
Modular Playware Embedded System

Bachelor’s Thesis

Author
Manuel Gil Martínez

Supervisor
Henrik Hautop Lund

DTU Electrical Engineering
Center of Playware

Danmarks Tekniske Universitet
Copenhagen, Denmark 2017

Modular Playware Embedded System
Manuel Gil Martínez

Supervisor: Prof. Henrik Hautop Lund, DTU Electrical Engineering
Co-Supervisor: Massimiliano Leggieri

Bachelor’s Thesis 2017
Department of Electrical Engineering
Center of Playware
Danmarks Tekniske Universitet
DK-2800 Kgs. Lyngby, Copenhagen

Typeset in LATEX
Copenhagen, Denmark 2017

Acknowledgements

Special thanks to my Supervisors Henrik Hautop Lund and Massimiliano Leggieri,
for their guidance through this Thesis Project, for solving my doubts and for giving
me the opportunity to discover and to learn about Playware Technology. Many
thanks to my family for their support, and last but not least, to the DTU which has
provided me with a great learning environment and has been part of this enriching
experience during the last five months.

Manuel Gil Martínez, Copenhagen, June 2017

Summary

This project has the objective of developing modular playware units that act as
interactives nodes in a network. The control of the modules will be divided between
on-board control on the embedded system modules and control from a network
connected smart device (e.g. Android tablet or smartphone). This project also
examines the division of control between the individual modules and the smart
device, and the best protocol for communication between them. The focus is working
in low level software for controlling the embedded systems, more specifically using
the ESP chip which provides WiFi connectivity between devices as well as between
devices and the Android device. The project also investigates the on-board sensors
and actuators of the boards with the objective of providing playware experiences.

Taking all of this into account, and after testing and researching about all these
different topics, some real-time demonstrations have been created to expand all the
capabilities and they will be exposed and bring up to discussion at the time of oral
presentation.

I

II

Contents

Summary I

Contents III

List of Acronyms IV

1 Introduction 1
1.1 Objectives and general methodologies 1
1.2 Motivation . 1
1.3 Playware Potential . 2
1.4 Report Structure . 3

2 What is a Modular Playware Embedded System? 5
2.1 Modular . 5
2.2 Playware . 5
2.3 Embedded System . 6

3 Network Topology 7
3.1 Star . 7
3.2 Ring . 8
3.3 Tree . 8
3.4 Mesh . 9
3.5 Connecting/Disconnecting . 9
3.6 Analysis, comparison and assessment 10

4 Network Protocols 13
4.1 UDP . 13
4.2 TCP/IP . 13
4.3 HTTP . 14
4.4 MQTT . 15
4.5 Analysis, comparison and assessment 15

5 Hardware 17
5.1 The ESP8266 . 17

5.1.1 Limitations . 17
5.2 NodeMCU . 18
5.3 Tetra Boards . 19

5.3.1 Features . 19

6 Software 21
6.1 Software used during development . 21
6.2 Android Application . 21

6.2.1 How does the app work? . 22

III

Contents

6.3 Embedded System Software . 23
6.3.1 Modular Cube . 24
6.3.2 Configuration . 24
6.3.3 Modules / Components . 24

6.3.3.1 AppleMidi Support → [MC_MIDI] 25
6.3.3.2 MQTT → [MC_MQTT] 26
6.3.3.3 HTTP → [MC_Server] 26
6.3.3.4 Over the Air updates → [MC_OTA] 27
6.3.3.5 UDP → [MC_UDP] 27
6.3.3.6 MMA8451 Accelerometer → [MC_Accelerometer] . . 27
6.3.3.7 WiFi → [MC_WiFi] 28
6.3.3.8 Mesh Network → [MC_Mesh] 28

7 Conclusions and future projects 35
7.1 Conclusions . 35
7.2 Future projects . 36

8 Bibliography 37

Appendices I
A Project’s Code . I
B Tetra PCB schematic . III

IV

List of Acronyms

ADC — Analog-to-Digital Converter
API — Application Programming Interface
AP — Access Point
EEPROM — Electrically Erasable Programmable Read-Only Memory
FTDI — Future Technology Devices International
FTP — File Transfer Protocol
GPIO — General-Purpose Input/Output
HTTP — Hypertext Transfer Protocol
I2C/IIC — Inter-Integrated Circuit
I2S — Inter-IC Sound
IDE — Integrated Development Environment
ID — Identifier
IP — Internet Protocol
IoT — Internet of Things
LED — Light-Emitting Diode
MCU — Microcontroller Unit
MC — Modular Cube
MIDI — Musical Instrument Digital Interface
MQTT — Message Queue Telemetry Transport
OS — Operating System
OTA — Over The Air
PCB — Printed Circuit Board
PC — Personal Computer
PWM — Pulse Width Modulation
SCL — Serial Clock
SDA — Serial Data Signal
SDK — Software Development Kit
SPI — Serial Peripheral Interface
STA — Station
TCP — Transmission Control Protocol
UART — Universal Asynchronous Receiver/Transmitter
UDP — User Datagram Protocol
USB — Universal Serial Bus
WAP — WiFi Protected Access
WPS — WiFi Protected Setup
WiFi — Wireless Fidelity
iOS — iPhone Operating System

IV

1
Introduction

1.1 Objectives and general methodologies
The subject of this thesis is the creation of a network of modular devices that
can interact between them in realtime to create a playful experience for the users.
The main requirement given by the supervisors to achieve this goal was to use the
ESP8266 WiFi chips. Wireless electronics are in our everyday life, and the growth of
the Internet of Things has opened a new world of possibilities by using protocols that
have been around us for a while, such as TCP/IP. The abovementioned chips have
become the most inexpensive and most accessible choice for this kind of projects
involving WiFi communications.

Hence the following questions arose:

• Which is the best protocol to send and receive messages between wireless
embedded devices?

• How can these communications between modular devices be used to create a
playware experience by interacting with the users?

Over the next chapters, an analysis of the best available options for a modular
playware system is made and discussed. Once my choices are explained, there is an
implementation of the system with the Tetra boards provided by the supervisor.

1.2 Motivation
The idea of providing playful experiences has always been in my mind since mid
2012, when I watched a documentary about how games were made and designed.
That documentary motivated me to expand my knowledge in programming and to
use the limited knowledge I had back then to start making games. Over the years, I
have devoted some of my free time to develop video games as a hobby and at some
point I decided to start my own Android game development company back in Spain.
When I came to Denmark to do my Bachelor’s Thesis and finish my Electronics and
Automation degree I found out about the Center of Playware and the research being
made in the field, mixing technology with play captivated me since the first minute.
Combining my background in Electronics, my familiarity with programming gaming
experiences and my passion in coding were some of the things that motivated me to
contact Professor Lund in order to have my project supervised by him. The concept

1

1. Introduction

behind this thesis was provided by both Henrik Hautop Lund, Professor of Robotics
at DTU, and the Co-Supervisor Massimiliano Leggieri.

The motivation about the intriguing concept of playware technology has increased
during the development of this Thesis Project. Technology can be a powerful
instrument to improve people’s life, and this aim is behind the research and development
being carried out by the Center of Playware.

1.3 Playware Potential
One of the main purposes of this thesis is to broaden the possibilities of products
and projects being developed in the Center of Playware. At the same time, it is
also important to demostrate that the research carried out in this project about
ESP8266 chips can enhance some of the already existing modular playware devices,
such as the MOTO Tiles [12] or Fable, the socially interactive modular robot [16].

