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Abstract

Liver cancer is one of the most harmful cancers because it affects a vital body
organ. There are multiple methods to treat this pathology with surgery being the
most effective. However, not all patients can benefit of it due to age or health
conditions. Due to its minimal invasiveness, radiofrequency ablation (RFA) is an
alternative for some of these patients because the precise image guidance decreases
the risk of complications.

It is important to elaborate a procedure that allows to evaluate if either RFA
of a liver tumour was successful or an extra treatment like surgery is necessary.
Even though there are some studies that assess the effectiveness, very few are
reproducible or efficient as they use manual segmentations which are time con-
suming. Therefore, a registration of pre- and post- RFA images in a group of 9
patients was performed using SimpleITK in python in CT images. Despite regis-
tration is a useful method to compare these two images, it is a challenge to achieve
a precise registration. It requires to match each voxel of the body of the patient,
but not the tumour and ablation region.

The proposed method consists of a rigid transformation followed by a non-rigid
transformation. Moreover, the use of different masks were studied to get the most
efficient solution. Subsequently, this solution was then improved by tuning the
registration parameters such as the grid spacing and the transform bending en-
ergy penalty. Finally, an exhaustive evaluation was performed in order to obtain
the best parameter tuning basing on the accuracy and the plausibility measures.

For a dataset of 9 patients, it was appreciated how the quality of registration
increases by the rise of the grid spacing from 15.0 to 10.0, and from 10.0 to 5.0
according to dice coefficient, false negatives, false positives and jaccard index.
However, the weight assigned to the transform bending energy penalty had not
the same effect. It could not define a direct effect between the quality of the reg-
istration and the increase or decrease of the weight, even having the same grid
spacing.
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Chapter 1

Introduction

Accounting for 8.8 million deaths in 2015, cancer is the leading cause of death
worldwide according to OMS. Of these, the second most common cancer death is
liver cancer with 788.000 deaths in this period of time [10].

It is one of the most harmful cancers that exists because this organ takes action
in digestive procedures, not only breaking down and storing many of the nutrients
absorbed from the intestine, but also, secreting bile into it to help to absorb nutri-
ents. Furthermore, it develops refining functions of the body decomposing alcohol,
drugs and toxic wastes in the blood [17].

In order to prevent liver cancer, early detection and a detailed diagnosis are impor-
tant as they increase patient probability of surviving what is fundamental to treat
the patient correctly. According to the different types of primary liver cancers,
there are some different procedures to treat them as radiotherapy or chemother-
apy. However, the most effective treatment is surgery although not all patients
can benefit of it. Depending of different factors, there are two possible surgical
techniques: the radiofrequency ablation (RFA) and the hepatectomy. [7]

The Interventional Radiologist (IR) commonly chooses RFA as a viable alterna-
tive in early metastatic liver cancer in inoperable patients because is a minimally
invasive treatment that induces temperature in the tissue using high frequency to
desiccate the tumour area with real-time guidance [13,22]. That allows to remove
the tumour with a low risk of complications and in an efficient way.

At the end of this process, it is fundamental to perform contrast material-enhanced
Computed Tomography (CME-CT) to the patient in order to, either enable us to
assess technical success or reveal any possible procedure-related complications.
The treatment is considered successful when the ablation zone completely encom-



passed the tumour observed at CT imaging and treatment failure as incomplete
coverage of the tumour seen at CT pre-intervention [1].

Although RFA procedure does not have complications due to follow well standard-
ised protocols, after performing the surgery the IR has to evaluate the follow-up
imaging to be sure that the tumour has been removed completely through com-
paring the post ablation image with the image taken before the ablation. This is
a tricky and risky task because they have to take into account changing factors
of the liver as the breathing or the weight gain or loss of the patient. In spite of
trying to be as accurate as possible, they may make mistakes and because of that,
cancerous tissue could still be in the liver, which would cause the recurrence of the
tumour being damaging for the patient prognostic. Consequently, IR needs a tool
that provides them this accurate and objective evaluation of the RFA intervention.

A potential alternative to evaluate the RFA accuracy objectively, is offered by
imaging processing. It would require to select images, pre-process and register
them. This registration will consist in comparing the shape, size and position of
the original tumour and the treated zone after the intervention as the IR would do
it. That procedure can be rigid or non rigid. Performing the rigid one, the image
is translated or/and rotated to adapt to the another one, while using non-rigid
transformation is provided free movement. The issue will be to find the correct
combination of both. Then, it is required the validation of registration in order to
assure the reliability of the method.

This could be a solution, although it will be still necessary the IR evaluation
in order to assure the correct performance of registration. Therefore, the tool
should be always supervised by an expert.



Chapter 2

State of the art

It is important to elaborate a procedure that could evaluate the efficiency of RFA
in order to assure the correct deletion of the tumor. Nowadays, this process is still
done manually, by comparing visually the image before and after the RFA.

According to this requirement, there are several studies that try to assess the
efficiency of RFA reviewing manually CT scans after the procedure [2]. Other
researchers try to predict the recurrence comparing the use of different imaging
diagnosis as contrast-enhanced ultrasonography (CEUS) [16], multidetector-row
computed tomography [4] or positron emission tomography-computed tomogra-
phy (PET/CT) with fluoride radiolabeled deoxy-glucose [21]. Although none of
them uses a tool that could help to assess the post-image obtained from all of these
diagnostic imaging procedures objectively, Vandenbroucke et al. [3] take profit of
an interactive procedure that align the ce-CT-images and, hereafter, verify the
tumor coverage 24h after the RFA. Also, Keil et al. created a semiautomatic tool
to evaluate the initial CT images and the RFA zone [5].

Moreover, there are other authors that try to automatically align both images
by different ways. Even though it was some years ago, Meyer et al. [12] performed
an automatic mutual information-based registration algorithm in phantom studies
that requires little pre-processing and minimal user input. Also, Maes et al. [9]
maximized mutual information with optimization methods and multiresolution
strategies to allow a robust and accurate fully automated affine medical image
registration tool without using segmentations. Focussing on the liver, Rieder et
al. performed a rigid transformation avoiding the use of liver masks, but using
ablation and tumor masks [14].

Achieving a registration without using masks is an important issue because it
would allow doctors to do automatically the comparison of the images. However,



it is also necessary to achieve the best accuracy performing a registration adapted
to patient and tissue conditions, as the case of liver tumor. If it is required to
compare a region in the images that have different texture in both images, as the
ablation zone and the tumor area, it will be necessary to perform different type of
transformations. For that reason, Staring et al. proposed a local rigidity penalty
term which is included in the registration function that penalizes deformation of
rigid objects [18].

In 2010, Klein et al. [15] developed elastiz. This toolbox consists in a collec-
tion of algorithms used to solve medical image registration problems. It allows
to perform medical image registrations while being quickly to configure, test and
compare different registration methods. Consequently, Luu et al. [8] developed an
automatic registration of the images pre- and post- liver tumor ablation using a
nonrigid registration with a rigidity penalty as Staring did in a general way using
elastiz. They used as similarity metric S(T'; Iz, [);) normalized cross correlation
(NCCQ) satisfying a linear relation between the intensity values of the fixed and
moving images. As a nonrigid transform 7" they used a B-spline deformation field
applying an iterative stochastic gradient descent optimizer.

The method proposed by Luu et al. [8] requires a segmentation of the tumor before
RFA procedure and after the scanning because they applied a rigidity penalty in
that specific region. Despite it was performed in all body, the similarity metric
was evaluated only over liver area defined by a liver mask. Regarding evaluation
metric, they used one overlap metric as the Dice similarity coefficient, Mean Sur-
face Distance (MSD) and a Local Mean surface distance (LMSD). According to a
grid size of 5 mm, o = 2 and 3 = 10, they obtained a Dice in rigid registration of
87.9%, and a 92.2% in nonrigid with the local rigid deformation.



Chapter 3

The main objective

The initial goal of this project is to develop a registration method without masks
and to prove that allows to obtain better results than the one proposed by Luu et

al. [8] .

To achieve this objective, we examined the optimal combination of masks in order
to decrease complexity of the registration method. We used C'T images before and
after the intervention because it allows us to show the tumor and the ablation
zone. Hereafter, different parameters related with the registration process will be
tuned in order to find the most efficient and accuracy combination of them.

