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Abstract

A Sense and Avoid technique has been developed in this master thesis. A special

method for small UAVs which use only an electro-optical camera as sensor has been

considered. This method is based on a sophisticated processing solution using hybrid

Convolutional and Recurrent Neural Networks. The aim is to study the feasibility of

this kind of neural networks in Sense and Avoid applications.

First, the detection and tracking part of the algorithm is presented. Two models

were used for this purpose: a Convolutional Neural Network called YOLO and a hybrid

Convolutional and Recurrent Neural Network called Re3.

After that, the collision avoidance part was designed. This consisted of the obsta-

cle relative range estimation using an Extended Kalman Filter, the conflict probability

calculation using an analytical approach and the geometric avoidance manoeuvre gener-

ation.

Both parts were assessed separately by videos and simulations respectively, and then

an experimental test was carried out to integrate them. Measurement noise was ex-

perimentally tested and simulations were performed again to check that collisions were

avoided with the considered detection and tracking approach.

Results showed that the considered approach can track objects faster than the most

common computer vision methods based on neural networks. Furthermore, conflict was

successfully avoided with the proposed technique. Design parameters were allowed to

adjust speed and manoeuvres accordingly to the expected environment or the required

level of safety.

The main conclusion was that this kind of neural network could be successfully

applied to Sense and Avoid systems.
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Chapter 1

Introduction

1.1 Background and motivation

Nowadays, Unmanned Aerial Vehicles (UAVs) are becoming a reality and they are start-

ing to be introduced into daily life. One of their most critical points is safety. Since

there are no human pilots inside UAVs, it is very important that they are capable to

ensure safe flights even in unexpected situations such as when an obstacle appears in the

trajectory. In manned vehicles, this is called See and Avoid so it has been called Sense

and Avoid in unmanned vehicles. Sense and Avoid systems must be capable of detecting

objects or dangerous situations and generating suitable actions in order to avoid any

conflict or collision. UAVs must always be equipped with Sense and Avoid systems.

There are several sensors that are commonly used to sense the surrounding envi-

ronment around a vehicle. These sensors include radars, lidars, electro-optical cameras

and cooperative solutions such as TCAS or ADS-B. Usually, large vehicles have some

of these sensors onboard to ensure a proper environment perception. However, there

are also small UAVs that could be used for delivery or supply purposes, or as sacrificial

decoys in a defence context. In this kind of vehicles, there exist additional limitations

called SWaP limitations which are about Size, Weight and Power. As a result, compact

electro-optical camera systems combined with a sophisticated processing solution is a

potential candidate for a low SWaP and effective solution. With such systems, these

vehicles should be capable not only to avoid other aircraft but also obstacles close to the

surface where they are likely to be operating most of the time.

In parallel, neural networks have been experiencing a fast development in the past

years. Due to advancements in processing units capabilities, neural networks are showing

to be very useful in areas such as computer vision or speech recognition. Hence, it is
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time to explore the capabilities that deep learning techniques could have in Sense and

Avoid applications, what will be done in this project. In this case, a special kind of

neural network will be studied: hybrid Convolutional and Recurrent Neural Networks.

Even though Convolutional Neural Networks and Recurrent Neural Networks have been

deeply studied separately, this hybrid architecture is very new and it could use the best

characteristics of the other two to be successfully applied to Sense and Avoid systems.

1.2 Aims and objectives

A Sense and Avoid system considering an electro-optical camera to capture the envi-

ronment and hybrid Convolutional and Recurrent Neural Networks as post-processing

solution will be designed. The complete system will consist of the obstacle detection and

tracking, a conflict evaluation procedure and an avoidance manoeuvre generation. Due

to the novelty of the considered processing approach, the main aims of the project were

to analyse the feasibility of using this new kind of neural networks in Sense and Avoid

applications for UAVs, to identify possible issues that might occur and to suggest future

directions in its research. In order to achieve these aims, the following objectives were

considered:

• Developing a detection and tracking algorithm with hybrid Convolutional and Re-

current Neural Networks.

• Assessing the situation of conflict with any detected obstacle.

• Proposing an avoidance manoeuvre to use in case it is required.

• Assessing the performance of the designed technique.

• Discussing advantages, limitations and research gaps found.

1.3 Thesis layout

The structure of this report is organised as follows. First, a literature review covering

Sense and Avoid systems and subsystems and deep learning post-processing solutions

is included. After that, the designed method is explained. It was divided into two

main parts: object detection and tracking, and collision avoidance. Then, first the

object detection and tracking algorithm will be described including a discussion of the

obtained results. Following that, the collision avoidance technique will be considered,

covering the performance assessment as well by means of simulations. A experimental
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test was carried out too so its description and results are shown next. Finally, the closing

remarks with the extracted conclusions and proposals for future research are included.
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Chapter 2

Literature review

2.1 Sense and Avoid requirements

UAV Sense and Avoid is the artificial system equivalent of a human pilot detecting and

avoiding hazard situations (mid-air collisions, controlled flight into terrain, flightpath

obstacles, and clouds) following both the rules of the air, See and Avoid aircraft collision

avoidance rules and Visual Flight Rules (VFR) where appropriate [15]. In See and Avoid

circumstances, the pilot must be able to avoid collisions even without the help of other

existing infrastructure, air traffic services or onboard surveillance equipment [16]. UAV

operation requires an Equivalent Level of Safety (ELOS) to existing manned air vehicles,

hence, Sense and Avoid systems must have at least the same See and Avoid capabilities.

In fact, Sense and Avoid is required not only to avoid collisions but also to ensure the

self-separation so the conflict does not occur [17]. Self-separation reduces the possibility

of conflict and collision avoidance is executed when a safe separation can no longer be

sustained. The Collision Volume (CV) is usually defined as a cylindrical volume centred

on the vehicle with 500 feet of radius and 200 feet of height. Any object inside this volume

is considered as a Near Mid-Air Collision (NMAC). Objects outside the Collision Volume

may not be treated as NMAC but may do as threats due to having some effect on the

UAV such as the vehicle ownship. Hence, that is the reason to consider a self-separation

distance as well as a collision avoidance [17].

Sense and Avoid can usually be divided into three phases [15]. The first one is

the strategic sense and avoid, which involves long range planning to avoid potential

conflicts. The second phase consists of conflict resolution advisories and it would provide

recommendations to the pilot in the case that there is one. The last phase would be the

autonomous collision avoidance in which the UAV should be capable to avoid collisions
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by its own. In this project, completely autonomous vehicles are considered so the last

phase will be designed.

The fully Sense and Avoid procedure can also be dissected into different functions

which have commonly been Detect, Decide and Act (DAA) or Observe, Orient, Decide

and Act (OODA) [16]. However, for collision avoidance techniques, the commonly three

phases are referred as Detection (Detect or Observe and Orient), Avoidance (Decide and

Act) and Resolution. In the next sections, each one of these functions will be developed.

2.2 Object detection and tracking

The trajectory of any vehicle would always be safe if it does not encounter any external

agent. However, it is possible that the predefined trajectory crosses an unexpected

structure or that two trajectories from different agents such as other vehicles, birds or

any other object intersect. Hence, sensing equipment is required in every vehicle in order

to detect any kind of object and avoid any collision.

2.2.1 Types of sensors

Air vehicles have usually got many different sensors onboard in order to be aware of

the surrounding environment. These sensors can be divided into cooperative or non-

cooperative [18]. Cooperative sensors include common systems included in civil aircraft

such as TCAS (Traffic alert and Collision Avoidance System) and ADS-B (Automatic

Dependent Surveillance-Broadcast). These systems work by the communication between

vehicles to exchange information and suggest possible trajectories to avoid collision [19].

However, some vehicles may not be fitted with this kind of equipment so they require

non-cooperative sensors in order to know about their surroundings.

Nowadays, there are a wide range of non-cooperative sensors that are used not only

in air vehicles but also in ground and maritime vehicles. For example, active sensors such

as radars, lidars and sonars can measure object distances very accurately by emitting

waves and calculating the time to receive the reflection [20]. However, these systems are

relatively big and expensive so they may not be desired in some kind of vehicles [19].

The recent development in powerful processing units have brought a new possibility

to sense the environment around a UAV and this is the usage of cameras. These passive

sensors have not been usually used just on their own because of the limiting information

that they are able to extract directly [21]. However, technology advancements are al-
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lowing to use more powerful post-processing techniques of the information provided by

cameras so they can be used for collision avoidance applications.

2.2.2 Cameras

Even when it is known that cameras want to be used, there are different possible so-

lutions that could be used. Electro-optical cameras are usually used to extract colour

information of the environment. Stereo cameras can be used to extract images from

different locations and, thus, to obtain more robust information. However, this last ap-

proach would introduce more weight and cost to the vehicle. Since the main advantages

of electro-optical sensors with respect to waves sensors are the lower size, weight, cost

and power consumption and the faster scan rate, these aspects want to be optimized [22].

In this project, only an electro-optical camera will be used along with a sophisticated

post-processing technique in order to overcome these limitations.