Figure 1.1: The MOTO tiles [12].

When compared with Bluetooth technology, WiFi communications expand the number
of devices that can be connected simultaneously, including both smart and embedded
system devices. Some fallouts can be experienced when connecting 6 or 7 devices
via Bluetooth, something that does not happen with WiFi, where those limits are
extended. On the other hand, WiFi is also a more common technology, included
in the devices we use in our daily lives (i.e. Personal Computers, smartphones,
tablets) and can be more convenient than for example ANT+, used in the MOTO
Tiles. ANT+, despite of being fast and reliable, is not available in all the smart
devices in the market.

This system based on WiFi can also open the doors to products that are directly
connected to the internet, since each module could update itself or save information
into a database.

For these reasons, there are endless potential applications for this modular playware
system and some examples could be:

• Modular educational toys: A group of cubes with different numbers, shapes,
words, animals or colors where the player, a child, has to select the correct
option given by the Android/iOS device.

2

1. Introduction

• Rehabilitation balls: Bearing in mind the idea of the interactive tiles, modular
electronic balls that would help elder people to exercise their upper part of the
body by moving it in different kinds of games. These balls could track their
own movement and work in pairs of two, one for each hand. Different players
at the same time would also make the games more interactive.

1.4 Report Structure
• Chapter 2 explains what a Modular Playware Embedded System is by defining

each of the terms in the Thesis title.

• In Chapter 3, different network topologies are studied and discussed.

• Chapter 4 goes into detail on the network protocols tested during the development
of the Thesis Project. The main reasons for choosing one among the others
are explained in the last section, also including the time measurements of each
protocol.

• In Chapter 5 and Chapter 6, the implementation of the project divided between
Hardware and Software is explained. The information obtained during the
testing process is explained in-depth as well as some of the most important
code and thoughts behind the system.

• Finally, in Chapter 7 the conclusions and the possible future projects will be
analyzed.

3

1. Introduction

4

2
What is a Modular Playware

Embedded System?

This chapter aims to explain what a "Modular Playware Embedded System" is, by
splitting the name into different sections and defining each of them in depth. The
objective is to provide the reader with a clear view of the basic concepts behind this
project by the end of this chapter.

2.1 Modular
Modular systems, also called self-configurable systems, are a series of autonomous
elements with variable morphology. The modules are each of the elements that make
up the whole modular system. Beyond a conventional robotic system, a modular
system has to be able to self-configure, change its shape, and adapt to the changes
of the different network elements regardless of its connection, disconnection or the
information that may be received from the outside of the system.

Modular robotics have been around for a long time, but the accelerated development
of network technologies, along with the lower costs and facility to produce electronics
nowadays have made them more accessible, robust and low-cost than ever. A clear
example to illustrate this is the Arduino project [18] used to develop this project,
which makes building a prototype or even a final product faster, thanks to its
reliability, online community and documentation.

Along this project, it has been assumed that modules are autonomous embedded
systems. Each of the elements is able to act individually until it detects the presence
of another possible node of the system. A list of assumptions and requirements was
drafted for the design of this system. For example, the number of nodes that make
up the system has to be indefinite and only limited by the hardware restrictions,
such as the memory heap that can be allocated in a single element.

2.2 Playware
This term was first introduced in the paper Playware - Intelligent technology for
children’s play by Carsten Jessen and Henrik Hautop Lund, where is described as:

5

2. What is a Modular Playware Embedded System?

“intelligent hardware and software that creates play and playful experiences
for users of all ages.” [11]

The research field of playware focuses into investigating the use of technology to
create what is usually labeled as "play". Even if computer games are the most
known type of playware, the term goes into fields such as modularity, interaction,
robotics and AI among others. Lund and Jessen created the Center for Playware
in 2009 at the Technical University of Denmark to research in those areas as well
as to create playware products [13]. As a result of the research and development
in the Center of Playware some products have been created in the area of exercise,
creativity, rehabilitation, art, learning and innovation. One example of this will the
MOTO tiles [12] that will be mentioned along this project.

2.3 Embedded System
An embedded system is a computer system designed thinking in a specific function,
usually related to real-time computing. These devices are often based on microcontrollers
and microprocessors, and since they are designed to work in a dedicated task, size,
reliability and performance are the key features in their fabrication. We can find
embedded systems in our day-to-day lives, from oven and fridges to audio players or
plane control devices. The main microprocessor includes input and output interfaces
and usually controls different actuators and sensors depending on the purpose of
the system. In some cases an embedded system is just one of the pieces of a more
complicated system with other electronic devices or mechanical parts.

Embedded systems can be programmed directly in the assembler language of the
built-in microprocessor or microcontroller, but C and C++ are gradually becoming
the most common coding language for this type of devices. There are of course
some other options to be used, such as JAVA or Python wrappers. These can be
helpful when testing but tend to be less efficient than working directly with the
low-level code. Therefore, for the purpose of an embedded system, these languages
are generally discarded in final products.

Among embedded systems, user interfaces are commonly customized for each application
need, or even non-existent in some cases. The main reason of using embedded
systems is the low production costs and the efficiency of a device that was designed
with the final application in mind. Their possibilities are almost endless. Chapter
5 contains extended information about embedded systems and their components,
going into detail on the two different boards used to test and make this project.

6

3
Network Topology

Network topology is defined as the arrangement of the different nodes that build
the network [8]. The layout that is used to connect the different elements of the
network is called physical topology. In the same way, the path that the signals
follow between the different nodes is a logical topology, and in some systems it can
be different from the physical one [9].

This section will focus on the various topologies studied in order to find out the best
one for this project, and will subsequently state the reasons taken into account for
that purpose. Nevertheless, there are more topologies that were not considered for
this thesis because of their limitations.

3.1 Star

The star topology is characterized by having a central node that receives the information
of the rest of the nodes, and all of them are directly connected to it. In networking
terminology, the central node is usually called a hub. In this topology, all the
information goes through the hub, even communications between the different clients
in which the central node acts as a signal repeater. For the purpose of this thesis,
the Android device that has to be connected to the network is linked to the central
hub, which would have the information of all the nodes.

Figure 3.1: Star topology.

7

3. Network Topology

3.2 Ring

A ring network is the one in which all the nodes are connected in closed-loop
configurations. The communications between nodes go through every intermediate
element of the network until the destination is reached. All the nodes act as both
server and client, and are able to repeat the signal until it reaches the destination.
If two or more elements fail, the network could be split into different subnetworks
with no communication between them.

Figure 3.2: Network with ring topology.

3.3 Tree

The tree topology, also known as hierarchical topology, can be explained as a group
of star networks arranged. Every individual node in the network acts as a receiver for
the nodes connected to it and as a transmitter to the node to which it is connected.
Theoretically, every single node could have as many childs as wished —the more
added levels, the higher the number of nodes that can take part in the system.

Figure 3.3: Network with tree topology, every node has two branches.

8

3. Network Topology

3.4 Mesh
In a mesh network, all the nodes cooperate to distribute data in the network, acting
at the same time as servers and clients. Wireless mesh networks are usually called
ad hoc network [19], because they do not rely on a pre-existing infrastructure and
do not need to have a hub or central node. This type of networks are dynamic and
nodes are free to move, what enables the creation and joining of networks anywhere
and anytime. A mesh network can either be full mesh or partial mesh.