The validation of this procedure was done using overlap and deformation per-
formance measures that allows to compare results between tests. Thanks to this
protocol the interventional radiologist will know if the ablation already done was
correct performed to achieve the total deletion of the tumor or, if it was necessary
a second intervention.

10






Chapter 4

Materials and methods

4.1 Data description

Registration was performed on CT follow-up dataset of the thorax of 9 patients
having different types of cancers, from primary to metastasis cancer, provided by
the UZ Brussel, Belgium. This dataset were from different types of studies and
different times. Specifically, the provided dataset consisted of 3 scans per patient:
one scan of the day before the surgery, other of the day of the surgery and another
of the day after. The images used were CT-PET studies acquired by a Philips CT.
These images had slices of 512x512 voxels and a thickness of 2.0 and 5.0 mm.

First of all, patients were selected based on the availability of their images one
day before and after the ablation procedure. It was important to obtain these
images with the higher resolution that was possible. Because of that, we selected
9 patients from an original dataset of 10, with a thickness of 2.0 mm that was the
best available for each patient.

11



4.2 Image processing

In order to better understand the process that was followed, we are going to de-
scribe each step of the flowchart of the figure 4.1.

According to Luu’s research, an imaging pre-treatment and a manual segmentation
were required before performing registration. Then, registration was composed by
two main steps: a rigid (”Initialization” or "Rigid” according to Figure 4.1) and
a non-rigid transformation. For each case, a different combination of masks was
used in order to get their optimal use. After selecting the best case, a parameter
tuning was done and proved by validation metrics.

Imaging Pre- Manual Registration || Tuning | I validation |,
treatment segmentation parameter
A
Rigid Non-rigid
>
Casel +Liver mask +Liver mask
Case2 Initialization |—»| l\fon-rlgld
-Liver mask
Case3 Initialization [—»| Non-rigid
-Liver mask
+ Tumour mask
+ Ablation mask
Initialization |—» Non-rigid
Case 4 + Rigidity penalty
Case 5 Rigid 1 ) Non-rigid
+Liver mask +Liver mask
+ Rigidity penalty

Figure 4.1: Flowchart

4.2.1 Imaging pre-treatment

After the selection of the images before and after the ablation with the highest
resolution, it was almost mandatory to crop the images because they had different
sizes for each patient in order to standardise the process that it will be followed
during the algorithm. Moreover, that allows us to save memory due to the huge
space required to store.

For that reason, we decided to fix a lower crop value of 200 and a higher crop

value of 200 to decrease the image size, at least a percentage, because in some
patients the acquisition has more slices than others.
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(a) Ablation zone (b) tumor zone

Figure 4.3: Segmentations in vv

4.2.2 Manual segmentation

A manual segmentation of the liver, tumor and ablation zone were required in
order to perform the experiments that will be explained in the following sections.
Moreover, they are useful to perform a validation based on overlapping measures.
The manual segmentation proved to be challenging due to poor image quality and
the presence of multiple tumors. To carry out the segmentation, slicer was used
(Figure 4.2). Overlay images were created using vv (Figure 4.3a and 4.3b).

S:746.400mm % 1q

B: AETERcrop

Figure 4.2: Segmentation of the ablation zone by 3D Slice
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4.2.3 Registration

Registration is a technique that is used to compare two images though aligning
their voxels. In order to do it, it is necessary to define one of them as a fixed im-
age Ir(¥), that would be the reference, and the other as the moving image I/(Z),
which will be modified based on the fixed image. [6]

To achieve this goal, we should apply a function T'(Z¥) = & + u(Z) to transform
one of them into the another, applying a transformation field u(Z) to the original
space [?]. Depending on the degrees of freedom, it exists different types of trans-
formations. In general, they could be rigid and non-rigid. Performing the rigid, we
could translate and/or rotate the image to adapt to the another one, while using
non-rigid transformation we have free movement. The aim of this field is to find
the optimal T(x) for the correct transformation S(T’; Ir, Ip).

For the non-rigid registration, a cost function should be minimised depending
on parameters:

A

T = argmin C(T; I, In)

P(T) is the regularization factor to control the non-rigid transformation and « is
the weighting factor that adjusts the relation between —S(7T'; I, I) and P(T).

B-Spline deformation is used to model the transformation T that depends on pu.
For that reason, it will be the same to find p to minimise C'(u; Ir, Ips) in order to
find the optimal transformation, given by:

T, = arg mTin C(T,;1p, In)

or
p = argin C(g; Ir, L)

Generally, it is required to use a combination of both transformations because of
the tissue characteristics: there are tissues more difficult to bend than others, such
as bone, which can not deform at all. In our case of study, it is important to align
the liver of both images (before and after the ablation procedure) but not tumor
and ablation zone of each of them. Therefore, to avoid a locally minimisation of
differences between the tumor area and the ablation zone, an Euler transformation
as a rigid, followed by a non-rigid B-Spline transformation was used. Performing
the registration in that way, we initialised moving and fixed image easily and faster
and, later, aligned the deformable parts of the image.

14



In both cases, an optimal alignment is generally determined by optimizing a simi-
larity metric —S(T; I, Ips). In this project, the S of the Mutual Information (MI)
between the transformed test image and the reference image was chosen according
to Thvenaz and Unser [20]:

(0 = 30 3 pless liogs(— L0

(¢ )pr(K; 1)

LElT KEIR

In order to keep the tumor and the ablation as much fix as possible, it was
used penalty terms to restrict the space of T.

e Rigidity penalty. P(T) was substituted by a rigidity penalty term P8 (T; /)
that is defined by different parameters: ¢(Z), affine term ACjy;;(z), orthonor-
mality term OCYy;;(z), and a properness term PC(z). (@) € [0,1] is a
user-predefined coefficient that allows to restrict the rigid movement to the

part inside a mask defined as:

1 if e Qg
- 1
C($) 1-— T Db@-75 else
l+e o

where, D(Z) is the Euclidean distance transform of the mask image with zero
distance at the tumor boundary. The idea of doing that is to be sure about
performing a rigid transformation inside the tumor, almost rigid around and
non-rigid outside the tumor area. The difference it is showed in Figure 4.4
and 4.5 [19].
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T

fixed moving deformed moving

Figure 4.4: Purely nonrigid registration

fixed moving deformed moving

I
NN
T
[ 1]

Figure 4.5: Nonrigid registration with rigidity penalty term

e Bending energy penalty. Other option to restrict the deformation is to use
the “Transform Bending Energy Penalty”as a second metric. The main dif-
ference between both penalty terms is that the rigidity penalty makes rigid
deformation around a local area fixed by a mask and the bending energy
penalty is applied to the all image equally.

16



4.2.4 Tuning parameters

Experiments started using a parameter file that has standard parameters. Either
in case of rigid and non-rigid, the parameter file has the same general values. Based
on the parameter files provided by Luu et al. [8] a registration was performed.

Focussing on each parameter, it was defined Pixel type as ”short” because saves
memory, what is very important when you are using and generating a big amount
of data. Regarding the main components, a multiresolution registration with a B-
spline Interpolator was carried out. It was applied an adaptive stochastic gradient
descent as optimizer and a recursive image pyramid for either fixed and moving.
Finally, a random image sampler was used in the 2000 iterations with a B-spline
interpolator of order 1.

Whereas the Euler transformation was performed using the same parameter file
for all experiments, the B-spline or non-rigid registration used different files de-
pending on the usage of masks or penalties to the standard case. Figure 4.6 shows
the standard parameter file used for registration. Specifically, it was important to
change the 'ErodeMask’ option as false or true, depending on the use of a mask
or not. In the case of the application of a rigidity penalty, it was required to add
different parameters based on Luu’s parameter file [8].