One of the most important technical parameters of a camera is the Field Of View

(FOV). That is the reason why an expected FOV for Sense and Avoid systems has been

quoted, being this of ±110◦ in azimuth and ±15◦ in elevation [23] as specified by the

White Paper issued by Air Combat Command (ACC) entitled ”Sense and Avoid (SAA)

Requirement for Remotely Operated Aircraft (ROA)”. In general, increasing the FOV

reduces the resolution, what also reduces the detection range. In fact, the azimuth FOV

could be reduced to ±90◦ in vehicles much faster than the encountered objects [24].

For that reason, an array of cameras, wide angle cameras or spherical cameras may be

required in order to fill the whole FOV keeping enough resolution [16].

However, visual band cameras have usually got limitations in order to perform prop-

erly on low light conditions or on difficult weather conditions such as rainy, cloudy or fog

presence. Therefore, an additional infrared camera may be needed so the environment

can be sensed even when any of these hard visibility conditions occur. An additional

disadvantage of this type of sensors is the lack of range information so sophisticated

techniques such as filters are also needed to extract this information [22].

2.2.3 Post-processing solutions

Electro-optical cameras are very promising to detect and track objects but the infor-

mation extracted from them is limited so advanced algorithms are required in order to

be able to use this kind of sensors in Sense and Avoid systems alone, with no help of

any other sensor. Since these algorithms provide the detection and tracking capability,

their performance is very important for the subsequent avoidance and resolution func-
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tions [16]. If an object cannot be accurately located, it will not be possible to avoid the

collision with enough guarantee.

Morphological plus temporal filtering approaches

One of the most common approaches has been using morphological based methods in the

spatial filtering stage [25] [26] [27] [28]. However, this kind of method has not been used

alone, so additional stages were needed to consider temporal evolution such as temporal

filtering [27], dynamic programming [26] or support vector machines (SVM) [25].

Morphological based techniques

Several techniques have been tested such as closed-minus open (CMO), preserved-

sign, bottom-hat, adaptive contour morphological filtering and morphological reinforce-

ment but the ones giving the best performance have been CMO and bottom-hat ap-

proaches [28].

The way spatial filters work is by extracting point-like features from the image frame

so objects can be detected when these features are passed through a temporal filtering

approach [26]. The two fundamental operations to do that are known as dilation and

erosion.

Temporal filtering

As mentioned above, temporal filtering is needed when using morphological based

methods. The two most widely used approaches have been Hidden Markov Models

(HMM) and dynamic programming. HMM filter basically consists of a probabilistic

model of all the different motions that an object can adopt [28]. Transition probabilities,

initial probabilities and measurement probabilities are recursively propagated to obtain

a detection [27]. Dynamic programming detects an object after multiple outputs of the

morphological filter. It averages them along possible target trajectories and makes a

decision about the presence of the object or not [26].

Bio-inspired methods

Optical flow

A more recent methodology for object detection has been optical flow, which is a

technique inspired from biology. Since some animals such as insects do not have enough

distance between both eyes, they cannot use stereo-vision to orientate themselves so they
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have developed a different kind of motion detector based on the optic flow [29]. When

an insect is flying, it can sense the environment according to the apparent movement of

texture in the visual field relative to the insect’s velocity [30]. Hence, it is possible to

detect a closer object if it is moving faster that other further away objects. Furthermore,

it can know if the object is on a collision course if it does not move but is increasing

in size [31]. Several algorithms can be used to compute optic flow such as differential

methods, correlation approaches and frequency-based methods [29]. However, optical

flow is very sensitive to some background effects such as aggressive attitude manoeuvres,

scene illumination and weather conditions and the ground when it is behind the target

[22].

Saliency method

The saliency method is another bio-inspired technique based on the human vision

system which is able to identify salient objects in complex environments by using the

inherent visual attention mechanisms [32]. By this kind of algorithm, the vehicle can

detect salient obstacles from the background.

Deep learning solutions

Recently, the use of neural networks for object detection has been increasing due to

improvements in graphic processing units and datasets [33]. Despite existing several

types of neural networks, Convolutional Neural Networks (CNN) have been the most

widely used for these purposes [34]. Due to the advancements in CNN, they have already

been applied in sensing processes from UAVs and aerial vehicles [35] [36] [37].

2.2.4 Range estimation

Usually, the location of a detected object in an image frame is given relatively to the

image size or as the pixel locations. From this data, it is possible to calculate the relative

angular measurements (bearing and elevation) with respect to the vehicle. To do that,

camera information such as the focal length or the FOV is required so the measured

angles can be calculated by simple expressions [27]. However, relative range and velocity

cannot be measured from a single 2D image so passive ranging techniques are needed

[38].

One method to estimate the target relative range is by static triangulation. If the

vehicle is performing a manoeuvre that changes the line of sight (LOS), geometric cal-

culations would give the range as the function of the different measurements [38].
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A more extended and reliable technique has been to filter the measurements making

use of Kalman filters (KF). Common KF used for this purpose have been Modified Spher-

ical (MS-EKF), Range-Parametrised (RP-EKF), Log-Polar Coordinate (LPC-EKF) and

Unscented (UKF) [16]. This kind of filters are optimal recursive data processing algo-

rithms that take into account measurement outputs, prior knowledge about the system

and measuring errors to minimise the error statistically [39]. The main problem with

bearing-only measurements filters is the non-linearity issue which, along with the re-

quired target manoeuvre for range observability, requires equation linearisation or noise

terms increment [40]. Several KF for this kind of measurements have been designed and

compared, although practical results do not usually match the theoretical expectations

[41].

One additional problem is the observability. Depending on the relative motion be-

tween vehicle and target, it is possible that the range cannot be estimated from the LOS

measurement. For example, if the measured LOS is constant, it will not be possible to

know about the relative range [16]. It has been shown that the range and the range

rate are only observable when the vehicle performs a manoeuvre with an acceleration

component perpendicular to the LOS vector [38].

2.3 Conflict detection

Once an object around the UAV has been detected, it is required to identify if it will

generate a conflict or not. Since it is expected to have sensors capable to detect objects

when the collision is not yet imminent, the future trajectory of both the object and

the UAV must be estimated in order to assess the probability that a future conflict

exists. According to the way to estimate the trajectory, a different conflict probability

calculation approach can be considered.

2.3.1 Trajectory prediction

The most simple approach is the nominal method. In this kind of technique, a unique

trajectory is estimated for each agent without considering any uncertainty on it. Hence,

object manoeuvre is not taken into account and this method can only be used in short

ranges or short periods of time since it becomes inaccurate otherwise [18].

The worst-case prediction, however, calculates every possible trajectory of the object

and checks which ones of them would generate a conflict with the UAV. This is a very

inefficient and computationally expensive method but it ensures that no collision will

occur [42].
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A kind of trade-off between the two previous techniques would be the probabilistic

method. In this case, the trajectory is predicted considering uncertain factors that

describe the risk probability [19].

An additional approach can be the flight plan exchange, although this would be avail-

able only in UAVs with cooperative sensors. By sharing route and dynamics information

between vehicles, accurate information would be considered [18].

2.3.2 Conflict decision

When the future trajectories have been estimated, a decision of whether there is the risk

of conflict or not must be taken. There are two ways to make this decision. The first and

most simple one is by a deterministic method. In this case, certain distance threshold

around the vehicle is considered and a conflict is detected if the trajectory of the object

intersects this threshold at some point [43]. Therefore, this would be the method used

with either the nominal trajectory prediction approach or the shared flight information

one.

A more realistic technique would be the probabilistic method. Predicting the tra-

jectories by a worst-case or a probabilistic approach, a conflict probability could be cal-

culated and a corresponding manoeuvre would be executed if this probability is greater

than a threshold value. Using a probabilistic trajectory prediction, there could be two

different ways to approximate the conflict probability since the analytical expression

cannot be calculated [44]. The most accurate one would be by Monte-Carlo sampling

using a large number of samples. This approach, however, would have a high compu-

tational cost so it would not be appropriate for real time applications such as collision

avoidance [45]. A more simple approach would be approximating the conflict probability

with an analytical expression that could be quickly computed. Some accuracy would be

lost but the value would be quickly obtained, allowing longer available time to execute

an evasion manoeuvre.

The most widely analytical approximation used is [14] [46] [47]:

P (conflict) =
1

2
erf

(
R+ r̄f√
2σrf

)
+

1

2
erf

(
R− r̄f√
2σrf

)
(2.1)

where R is the required separation between vehicle and obstacle, r̄f is the miss

distance vector, σrf is its variance and the Gaussian error function is:
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erf(x) =
2√
π

∫ x

0
e−u2

du (2.2)

However, different estimations of the parameters have been studied since the uncer-

tainties can be modelled in several ways. To evaluate whether the obtained expressions

work correctly, usually direct simulations are performed to check that the conflict can

be avoided and also the obtained conflict probabilities are compared with Monte-Carlo

results so the accuracy can be validated [45].