• Partially-connected mesh: Some of the nodes are linked together, and some
of them can only be connected to only another one. This kind of network does
not have the complexity and load to establish connections with every single
node.

Figure 3.4: Partially-connected mesh network.

• Fully-connected mesh: All nodes are interconnected, so each node can send
information directly to any element in the network with no intermediaries.
This is highly not recommended when dealing with big networks.

Figure 3.5: Fully-connected mesh network.

3.5 Connecting/Disconnecting
Connecting/Disconnecting refers to a common practice used in the Internet of
Things applications, although it is not a network topology as such. The devices
in a network can be independent and not connected to any other device until there

9

3. Network Topology

is a need of sending or receiving some information. Every device creates a network
to which the rest of nodes can connect at any time, and disconnect whenever the
information transfer has been done. Even if this method can be used for some specific
applications, connecting one device to the network of another node takes some
seconds and in some cases multiple tries until the connection is finally established.

Figure 3.6: Connecting/Disconnecting type of network.

3.6 Analysis, comparison and assessment
All the topologies previously explained were at some point tested for the development
of this thesis because of the requirements and needs to be met, as well as some
changes and ideas suggested by the Supervisor and Co-Supervisor. Taking into
account all of this, the final topology of choice was the mesh topology.

The main features that were considered in order to look for the best network topology
for this project were the ones pointed out in Table 3.1. While doing the research,
and as stated before, all of these topologies were tested to verify their viability.

Ring Star Connecting
Disconnecting Tree Mesh

Unlimited Nodes X X X X
Decentralized X X X
Real Time X X X X
Fast with high number
of nodes X

Table 3.1: Comparison of network typologies.

A mesh network lets all the nodes to be connected to various devices, which makes
communication faster and more robust, since upon losing the connection to the mesh
by any module, any other of its sub-connections can be linked to the mesh. Due
to the limitation of four devices per access point that the ESP8266 has, the star
topology had to be discarded since more than 4 modules were used. Likewise, the
main device has to handle all the connections as well as establishing the communication

10

3. Network Topology

with the smartphone, which can significantly increase the memory usage. The ability
that this project has to auto-configure itself and being able to work in a decentralized
way without relying in a pre-existing infrastructure is the main difference between
the mesh and the tree topologies.

As explained later on, all the nodes in the system participate in routing by forwarding
data to other nodes, so the structure is made dynamically based on the algorithm
used. In this case, the modules connect to the access point with stronger signal with
a maximum of four connections.

On the other hand, using a network with a ring shape can lead to communication
problems and the delay of the messages, being these stuck up and sent every time
it passes through an intermediary node. If there is an error in two points of the
ring, the two independent networks will need to be configured again. Finally, the
connecting/disconnecting mechanism was not chosen because of the time that it
takes for one device to connect to a WiFi network. This delay of 1-2 seconds can
make the system completely useless for applications in a real-time environment.

11

3. Network Topology

12

4
Network Protocols

This section is intended not only to explain how all the protocols below work under
the hood, but to expose some of their characteristics to the reader and the pros and
cons that have led to the election of a particular one.

4.1 UDP

The User Datagram Protocol (UDP) is a low-latency internet transport layer protocol
[2]. The main characteristic of the UDP is that it does not guarantee delivery and it
is not protected against repetition of messages. When compared to other transport
protocols, UDP is a connectionless protocol, which means that there is no end-to-end
connection between the two devices trying to share information. This protocol does
not verify the arrival of the message to its destination, what makes it lightweight by
not ordering the messages nor tracking the receivers. This feature makes it ideal for
internet video and audio streaming services [14]. Applications using this protocol
need to deal directly with different things such as packetization, flow control and
retransmission, what increases the development time.

• Unreliable: This protocol does not have handshaking dialogues, and thus the
sender will not have any guarantee of the information being delivered.

• Not Ordered: If packages are delayed due to the internet connectivity or
some blocking processes, the datagrams can be received in an order different
from the transmission one. Applications need to handle these problems by
themselves.

• Lightweight: The lack of reliability makes the packet sizes and overall load
of this protocol smaller than others.

• Broadcasts: Data can be sent to all devices in a specific subnet.

4.2 TCP/IP

The Transmission Control Protocol (TCP) provides a reliable and ordered exchange
of data between devices. TCP works with the Internet Protocol (IP), the latter
dictating how the packets are sent out through the network, where they go and

13

4. Network Protocols

how they reach their destinations. On the other hand, TCP ensures a reliable
transmission of data across the connected networks, checking errors in the packets
and retransmitting if needed [2]. Applications that need a notification every time a
packet is sent, such as emails, the world wide web, and file transfers, are built on
top of TCP [3].

Some of the main characteristics of this protocol are:

• Reliability: This protocol uses a number in order to identify each byte of
data and the order of the bytes sent from each device so that the receiver can
process the data in the correct order. Moreover, acknowledgements are sent
by the receiver of the packet with a sequence number so that the sender knows
that the information has been delivered.

• Acknowledging: The recipient of the message must send back a verification
to the sender to let him know that the packet has been successfully received.

• Data-Packaging: TCP takes care of the data packaging and makes sure that
data flows evenly and smoothly, dealing with problems that may arise halfway.

• Multiple endpoints: The connections established by TCP are identifiable,
what allows each device to have various simultaneous connections to the same
IP device or even to different devices, handling each connection separately
without any conflict.

4.3 HTTP

HTTP stands for Hypertext Transfer Protocol, and the main difference with the
other analyzed protocols is that it is an application protocol and therefore, of a
higher level. HTTP is the main protocol for communication in the world wide web,
used to exchange hypertext between points and built on top of TCP/IP (lower level).
This protocol was the first one tested for this project since it is the easier and the
most well-documented, but rapidly discarded for the problems that will be analyzed
later. The ESP8266 devices include a support convenient for using HTTP, including
libraries and already written code, which makes the development easier when trying
to communicate between two different devices.

HTTP works as a request-response protocol with a client-server model, in which
the client is connected to the server, delivering and requesting information. HTTP
works by defining request methods (e.g. GET, HEAD, POST, PUT, DELETE)
that can be used by the webserver to know what to do with the data received
from the request. Although robust and reliable, this protocol uses hypertext data
for communication, what makes packages large and communications slow. When
working with embedded systems speed and small loads are a must, and HTTP can
block the microprocessor for almost a second or more when sending and receiving

14

4. Network Protocols

information. Furthermore, since it includes a web server and a client, the memory
of the device is full so it can not be used for other needs.

4.4 MQTT
The Message Queue Telemetry Transport (MQTT) is a lightweight messaging protocol
used in addition to the TCP/IP protocol. The main feature of MQTT is the low
bandwidth required for sending information between nodes and the publish-subscribe
messaging architecture used that requires an external broker. The broker is in charge
of distributing the messages to the clients that are subscribed to a specific topic.
Due to the growth of the Internet of Things, MQTT has become the protocol of
choice for applications such as home automation or smart cities.

This communication protocol requires an external broker running in a computing
device with operating system (e.g. PC or Raspberry Pi) that can handle the heaviest
tasks, like distributing or ordering the messages, hence the clients do not need to
know each other. Developing applications with MQTT can be done with very little
effort thanks to the amount of libraries, documentation and big companies improving
this technology.

4.5 Analysis, comparison and assessment
After testing and working with all the protocols mentioned before, the chosen one is
TCP/IP. Below please find a table that summarizes some of the reasons which led
to this decision.

