Finally, in the next example, |D|
is a divisor of |K|(|K| − 1) different from those appearing in Theorem C. Take
G = SL(2, 3) and K = xG where o(x) = 3. Then KK−1 = 1 ∪ D, where D
is a class of elements of order 4. We have 〈K〉 ∼= G and 〈D〉 ∼= Q8. Note that
dl(〈K〉) = 3, so this is the best bound.

5 Analogous problems for irreducible characters

Following the parallelism between conjugacy classes and irreducible characters,
we reflect on the problem of translating our results into Character Theory. As
we have asserted in the Introduction by means of an example, the fact that
η(KK−1) = 3 does not imply the non-simplicity of the group. Something simi-
lar occurs when working with irreducible characters. For example, if we consider
the simple group PSL(2, 11), there exist three irreducible characters χ, ψ and ϕ
such that χχ = 1 + ψ + ϕ (see for instance page 290 of [12]).

Trying to transfer Theorem A into the framework of irreducible characters,
we find that in [1] the author gives the structure of a finite solvable group G
with χ ∈ Irr(G) such that χχ = 1G + m1α1 + m2α2 where α1, α2 ∈ Irr(G)
are non-principal characters and m1 and m2 are strictly positive integers. We
are not aware, however, whether the above equality may hold in a simple group
when α2 = α1 6= α1. Nevertheless, regarding the particular case of Theorem A,
if we take G = PSp2n(3), n ≥ 2, or G = PSUn(2), (n, 3) = 1, n ≥ 4, it is known
that there exists a non-trivial character ψ ∈ Irr(G) such that ψψ = χ+ 1, with
χ ∈ Irr(G) (see [13] for instance). So we conclude that simplicity may occur
when the particular case of Theorem A is translated into irreducible characters.
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