2.4 Manoeuvre resolution

When a conflict is predicted, an evasion manoeuvre is needed in order to avoid a possible

collision. As expected, there are several ways to execute an appropriate manoeuvre as

well.

2.4.1 Rule-based methods

Sets of rules would be predetermined during the system design phase considering some

predicted situations. This simple approach would allow for a very efficient and fast

manoeuvre calculation without any need to perform additional computation and giving

more time to avoid a collision. However, it has less effectiveness than others and is not

optimal [18] [19].

2.4.2 Geometric approach

This kind of method consists of generating a geometric trajectory according to any

geometric requirement as could be the separation distance. It is also a simple approach

but its online calculation can make it more appropriate to the encountered situation.

However, it could become more complex if the geometric trajectory wants to be optimized

[18] [42].

2.4.3 Optimized trajectory

This approach is strongly related to the previous one since it also relies on a geometric

trajectory but, in this case, the generated path is optimized according to some constraint
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or cost. The trajectory could be optimized by using different factors such as the least-

aggressive manoeuvre, increasing the complexity [18] [42] [19].

2.4.4 Force field methods

Potential fields have widely been used for path planning in many different applications.

The target location is treated as an attractive force while obstacles are represented

by repulsive forces. By tuning correctly the characteristic parameters, the vehicle will

finally reach the target destination avoiding the obstacles. However, it could get stacked

at some point with no possibility to get to the destination. Furthermore, the field must

be updated every time the current configuration is updated so it can be computationally

expensive [19] [42] [18].

2.4.5 Game theory

Game theory methods rely on inter-agent communication so a decentralized solution is

achieved when all the agents look to avoid the collision [18] [19].

2.4.6 Bearing angle based approach

This method is relatively new and uses visual sensors. The objective is to keep the object

locations at a safe position within the FOV. However, it is not very accurate and does

not take into account the object distance to the UAV [42].

2.5 Deep learning post-processing

In this project, a deep learning approach has been considered to detect objects from the

captured frames from the camera. Due to recent improvements in processing units, their

importance has increased in the last years.

Neural networks can be categorised into supervised, unsupervised and reinforcement

learning according to their learning process [34]. In supervised learning, neural networks

are provided with a ground truth dataset so they can learn from it and, then, generalise

to other sets of data later. Unsupervised learning, however, does not use ground truth

data and the objective of this kind of neural networks is to extract key features from

the data so ways to classify them can be found. Finally, reinforcement learning makes
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use of interaction between the Artificial Intelligence (AI) agent and a real or simulated

environment to provide feedback and to improve the performance of the activity carried

out.

Supervised learning neural networks have been used in this project. In this kind of

neural networks, the training process can be performed online or offline. Online training

refers to learning from the real experience while the neural networks is operating whereas

offline training refers to a training process previous to operation where a prepared train-

ing dataset is provided and the neural network does not learn while operating so they

are usually faster.

The most common training process is offline since networks are able to operate faster

what is important in applications where speed is a critical factor. In the scenario con-

sidered in this project, low computational power is required in order to make the UAV

lighter so offline training neural networks have been considered. For this training pro-

cess, a set of ground truth data is provided so there is certain output from every input

in this dataset. Hence, the inputs of the training dataset are propagated through ev-

ery layer of the neural network and an output is obtained, which is compared with the

ground truth output. An error is then calculated and it is backpropagated so the neural

network weights are adjusted. It is an iterative process highly dependent on the dataset

that should be large and diverse.

There are several kinds of neural networks that meet the previously commented

requirements. However, two of them - Convolutional Neural Networks and Recurrent

Neural Networks - have been used due to their characteristics. In fact, a more advanced

and new kind of neural network involving both of them has also been used called hybrid

Convolutional and Recurrent Neural Networks. The literature review of each one of

them will be presented in the next sections.

2.5.1 Convolutional Neural Networks

Convolutional Neural Networks (CNN) is the most common deep learning approach for

computer vision. They can perform pattern recognition tasks in images so they are used

for object detection purposes [1]. Their input, hence, is a matrix with the pixel values

of an image that has three spatial dimensions: height, width and depth. The basic CNN

architecture is as depicted in Figure 2.1. There are three types of layers: convolutional

layers, pooling layers and fully connected layers.
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Figure 2.1: Simplified CNN architecture for MNIST classification [1].

Convolutional layers are responsible to extract features from the image. Each con-

volutional layer applies several filters to the image matrix executing the convolution

calculation with each one of them. Hence, a convolutional map from each filter is ob-

tained so as many maps as filters applied are extracted from each layer. Furthermore,

each filter represents a different image feature so features can be extracted from different

locations in the image. One advantage of this kind of neural networks is the parameter

sharing since each filter is applied to different regions of the image but its parameters are

the same so the parameter optimization during the training process is reduced with re-

spect to other neural networks. Commonly, a rectified linear unit (ReLu) is also applied

at the end as activation function.

Pooling layers are used to reduce the size of the obtained matrices. There are different

ways to define them but the most common ones are averaging the values around certain

position or just using the maximum value [48]. Usually, convolutional and pooling

layers are successively used until the final fully connected layers so the inputs of the

next convolutional layers are reduced due to the pooling layers action. Moreover, it

is possible to extract deeper features by using deeper neural networks, what refers to

using more convolutional and pooling layers. This is common to every neural network

but there is a problem: higher computational load will be required and overfitting may

appear, what refers to fit very well to the training dataset but failing at generalizing to

external data.

Finally, fully connected layers are usually placed at the end of the neural network in

order to analyse the extracted features and combine the obtained information to make a

decision. Usually, a CNN is designed to be able to detect several classes in an image so

the output matrix would be a vector with a size of that amount of classes. Hence, the
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output of the fully connected layers would be a vector with the detection probability of

each one of the classes.

Popular CNNs

CNNs development has been motivated by competitions such as ImageNet Large Scale

Visual Recognition Challenge [49], PASCAL VOC Challenge [50] or COCO Challenge

[51]. Furthermore, larger and diverse datasets were also developed for these challenges so

they had a key role on CNN technology. Some of the most important CNN architectures

developed so far will be described next.

AlexNet

AlexNet [2] was the first deep neural network to increase significantly the accuracy,

winning the ImageNet LSVRC-2010. They used a simple architecture with 5 convolu-

tional layers followed by 3 fully connected layers as shown in Figure 2.2. They were the

first ones to introduce the ReLu activation function instead of the tanh or sigmoid which

were the most common ones until then. With this new activation function, training was

faster and the probability of having the vanishing gradient problem was reduced. An

additional advancement was to add a DropOut layer after every fully connected layer in

order to reduce overfitting.

Figure 2.2: AlexNet architecture [2].

VGG16

VGG16 [52] won the localization task of the ImageNet LSCRC-2014. In their paper,

results for several depths of the neural networks are shown so they prove that higher

depth (higher number of layers) is beneficial, obtaining the best results with 16 convolu-

tional layers. Furthermore, they decreased the size of the filter used in the convolutional

layers with respect to the ones used in AlexNet, extracting more complex features and

at a lower cost.
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GoogLeNet/Inception

The problem with VGG16 was the high computational requirements. GoogLeNet

[3] defends that all output channels in a convolution operation are not connected to all

input channels so there are some connections that can be spared. GoogLeNet aims to

spare these unnecessary or redundant connections. To do so, they designed the Inception

module as shown in Figure 2.3 to reduce a common sparse CNN in a more effective way

where convolutions of different sizes are used in order to capture details at varied scales.

The 1x1 convolution is known as bottleneck layer and it is introduced to significantly

reduce the computation requirements. In addition, the final fully connected layers are

replaced by a global average pooling layer. In AlexNet, the fully connected layers pa-

rameters represent around the 90% of the total parameters so, using this replacement

the number of parameters is drastically reduced.

Figure 2.3: Inception module [3].

ResNet

According to previously comments, deeper networks will increase accuracy if overfit-

ting does not occur. However, there are some other problems that may appear such as

vanishing gradient (earlier layers are almost negligible learnt) and problems coming from

the optimization of a huge parameters space. ResNet [4] reduced these problems making

use of a method called degradation as in Figure 2.4, making it possible to keep using

very deep networks. ResNet won the classification, detection and localization tasks of

ImageNet LSCRC-2015 and the detection and segmentation tasks of COCO 2015.
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Figure 2.4: Residual learning: a building block [4].

CNNs for object localization

The most traditional CNNs as the ones explained before can detect and classify objects

in an image. However, they cannot locate them. To obtain the location of the objects

within the image, more complex networks are required. The output of this kind of

neural networks usually includes a bounding box around the detected object. Some of

the state-of-the-art methods are explained now.

Faster R-CNN

This method was originally called R-CNN when it was published in 2014 because

it was based on Regions with CNN features (Region-Convolutional Neural Network)

[53]. It showed greater performance than other similar approaches so it was a great

advancement. That is why further research was carried out and it was developed, leading

to more sophisticated algorithms such as Fast R-CNN [54] and Faster R-CNN, which is

the last version [5].