HTTP MQTT UDP TCP/IP
Fast X X X
Ordered Messages X X X
External server needed X
Reliable X X

Table 4.1: Main features analyzed for the chosen protocol.

In addition, average communication times were measured while testing the different
protocols in order to have accurate speed data. This average is calculated after
sending 100 messages from the smartphone device to the network using the specified
protocols, and getting a response back from the device.

HTTP MQTT UDP TCP/IP
Time 1300 88 36 42

Table 4.2: Average time in milliseconds.

Lack of reliability is the main reason for not using UDP as a protocol of choice. As
previously stated, when designing a gaming application where fast interaction is a

15

4. Network Protocols

requirement, the sender of a certain package needs to know if the package has been
delivered. For instance, if the user changes the game mode in the mobile application,
the package including the information will be sent to the “master” node and instantly
retransmitted to the rest of nodes. Before starting the game, the Android device
has to be certain that the whole system knows which is the game mode.

If we compare TCP with a phone conversation, when talking to someone over the
phone the caller can expect to always have an answer, and there is always feedback
from both parts. As a metaphor, UDP could be compared to leaving a message in
a voicemail, since there is no way to know if the receiver has received and listened
to the voicemail or not.

On the other hand, MQTT needs to have a server as an intermediary so the mesh
will not be fully independent. Likewise, it will need internet connection at all times
to be able to share information between nodes. MQTT can be used for other type
of applications in which the server can be used to make the complex calculations
and organizing the heavy load in the network, while the devices have fewer and
smaller functions. The time that it takes to send a message from the server to a
single module is between 30 to 90 ms, and because of the concurrency of the servers
multiples messages can be sent at the same time.

Figure 4.1: System layout with MQTT as a protocol.

HTTP is a protocol for which messages’ sizes are big, and hard to work with because
of its complexity. For this reason, and after testing HTTP as the protocol of
choice for this project, the time for sending messages from one to another node
was around 1-1.5 seconds. During this time, the main loop of the node was blocked
and unable to make any other operation. Every single node acts as a web server
and a client asking and sending data but the load of the data itself make the whole
system unresponsive. HTTP and web servers can be very useful, but they were
initially thought for handling websites and big chunks of data, which makes them
not recommended for Internet-of-Things devices [10].

For all the reasons stated above, and trying to meet the requirements of a playware
embedded system, TCP/IP is the protocol of choice. By looking at the tests, TCP
is not the fastest protocol but it provides ordered and error-free data transfers and
at the same time flow and congestion control.

16

5
Hardware

5.1 The ESP8266

The ESP8266 is a chip with WiFi functionalities and a MCU (microcontroller unit)
produced by Expressif Systems. As defined in the official website, a “low-power,
highly-integrated WiFi solution”. This chip is the most affordable one with all these
capabilities and that is one of the reasons why it is widely used by board designers.
It allows microcontrollers to connect to WiFi networks and make connections with
Hayes-style commands [4]. In 2014, the company behind the chip released an official
SDK that allows to program the chip in various languages, but the option used
for this project was the Arduino Platform. Arduino is a C++ based open-source
firmware that enables the ESP8266 chip and its microcontroller to be programmed
as any other Arduino device on the market. During the development and research
of this thesis, some other options appeared, such as the low-level SDK specific for
mesh networks [6] by ExpressIf, but the lack of documentation and limited time
made those options to be discarded.

Category Item Parameters
WiFi Protocols 802.11 b/g/n/e/i
WiFi Antenna On-board, ceramic
WiFi Security WPA/WPA2
WiFi Modes Station/SoftAP/SoftAP+Station
Hardware Peripheral interface UART/SDIO/SPI/I2C/I2S/GPIO/PWM
Hardware Processor Tensilica’s L106 Diamond 32-bit
Software Network Protocols IPv4, TCP/UDP/HTTP/FTP
Software Firmware upgrade UART Download/OTA (via network)

Table 5.1: Some relevant ESP8266 specifications

The ESP8266 is the core MCU of the two boards used for the development for the
modular embedded system, the NodeMCU and the custom Tetra Boards.

5.1.1 Limitations
Although the ESP8266 is a powerful chip with almost all the WiFi functionalities
needed, during the development of this project a limitation in the chips was found.
This limitation changed completely the design of the network topology that was

17

5. Hardware

thought of at first.

One ESP chip working as an Access Point (AP) can only handle 4 incoming connections.
This limitation is a variable defined in the official ExpressIf SDK. The initial idea
for this project was to use one of the nodes as a master working in AP mode, and
connect the rest as a STATION (Station) to it. This would have led to a system
with a maximum of five devices, limiting the future applications of this system. As
explained in Chapter 3, the solution to this problem was to change the network
topology to a mesh instead of a star, what made the system to not have a finite
number of possible nodes.

Some other limitations appeared while working with these boards in terms of memory
usage. It is highly important to keep the code efficient at all times and not to fill
the memory with useless information, since communications between devices can be
slowed down for this reason.

5.2 NodeMCU
NodeMCU is an open source IoT board based on the ESP8266 [20] chip and SDK
from EspressIf Systems that helps to prototype IoT products. The firmware uses
the Lua [20] scripting language, but thanks to the flexibility of the SDK it can run
Arduino with ease. The NodeMCU is one of the most inexpensive boards on the
market including all the features needed for fast development with the ESP8266
chip. Since it is an open source PCB, it is produced by many manufacturers. It
also integrates GPIO, PWM, I2C, ADC and the FTDI or UART chip to handle
communication between the computer and the board. As explained in previous
chapters, the current state of open source electronic projects is making this kind of
boards under constant development by the community, being high-quality documentation
and example codes available for public use.

Figure 5.1: NodeMCU, board used during development.

The main reason to use this board during the development of the Thesis was the low
cost of acquisition and the out-of-the-box features, since the programmer can start

18

5. Hardware

programming and testing code as soon as they are plugged to the computer. The
nodeMCU boards were mainly used to try WiFi functionalities and to test how the
network should work. Then, the code base was moved to the circular tetra boards
for the final demos. Furthermore, the final Tetra Boards needed a battery to be
connected while flashing and programming them, and the flash button to be clicked
every time it is done. Even if it might not seem an inconvenience, it was a considered
as a limitation when working with a modular embedded system, testing more than
4 devices simultaneously and having to carry all the batteries.

5.3 Tetra Boards
The circular Tetra boards combine the capabilities of the ESP8266 chip with some
actuators and sensors in order to be able to build a playful experience. Since these
boards are custom made, there is no online documentation about them, but the
schematics and pcb design was provided by the supervisors of this project. The
schematics of these boards are included in Appendix B.

Figure 5.2: Tetra PCBs used for the project.

5.3.1 Features
These boards include all the elements of the ESP8266 chip as well as some other
custom features:

• MMA8451: The board comes with two high-precision digital I2C accelerometers
that can detect motion, tilt and basic orientation. These accelerometers are
connected to the I2C pins of the ESP8266 (13, 14 PINS).

• LEDs: All the boards include the connections for a RGB led ring, but only
some of them have all the leds mounted into the PCB. These leds can be
used to create a huge variety of colors and effects using the NeoPixel Arduino
library already written to help control all of them.