17



NON RIGID BASE CASE

Image Types
Fixed Internal Image Pixel Type short
MovinginternallmagePixelType short
UseDirectionCosines TRUE
Main components:
Registration MultiResolutionRegistration
Interpolator BSplinelnterpolator
Resamplelnterpolator FinalBSplinelnterpolator
Resampler DefaultResampler
FixedlmagePyramid FixedRecursivelmagePyramid
MovinglmagePyramid MovingRecursivelmagePyramid
Optimizer AdaptiveStochasticGradientDescent
Transform BSplineTransform
Metric AdvancedMattesMutuallnformation
Transformation:
AutomaticScalesEstimation TRUE
FinalGridSpacingInPhysicalUnits 15.0
HowToCombineTransforms Compose
Similarity measures
NumberOfHistogramBins 32
ErodeMask FALSE
Multiresolution
NumberOfResolutions 4
ImagePyramidSchedule 888444222111
Optimizer
MaximumNumberOflterations 2000
Image sampling
NumberOfSpatialSamples 2048
NewSamplesEverylteration TRUE
ImageSampler Random
Interpolation and Resampling
BSplinelnterpolationOrder 1
FinalBSplinelnterpolationOrder 3
DefaultPixelValue 0
WriteResultimage TRUE
ResultimagePixelType short
ResultimageFormat mhd

Figure 4.6: Non-rigid registrl%tion standard parameter file



In order to improve the registration tuning parameter of files explained above,
we decided to perform different experiments modifying one per one as we are going
to explain in the following lines.

The grid spacing of the B-spline transform for each dimension was an impor-
tant parameter to consider. In order to better understand this concept, it would
be useful to show Figure 4.7, where different grid spacings are visualized. As the
grid spacing improves, the resolution of the image and thus the registration de-
creases. Consequently, as lower is the grid spacing, higher is the accuracy of that
registration. However, there are inconveniences such as the high time of execu-
tion. Stmple FElastiz allows to obtain this argument in millimeters or in ”voxel size
units”, depending on the specific factor name used.
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Figure 4.7: Grids of control points

Other alternative parameter to tune in order to improve registration, is the
weight of each metric used (Advanced Mattes Mutual Information and Transform
Bending Energy Penalty). It is possible to improve the accuracy of registration
keeping one of them constant and tuning the other one. In the current project,
Transform Bending Energy Penalty weight was tuned keeping the Advanced Mat-
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tes Mutual Information as 1 in order to achieve the best results.

4.2.5 Validation

Validation is required to obtain an qualitative assessment of the registration. It
is possible to use a segmentation approach to evaluate image registration through
comparing the segmentation before and after the registration quantitatively. In
this project, Dice Similarity Coefficient (DSC), False negatives (FN), False posi-
tives (FP) and Jaccard Similarity were used. Considering Figure 4.8 these metrics
are going to be explained in detail according to Crum [11].

Intersection: AN B Union: AU B

Figure 4.8: Intersection and union

e Dice Similarity Coefficient. For A and B as an overlapping regions this metric
represents the ratio of the intersection to the mean label volume. It is defined
as followed:

2(AN B)

DSC=—1"5

e Jaccard Similarity or Tannimoto Coefficient is the ratio of the number of
voxels of the intersection and the union.
ANB
AUB

The value of that index should be between [0 : 1] being Jaccard(A, B) = 1
when ANB=AUB.

Jaccard =

20



These two metrics are related by the following expression. They are equal
at the extrema 0,1 and between those limits DSC >Jaccard.

2Jaccard

DSC = Jaccard + 1

e False negatives (FN) and false positives (FP). False negatives and false pos-
itives measures are easier to understand looking at the Figure 4.9. In both
cases, the optimal values are close to 0, what means a perfect overlapping
between the segmentation after the registration and the ground truth that,
in the current project would be the segmentation before registration.

FALSE NEGATIVES
(FN)

FALSE POSITIVES (FP)

/

Segmentation before
registration

Segmentation after
registration

Figure 4.9: False negatives and false positives

In addition, it is useful to obtain texture measures through the Jacobian determi-
nant of the registration results. In a 3D image, this element is a matrix composed
of the determinant of the Jacobian matrix of each voxel that describes how the
transformation looks like when you zoom near a specific point in the image. This
transformation is represented by the following equation in 2D case:

From this concept the Smoothness was obtained to have an idea about how was
distributed the deformation in the image. That parameter is calculated obtaining

Jacobianmatrixz =

21



the standard deviation (ST) of the determinant of the Jacobian matrix as it is
showed below [6].

Smoothness = ST (JacobianDeterminant)

For that reason, the closer to 0 the Smoothness is, the more smooth will be the
deformation of this part of the image. Depending on the part of the body that
is being evaluated, this value should be lower or higher. For example, in the case
of bones, the smoothness must be 0 or almost 0. If not, it can be assumed that
registration was performed incorrect. Regarding the liver, it is expected to obtain
higher values but not up to 0.8. This value will use to fix a threshold that allows
to obtain an extra metric that will give the number of voxels (NOV) that exceed
this value in the liver region.
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4.3 Software

The code was developed with Python 3.6.3 using Anaconda. To perform the
registration, Simple ITK and Simple Elastix were used because of the application
of useful functions.

Apart of the code, other programs were used in different parts of the project:

e VV was used to visualize images, masks and registration results. That allows
to follow each step of the algorithm checking its correct development.

e Horos allowed to organize the initial database obtaining images with higher
resolution and also gave easy access to their metadata.

e Slicer is the program used to segmentate liver, tumor and ablation region
of each patient. It provides useful tools to read, draw, visualize and write
images.
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Chapter 5

Experiments and results

The following chapter is structured in two main parts. Firstly, an study of the use
of masks is described to find the best registration method using different combi-
nation of masks. Secondly, one of the methods was selected in order to improve
results tuning specific parameters. The evaluation of them is going to be explained
at the end of each part with box-and-whisker plots.

At the end of the chapter some examples are going to be visualized in order to
understand better results obtained.

5.1 Study of the use of masks

In order to investigate the effect of using masks on the registration, we performed
5 methods, applying different mask combinations. The registrations were done
using liver-, tumor- and ablation zone masks. The following table is an overview
of the registrations methods.
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Table 5.1: Registration methods used

Base case

Case 1

RIGID NON RIGID

INITIALIZATION = 6k + Liver mask

Case 2

NON RIGID

- Liver mask

INITTALIZATION

Case 3

NON RIGID

- Liver mask
4+ Ablation mask
+ Tumor mask

INITTALIZATION

Case 4

NON RIGID
INITIALIZATION - Liver mask
+ Rigidity penalty (tumor)

Case 5

RIGID NON RIGID

INITIALIZATION ; + Liver mask
+ Liver mask

+ Rigidity penalty

It is important to define some concepts shown in the table:

e Initialization is the part of the process that allows us to situate the fixed
and moving image in the same origin using a rigid transformation with-
out applying a mask. After the initialization, we performed the additional
registrations, applying masks. It is required to perform a second rigid trans-
formation after the initialization when it is going to use a liver mask in the

non rigid one.

e Rigid is the second Euler transformation required to use a liver mask.

5.1.1 Case 1

In this case, an initialization step was performed to center the fixed and the moving
image. Consequently, we did another Euler transformation but using the result of
the initialization step as the moving image of this second rigid registration. Fi-
nally, a non-rigid registration was performed with a liver mask applied to the fixed
image. As the used mask corresponds to the fixed image, it was not required to

perform an initialization of it.

We obtained dice coefficient, false negatives, false positives, jaccard index and
smoothness in order to compare each case. We created tables to store results for
each case as the following Table 5.2 that is for case 1. The per patient validation
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results for the remaining cases will be provided in the appendix A since we will
make a decision based on the boxplots provided in 5.2

Table 5.2: Results general approach case 1

Dice FN FP Jaccard Smoothness
Patient 1 | 0,8868 0,0569 0,1632 0,7966 0,0728
Patient 2 | 0,8970 0,0632 0,1395 0,8133 0,0666
Patient 3 | 0,8326 10,1232 0,2073 0,7132 0,0705
Patient 4 | 0,8275 0,1256 0,2145 0,7058 0,0721
Patient 5 | 0,9092 0,0351 0,1404 0,8336 0,0463
Patient 6 | 0,8801 0,0735 0,1404 0,7859 0,0430
Patient 7 | 0,9113 0,0466 0,1272 0,8371 0,0739
Patient 8 | 0,6395 0,3428 0,3772 0,4701

Patient 9 | 0,8201 0,1417 0,2149 0,6950 0,0681

5.1.2 Case 2

One of the objectives was to remove masks of the algorithm in order to do the reg-
istration as much automatic as possible. For that reason, this case was performed
just doing the initialization of the fixed and moving image followed by a non rigid
registration, without using any mask.