The working principle of this kind of methods is a sliding window along an image

so when an object is detected, its location is known by the position of the window

when the detection occurred. The improvement in Fast R-CNN was that Regions Of

Interest (ROI) were proposed so speed was greatly improved since there was no need to

use the sliding window across the whole image. The further improvement of Faster R-

CNN was to use an additional network for this purpose. Hence, Faster R-CNN has two

networks: one generating regions proposals and another one detecting objects in those

regions. This reduces the time cost again. The network ranks region boxes called anchors

and proposes the ones with the highest probability of containing an object. Another

important advantage is the ROI Pooling. Since the proposed regions will probably be of

different sizes, the CNN feature maps will also have different sizes, what is not efficient.

By using ROI Pooling, the output has always the same size independently of the input
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size. In Figure 2.5, a simplified scheme of the mechanism is shown. Used with VGG16 in

a mix of COCO and PASCAL VOC datasets, a precision of 75.9% mAP (mean Average

Precision) at 5 fps (frames per second) can be achieved.

Figure 2.5: Faster R-CNN working scheme [5].

SSD

Although Faster R-CNN got good results, recently more research is being conducted

towards different methods that are expected to achieve faster speeds in the future. In

these new methods, it is possible to look into the whole image for the objects locations

instead of performing a region proposal first, so everything is done at once and not in

two steps as with Faster R-CNN. One of these methods is Single Shot Multibox Detector

(SSD) [6].

Figure 2.6: SSD architecture [6].

SSD scored over 74% mAP at 59 fps on standard sets such as PASCAL VOC and

COCO and it showed that faster object locators were possible. SSD’s architecture builds

on the VGG16 architecture but discarding the last fully connected layers and adding

convolutional layers instead as in Figure 2.6. In this case, the bounding boxes proposal
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is performed by a method called Multibox in which a convolutional network with an

Inception style is used. Hence, every map cell is associated with a set of default bounding

boxes of different dimensions and aspect ratios and a location loss is computed in order to

select the correct ones. In the original paper, some additional observations are provided

such as that more default boxes results on higher accuracy but lower speeds so there is

a trade-off between both, and that 80% of the time is spent on VGG16 so faster speeds

could be achieved with more efficient networks.

YOLO

YOLO is the abbreviation of You Only Look Once, what is a brief explanation of its

essence: it consists of a single network that gets the object locations. As with Faster

R-CNN the first version was released in 2016 [11] but an updated version was published

in 2017 as YOLO9000 [55] and the most recent one is YOLOv3 which was presented in

2018 [56].

YOLO claims to be as accurate as the best detectors but much faster. For example,

comparing with SSD, they get the same accuracy but at a three times faster speed.

In this case, they use their own CNN network called darknet. To find the bounding

boxes, the input image is divided into multiple regions and certain number of bounding

boxes are proposed in each one. Taking into account some parameters such as confidence

probability and Intersection over Union (IoU), the final bounding boxes are selected.

2.5.2 Recurrent Neural Networks

A different type of neural networks are the Recurrent Neural Networks (RNN). The main

feature of this kind of neural networks is that they are able to learn temporal information

[57]. Due to this capability, their main applications have been handwriting recognition

[58] [59] [60] and generation [61], language modeling [62] and translation [63], acoustic

modeling of speech [64] and speech synthesis [65].

The structure of a simple RNN is given in Figure 2.7. In this case, only the hidden

layer considers past information using the feedback loops, that are recurrent cycles over

time or sequence. However, these feedback loops can also be applied to the output or

input layers. The main working principles are the same as of any supervised Artificial

Neural Networks (ANN) so the goal of the training process is to get the same outputs

from the network than the ground truth.
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Figure 2.7: Simple Recurrent Neural Network structure [7].

One of the main drawbacks of this kind of neural networks was the difficulties to

train them, so long times were required [7]. However, advancements in GPUs as well

as the development of backpropagation using Gradient Descent (GD) has helped in this

training process. However, there are still some additional problems when modeling long-

term dependencies, which are the vanishing and exploding gradient problems [66]. To

solve this issue, a special kind of RNN were developed, which are Long Short-Term

Memory (LSTM) RNNs.

Long Short-Term Memory

LSTM reparametrizes the RNN so the gradient cannot vanish [66]. The structure of a

LSTM cell can be seen in Figure 2.8. However, the main disadvantage is the increment

in complexity, as can be easily spotted. The introduced non-linear gating units regulate

the information flow into and out of the cell [8]. These gates are the input gate, the

output gate and the forget gate, so they make it possible to decide what information

remains in consideration and what information can be forgotten.
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Figure 2.8: Long Short-Term Memory cell structure [8].

Computer Vision Applications

As commented above, computer vision has not been one of the main applications of

RNN. Other applications such as language modeling or speech recognition have been

more used. However, this kind of neural networks has some characteristics that can also

be helpful for computer vision. That is why some research in this area has been carried

out in the last years.

Visual Attention

Since CNN can be very computationally expensive, this technique relies on using

visual attention to make the object detection process faster [67] [68] [69]. This method

is based on Recurrent Attention Models (RAMs) which are inspired by the way humans

perform visual recognition tasks. Basically, they process a multi-resolution crop of the

input image called glimpse and use deep RNNs to find additional objects or features

in the surroundings taking into account the previous searched area. Hence, they pay

attention to a particular region in the image (glimpse) and detect objects by considering

a sequence of features. However, many of these networks still use convolutional layers

to extract features from the image.

Action recognition

A further step for object recognition in images is to use RNNs in videos due to their

temporal information consideration. Hence, many projects have focused on finding a
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neural network that detects actions in videos as CNNs detect objects in images. For

these purposes, commonly LSTM is used since long-term memory is usually required

[70]. However, more complex networks have been developed from simple LSTMs to

derive on solutions such as deep differential recurrent neural networks [71] [72]. One of

the main problems of this application is the poor available datasets. It is difficult to

get huge datasets for videos as well as to label them with ground truth. Therefore, the

results are promising with the datasets used but their generalisation into the real world

is still an open issue.

Tracking

One of the most promising RNN applications is tracking. The main characteristics

of the two previous applications would be used in this last one since an attention model

would be used to track a specific object in the image but it would be tracked in videos.

Although there are other ways to perform tracking, RNN would also take into account

image features information, what could be a great improvement. Several research [73]

[74] has already shown good results, allowing to track sized objects accurately and in

real time.

2.5.3 Hybrid Convolutional and Recurrent Neural Networks

The main characteristics of Convolutional and Recurrent Neural Networks have already

been outlined in previous sections. Hence, it is possible to see that both of them have

very attractive behaviours. The interest on these kind of neural networks has increased

in the last years so research has been conducted separately. However, after some time

researching about them independently, currently there is an increased interest on study-

ing the behaviour of neural networks considering the principles of both of them. This

new kind of neural networks has been called hybrid Convolutional and Recurrent Neural

Networks (CRNN).

The main applications have been focused on the temporal feature of RNNs to struc-

tures of data were CNNs are advantageous. A brief overview of the work done for

different applications is given next.

Audio classification

CNNs can also be used to extract features from audio recordings. Hence, it is straight-

forward to think that their combination with RNNs would suppose an advantage since

they are basically a sequence of sounds. That is why some researchers [75] [76] have

developed CRNN for music feature extraction and feature summarisation. This type of
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networks showed better performance than simple CNNs due to the previous information

consideration but the speed was decreased, since the neural networks were deeper.

Action recognition

In computer vision, action recognition in videos has also been one of the main applica-

tions as was with RNN. Due to the available datasets, it is easier to test the performance

and to compare it with other methods tested with the same dataset, so it becomes a

good option to assess the performance on new kind of neural networks in early stages.

In [77], the option of using 3D CNN was studied. 3D CNNs work as common CNNs

but convolution is applied in three dimensions instead of two, the third dimension being

the time. Their CRNN proposed solution consisted of adding a hidden layer with 50

LSTM cells after the 3D CNN. They used KTH dataset to validate the algorithm and

showed that the performance can be increased by the 3% adding LSTM, specially with

long sequence cases. They also compared the feature extractor previous to the LSTM

with other common methods and using a deep learning technique such as 3D CNN

showed to get better performance.

In [9], a CRNN with a structure as the one in Figure 2.9 was designed. They also used

LSTM and their model was end-to-end trainable. They showed to work correctly not

only on activity recognition tasks but also on image and video descriptions generation.

They tested different configurations with the LSTM after the first or the second fully

connected layer of the CNN. They used UCF-101, Flickr30k, COCO2015 and TACoS

datasets to test the models in the different applications and showed that the performance

was improved when including sequential dynamics learning.
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Figure 2.9: Example of a CRNN structure [9].

A different approach was considered in [78] since two CNNs were used before the

LSTM: one processing the input frame and the second one processing the stacked optical

flow. The best performance to date was achieved with 91.3% in UCF-101 and 83.5% in

Columbia Consumer Videos (CCV). However, more neural networks were needed to be

run so speed was penalised.