19

5. Hardware

• FTDI FT232RL: It handles the communication between the micro-usb connector
(PC) and the ESP8266 chip so it can be programmed and flashed. The FTDI
company [7] also provides the drivers needed to program the chips and for the
computer to be able to recognize the incoming connection.

20

6
Software

This Chapter introduces the softwares used for the development of the project. We
will explain how the Android Application and the program that runs in the boards
work together to share information. All the code is available online (Please see
Appendix A for the links).

6.1 Software used during development
As previously mentioned, the Arduino ecosystem was used for the development of
this project with C and C++ as a language of choice. Arduino is the best framework
to build electronics projects with ease, it includes lots of community and official
pre-made libraries and takes care of compiling code into machine language. The
hardware provided for the project is fully compatible with the Arduino firmware,
and instead of using the official Arduino IDE for programming, Atom and its
PlatformIO package was the first choice. Unlike the Arduino IDE, Atom provides
the most common characteristics of any programming modern IDE, such as auto
code completion, color highlights and a project files viewer.

Also during development, some other softwares were highly helpful for making this
project possible, such as the official FTDI programmer. FT_PROG, as it is called
by the FTDI company, is an utility useful for EEPROM programming FTDI devices,
and it was used for some of the Tetra boards that came unprogrammed.

Android Studio, the official Android IDE, was also used for programming the Android
Application explained later on in the next section.

6.2 Android Application
The idea behind creating an Android application is to test the functionalities and
communications of the system to an external device, as well as being able to see
some important data, share information and maybe to save the data in the phone
storage in the future. The increasing capabilities of the smartphones produced
nowadays make them suitable for multiple things, such as sharing the information
of the modular network on the internet and thus releasing those heavyweight tasks
from the embedded systems.

21

6. Software

The possibility initially assessed to build the user interface for the system was
AngularJS, a Javascript framework for building front-end applications. This option
would have provided a multiplatform application suitable for phones, tablets and
desktops at the same time, but the time constraints and a previous knowledge
in Android programming made the author of this Thesis choose Android native
development in JAVA as the most viable option.

The Android operating system (OS) provides all the development needed to make
a fast prototype or even a final application to test the interaction of the users with
the network and it is less restrictive than the main competitor iOS. Prior knowledge
of Android programming and being able to access some of the low-level APIs for
WiFi and TCP communications made it the perfect choice for this type of project.

The computing power that these small Android devices have nowadays make them
an optimal option to handle the heavy workload, and the nodes in the mesh will
only need to take care of the small calculations, the mesh communications and the
sensor that each of them has.

6.2.1 How does the app work?
For the purpose of this thesis the Android device connects to the WiFi network
created by the mesh. Since only one module can be connected to the external
smartphone, that device is called the “Master” device. The rest of nodes in the
mesh will know the unique ID of the Master device, and whenever they need to
share information with the external device it will always go through the Master.
The communication protocol between the smartphone and the mesh is TCP/IP, the
one being used in the mesh itself. Once the Android device is connected to the
network created by the mesh, it sends a message with its own information.

Figure 6.1: System layout.

22

6. Software

The Android device is synchronized at all times with the mesh network and has all
the information about it, including its structure. The master node sends information
to it whenever a node is connected, disconnected or when the orientation of the any
of the nodes has changed. All of the information that goes through the network
to the Android external smartphone or tablet is formatted in the same type as the
information is sent between the nodes, JSON.

The following line of JSON shows an example of a message sent by the application
to the mesh, where it switches on the light of a specific node, in this case the ones
with ID numbers 857489291 and 857480802. The a parameter stands for "activate"
and it can be either 0 or 1.

[{
"nodeId": 857489291,
"a": 1

},{
"nodeId": 857480802,
"a": 1

}]

6.3 Embedded System Software
The purpose of this chapter is to explain in detail to the reader how the core code and
the whole system work. Flowchart diagrams explaining the process and algorithms
will be used in an effort to facilitate the understanding of the code. The approach
followed for the design of the software that runs in every single node was to use a
module structure in order to be consistent with the rest of the project’s standards.
Some of the questions that were raised during programming were:

• Which methods and functions should be placed into which modules?
• How does the data flow and which order should it follow?

Every module is located in a different folder in the file system, and all the classes and
components needed for the module to work should be included in the same place.
The code is planned keeping in mind the modules introduced in the next figure;
some of them were deprecated in the final version although very helpful during
development.

In order to be consistent with the Arduino ecosystem and standards, the main
module classes (prefix MC_ as a convention) always include two functions, setup()
and loop(), the same ones that any Arduino sketch should include.

Figure 6.2: Basic Arduino functions.

23

6. Software

• setup(): This function is called when the sketch is starting. It should set up
everything that is later needed for the module to work and it is only called once.

• loop(): Once setup is called, the function “loop” is repeatedly executed in
the main program until the program finishes or is restarted.

In the main.c class, the main setup and loop functions are called automatically by
the Arduino firmware, and those functions should include the respective functions
of rest of the modules. In every single module, other methods can be included below
those two main functions to handle different functionalities.

6.3.1 Modular Cube
Modular Cubes (MC) is the name assigned to every single PCB with all its components
included. The modular cube class has its own setup() and loop() that contains the
respective methods of the different components, as explained later in Section 6.3.3.
This class also includes all the general variables (including setters and getters) of
the node so the rest of components can access and ask for any useful information.
Some of those variables are:

• tO: Current time in ms since the moment the PCB was switched on.
• deviceId: Unique device ID that identifies the node in the network.
• localIP: IP of the node.
• childs: Contains a JSON formatted data of all the childs of the node.
• master: Boolean variable to know if the node is the master of the network or

not.
• currentOrientation: Variable that gives a number between 1-6 indicating

the current orientation of the cube. This variable is duplicated and it can also
be accessed in the MC_Accelerometer module.

• activated: Boolean value that indicates if the device is on On or Off mode.
• jsonData: Information of the node and all its childs. This Json formatted

data is slightly different depending on whether the device is Master or not.

6.3.2 Configuration
The configuration file <Configuration.h> is the one storing all the general variables
for the system configuration, such as SSID or passwords, as well as some general
server addresses. Having every single variable in the same place makes development
and testing faster, since the programmer does not have to go through every file
tweaking variables.

6.3.3 Modules / Components
As explained before, modules or components refer to the different parts of the boards
themselves. Each of these components have an specific function in the software
running inside the boards.

24

6. Software

Figure 6.3: Components implemented inside each module.

6.3.3.1 AppleMidi Support → [MC_MIDI]

The goal of this module is to be a wrapper for the official AppleMIDI Library [15],
which enables Arduino to participate in an AppleMIDI Session, including all the
Midi functionalities.

Midi (Musical Instrument Digital Interface) is a technical standard that describes a
protocol, digital interface and connectors, and allows electronics musical instruments
and other devices to connect and communicate with one another. MIDI handles
messages that specify notation, pitch and velocity, and controls things such as audio
values, panning, cues and clock signals. Using this library can make any Arduino
device to be recognized as a digital instrument by a computer.

AppleMIDI (also known as rtpMidi [5]) is a protocol to transport MIDI messages
within Real-Time Protocol packets over networks. In this specific case, wireless used
by Apple. This protocol is free and open source and includes all the features that
MIDI does.

In the setup function, an Apple Midi Session is created in the port defined by the
user. Once this is done, the user can search for the device in the Audio Sound
Manager in a Mac Computer or rtpMIDI software in Windows. Since the library
includes a callback system, the user does not need to poll to receive the MIDI
commands. On the other hand, in the loop function the AppleMidi library handles
many other kinds of tasks, such as listening for incoming notes.