5.1.3 Case 3

Even though we tried to remove all masks, we could not ignore that the use of
them is relevant to the improvement of the registration. Therefore, we decided to
perform a non rigid registration using two different masks: on the one hand, an
ablation zone mask applied to the fixed image, that is the image acquired after the
ablation performed and, on the other hand, a tumor mask applied to the moving
image that was the image before the ablation procedure.

Due to the use of a moving mask, it was required to apply an initialization step to
the moving mask as well in order to locate the moving mask in the same position
as the moving image.

5.1.4 Case 4

Following the same idea, we performed a non rigid registration without using any
mask, but, in that case, applying a rigidity penalty [18].
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As we explained in the Material and methods section, in order to apply a penalty
to the registration it is required to add specific lines to the parameter file with
details of the mask where the rigidity penalty will be applied. In addition, it is a
key to specify the path of the mask as Figure 5.1 showed.

(RigidityPenaltyWeight 0.1 0.1 0.1 4.0)
(LinearityConditionWeight 100.0)
(OrthonormalityConditionWeight 1.0)
(PropernessConditionWeight 2.0)

(UseLinearityCondition "true")

(UseOrthonormalityCondition "true")

(UsePropernessCondition "true")

(CalculateLinearityCondition "true")
(CalculateOrthonormalityCondition "true")
(CalculatePropernessCondition "true")

(DilateRigidityImages "false" "false" "false" "true")
(DilationRadiusMultiplier 2.0) // used to be 2
//(UseFixedRigidityImage "false")

//(FixedRigidityImageName "dummy")

(UseMovingRigidityImage "true")

(MovingRigidityImageName "/Users/paula/Virtual_environment/ExamplePieter/
Registration/Registration_case4_1/0013/NonRigid/Tumour|.mhd")

Figure 5.1: Parameters added to the non rigid parameter file to apply a rigidity
penalty

5.1.5 Case 5

Lastly, a liver mask to the rigid registration and non-rigid registration, as for case
1, but a rigidity penalty (Figure 5.1) was applied to the non-rigid registration.
The procedure was the same as case 1, but adding the lines of Figure 5.1.
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5.1.6 Overview of results

In order to compare the different cases explained above, boxplots are used to vi-
sualised dice coefficient, false negatives, false positives, jaccard index and smooth-
ness. For each case, the average of all patients is taken. For every validation
measurement, the initalization is included as well.
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Figure 5.2: Dice coefficient. Best case would be high values

As it is showed in Figure 5.2, cases with best dice results are case 2 and 3. Any
of them used liver mask, but case 3 applied an ablation- and a tumor mask to
do the registration. In both cases, the distribution of patients is regular (between
a similar 75th and 25th percentile), whereas in case 1, 4 and 5, the interquartile
range is wider. Also, it is possible to appreciate a higher standard deviation in
case 4 and some outliers in case 5. That means that registration is performing
correctly depending on the patient, what gives uncertainty.
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To better understand what disparities could appear between registrations, some
patients are going to be visualised. As the dataset is composed of different pa-
tients, it is difficult to create a uniform registration. For example, for patient 4
there was more movement during the scan compared to other patients. Conse-
quently, applying the same case to this patient (Figure 5.3a) and to other easier
one, as number 7 (Figure 5.3b), it is showed that results are better in the second
one due to conditions of the acquisition (Figure 5.3).

(a) Patient 4 (b) Patient 7

Figure 5.3: Case 2. Initialization followed by non rigid registration with no masks
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For that reason, it is notable that registration in patient 7 is better done than
in patient 4. However, if the comparison is done between cases applied to the
same patient, the behaviour is almost the same in both of them. It is appreciable
how case 4 and 5 present problems matching liver edges either in patient 4 (Fig-
ure 5.4) and 7 (Figure 5.5). Furthermore, it is clearly showed, that in patient 4
these matching problems are more significant than in patient 7 (Figure 5.4 and 5.5)

(c) Case 4 in patient 4 (d) Case 5 in patient 4

Figure 5.4: Comparison between cases in patient number 4
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(c) Case 4 in patient 7 (d) Case 5 in patient 7

Figure 5.5: Comparison between cases in patient number 7

The Initialisation step is equivalent to not doing any registration at all, just
an alignment of the images origin. Applying the transformation of case 4 & 5 did
not improve the dice coefficient compared to the initialization.
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Figure 5.6 and 5.7 show the same tendencies for the false negatives and false pos-
itives as the dice coefficient does. Case 1,4 and 5 offer similar results compared to
the baseline and case 2 & 3 show an improvement.

Focussing on False negatives (Figure 5.6), best results are obtained for case 3,
as the average of patients has a lower value than case 2. However, in the false
positives plot (Figure 5.7) both cases have apparently the same average.
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Figure 5.6: False negatives. Best case corresponds to lower values
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Figure 5.7: False positives. Best case corresponds to lower values
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As the definition of Jaccard index explains, best results are the higher, as
the dice coefficient. For that reason, case 2 & 3 are the best ones comparing to
initialization step (Figure 5.8).
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Figure 5.8: Jaccard index. Best case corresponds to higher values

According to the visualisation of each metric, the best results were obtained
in case 2 and 3 as it proves all metrics. Despite case 3 had best values in false
negatives metric, case 2 was chosen for the tuning of parameters because no mask
was used.

In the following section, tuning of some parameters used to perform case 2 is
going to be developed in order to achieve better results. Also, the execution time
will be taken into account because registration should be a routine procedure in a
clinical environment.
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5.2 Tuning registration parameters

As it was explained in the section before, the registration method of case 2 (no
mask, non-rigid registration) was selected to improve the registration via param-
eter tuning. That section is divided in two parts: the first one is related with
parameters that were tuned, and the second one is about values obtained by the
application of tuned parameter file.

5.2.1 Parameter file setting

After the study of the optimal use of mask done in the section before, next step
is to evaluate which parameters are sensitive to tune in order to obtain a better
registration.

For that reason, as it was explained in subsection 4.2.4, two parameters were
chosen to achieve an improvement of registration: metric, and the final grid spac-
ing, which are remarked in Figure 5.9.

Initially, advanced mattes mutual information was used as a single metric, and
then, a transform bending energy penalty was added as a second one. When more
than one metric appears, a new parameter (weight of the metric) should be created
in order to control the influence of each one in the registration. Consequently, it
was assigned a weight value for each metric.
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Figure 5.9:

Parameter file. Parameters tuned remarked in blue colour

NON RIGID BASE CASE EX 1 EX 2 EX 3
Image Types
Fixed Internal Image Pixel Type short short short short
MovinginternalimagePixelType short short short short
UseDirectionCosines TRUE TRUE TRUE TRUE
Main components:
Registration
Interpolator BSplineinterpolator BSplinclnterpolator BSplineInterpolator BSplinelnterpolator
Resamplelnterpolator i is FinalBSplinclnterpolator FinalBSplinelnterpolator
Resampler DefaultResampler DefaultResampler DefaultResampler DefaultResampler
FixedimagePyramid y y FixedRecursivelmagePyramid FixedRecursivelmagePyramid
MovingimagePyramid y gePyramid MovingRecursivelmagePyramid MovingRecursivelmagePyramid
Optimizer radientDescent AdaptiveStochasticGradientDescent AdaptiveStochasticGradientDescent
Transform BSplineTransform BSplineTransform BSplineTransform BSplineTransform
Metric i AdvancedMattesMutuallnformation AdvancedMattesMutuallnformation
TransformBendingEnergyPenalty TransformBendingEnergyPenalty TransformBendingEnergyPenalty
Weight0 1 Weight0 1 Weight0 1
Weight] x Weightl x Weightl x
Transf
AutomaticScalesEstimation TRUE TRUE TRUE TRUE
FinalGridSpacingInPhysicalUnits 15.0 150 100 50
HowToCombineTransforms Compose Compose Compose Compose
NumberOfHistogramBins 32 32 32 32
ErodeMask FALSE FALSE FALSE FALSE
NumberOfResolutions 4 4 4 4
ImagePyramidSchedule 888444222111 888444222111 888444222111 888444222111
Optimizer
MaximumNumberOfiterations 2000 2000 2000 2000
image sampl
NumberOfSpatialSamples 2048 2048 2048 2048
NewSamplesEveryiteration TRUE TRUE TRUE TRUE
ImageSampler Random Random Random Random
and
BSplineinterpolationOrder 1 1 1 1
FinalBSplineinterpolationOrder 3 3 3 3
DefaultPixelValue 0 0 0 0
WriteResultimage TRUE TRUE TRUE TRUE
ResultimagePixelType short short short short
ResultimageFormat mhd mhd mhd mbd

As Figure 5.9 shows, a constant value was assigned as a weight for the advance
mattes mutual information (AMMI). During experiments, AMMI was kept as 1,
whereas transform bending energy penalty was tuned from 0 to 1 in a first step,
and from 1 to 10, in a second step. AMMI could have been fixed in other value,

but this one was used based on parameter files of Staring et al. [18]

5.2.2 Quantitative results

Experiment 1

In Experiment 1 (EX 1 in Figure 5.9), a constant value of 15.0 mm was chosen
as final grid spacing. That is the most rough approximation, equivalent to first
picture of Figure 4.7. For that reason, in terms of time, it was the fastest exe-
cution because the algorithm had to take less points per grid than in following
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experiments.