Some of the characteristics from the previously commented works were used together

in [79]. They also used two CNNs: one for the raw images and another one for the optical

flow information. Then, two different approaches were evaluated: one using just feature

pooling and another one using LSTM with the outputs of the previous CNNs. They used

UFC-101 and Sports 1 million datasets to validate the results and showed that using

optical flow information is not always beneficial except when it is used with LSTM, so

the best performance was achieved using LSTMs on both imaeg frames and optical flow.

Tracking

Object tracking has been one of the most important and active research areas in the

field of computer vision [80]. The obvious application of CRNN to this area has lead to

the development of some models to face this purpose.

In [81], an end-to-end trainable CRNN which is trained offline to track anonymous

objects in noisy environments is proposed. It uses the past predictions and the corre-
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sponding visual features extracted with the convolutional network. They tested it on

cluttered scenarios with occlusions and other objects distractions and obtained robust

performance.

A complete network to detect and track objects was developed in [82] so instead of

performing the tracking after the detection stage, both actions were performed at once.

Their model can be divided into two parts: a detection part based on Fast-RCNN and

RNN to initialize an object trajectory and a tracking part based on a Markov decision

process which performs the motion prior and appearance comparison.

A different open source code was used in [10]. In this case, YOLO is used for

the detection and LSTM is added to track the location making a kind of recurrent

YOLO so the new model was called ROLO. A simplified scheme of the system and the

tracking procedure is shown in Figure 2.10. In this algorithm, the extracted features

were transmitted to the LSTM before the fully connected layers so the class detection

was omitted in the temporal propagation. After assessing it in challenging benchmark

tracking datasets, this method showed to be more accurate and robust that the state

of the art while maintaining a low computational cost. Other works [83] also compared

this solution with other combinations such as SSD and LSTM showing that ROLO got

the best results.

Figure 2.10: Simplified architecture and working scheme of ROLO [10].

A hierarchical attentive recurrent model was developed in [84]. Hybrid CRNN were

used to focus the attention on some part of the image depending on past information.

The evaluation was performed with pedestrian tracking on the KTH dataset and with

the KITTI object tracking dataset, where state of the art performance was obtained at

a reasonable computational cost.
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A new CRNN tracker was designed in [12]. This algorithm can track any generic

object with a predefined bounding box around it but does not perform object detection.

It considers the features of the objects by a CNN and takes into account their evolution

over the time thanks to two LSTM so it is robust to rotations and occlusions. They were

able to achieve speeds of 150 fps in a GPU so this comes at a very low computational cost,

as was represented in the model name: Re3: Real-time Recurrent Regression Network.

They evaluated the performance in datasets such as VOT 2014, VOT2016 and ILSVRC

2016, where they showed to outperform other real-time trackers and to be competitive

with other deep approaches.

Finally, [85] proposed a recurrent filter learning (RFL) algorithm using convolutional

LSTMs. They achieved improved and competitive results on large-scale tracking datasets

such as OTB100, VOT2016 and VOT2017 while also improving the training performance

with respect to other CNN-based methods.
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Chapter 3

Object detection and tracking

The most important part of a Sense and Avoid technique is likely to be the object

detection and tracking. If an obstacle is not detected, it will not be possible to avoid

any conflict with it. Hence, a correct performance of this part has key importance.

Furthermore, the innovative contribution of this thesis comes from this section since

a new technique that has never before been used in this application has been tested.

One of the main limitations for the study was the available time for carrying it out.

Neural networks usually require long time to design and to train, specially when they

include RNNs. Since it was needed to develop a complete Sense and Avoid algorithm,

the decision to use pretrained open source codes of the required neural networks was

assumed.

After a deep literature review of the state of the art work and its open availability,

some options were selected. Since the objective was to use hybrid Convolutional and

Recurrent Neural Networks, open source solutions were searched. However, since these

neural networks are a very new trend, there were not many of them. After considering

some candidates, trying them out and rejecting them because of finding important issues,

a network was finally selected. The CRNN considered was Re3, which was a very recent

code released just a couple of months before. This project showed to be serious and

user-friendly. Furthermore, very good results were reported since it was possible to

track any object at very high speeds. Re3 was chosen as the CRNN for the Sense and

Avoid application. Nevertheless, Re3 was a tracker and not an object detector. It could

track any object with a bounding box around it but it could not generate this bounding

box, so that was taken as an initial input. Hence, a previous CNN was considered to

generate the initial bounding box and, then, Re3 would be used to track the detected

object.
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Due to the previous decision, a CNN with object localisation had to be selected as

well. In this case, there has been more research about this kind of neural networks and

the most advanced ones were open source. As commented, YOLO looked to obtain the

best results in main of the experimental tests. However, YOLO is implemented in a

platform called Darknet that was not widely used and did not have as many capabilities

as other options. Moreover, Re3 was implemented in Python, which was considered a

better platform than Darknet, so a Python code was desired. After the consideration of

using Faster R-CNN or SSD, an implementation of YOLO in Python using Tensorflow

was found. This extension was called darkflow and allowed to use YOLO in Python.

Although the most recent version was YOLOv3, in darkflow only YOLOv1 and YOLOv2

were available. However, YOLOv2 was tested and better results than with Faster R-

CNN and SSD were obtained specially in relation to speed, what is important for Sense

and Avoid applications and was also taken into account because of the limited computing

power available for the project. Therefore, YOLO was selected as the object detector

method for the algorithm.

A new deep learning technique was created from the two previous models. Since

Re3 cannot detect objects and YOLO cannot track them efficiently, a new model called

ReLO was designed in which both of them were integrated in order to obtain a suitable

performance for Sense and Avoid applications. In the design process, the inputs and out-

puts of the previous models were combined and some additional design parameters were

introduced in order to adapt the behaviour to different scenarios so the best performance

was always achieved.

In the next sections, the used open source codes will be explained in more detail, as

well as their implementation and configuration. Then, the designed detector and tracker

algorithm called ReLO will be introduced. Finally, ReLO’s capabilities and advantages

will be presented and its performance will be assessed.

3.1 YOLO

The main advantage of YOLO (You Only Look Once) with respect to other approaches

such as Faster R-CNN is that the whole process is performed in a single neural network,

what is usually faster and easier to optimize since there is no need of training different

networks separately. In this case, a unified neural network is responsible of proposing

bounding boxes and selecting the final ones.
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3.1.1 Prediction

What YOLO does to predict bounding boxes is to divide the input image into an S ×S

grid of cells. The cell containing the centre of an object present in the image is responsible

for detecting that object. Each grid cell predicts a prefixed number of bounding boxes B.

The prediction of each one of these bounding boxes consists of 5 components: x, y, w, h

and confidence. The coordinates (x, y) represent the central point of the bounding

box, (w, h) represent the width and the height of the bounding box and confidence is

the probability that the predicted bounding box actually exists. Although B bounding

boxes are predicted in each grid cell, they can actually be larger than the cell’s size since

objects can be larger than cells and there is only one cell responsible for detecting each

object. Furthermore, the coordinates (x, y) and the magnitudes (w, h) are normalized

to be between 0 and 1. The last component of the prediction vector is the confidence

score. It reflects how confident the model is that the predicted bounding box contains

an object and how accurate the bounding box is. It is calculated as Pr(object)× IOU :

the product of the probability that there is an object and the Intersection over Union

(IOU) parameter. Hence, the confidence score should be 0 if there is not any object

associated to that cell and it should be the IOU parameter if there is an object. The

IOU gives the ratio between the overlapped area and the unified area of two bounding

boxes as given in Figure 3.1. In this case, it is calculated with the area of the predicted

bounding box and the area of any ground truth box.

Figure 3.1: Intersection over Union (IOU) representation.

As can be seen, the bounding boxes are predicted independently of the object class.

The class information is included by adding to the prediction vector C class probabilities.

These values are conditional class probabilities Pr(class|object) so they depend on the

probability of having an object associated to that cell. In this way, the class probabilities

will be low if the object detection probability is low. Only one set of class probabilities

is predicted independently of the number of predicted bounding boxes B.
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Therefore, there are S × S ×B × 5 outputs related to bounding box predictions and

S × S × C outputs related to class predictions, what makes a final output tensor of

S × S × (B × 5 + C).

3.1.2 Testing

In order to obtain a final detection score, the conditional class probabilities are multiplied

by the bounding box confidence prediction, which gives a class-specific confidence score

for each bounding box.

Pr(class|object)× Pr(object)× IOU = Pr(class)× IOU (3.1)

Hence, this probability reflects the class confidence and how well the bounding box

fits the object. Since multiple bounding boxes will be predicted in the image, only the

ones with the probability over certain threshold are finally kept.

3.1.3 YOLO network architecture

The network structure looks like a CNN with 24 convolutional layers, 4 max pooling

layers and 2 fully connected layers. The sequences of 1× 1 reduction layers followed by

3×3 convolutional layers were inspired by the inception module used by GoogLeNet. In

the example of Figure 3.2, the output tensor is of 7× 7× (2× 5+ 20) since the grid size

was 7 × 7, 2 bounding boxes per cell were considered and the PASCAL VOC dataset

was used for training, which contains 20 different classes.