During development and testing a lag took place because of the PC being connected
to the mesh network. The MIDI data being transferred through the system seemed
to be too big for the modules to work properly, but when connecting the nodes to
the home network where the PC or laptop was, the communications were real-time.
In the Figure 6.4 it is shown how this system should work when being connected to
a router with higher data transfer capabilities.

25

6. Software

Figure 6.4: Viable MIDI system.

Eventhough AppleMIDI has not been used in the final application of the project,
it would be interesting for a future project to expand in the use of MIDI and the
connection of the mesh to a computer in order to use the cube modules as an
instrument.

6.3.3.2 MQTT → [MC_MQTT]

During the development of this project, MQTT was tested and finally discarded as
it was explained in Chapter 4. This module uses and adapts the methods of the
PubSubClient for handling MQTT messages between the broker and the master
node that is connected to the internet. When the board is set up, the module
handles the subscription to the specific topics, so that the broker knows where to
send the information. In the loop function, it asks for new information to the broker
and manages errors with the connection if they occur.

All the messages are in JSON format, so when data is received it has to be parsed
and processed in order to determine which is the final receiver of the information.
All the data received is then retransmitted to the final receiver specified.

Although this protocol has not been used in the final project, its speed, robustness
and low-latency makes it suitable for other types of projects. For example, those in
which it would be feasible to have a server as an intermediary between all the nodes
in the network, including any Android device or computer.

6.3.3.3 HTTP → [MC_Server]

Module in charge of the HTTP web server and client communication using the
<ESP8266WebServer.h> library. A web server is created in the specified port and
some data can be viewed if a phone is connected to the master just using the
browser and visiting the default localhost IP 192.168.4.1. This module also handles
the different types of HTTP request (GET, PUT, DELETE, POST) and parses the
possible responses of those requests.

As mentioned in Chapter 4, HTTP was not used as a protocol for the current mesh
configuration, thus this module is currently not being used in the final version.

26

6. Software

6.3.3.4 Over the Air updates → [MC_OTA]

Over The Air (OTA) updates is the process of loading the code into the board via
WiFi without the use of any wires. This module handles this task and it is only
used in development when all the boards are connected to the same home network.
Both the Arduino and Atom IDE include this option, which is really helpful when
trying to simultaneously update the code for multiple devices.

Since none of the devices were connected to the home network but to their own, it
is not possible in the current mesh configuration to transfer over the air the amount
of data needed for the code update. OTA updates would only be possible if the
topology of the system is changed to one where the nodes are all connected to the
same router.

6.3.3.5 UDP → [MC_UDP]

UDP protocol was used during development and testing of this project and later
discarded due to the justifications that was provided in Chapter 4. This module
takes care of everything related with the UDP protocol, sending, receiving and
parsing packets between nodes themselves and also between nodes and the Android
device. UDP uses IP as a way to identify the nodes, usually the IP of the device,
and an UDP server and client is set up in the defined port, in this case 5050. At
first, the structure of the system required the devices to be linked by UDP, and the
master node was connected to the Android smartphone vía an MQTT broker.

A low reliability and the need to code the way to handle all the errors was the
main reason this module was finally discarded, although it was helpful for learning
purposes.

6.3.3.6 MMA8451 Accelerometer → [MC_Accelerometer]

The onboard MMA8451 accelerometer is set up and controlled by this module.
During the setup, the sensor is detected and linked via the I2C protocol using the
Wire.h Arduino library by knowing its address. Additionally, if no accelerometer
is detected, the system automatically notifies the user in the command line, what
is helpful if using the same code for the NodeMCU and the circular Tetra boards.
This module makes use of standard I2C to communicate, read information and
set variables on the sensor. All the information received regarding motion, tilt
and acceleration are parsed and used for the control of the system, being the
accelerometer the main input interface for the user.

Figure 6.5: MMA8451 from the input to the output.

The MMA8451 sensor comes with some predefined functions that allow to know the

27

6. Software

orientation of the node, although this function had to be adapted and calibrated for
accuracy when using the cubes. In the code below we can see how the data is read
and transformed into a valid current orientation for a cube, numbers between 1 and
6.

With the current demo, the data is read and parsed every 200 milliseconds. If the
orientation changes in that time, the function Cube.updateOrientation() is run
and the orientation is sent through the network to the Android device.

6.3.3.7 WiFi → [MC_WiFi]

This is another wrapper that makes even easier to work with the default code in
<ESP8266WiFi.h>. This module includes all the functions needed to set up the WiFi
connection and to handle errors should they ever occur. Since its connection to the
network is a core functionality of the system, the node will check on the loop if it
is still connected to the internet. If not, it automatically reboots to find available
networks.

This module was discarded since there is no external internet connection by the
system anymore. All the network features are handled by the Mesh Module (MC_Mesh):
connection, disconnection, routing, node communication, etc.

6.3.3.8 Mesh Network → [MC_Mesh]

The Mesh module handles all the needs related to the connections and communications
between devices in the network. The explanations in this section will aim to briefly
cover how this part of the code works, and the thoughts and considerations behind
this reasoning. This module has been the main focus during development because
of the complexity of working with low-level communication protocols.

As explained in section 5.1.1, only 4 devices can be simultaneously connected to a
node, so in order to connect other devices to the mesh we would need to configure
a Mesh (as explained in chapter 3) that can be stable, robust and fast enough to
meet the requirements of a real-time playware system.

As any other module in this system, the module has two main functions following
the Arduino standards, setup() and loop().

Figure 6.6: Mesh basic functions.

Mesh set-up

The first task needed when the device is switched on is to check if there is an
available network around. The network is called “CUBES_MESH” by default, so

28

6. Software

any device will look for that name and after gathering this information the mesh
will be initialized.

Figure 6.7: Mesh setup function.

Every new node is configured as both a Station (STA) and Access Point (AP), which
lets this device connect via WiFi to other nodes and also be open in case any other
node wants to connect to it. During the initialization process, an unique NodeId
is given to each PCB based on the MAC Address. This ID will help the system to
recognize any new devices, and also to be able to send messages to single devices.

After having used encodeNodeId(); and giving it the MAC address of a device,
it will return an integer that will be easier to handle by the system (Please see an
example below in Figure 6.8).

Figure 6.8: Encoding the MAC address to obtain a unique node ID.

In the process of setting up each device, we also initialize the TCP server that will
handle the communications between the different elements in the network. The
official Arduino <espconn.h> library has been used for this purpose. This library
contains the general built-in functions that help us use TCP with ease, such as
initializing the server or client, read messages and send messages from one TCP
client to a server.

Although it may seem a very complicated process, all these functions explained
above happen in just a matter of milliseconds. Once the setup has been done, we
are ready to find any other nodes in the network, try to connect to them and start
sharing information.

Mesh loop

Every time the loop function runs, a decent amount of methods are called in order
to make the system work. Two main functions are run over and over again inside
the loop. Firstly, the WiFi and all the things related to the wireless connectivity
need to be managed. Then we will manage the connections that are already taking
place with any other device if any. Every node, even if connected to the network
in the third or fourth level of the mesh, needs to know which is the NodeId of the
master device that is connected to the smartphone or PC. For this reason, if the

29

6. Software

current node does not know the ID of the master, it will ask for the master’s ID to
all of its connections on every loop and only if it is connected to the mesh.