Keeping this parameter constant, the weight of the transform bending energy
penalty was altered between 0 and 1. These values were chosen in order to arrive
to the same range of values than used in the weight of AMMI.

In order to have a control of which values are assigned to each metric, and to
clear understand how change according to the final grid spacing, some detailed
tables were elaborated.

This document was composed by different parts: a description of the experiments,
plots and detailed tables. The experiment table was divided in three sections, one
per experiment. Table 5.3 visualizes the results of the dice coefficients using dif-
ferent weights. Each value is compared with the base case in order to know if it is
improving or even decreasing the registration efficiency with each experiment. The
experiment document had a table for each metric (false negatives, false positives,
jaccard and smothness) that are included in appendix B.

In general, it is possible to show that dice obtained using a metric of 0, 0.3 or
0.9 are better than the rest. However, best value depends on the patient. For
example, for patient 21 best value is 0.9 whereas for patient 22 is better the base
case.

Table 5.3: Dice metric. weight tuning for a grid spacing of 15.0 mm

weight 1-weight X / FinalGridSpacingInPhysicalUnits 15.0
DICE | BASE CASE 0 0.1 0.3 0.7 0.9 1
Patient 1 0,9018 0,9043 0,9077 0,9073 0,9019 0,9109 0,9064
Patient 2 0,9257 0,9268 0,9273 0,9275 0,9269 0,9268 0,9240
Patient 3 0,9313 0,9252 0,9277 0,9309 0,9269 0,9287 0,9273
Patient 4 0,8942 0,8962 0,8975 0,8971 0,8909 0,8945 0,8917
Patient 5 0,9210 0,9224 10,9215 0,9226 0,9223 0,9228 0,9208
Patient 6 0,9103 0,9102 0,9100 0,9133 0,9096 0,9103 0,9126
Patient 7 0,9442 0,9452 0,9459 0,9454 0,9449 0,9457 0,9455
Patient 8 0,9024 0,9000 0,9020 0,9011 0,8994 0,9060 0,8963
Patient 9 0,8831 0,8804 0,8777 0,8787 0,8806 0,8787 0,8791
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Experiment 2

It is not possible to know which is the best result just with one grid spacing test
because registration depends on the combination of the weight and the grid spac-
ing value. For that reason, a second experiment (EX 2 in Figure 5.9) was done
using a final grid spacing of 10.0 mm. That change induced a significant execution
time rise due to the decrease of the grid spacing. However, that also carries an
increment in the registration quality what would be supported by the different
metrics.

In that case, more weights were used in order to find the best combination. As
has been done in the previous section, a table with values is added as an example

of the rest metrics (Table 5.4)

Table 5.4: Dice metric. weight tuning for grid spacing of 10.0 mm

weight 1-weight X / FinalGridSpacingInPhysicalUnits 10.0

BASE
DICE CASE 0 0.1 0.3 0.7 0.9 1 2.5

5

7.5

Patient 1 | 0,9018 | 0,9116 0,9105 0,9104 0,9106 0,9104 0,9105 0,9123
Patient 2 | 0,9257 | 0,9341 0,9304 0,9316 0,9316 0,9323 0,9297 0,9311
Patient 3 | 0,9313 | 0,9340 0,9315 0,9351 10,9328 0,9330 0,9337 0,9347
Patient 4 | 0,8942 | 0,9015 0,9009 0,9029 0,9030 0,9045 0,9029 0,9044
Patient 5 | 0,9210 | 0,9238 0,9230 0,9240 0,9242 0,9230 0,9235 0,9227
Patient 6 | 0,9103 | 0,9112 0,9094 0,9105 0,9111 0,9153 0,9116 0,9137
Patient 7 | 0,9442 | 0,9466 0,9481 0,9474 0,9475 0,9474 0,9484 0,9484
Patient 8 | 0,9024 | 0,8972 0,8988 0,8957 0,8953 0,8967 0,8945 0,8945
Patient 9 | 0,8831 | 0,8837 0,8799 0,8794 0,8818 0,8800 0,8806 0,8806
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0,8938
0,8835

0,9110
0,9305
0,9344
0,9039
0,9237
0,9107
0,9475
0,9010
0,8857



Experiment 3

Experiment 3 (EX 3 in Figure 5.9) was carried out with a final grid spacing of
5.0 mm, what should result in the best results compared to the previous experi-
ments. The execution time, however, is increased exponentially. For that reason,
experiment 3 was done just in patient 1 and 2 as Table 5.5 shows.

Table 5.5: Dice metric. weight tuning for a grid spacing of 5.0 mm

weight 1-weight X / FinalGridSpacingInPhysicalUnits 5.0
BASE
DICE CASE 0 0.1 0.3 0.7 0.9 1 2.5 5 7.5

Patient 1 | 0,9018 | 0,9136 10,9140 0,9158 0,9140 0,9125 0,9142 0,9127 0,9147 0,9147
Patient 2 | 0,9257 | 0,9362 0,9346 0,9351 0,9343 0,9349 0,9369 0,9348 0,9348 0,9332
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As demonstrated, a decreasing grid size result in an improved accuracy in most
of patients, but not in case of weight values. That means that an increase of weight
given to the transform bending energy is not directly related to an improvement
of the registration according to dice and jaccard coefficient.

In case of false positives and false negatives, the behaviour is completely oppo-
site because a decrease of values corresponds to an increase of the quality of the
registration, but the conclusion is the same.

The same tendencies are shown when we average the results over all patients,
that allows to get a general statement. For that reason, a boxplot for each metric
was created in order to visualise the general behaviour by different measures.
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Figure 5.10: Box-and-whisker plots case 2 of grid spacing of 10.0 mm for each
weight

None of these graphics (Figure 5.10) can emphasise an specific weight that
improves registration in a general way. It is appreciable how the distribution
values for each weight is too large due to the dependence of characters of each
patient for that level of registration improvement.
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5.2.3 Qualitative results

Grid spacing evaluation

Unfortunately, results depend too much on the patient. For that reason, some of
them are going to be analysed. This analysis is going to be done in a transverse,
but also in a coronal and sagittal plane. In the following images green colour part
corresponds to the moving image (image before the ablation) and the pink colour
to the fixed image (image after the ablation).

As patient 2 is one of the most convenient to perform a registration correctly,
each patient is going to be compared with it to proof how dependable the regis-
tration process is on the patient. In a first visualisation, comparison between grid
spacing is going to be done for the same weight. For that reason, patient 1 and 2
are going to be showed because they have results of grid 5.0 as well.

(¢) Grid 5.0

Figure 5.11: Grid 15.0, 10.0 and 5.0 mm with a weight 0 in patient 2. Focussing
in ribs.

Figure 5.11 shows that a decreasing grid space will optimize the placement
of the ribs. Figure 5.13b, that corresponds to a grid spacing of 10.0 mm, is not
completely matched whereas 5.13c¢ that is the grid spacing of 5.0 mm is almost
completely registered.
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(c) Grid 5.0

Figure 5.12: Grid 15.0, 10.0 and 5.0 with a weight 0 in Patient 2. Visualising
tumor region.