Figure 3.2: YOLO network structure [11].
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3.1.4 YOLOv2

Now that the working basics of YOLO have been explained with its first created version,

the improvements introduced in its second version YOLOv2 will be commented, since it

was the used one in the project. The first version showed to classify very accurately but

with some localization errors and low recall. Therefore, the aim of the second version

was to improve the recall and the localization while maintaining the accuracy.

In order to improve the localization performance, anchor boxes were used. The

last fully connected layers were eliminated and anchor boxes were used to predict the

bounding boxes instead so the offsets were predicted instead of the coordinates. The

reason is that predicting offsets simplifies the problem and makes it easier for the network

to learn so accuracy is improved.

An additional improvement with the first version was the improved grid resolution

since the feature map was of 13× 13 instead of 7× 7. By this refinement, smaller object

could be detected. To do that, they used something similar to ResNet by adding a

passthrough layer from the 26× 26× 512 feature map, which turns to 13× 13× 2048, so

lower and higher features were concatenated.

3.1.5 Detection process

The version of YOLO used was trained with the COCO dataset, which can detect 80

different classes such as cars, people, aircraft or birds. First, when an input image was

run through the network, it was divided into a grid of 13× 13 cells as in Figure 3.3.
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Figure 3.3: Input image grid division with YOLO.

5 bounding boxes were predicted in each cell. In Figure 3.4, all the predicted bound-

ing boxes are shown. As commented before, in addition to their position and size, also

a confidence score was obtained. In this case, higher confidence scores are represented

by wider lines of the bounding boxes.

Figure 3.4: Predicted bounding boxes with YOLO.

As mentioned before, each output tensor consists of the bounding box information

and of the classes probabilities information. Then, for each bounding box, the probability

that each class has been detected was obtained. Therefore, the higher probability class
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was assigned to that bounding box. That is represented in Figure 3.5. In this case,

both the bounding box and class information were combined as in Equation 3.1 so a

final confidence score for each bounding box representing the class confidence and the

bounding box accuracy was given.

Figure 3.5: Predicted bounding boxes and associated class with YOLO.

As it can be seen, a lot of bounding box were predicted. Indeed, 13× 13× 5 = 845

bounding boxes were predicted. However, most of them had very low final confidence

scores so they could be rejected. To do that, a threshold value was selected and could

be adjusted for each image. In this example, a threshold value of 30% was used so only

bounding boxes with confidence scores over the 30% including class probability were

kept giving a result as in the Figure 3.6. With higher threshold value, more false alarms

would be avoided but the probability of not detecting a true object would also increase.

Hence, a trade-off value was needed.
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Figure 3.6: Final output image with YOLO.

3.2 Re3

Re3 is a hybrid Convolutional and Recurrent Neural Network capable to track any ran-

dom object even if the neural network was not trained with that particular object. It

is implemented with Python language using Tensorflow and the publication paper was

released on February of 2018 so it is a very up-to-date method. The overall structure

can be seen in Figure 3.7.
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Figure 3.7: Re63 structure [12].

3.2.1 Object features extraction

This neural network worked as a tracker so it needed a detected object to be tracked.

Hence, the input to this neural network was a bounding box around an object. However,

in order to track that object, its features must be extracted so the same features could

be detected in subsequent frames and the object could be tracked. Furthermore, these

features might change over time so they must be updated. The feature extraction of Re3

was performed by a CNN.

The way features’ evolution was considered is as follows. The neural network is fed

with two crops: one centred at the object location in the previous frame and the second

in the same location but in the current frame. Furthermore, both crops have the same

size, which is the double of the input bounding box in the previous frame so surrounding

context is also considered. By comparing both crops, it is possible to learn how motion

affects features evolution. However, this method did not guarantee that the object will

be inside the second crop since, if it moves more than 1.5 times its width and height in

a single frame, it would be out of the crop. It was considered that it is unlikely that

the object has such a high speed. Moreover, the method is based on a trade-off between

speed, resolution and search region size. If the search region was made larger, it would

allow to track faster objects but the algorithm speed would decrease since it would need

to process a higher amount of data at each frame. Both crops are concatenated at the
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end of the convolutional pipeline instead that at the beginning in order to differentiate

clearly their specific features.

Different feature-levels were considered as well. As more convolutional layers were

used, deeper features were extracted from the image. In order to have as much infor-

mation as possible, not only the output of the last layer was taken into account in the

temporal evolution, but also features extracted at intermediate levels. To do so, skip

connections at intermediate points were used so their outputs were concatenated with the

output of the CNN to feed through a final fully connected layer to reduce dimensionality

before feeding into the recurrent pipeline.

The CNN architecture was based on a similar model to AlexNet called CaffeNet [86]

as the one shown in Figure 3.8. Skip connections were taken after the first, the second

and the fifth convolutional layers with 16, 32 and 64 channels respectively. Moreover,

each skip connection has a PReLU nonlinearity.

Figure 3.8: CaffeNet architecture [13].

3.2.2 Recurrent stage

One of the main complexities in RNNs are the difficulties for training since it usually

takes more iterations to converge and the selection of hyperparameters is more demand-

ing. Hence, the design of this stage is fairly important. The approach used to consider

temporal information was to use a two layer LSTM since it is possible to capture more

complex transformation and for longer times than a single layer LSTM.

The LSTM input was taken from the output of the CNN which had 2048 units.

Hence, each LSTM layer consisted of 1024 units and contained an input gate, a forget

gate, a cell gate and an output gate in order to manage temporal features. The outputs

of the LSTM were fed into a fully connected layer to obtain only 4 parameters consisting

of the top left and bottom right corners of the bounding box, giving its size and position.

During training, many times the ground truth outputs were fed into the inputs of the
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next stage in order to generate predictions. However, in this case the ground truth was

given at the first iterations but the own predictions were fed later so the model was less

prone to diverge.

3.2.3 Training remarks

The network was trained with large datasets combining real and synthetic data so it

could adapt to any object. The object tracking datasets used for training were ILSVRC

2016 and Amsterdam Library of Ordinary Videos 300++ (ALOV). The Imagenet Video

dataset is the largest one for video data with 3862 training videos while 307 videos

of ALOV were used. To generate the synthetic dataset, images of Imagenet Object

Detection dataset were used. Random tracks with Gaussian noise were generated for

different objects in some of those images. This gave diversity to the model since classes

presented in the image dataset but not in the video dataset could also be considered.

Another remark is that training was carried out with sequences with a maximum

length of 32 frames. Then, during test time, LSTM parameters were reset every 32

iterations since they were prone to diverge otherwise. However, instead of resetting

them to zero, they were reset at the values of the first iteration in order to maintain

some information of the object.

The optimization method used to train the network was the ADAM gradient opti-

mizer with the default momentum and weight decay and a learning rate starting at 10−5

and ending at 10−6. The training process took approximately 200000 iterations and one

week in an Intel Xeon CPU E5-2696 v4 @ 2.20GHz and an Nvidia Titan X (Pascal).

3.2.4 Working procedure

Unlike other methods, in this case training was not performed online in addition to the

offline one. The network was not updated itself but the recurrent parameters were ad-

justed to model the object temporal evolution. With this procedure, the network could

track objects while they changed over time without requiring the additional computa-

tional cost of online training.

Since this was a tracker, the input was a frame with a bounding box around certain

object. Two crops of the image at two different time steps were processed by the CNN

as commented. The output of the CNN was not a class probability because Re3 was not

a classifier either so it only output the extracted features from the crop. However, not

only the deepest features were taken into account, some skip connections were added
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at intermediate layers of the CNN in order to consider features at different levels. The

obtained features were then fed into a two layer LSTM network. This recurrent network

considered the evolution of the features over time to obtain an accurate prediction of

the new bounding box in the new frame. Then, the next frame was released with the

new bounding box and the same process was carried out again. Due to the consideration

of past information, this model was capable of keeping tracking objects even when they

were occluded for some period of time (CNNs would not detect the object) or they

were rotating or changing some features (CNNs could not detect them because of their

different features).

3.3 ReLO

Once both models were tested to work correctly, their integration was carried out in

order to create the algorithm that would detect and track objects in Sense and Avoid

applications. The methodology to do that was to start from the most simple case and

to check that it worked correctly. If it did, the algorithm was improved to expand

its applicability to more complex scenarios. The resulting model using a CNN such

as YOLO and a hybrid CRNN such as Re3 was called ReLO, since it was based on a

combination of Re3 and YOLO.