Figure 6.9: Inside mesh loop.

Manage stations

The WiFi connections between devices are all taking place based on the callbacks
that the Arduino WiFi library has. When there is any change in terms of the wireless
connectivity, a callback is called and the WiFi status changes. This status can be
easily accessed by using the wifi_station_get_connect_status() function and
by parsing its response we can make changes to the device. We should bear in mind
that we are inside the loop so this function will repeat itself, and by saving the
previous status we can detect any change.

If the device is not connected to any Access Point (AP), it means that this specific
node is not connected to the mesh network. Therefore, we need to start scanning for
the mesh until we find another device nearby that we can connect to. By setting the
network configuration as hidden we will get the data that it provides when scanning
with the ESP8266 chips. Upon scanning for wireless networks, we will receive some
useful information for every network such as:

• SSID (Service Set Identifier): Name of the wireless network. The name
of the WiFi is not unique and can be repeated. As explained before, all
the access points created by the devices in our mesh have the same name:
“CUBES_MESH”.

• BSSID: MAC Address of the access point founded, this is unique for every
network founded.

• RSSI (Received Signal Strength Indicator): Is a measure of the power
level of that radio-frequency device. The higher the level, the higher the signal
strength to the specific network.

• Security: If the WiFi has any type of password we will the encryption type
of it.

Using the table below as an example (Table 6.1), among the various options of
CUBE_MESH available the one selected would be that one with RSSI of -21, since

30

6. Software

is the one with the strongest signal. The current node will try to connect to that
network next and if it fails, it will try again with the next one.

SSID BSSID RSSI Security
CUBE_MESH 00:0a:95:9d:68:16 -54 WPA
HomeWiFi 00:5a:10:1b:08:03 -15 WPA/WPA2
CUBE_MESH 00:23:60:aa:91:54 -33 WPA
CUBE_MESH 00:11:93:99:77:21 -21 WPA
dtu 00:1f:10:9c:45:03 -83 WPA2

Table 6.1: Example of a WiFi scan.

With all the information provided, each node is able to differentiate which of the
networks nearby matches the name of the mesh, and out of those it can select which
one has the best signal. The device will now try to connect to the mesh by using the
device found as an entry point. If connecting results on failure, this network will be
removed from the list of available networks to connect to and it will retry with the
next one. As explained before, failing to connect to the network can occur because
of the access point already having 4 nodes linked to it, thus exceeding the limit of
connections.

Once the device is connected to the network, it will be assigned an IP. With that
information and the Gateway IP address into which we are entering the network,
TCP connection to the upper level node is ready to be started. As previously stated,
the TCP setup takes place by using the low-level APIs that come available with
Arduino. The callbacks that will help the device to know when a new message is
received or whether a new node is connected to the mesh are now setup. The names
given to the callbacks should be self explanatory of the moment when are they called:

• On successful connection
• On data received
• On data successfully sent
• On connection error
• On disconnection

Once the devices are paired, the device does not need to make any other changes
regarding the WiFi. The client device sends the initial information about itself to
the upper node it is connected to, which will now take it into account. Managing
new connections and receiving data takes place in the next function in the loop,
manageConnections().

Manage Connections

Each device calls manageConnections() in order to check and keep stable its connections
to other nodes. Every single node saves all the connections to other devices into an
array by using the library SimpleList [17], and on every loop it will iterate through
this array of linked devices to check their status.

31

6. Software

Figure 6.10: Components implemented inside each module.

All the nodes in the network are synchronized as a way of knowing which devices
are currently on the mesh and which ones are not. That means that when cube
module connects to the mesh it will receive information on what is the clock time
of the mesh. All the nodes will have the same timestamp, which is useful to know
when a device is disconnected or connected to the network and to verify that the
connection is still alive. Figure 6.11 shows how the implementation works.

Figure 6.11: Node sync mechanism.

Every some seconds (determined in a variable), the device synchronizes the time of
all of its current connections and sets their status to NEEDED. Then it sends sends
a small packet to them and the connection status will now change to REQUESTED,
and later on, once it gets a successful response from the device, it saves the time of
the last received message and sets the status of that connection to COMPLETE.

32

6. Software

If, by comparing the time in which we have received the last information from a node
to the current time, the device finds out that this time is longer than the determined
node maximum timeout, it will assume that this link is not alive anymore and will
remove it from the array of connections.

if (nowTime - connLastReceived > nodeTimeOut){
// Connection dropped, remove node from the connection array

}

Every node has a JSON formatted variable with the current structure of the network.
This variable is updated every time there is a change in the network, so that all the
modules know where they are located and which are the IDs of the rest.

[{
"nodeId": 886361589,
"subs": [{

"nodeId": 886361061,
"subs": [{

"nodeId": 886360887,
"subs": []

},{
"nodeId": 886360793,
"subs": []

},{
"nodeId": 886360273,
"subs": [{

"nodeId": 886360526,
"subs": []

}]
}]

}]
},{

"nodeId": 886360572,
"subs": [{

"nodeId": 886360555,
"subs": []

},{
"nodeId": 886374821,
"subs": []

}]
}]

The code above shows an example of a mesh structure composed by 9 nodes. The
subs include all the childs in that specific node.

Sending data

Since all the devices in the network know their respective position in the mesh as
well as the IDs of the rest of the devices, they can send messages to any device in the
mesh. Sending data via the TCP protocol is straightforward by using the libraries
included in Arduino. Here are two options available to send data to the network:

33

6. Software

• Sending data to a single node: Each device needs to check if the destination
node is in the lower levels, i.e., if it is any of the members of its connections
or sub connections. If the receiver does not appear in this list, it will send the
message to the upper level which will do the same process and check its own
connections. This process will then repeat until the destination node is found
and the message is successfully delivered to it.

• Sending data to all the nodes in the network: The node checks which devices
are part of the network and sends an individual message to each of them.

Every message is sent using the JSON (JavaScript Object Notation) file format and
parsed by the devices using the ArduinoJSON library [1]. All the messages contain
the following information:

• Sender ID
• Receiver ID
• Timestamp
• Message

One example of a possible message shared between devices would be the following:

{
"dest": 886361589,
"from": 886360273,
"timestamp": 17175046,
"msg": {

"t0": 17174790
}

}

It is also important to mention that all the messages that are not sent to the receiver
because of an error in the network are automatically stored in the queue. This queue
will save the messages that need to be delivered and it will try to send them as soon
as the receiver is available. In order to avoid filling the memory of the device with
the queued messages, the queue will be cleared when the memory is full.

34

7
Conclusions and future projects

7.1 Conclusions

In this Bachelor’s Thesis, it has been analyzed, in summary, how a modular embedded
system with the final goal of using WiFi technologies for playware applications
should work. At a later stage, the code needed for the system to work has been
developed in order to verify whether the research could be functional in a real-world
implementation. All the aspects this Thesis involves have been tested in a real
environment in order to choose the right solution for each specific problem.

After all of the analysis and development have been carried out, the main conclusions
that can be drawn are the following:

• A wise and detailed choice on the network protocol to use can make a huge
difference on how the system works. The lower-level ones, despite of being
more complex to work with, are faster and more reliable. TCP/IP is not the
fastest protocol but it provides ordered and error-free data transfers as well as
flow and congestion control. Although some other network topologies could
be used, the only one that meets the requirements of this system is the most
complex to code, a partially-connected mesh.