In both, Figure 5.11 and 5.12, there is a clearly difference in ribs matching,
but in Figure 5.12 it is possible to see the tumor (green region) inside the ablation
zone (purple region) without deformation of any of them.

41



Regarding patient 1, Figure 5.13 shows how the matching of the liver edges
improves according to the decrease of the grid spacing value.

e —

(a) Grid 15.0 (b) Grid 10.0

(¢) Grid 5.0

Figure 5.13: Grid 15.0, 10.0 and 5.0 with a weight 0 in Patient 1.
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Transform bending energy weight evaluation

In a second analysis, the weight significance is going to be showed per patient, in
order to appreciate how changes are exclusive for each patient. A table with best
weight per patient is going to be compared between grid spacing 15.0 and 10.0:

e Grid spacing 15.0.
Surprisingly, there are some patients that obtained better results according
to dice using just the base case than using the transform bending energy
penalty for a grid spacing of 15.0 as is the case of patient 3 and 9 (Table

5.6).

Table 5.6: Patients best results for grid spacing of 15.0

Grid 15 ‘ Pat1l Pat2 Pat3 Pat4 Pat5 Pat6 Pat7 Pat8 Pat9

weight | g 0.3 Base 0.9 0.3 0.1 0.9  Dase
X case case

e Grid spacing 10.0.
Table 5.7 shows that, even in some patients best weight for a grid spacing of
10.0 match, as patient 4 and 6 or 8 and 9, it is not possible to gain a general
weight suitable for all dataset.

Table 5.7: Patients best results for grid spacing of 10.0
Grid 10 ‘ Pat1 Pat2 Pat3 Pat4 Pat5 Pat6 Pat7 Pat8 Pat9

weight X [ 5 0 5 0.9 0.7 0.9 2.5 7.5 7.5

This comparison allows to understand how best weight values change for each
patient even using the same grid spacing. Also, it shows the challenge of choosing
one for all of them.
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In addition, the best result for each patient is going to be analysed based on
dice coefficient because results are similar to jaccard index. In case of the first two
patients, grid 5 is included in this analysis. It is not possible to focus on all metrics
because, even having similar results, are not exactly the same. For example, the
best case according to dice for patient 1 is using grid spacing of 5 and weight of
0.3, but according to false positives, is 0.1. However, the difference between false
positives value of weight 0.1 and 0.3 is small as it is showed in Table 5.8.

Table 5.8: Comparison between two better results of false positives in patient 1

weight 1-weight X / FinalGridSpacingInPhysicalUnits 5.0
FP BASE CASE | 0.1 0.3
Patient 1 0,1398 0,1099 0,1091

In case of patient 1, best registration results according to dice, corresponds to
a grid spacing of 5.0 and a weight of 0.3 (Figure 5.14).

AFTERRFA

AFTERRFA

Figure 5.14: Best registration of patient 1
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However, for patient 2, best registration results according, corresponds to a
grid spacing of 5.0 and a weight of 1, as it is showed in Figure 5.15.

Figure 5.15: Best registration of patient 2

In patient 3 (Figure 5.16), it is possible to show a correct registration for a
grid spacing of 10.0 and a weight of 5, even it was difficult to match some voxels
because of the movement in the y direction.

AFTERRFA

AFTERRFA

Figure 5.16: Best registration of patient 3
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Patient 4 was a good case to prove the registration method due to the difficulty
added by the dark space that is showed in Figure 5.17 that may correspond to an
previous RFA.

AFTERRFA

AFTERRFA B AFTERRFA

Figure 5.17: Best registration of patient 4

Registration process was almost completely successful for patient 5, due to the
easily matching from the beginning of the rigid transformation (Figure 5.18).

Figure 5.18: Best registration of patient 5
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Liver of patient 6 was almost aligned just with the initialization process but
not the column. For that reason, it was a hard case (Figure 5.19).

Figure 5.19: Best registration of patient 6

This patient was used in previous sections because of its perfect alignment that
made successful registration (Figure 5.20).

Figure 5.20: Best registration of patient 7
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Patient 8 (Figure 5.21) required more execution time due to the different po-
sitions of the patient in images before and after the ablation procedure. However,
registration was performed almost correctly.

AFTERRFA

Figure 5.21: Best registration of patient 8

This case was almost impossible to align because patient 22 seemed to have
liquid in one lung in the image after the ablation, but not in the image before.
This means that, during registration, some element was in the fixed image that
was not possible to match to any element in the moving image because it does not
exist in it. However, some good results were obtained close to the liver (Figure
5.22).
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Figure 5.22: Best registration of patient 9
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Chapter 6

Discussion

A registration process composed by a rigid and a non-rigid transformation was
performed on 9 patients. The influence of masks was studied in order to deter-
mine which ones were necessary for the registration process.

Masks can be used in many different ways as the literature shows. For that reason,
in the first step of this project, some papers were analysed, in order to find dif-
ferent methods using masks to apply and evaluate them. 5 cases were developed,
some of them based on Luu et al. [8] and Staring et al. [18] papers, as case 4 and 5.

After a quantitatively evaluation of each of them, case 2 was chosen as the best
case for several reasons. It was performed without any mask using a non-rigid
transformation after the initialization. It had good results according to Dice coef-
ficient, False negatives, False positives and Jaccard coefficient as it shows Figure
5.2, 5.6, 5.7 and 5.8. It was not possible to compare these results to other research
studies because no other was found without using any mask. Even case 3 had com-
petent results as well, it was required to use an ablation and a tumor mask, what
makes registration dependent on the quality of the segmentation. Moreover, the
creation of these masks required manual segmentation what supposed a lot of time.

Using a non-rigid registration with a local rigid deformation equivalent to case
4, and a B-spline grid size of 5 mm, Luu et al. [8] obtained a Dice coefficient of
92.2% . In that project, a Dice of 94.4% was obtained for the best patient (Patient
7) using method of case 2 with a grid spacing of 15.0 mm. Luu et al. achieved
better differences between tumor and ablation zone due to the use of a rigidity
penalty around the tumor. It was also relevant the quality of images that they used.

In addition, the use of a higher amount of patients supposes a difference between
their research and this current project. It makes more difficult the decision-making
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according to all of them, but also, it gives the advantage to probe better the method
because of taking into account more cases.

The evaluation of the use of masks in the different registration methods leads
to the study of other relevant parameters. Due to the importance of the grid
spacing value and its dependence on the weight assigned to the transform bending
energy penalty, a second study was focussed on the analysis of these parameters.

In a first step, grid spacing was kept constant to 15.0 mm in order to study
the influence of the weight assigned to the transform bending energy penalty in
registration for each patient. After tuning the value of the weight from 0 to 10
it was realised that the variation of this value has not influence in all patients
in the same way. Consequently, grid spacing was increased to 10.0 and then to
5.0 in order to probe what was obtained from the first evaluation of the weight.
Whereas an increment of the quality of registrations were appreciated according
to the decrease of the grid spacing value, a non defined behaviour of registration
was observed according to the weight variation.

Parameters were evaluated using four different metrics: Dice, false negatives, false
positives, jaccard coefficient and smoothness. Last of them was used to have an
overview of the deformation in each voxel. In addition, a qualitative evaluation
was performed focussing on each patient.

The examination of different mask combinations and according to the results,
the proposed registration method is composed by an initialization, followed by a
non-rigid B-spline registration without using any mask.

For a grid spacing of 15.0 mm and a weight of bending energy penalty from 0
to 1, patients 1, 5 and 8 obtained the best result using a weight of 0.9, patients 2
and 6 using 0.3, and patient 4 and 7 using 0.1, according to dice. However, for a
grid spacing of 10.0 mm and a weight from 0 to 10, patient 1 and 3 obtained best
results using a weight of 5, patient 4 and 6 using a weight of 0.9, patient 8 and 9
using 7.5, patient 2 using 0, patient 5 using 0.7 and patient 7, 2.5.

After the evaluation of the grid spacing in all patients (5.0 mm just in patient
1 and 2) and the weight of the penalty, it was found that each patient has different
optimal weight according to the relation with each grid. However, the best result
was obtained decreasing grid spacing in almost all patients.