3.3.1 Single object

The first algorithm was designed to track a single simple object moving steadily or

remaining static. It was assumed that the object always remained within the FOV

limits. With these specifications, the object could be tracked using just Re3. However,

an initial bounding box around the object was needed. Considering that the object could

be detected from the beginning, running YOLO at the first frame and Re3 at the rest of

frames would be enough. However, the UAV would probably fly without encountering

any object most of the time so, in the case that YOLO was run at the first frame when

there was no object and Re3 in the rest of frames, a new incoming object could not

be detected. The considered solution was to run YOLO in the UAV as a basis if no

objects were detected. Once an object was detected with YOLO, Re3 would take the

generated bounding box and would keep tracking the object for the next frames. As

will be showed in the next section, YOLO run much slower than Re3. That fact, in

addition to CRNN characteristics such as the use of temporal information, made that

the optimum behaviour was achieved minimizing the use of YOLO and maximizing the

use of Re3, but YOLO was needed to detect objects.
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In terms of code, the previous explanation was implemented by introducing a YOLO-

flag. Hence, in YOLO-mode, the YOLO-flag was activated so YOLO was used in each

frame to detect objects. After every time YOLO was run, it was checked whether an

object had been detected or not. If there was no object, YOLO-flag kept activated and,

if an object was detected, YOLO-flag deactivated so Re3 was run for the next frames.

The inputs Re3 took from YOLO outputs were the class of the detected object and 4

coordinates of the bounding box, which were its x and y coordinates of the top left and

bottom right corners.

3.3.2 Multiple objects

Re3 had different codes for single and multiple objects. Thus, the algorithm must be

modified in order to be able to detect more than one object, which is essential in Sense

and Avoid applications because of safety issues. In addition to using the Re3 version

considering multiple objects, some other features were added. One issue was that each

object was identified in each frame only by its class. Hence, if multiple objects of the

same class were detected, different objects could be tracked as the other one at some

point. To solve this, a different name was assigned to each object when they were

detected with YOLO. This name consisted of the detected class and a reference number.

Therefore, at each frame it was generated a bounding box around the object with its

identity name so it could be checked that every object was correctly tracked over the

whole time period.

3.3.3 Refresh parameter

The previous algorithms were very basic and were assuming non-realistic scenarios where

the objects remained within the FOV for an infinite time. The truth was that the scenario

would not be the same and would be changing from time to time. For example, once

a conflict had been avoided with a detected object, it would disappear from the FOV

of the UAV. However, a bounding box would remain in the frames because Re3 did not

know when an object was not there any more so it kept generating its bounding box.

Therefore, an additional term called ’refresh parameter’ was introduced in order to deal

with this problem.

The refresh parameter stopped running Re3 and run YOLO every defined number

of frames. Hence, every certain number of frames, YOLO was run so the detected

objects were refreshed. That means that if any object was not in the FOV any more,

ReLO would not track it any more, or that if any additional object had appeared during

that time period, ReLO would keep tracking the previous objects and the new one or,
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basically, every object detected in the FOV with YOLO. Thus, the refresh parameter

was the number of frames at which the tracking reset so YOLO was run, the objects in

the FOV at that frame were detected and they were tracked for the next frames with Re3

until YOLO was run again. It must be remarked that the YOLO-flag kept working so if

at some point YOLO was run and no object was detected, YOLO would keep running

for the next frames until a new object was detected.

Therefore, the introduction of the refresh parameter allowed ReLO to work in any

kind of environment with more confidence. Nevertheless, the main drawback was the

speed penalty. YOLO was slower than Re3 so running YOLO more frequently made the

overall speed lower than if it would have been run only once at the first frame. Anyway,

the refresh parameter was a design parameter so it could be tuned accordingly to the

expected environment. If the UAV is expected to fly at high altitude in the countryside,

it will probably not find many objects so the refresh parameter could be tuned larger

because the probability that an additional object appears while tracking a previous one

is low. If the UAV will fly in a complex and crowded environment, thus a lower refresh

parameter will be required in order to take into account new objects coming in and out

of the FOV. Furthermore, another characteristic to consider when tuning the refresh

parameter would be the class of the detected object. It will not be the same to track

an aircraft with constant speed than a bird with different speeds and flying directions.

Hence, the refresh parameter should be tuned accordingly.

3.4 Performance Assessment

Once the algorithm was designed, its performance should be assessed in order to check

that its behaviour was acceptable. The way to do this was by assessing videos quali-

tatively so it could be checked that the objects were tracked and the bounding boxes

correctly generated. The relative speed between different versions could also be assessed.

Several videos were tested and special attention was given to the objects appearing in

those videos since they had to be of one of the classes detected by COCO, the dataset

used for YOLO training. In this case, since YOLO was the responsible to detect new

objects, only the classes considered in its training could be detected. Since pre-trained

weights were used in this project, only those classes could be detected. However, in

future applications YOLO could be trained with whatever are the desired objects.

3.4.1 YOLO and Re3

First, YOLO performance was compared to Re3 in a simple video with a single object as

shown in Figure 3.9. In the case of YOLO, each frame was taken by separate and YOLO
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was directly applied to each one of them. Re3 could not detect any object since it only

tracked. Therefore, YOLO was applied only in the first frame to generate the bounding

box and Re3 was applied in the rest of them so the object was tracked. It was checked

that the object was correctly tracked in both cases but there were some differences. The

first one was the assigned class to the object. In the Re3 case, the class was detected

by YOLO in the first frame and then it was propagated to track the object. Hence,

the class did not change during the tracking process. In YOLO, however, the detection

and class assignment process was carried out at every frame so there were some frames

where the object was detected as a bird instead of an aircraft as was the correct one.

However, if a wrong class would be detected in the first frame, it would be propagated

for the whole video with Re3 and would lead to higher error. The second difference was

the processing speed. In a common CPU with Intel i7 and 8 GB RAM, YOLO worked

at 1.3 fps while Re3 worked at 12.2 fps. Re3 was capable of tracking an object at a speed

almost 10 times greater than YOLO. That was one of the most important advantages

of using Re3 instead of YOLO since it would allow to track objects at real time. It must

be remarked that the official paper where Re3 was published claimed that the algorithm

worked at 150 fps with an Intel Xeon CPU E5-2696 v4 @ 2.20GHz and an Nvidia Titan

X (Pascal). Since real time cameras commonly work at around 30 fps, it was considered

that this algorithm could work in real time applications. Moreover, a factor of around

12 between the achieved speed with the used processing unit and the more powerful ones

was assumed from now on in order to get conclusions about speed.

(a) YOLO performance. (b) Re3 performance.

Figure 3.9: YOLO and Re3 comparison.

3.4.2 Refresh parameter

The refresh parameter was introduced in order to get a trade-off between the performance

characteristics of both networks. By introducing YOLO more frequently, the probability

of propagating a wrong class was reduced because most of the frames were correctly

detected by YOLO. Furthermore, multiple objects coming in and out from the FOV could

be detected as well. However, it worked faster than running YOLO at every single frame.
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In Figure 3.10, an example of a complex environment with multiple objects moving fast

and coming in and out from the FOV is shown. In such complex environments, low

values of the refresh parameter were needed so the detected objects could be updated

frequently. In fact, if the refresh parameter was set at too high values, YOLO was run

every longer time intervals, what had two misdetecting consequences. The first one was

that birds flying into the FOV during that period were not detected until the next time

YOLO was run. Hence, higher the refresh parameter, longer the time undetected objects

were in the FOV. The second was that bounding boxes were kept in the image even when

the corresponding objects had already left the image. The reason was that Re3 could

not know if an object was not in the FOV, it just tracked the object. Therefore, when

the object went out, there was a bounding box present in the image with no object in it

until YOLO was run again. That would be a problem since the collision avoidance part

of the algorithm might consider that an avoidance manoeuvre was needed when there

was not any object actually. In those cases, higher the refresh parameter, longer the

time that an empty bounding box would be tracked in the image.

Figure 3.10: Frame capture of a video applying ReLO in a complex environment.

Another important reason to introduce the refresh parameter was speed. In Figure

3.11, a graph is presented showing the trend of the mean tracking speed at different

refresh parameters for the same complex example as before. It can be seen that, in

general terms, the higher the refresh parameter, the higher the speed since YOLO was

run less frequently. In any case, from around 30 frames, the speed did not increased

so much while the detection performance decreased so it did not make much sense to

use refresh parameters higher than that. The reason of that stop in the increment was

that, since YOLO was run every longer time intervals, the objects detected when it

was run varied. Hence, at 60 frames YOLO was run at frames were there were only

two objects so for the next interval only two objects were tracked while at 70 frames,
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maybe 5 objects were detected so there were more objects to track for the next interval.

Thus, the decrement in speed due to a higher number of objects might be greater than

the increment in speed because of running YOLO less frequently. However, despite the

fact that speed increased, the detection performance was badly affected. Therefore, a

trade-off was needed. From 50 frames, serious misdetection and empty boxes problems

appeared so, in this case, the optimum refresh parameter was found around 30 frames.

At those values, the detection performance was fine since there were no misdetected

objects or empty bounding boxes for very long and the mean tracking speed was of 4.2

fps, what could be around 48 fps in a more powerful processing unit, what would allow

to work in real time. Furthermore, it must be remarked that this was just an example of

a very complex environment that a UAV would probably never find. Thus, ReLO would

be usually allowed to work at lower refresh parameters, improving speed and maintaining

the detection performance.
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Figure 3.11: Tracking speed for different refresh parameter values.
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Chapter 4

Collision avoidance

The second part of the Sense and Avoid algorithm is the collision avoidance. In this part,

it was assumed that an object had been initially detected by ReLO. Then, the whole

process to refine the measurement, to decide if an avoidance manoeuvre was needed and

to generate such an avoidance trajectory was designed. The process was the following:

first, the angle measurement was extracted from the pixel location from the camera.