• It is of particular relevance to get the most out of modular embedded system
efficiency when designing the division of control between the modules and the
smart device (i.e. Android smartphone).

• The ESP8266 chip favors the setup of networks of an almost unlimited number
devices at a very convenient price. Having a decentralized network, where all
the devices can act the same way, makes possible to connect various smart
devices to the same network.

• Finally, WiFi technologies are a viable solution for real-time applications, and
to be more specific, for playware ones. The Center of Playware can really
benefit from the research carried out in this Thesis by using it in different future
products and projects. As stated in the introduction of this document, the
possibilities are endless, from modular robots connected via WiFi to handheld
version of the MOTO tiles for exercising the upper part of the body.

35

7. Conclusions and future projects

7.2 Future projects
During the development of this research project, new ideas and study lines have
arisen. These future projects could either be an extension of the current project or
new fields of research to be promoted. The most outstanding are the following:

• Reduction of the size of the messages between nodes by changing the JSON
format to bytes. The speed and robustness of the system will be increased and
it will be really helpful towards the development of a final product using this
technology.

• Implementation of all the functionalities that AppleMIDI offers (as explained
in section 6.3.3.1) to make a full MIDI instrument based on the modular cubes
as an interface.

• Research on how to use the Pulse Width Modulation (PWM) included in the
Tetra boards to create moving modules with servomotors.

• Optimization of the code in order to be used in final user products by the
Center of Playware, for example, a new version of the MOTO tiles working
with WiFi.

36

8
Bibliography

References
[3] D.E. Comer. Internetworking with TCP/IP:Principles, Protocols, and Architecture.

Fifth Edition. Pretince Hall, 2006.
[4] G. Dalakov. The Modem of Dennis Hayes and Dale Heatherington. 1999.

(Visited on 05/29/2017).
[8] D. Groth and T. Skandier. Network+ Study Guide. Fourth Edition. Sybex,

Inc, 2005.
[9] S. Inc. Networking Complete. Third. Sybex, 2002.
[11] C. Jessen, H.H. Lund, and T. Klitbo. Playware - Intelligent technology for

children’s play TR-2005-1. 2005. url: http://www.carsten- jessen.dk/
playware-article1.pdf (visited on 05/25/2017).

[12] J.D. Jessen and H.H. Lund. “Effects of short-term training of communitydwelling
elderly with modular interactive tiles”. In: Games For Health Journal 3(5)
(2014), pp. 277–283. doi: 10.1089/g4h.2014.0028. url: https://goo.gl/
3HNcAq.

[13] J.D. Jessen and H.H. Lund. Evaluation and understanding of Playware Technology
– trials with playful balance training. 2016. url: https://goo.gl/Jx64pi
(visited on 04/01/2017).

[14] J.F. Kurose and K.W. Ross. Computer Networking: A Top-Down Approach.
2010. url: https://goo.gl/Vb91us (visited on 03/16/2017).

[16] Arnþór Magnússon et al. “Fable: Socially Interactive Modular Robot”. In:
Proceedings of 18th International Symposium on Artificial Life and Robotics.
2013.

[19] C.K. Toh. Ad-Hoc Mobile Wireless Networks. New Jersey, USA, 2002.

Web resources
[1] B. Blanchon.ArduinoJSON. 2014. url: github.com/bblanchon/ArduinoJson

(visited on 04/20/2017).
[2] R. Branden. RFC: Requirements for Internet Hosts - Communication Layers.

1987. url: https://tools.ietf.org/html/rfc1122 (visited on 03/04/2017).
[5] T. Erichsen. rtpMidi. url: www.tobias-erichsen.de/software/rtpmidi.

html (visited on 02/25/2017).
[6] EspressIf. ESP-MESH SDK. 2016. url: espressif . com / en / products /

software/esp-mesh (visited on 03/16/2017).

37

http://www.carsten-jessen.dk/playware-article1.pdf
http://www.carsten-jessen.dk/playware-article1.pdf
https://doi.org/10.1089/g4h.2014.0028
https://goo.gl/3HNcAq
https://goo.gl/3HNcAq
https://goo.gl/Jx64pi
https://goo.gl/Vb91us
github.com/bblanchon/ArduinoJson
https://tools.ietf.org/html/rfc1122
www.tobias-erichsen.de/software/rtpmidi.html
www.tobias-erichsen.de/software/rtpmidi.html
espressif.com/en/products/software/esp-mesh
espressif.com/en/products/software/esp-mesh

8. Bibliography

[7] FTDI. FTDI Corporate Information. url: www.ftdichip.com/FTCorporate.
htm (visited on 03/04/2017).

[10] IoT Standards and Protocols. url: www.postscapes.com/internet- of-
things-protocols/ (visited on 05/29/2017).

[15] Lathoub. AppleMIDI Library. url: github.com/lathoub/Arduino (visited
on 02/23/2017).

[17] Phillaf. SimpleList Arduino. 2013. url: github . com / Phillaf / Arduino -
SimpleList (visited on 04/21/2017).

[18] Arduino Project. url: www.arduino.cc (visited on 02/26/2017).
[20] Zeroday. A lua based firmware for wifi-soc esp8266. 2015. url: github.com/

nodemcu/nodemcu-firmware (visited on 03/02/2017).

38

www.ftdichip.com/FTCorporate.htm
www.ftdichip.com/FTCorporate.htm
www.postscapes.com/internet-of-things-protocols/
www.postscapes.com/internet-of-things-protocols/
github.com/lathoub/Arduino
github.com/Phillaf/Arduino-SimpleList
github.com/Phillaf/Arduino-SimpleList
www.arduino.cc
github.com/nodemcu/nodemcu-firmware
github.com/nodemcu/nodemcu-firmware

A
Project’s Code

All the code developed for this Thesis is published online divided in two sections:
the embedded system and the Android application.

• Embedded System: github.com/manugildev/modular-cubes-embedded

• Android Application: github.com/manugildev/modular-cubes-app

I

github.com/manugildev/modular-cubes-embedded
github.com/manugildev/modular-cubes-app

A. Project’s Code

II

B
Tetra PCB schematic

III

B. Tetra PCB schematic

IV

	Summary
	Contents
	List of Acronyms
	Introduction
	Objectives and general methodologies
	Motivation
	Playware Potential
	Report Structure

	What is a Modular Playware Embedded System?
	Modular
	Playware
	Embedded System

	Network Topology
	Star
	Ring
	Tree
	Mesh
	Connecting/Disconnecting
	Analysis, comparison and assessment

	Network Protocols
	UDP
	TCP/IP
	HTTP
	MQTT
	Analysis, comparison and assessment

	Hardware
	The ESP8266
	Limitations

	NodeMCU
	Tetra Boards
	Features

	Software
	Software used during development
	Android Application
	How does the app work?

	Embedded System Software
	Modular Cube
	Configuration
	Modules / Components
	AppleMidi Support [MC_MIDI]
	MQTT [MC_MQTT]
	HTTP [MC_Server]
	Over the Air updates [MC_OTA]
	UDP [MC_UDP]
	MMA8451 Accelerometer [MC_Accelerometer]
	WiFi [MC_WiFi]
	Mesh Network [MC_Mesh]

	Conclusions and future projects
	Conclusions
	Future projects

	Bibliography
	Appendices
	Project's Code
	Tetra PCB schematic