51



6.1 Limitations of the study

There are some limitations to comment according to the project. Firstly, the
dataset images had not the competent quality to perform correctly segmentation
and registration. For that reason, it was so difficult to distinguish tumor and
ablation zone in some images. Secondly, segmentations should have been provided
by an specialist to assure the correct election of the method. This will allow to
perform a more accurate evaluation of each case based on medical knowledge.
Thirdly and more important, the memory capacity of the computers used was
insufficient to execute registration. In some of the cases, days were spent to execute
an specific case for all patients.

6.2 Suggestions for future work

The method proposed in this project could be improved in some aspects. Despite
the fact that, it is possible to avoid the use of masks in the registration process, it
is not possible in the validation. Masks are required in order to have the ground
truth to obtain an overlapping metric. For that reason, the selection of other met-
rics to evaluate the registration method would be very interesting and useful to
achieve the complete deletion of the use of masks.

Regarding the rough approach experiments of the project, an interesting point
would be to introduce a new case using an ablation zone rigidity penalty instead
tumor penalty. That improvement will allow to fix the ablation zone, what hope-
fully includes the tumor region.

Finally, I suspect significant differences using a grid spacing of 5.0 mm to all

patients and if it is possible, to continue decreasing this value in order to obtain
the best case possible according to this parameter.
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Chapter 7

Conclusion

Liver cancer is one of the most harmful cancer that exists. Despite there are dif-
ferent options to treat it, radiofrequency ablation (RFA) is the most efficient and
it is available to almost all patients. In order to know if the tumor has been re-
moved, it is required to visualise images before and after the ablation procedure,
and to compare them. Nowadays, visual evaluation is done manually by the in-
terventional radiologist (IR) what induces an imprecision in the results due to the
subjectivity added.

Until now, there are several studies that investigated different ways to automate
this process. Some authors try to automatically align both images using different
methods [5], [12], [9], or tools [15], and also trying to remove the use of some masks
of the registration process [14].

This project was inspired by Luu et al. who developed an automatic registra-
tion of the images pre- and post- liver tumor ablation using elastiz [15], [8].

A registration approach consisting of multiple transformations is proposed in this
thesis using different combinations of masks. According to the evaluation per-
formed by dice coefficient, false negatives, false positives and jaccard, best method
was case 2, which performs an initialization, followed by a non-rigid B-spline reg-
istration without using liver, tumor or ablation mask. This method was chosen to
be improved it in the next step.

An specific approach was done in order to study the influence of some parameters
using the registration method of case 2. The balance between the grid spacing
value and the weight assigned to the transform bending energy penalty was eval-
uated keeping one of them constant and tuning the other one. A grid spacing of
15.0, 10.0 and 5.0 mm was tuned for a weight from 0 to 10.
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After a qualitative and quantitative evaluation, a significant influence of grid
spacing on the improvement of registration was achieved by decreasing the value.
However, non general relation was showed tuning weight value in the registration
quality. That means that for each patient the relation between weight value and
the registration quality was different. Consequently, a significant improvement of
the registration has been achieved avoiding the use of masks and, the best case
was obtained decreasing the grid spacing value until 5.0 mm.
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Appendices
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Appendix is divided in two sections: Appendix A contains results of general
approach for case 2, 3, 4 and 5. Appendix B contains registration results of case
2 for each weight and final grid spacing combination according to false negatives,
false positives and jaccard index.
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Appendix A

Appendix A

General approach for case 2, 3, 4 and 5.

Table A.1: Results general approach case 2
Dice FN FP Jaccard Smoothness

Patient 1 | 0,0018 0,0524 0,1398 0,8211 0,1145
Patient 2 | 0,9257 0,0500 0,0973 0,8617 0,1153
Patient 3 | 0,9313 0,0478 0,0887 0,8715 0,1651
Patient 4 | 0,8942 0,0883 0,1226 0,3086 0,1118
Patient 5 | 0,9210 0,0375 0,1170  0,8536 0,0815
Patient 6 | 0,9103 0,0783 0,1007  0,8354 0,1918
Patient 7 | 0,9442 0,0269 0,0830 0,8944 0,1474
Patient 8 | 0,0024 0,1393 0,0516 0,8222

Patient 9 | 0,8831 0,0998 0,1334  0,7906 0,1086

Table A.2: Results general approach case 3

Dice FN FP Jaccard Smoothness

Patient 1 | 0,9002 0,0485 0,1458 0,8185 0,1138
Patient 2 | 0,9282 0,0467 0,0956 0,8660 0,1238
Patient 3 | 0,9323 0,0327 0,1002 0,8732 0,2815
Patient 4 | 0,8974 0,0876 0,1172 0,8139 0,1170
Patient 5
Patient 6 | 0,9098 0,0820 0,0983 0,8345 0,1970
Patient 7 | 0,9457 0,0246 0,0822 0,8970 0,1328
Patient 8
Patient 9 | 0,8731 0,1241 0,1296 0,7748 0,1278
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Table A.3: Results general approach case 4

Dice FN FP Jaccard

Patient 1 | 0,8690 0,0651 0,1883 0,7683
Patient 2 | 0,8800 0,1025 0,1368 0,7857
Patient 3 | 0,8202 0,1457 0,2112 0,6952
Patient 4 | 0,7800 0,1709 0,2636 0,6394
Patient 5 | 0,9082 0,0696 0,1131 0,8318
Patient 6 | 0,8647 0,1648 0,1036 0,7617
Patient 7 | 0,8920 0,0498 0,1594 0,8051
Patient 8
Patient 9 | 0,8484 0,1308 0,1714 0,7368

Table A.4: Results general approach case 5
Dice FN FP Jaccard

Patient 1 | 0,8668 0,0675 0,1903 0,7649
Patient 2 | 0,8790 0,1036 0,1378 0,7840
Patient 3 | 0,8326 0,1328 0,1993 0,7132
Patient 4 | 0,7815 0,1693 0,2622 0,6414
Patient 5 | 0,9088 0,0689 0,1125 0,8328
Patient 6 | 0,8644 0,1651 0,1039 0,7612
Patient 7 | 0,8911 0,0508 0,1604 0,8035
Patient 8
Patient 9 | 0,8484 0,1308 0,1715 0,7366
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Appendix B

Appendix B

Registration results of case 2 for each weight and final grid spacing combination
according to false negatives, false positives, jaccard index and smoothess.

Table B.1: False negatives metric. Weight tuning for a grid spacing of 15.0 mm

Weight 1-Weight X / FinalGridSpacingInPhysicalUnits 15.0
FN BASE CASE 0 0.1 0.3 0.7 0.9 1
Patient 1 0,0524 0,0522 0,0553 0,0534 0,0529 0,0503 0,0504
Patient 2 0,0500 0,0514 0,0490 0,0454 0,0487 0,0490 0,0501
Patient 3 0,0478 0,0573 0,0521 0,0546 0,0586 0,0536 0,0551
Patient 4 0,0883 0,0381 0,0393 0,0391 0,0367 0,0359 0,0390
Patient 5 0,0375 0,0381 0,0393 0,0391 0,0367 0,0359 0,0390
Patient 6 0,0783 0,0875 0,0812 0,0735 0,0864 0,0825 0,0779
Patient 7 0,0269 0,0262 0,0275 0,0282 0,0296 0,0304 0,0273
Patient 8 0,1393 0,1281 0,1326 0,1327 0,1383 0,1232 0,1449
Patient 9 0,0998 0,1064 0,1118 0,1119 0,1074 0,1129 0,1117
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Table B.2: False positives metric. Weight tuning for a grid spacing of 15.0 mm
Weight 1-Weight X / FinalGridSpacingInPhysicalUnits 15.0

FP BASE CASE 0 0.1 0.3 0.7 0.9 1

Patient 1 0,1398 0,1354 0,1265 0,1288 10,1392 0,1248 0,1331
Patient 2 0,0973 0,0041 0,0953 0,0981 0,0963 0,0961 0,1005
Patient 3 0,0887 0,0017 0,0916 0,0831 0,0871 0,0883 0,0897
Patient 4 0,1226 0,1197 0,1163 0,1219 0,1235 0,1189 0,1228
Patient 5 0,1170 0,1140 0,1145 0,1128 0,1153 0,1151 0,1162
Patient 6 0,1007 0,0921 0,0986 0,0995 0,0944 0,0968 0,0966
Patient 7 0,0830 0,0818 0,0794 0,0797 0,0793 0,0771 0,0803
Patient 8 0,0516 0,0700 0,0604 0,0623 0,0594 0,0628 0,0583
Patient 9 0,1334 0,1324 0,1325 0,1304 0,1310 0,1296 0,1299

Table B.3: Jaccard index. Weight tuning for a grid spacing of 15.0 mm

Weight 1-Weight X / FinalGridSpacingInPhysicalUnits 15.0

Jaccard | BASE CASE 0 0.1 0.3 0.7 0.9 1

Patient 1 0,8211 0,8253 0,8310 0,8304 0,8213 10,8364 0,8288
Patient 2 0,8617 0,8635 0,8644 0,8648 0,8638 0,8637 0,8587
Patient 3 0,8715 0,8608 0,8652 0,8708 0,8638 0,8669 0,8645
Patient 4 0,8086 0,8120 0,8140 0,8135 0,8033 0,8092 0,8045
Patient 5 0,8536 0,8560 0,8545 0,8563 0,8558 0,8567 0,8533
Patient 6 0,8354 0,8352 0,8349 10,8405 0,8342 10,8353 0,8393
Patient 7 0,8944 0,8961 0,8973 0,8964 0,8955 0,8969 0,8966
Patient 8 0,8222 0,8182 0,8215 10,8201 0,8172 10,8281 0,8121
Patient 9 0,7906 0,7863 0,7821 0,7837 0,7867 0,7836 0,7843
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Table B.4:

False negatives metric. Weight tuning for grid spacing of 10.0 mm

Weight 1-Weight X / FinalGridSpacingInPhysicalUnits 10.0

FN

BASE
CASE

0

0.1

0.3

0.7

0.9

1

2.5

5

7.5

Patient 1
Patient 2
Patient 3
Patient 4
Patient 5
Patient 6
Patient 7
Patient 8
Patient 9

0,0524
0,0500
0,0478
0,0883
0,0375
0,0783
0,0269
0,1393
0,0998

0,0598
0,0468
0,0526
0,0587
0,0399
0,0914
0,0325
0,1385
0,1075

0,0582
0,0557
0,0607
0,0600
0,0388
0,0938
0,0291
0,1362
0,1137

0,0541
0,0524
0,0567
0,0584
0,0384
0,0936
0,0289
0,1408
0,1141

0,0547
0,0527
0,0568
0,0637
0,0393
0,007
0,0300
0,1409
0,1098

0,0560
0,0448
0,0549
0,0564
0,0413
0,0884
0,0297
0,1404
0,1142

0,0561
0,0545
0,0538
0,0613
0,0384
0,0909
0,0274
0,1335
0,1106

0,0546
0,0499
0,0540
0,0598
0,0393
0,0872
0,0294
0,1448
0,1118

Table B.5: False positives metric. Weight tuning for grid spacing of 10.0 mm

0,0577
0,0517
0,0538
0,0605
0,0388
0,0938
0,0204
0,1407
0,1050

Weight 1-Weight X / FinalGridSpacingInPhysicalUnits 10.0

0,0549
0,0530
0,0529
0,0635
0,0392
0,0926
0,0288
0,1297
0,1023

FP

BASE
CASE

0

0.1

0.3

0.7

0.9

1

2.5

5

7.5

Patient 1
Patient 2
Patient 3
Patient 4
Patient 5
Patient 6
Patient 7
Patient 8
Patient 9

0,1398
0,0973
0,0887
0,1226
0,1170
0,1007
0,0830
0,0516
0,1334

0,1154
0,0843
0,0791
0,1351
0,1098
0,0862
0,0734
0,0639
0,1250

0,1188
0,0830
0,0761
0,1350
0,1123
0,0873
0,0737
0,0632
0,1265

0,1225
0,0839
0,0730
0,1328
0,1108
0,0854
0,0751
0,0646
0,1269
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0,1216
0,0836
0,0773
0,1280
0,1097
0,0870
0,0739
0,0653
0,1265

0,1209
0,0896
0,0789
0,1315
0,1101
0,0810
0,0744
0,0630
0,1258

0,1205
0,0855
0,0785
0,1302
0,1116
0,0859
0,0753
0,0640
0,1284

0,1185
0,0872
0,0763
0,1288
0,1123
0,0853
0,0728
0,0625
0,1268

0,1155
0,0838
0,0755
0,1290
0,1133
0,0885
0,0757
0,0688
0,1277

0,1206
0,0854
0,0780
0,1265
0,1106
0,0859
0,0750
0,0660
0,1259



Table B.6: Jaccard index. Weight tuning for grid spacing of 10.0 mm

Weight 1-Weight X / FinalGridSpacingInPhysicalUnits 10.0

Jaccard

BASE
CASE

0

0.1

0.3

0.7

0.9

1

2.5

5

7.5

Patient 1
Patient 2
Patient 3
Patient 4
Patient 5
Patient 6
Patient 7
Patient 8
Patient 9

Table B.7:

0,8211
0,8617
0,8715
0,3086
0,8536
0,8354
0,8044
0,8222
0,7906

0,8375
0,8763
0,8762
0,8207
0,8584
0,8369
0,8986
0,8136
0,7916

0,8357
0,8699
0,8718
0,8197
0,8570
0,8339
0,9013
0,8163
0,7855

0,8355
0,8719
0,8781
0,8229
0,8587
0,8356
0,9001
0,8110
0,7848

0,8359
0,8719
0,8741
0,8231
0,8590
0,8368
0,9003
0,8105
0,7885

0,8355
0,8731
0,8743
0,8256
0,8570
0,8438
0,9001
0,8127
0,7857

0,8357
0,8687
0,8756
0,8230
0,8580
0,8376
0,9012
0,8181
0,7864

0,8388
0,8710
0,8774
0,8255
0,8565
0,8412
0,9019
0,8091
0,7867

False negatives metric. Weight tuning for a grid spacing of 5.0 mm

0,8391
0,8726
0,8783
0,8248
0,8560
0,8329
0,8991
0,8080
0,7913

Weight 1-Weight X / FinalGridSpacingInPhysicalUnits 5.0

0,8366
0,8701
0,8769
0,8247
0,8582
0,8361
0,9002
0,8199
0,7949

FN

BASE
CASE

0

0.1

0.3

0.7

0.9

1

2.5

5

7.5

Patient 1
Patient 2

Table B.8&:

0,0524
0,0500

0,0625 0,0608 0,0579 0,0581 0,0606 0,0561 0,0596 0,0579
0,0465 0,0492 0,0494 0,0496 0,0508 0,0488 0,0492 0,0477

False positives metric. Weight tuning for a grid spacing of 5.0 mm

Weight 1-Weight X / FinalGridSpacingInPhysicalUnits 5.0

0,0579
0,0498

FP

BASE
CASE

0

0.1

0.3

0.7

0.9

1

2.5

5

7.5

Patient 1
Patient 2

0,1398
0,0973

0,1001 0,1099 0,1091 0,1123 0,1129 0,1136 0,1134 0,1111
0,0806 0,0811 0,0799 0,0812 0,0791 0,0770 0,0806 0,0821

Table B.9: Jaccard index. Weight tuning for a grid spacing of 5.0 mm

Weight 1-Weight X / FinalGridSpacingInPhysicalUnits 5.0

0,1112
0,0831

Jaccard

BASE
CASE

0

0.1

0.3

0.7

0.9

1

2.5

5

7.5

Patient 1
Patient 2

0,8211
0,8617

0,8409 10,8416 0,8446 0,8416 0,8391 0,8420 0,8395 0,8428
0,8800 0,8772 08781 0,8768 0,8777 0,8812 0,8776 0,8776
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Table B.10: Smoothness. Weight tuning for a grid spacing of 5.0 mm

Weight 1-Weight X / FinalGridSpacingInPhysicalUnits 5.0

BASE
Smoothness CASE 0 0.1 0.3 0.7 0.9 1 2.5 5 7.
Patient 1 0,1145 | 0,4051 0,3730 0,3932 0,3941 0,3903 0,3885 0,3685 0,3737 0,3:
Patient 2 0,1153 | 0,2552 0,2398 0,2337 0,2333 0,2294 0,2233 0,2152 0,2139 0,2(
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