Then, the relative range between the object and the UAV was estimated with a Kalman

filter. Once, the object position had been obtained, the probability of a future conflict

was calculated. Finally, the avoidance trajectory required to avoid the conflict was also

proposed. In Figure 4.1, a simple scheme of the considered collision avoidance procedure

is shown.

Figure 4.1: Basic scheme of the collision avoidance methodology.
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4.1 Angle measurements

The output of ReLO when an object had been detected consisted of the bounding box

coordinates around the object. These bounding box coordinates were given in pixels.

The position of the object was considered the centre point of the bounding box. Thus,

the object position was given as a pixel location in a 2D image. The first objective was to

translate the available information into angle measurements, what would be a bearing

angle in the horizontal direction and an elevation angle in the vertical direction. To

perform this translation was straightforward if the camera specifications were available.

Figure 4.2: Basic graphical scheme for angle measurements extraction.

The required information from the camera were the resolution and the FOV. The

resolution is a specification from cameras given by the manufacturer while the FOV is

usually given too but it can also be obtained from a camera calibration. Hence, the

situation would be as depicted in Figure 4.2. The object location was considered as

a point and the camera features were guessed as knowns. Therefore, the bearing and

elevation angles could be easily calculated by the following expressions:

θm =
phFOVh
W

(4.1)

γm =
pvFOVv

H
(4.2)
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4.2 Range estimation

In the event of a collision, the relative range between the object and the UAV would

decrease until it was zero. Hence, it was important to monitor the relative range in

order to know the distance between the UAV and the object once this had been detected.

However, angle measurements lacked this information. Thus, other methods were needed

in order to extract range information. Although additional sensors could be used, in this

case it was desired to use only a single camera, which only took angle measurements.

Therefore, some kind of estimator must be used in order to calculate this range. The

most extended method has been with filters such as Kalman filters or the particle filter.

Since range estimation from angle measurements was a non-linear process, non-linear

estimators were needed. According to the literature, the Extended and the Unscented

were the most commonly used Kalman filters. In this case, the Extended Kalman Filter

(EKF) was selected to estimate the relative range. The EKF designed in [40] was taken

as a template and it was extended to the 3D since a more basic problem was approached

in that article because it was based on 2D bearing-only measurements.

The working principle of an EKF is to linearise the measurement equation so it can

be used as a linear problem. It is assumed that the behaviour of the system will be close

to the linear assumption so it is an approximation that will be more accurate as the

assumption is hold.

4.2.1 Definitions

The state vector of the obstacle was defined by the three coordinates of its 3D position

and the three components of its velocity as:

Xt =
[
xt yt zt ẋt ẏt żt

]T
(4.3)

The state vector of the UAV was defined in the same basis:

Xo =
[
xo yo zo ẋo ẏo żo

]T
(4.4)

The desired parameter that wanted to be estimated was the relative range, so the

true state vector of the EKF was defined by the relative coordinates taking into account

both obstacle and UAV kinematics:
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X = Xt −Xo =
[
x y z ẋ ẏ ż

]T
(4.5)

Translating the previous Cartesian coordinates into polar coordinates, the bearing

angle θ, the elevation angle γ and the relative range r could be calculated as:

θ = f1(X) = arctan
(y
x

)
(4.6)

γ = f2(X) = arctan

(
z√

x2 + y2

)
(4.7)

r =
√
x2 + y2 + z2 (4.8)

The angle measurements at each time step k were βk and ϕk which were not assumed

perfect so they had some associated noise modelled as Gaussian. Hence, the measurement

noise covariance matrix R was defined by the covariances of both measurements noises:

R =

[
σ2θ 0

0 σ2γ

]
(4.9)

4.2.2 Initialization values

Before running a Kalman filter, the initial states and covariances must be initialized.

The initial values are usually guessed according to empirical predictions, intuitions or

other methods. In this case, the initial position coordinates were initialized randomly

while the initial velocity components were initialized as 0 so the obstacle was initially

guessed static. However, as will be discussed later in this report, the initial guesses could

be adjusted depending on the class of the detected object.

The covariance matrix, however, was not initialized directly randomly but previous

parameters were used for this purpose. In fact, the error covariance matrix was initialized

as:

P1|1 =

[
Cxyz 03x3

03x3 Cẋẏż

]
(4.10)
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where Cxyz was the covariance matrix of x, y and z which was obtained by simple

rotation:

Cxyz = B2B1Cx′y′z′B
T
1 B

T
2 (4.11)

where Cx′y′z′ was the covariance matrix in its native coordinate system and could be

approximated assuming σrr ≪ 1:

Cx′y′z′ = (r1|1)
2

σ2rr 0 0

0 σ2θ 0

0 0 σ2γ

 (4.12)

The corresponding rotation matrices were given as:

B1 =

cos(f1(X1|1)) − sin(f1(X1|1)) 0

sin(f1(X1|1)) cos(f1(X1|1)) 0

0 0 1

 (4.13)

B2 =

 cos(f2(X1|1)) 0 sin(f2(X1|1))

0 1 0

− sin(f2(X1|1)) 0 cos(f2(X1|1))

 (4.14)

The initial covariances of the velocity components were given as:

Cẋẏż =

σ2vx 0 0

0 σ2vy 0

0 0 σ2vz

 (4.15)

4.2.3 Prediction

The first stage of the EKF was the prediction. In this stage, the state and covariance

were predicted before taking into account the measurement at the corresponding time

step. The predicted state could be calculated as:

Xk|k−1 = FXk−1|k−1 − Uk (4.16)
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where F was the state transition matrix that modelled the process. Thus, considering

constant velocity kinematics:

F =



1 0 0 T 0 0

0 1 0 0 T 0

0 0 1 0 0 T

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(4.17)

where T was the time interval between time steps.

Uk was the input vector, which inserted the known manoeuvres from the UAV into

the equation:

Uk =



(xok − xok−1)− T ẋok−1

(yok − yok−1)− T ẏok−1

(zok − zok−1)− T żok−1

ẋok − ẋok−1

ẏok − ẏok−1

żok − żok−1


(4.18)

The covariance matrix must also be predicted. The equation for that prediction was:

Pk|k−1 = FPk−1|k−1F
T +GQGT (4.19)

where Q was the process noise covariance so q must be tuned accordingly to the

process characteristics:

Q =

q 0 0

0 q 0

0 0 q

 (4.20)

and G was defined as:
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G =


T 2

2 0 0 T 0 0

0 T 2

2 0 0 T 0

0 0 T 2

2 0 0 T


T

(4.21)

4.2.4 Update

After predicting the state and covariance in each time step, the measurements were

introduced and the final estimated states and covariances were adjusted. The state

estimate equation was given by:

Xk|k = Xk|k−1 +Kkvk (4.22)

In the previous equation, vk represents the innovation, which is the difference between

the measured angle and the predicted angle, that was obtained from the predicted state:

vk =

[
βk − f1(Xk|k−1)

ϕk − f2(Xk|k−1)

]
=

 βk − arctan
( y
x

)
ϕk − arctan

(
z√

x2+y2

) (4.23)

The matrix Kk was the Kalman gain, what was the responsible to give more or less

importance to the measured values or to the estimated ones. The equation to calculate

the Kalman gain was:

Kk = Pk|k−1H
T
k|k−1 × [Hk|k−1Pk|k−1H

T
k|k−1 +R]−1 (4.24)

where H was the observation matrix and, in an EKF, is the Jacobian Matrix of

the predicted state Xk|k−1. Since it tends to divergence and gives wrong results when

expressed in Cartesian coordinates, in this case it was translated to polar coordinates as

suggested in [40]. Hence, the observation matrix ended as:

Hk|k−1 =

[
∂f

∂Xk|k−1

]
=


cos(f1(Xk|k−1)+

π
2
+

σθ
2
)√

x2
k|k−1

+y2
k|k−1

sin(f1(Xk|k−1)+
π
2
+

σθ
2
)√

x2
k|k−1

+y2
k|k−1

0 0 0 0

cos(f2(Xk|k−1)+
π
2
+

σϕ
2
)

rk|k−1
0

sin(f2(Xk|k−1)+
π
2
+

σϕ
2
)√

x2
k|k−1

+y2
k|k−1

0 0 0


(4.25)
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With this information, the covariance matrix could also be updated:

Pk|k = [I −KkHk|k−1]Pk|k−1 + P s
k|k (4.26)

where P s
k|k was an added stabilizing noise matrix that was obtained as:

P s
k|k =

[
Cxy 02x4

04x3 04x3

]
(4.27)

where Cxy was the covariance matrix of x and y which was obtained by rotation:

Cxy = B1Cx′y′B
T
1 (4.28)

where B1 is given in Equation 4.13 and Cx′y′ was the covariance matrix and could

be approximated as:

Cx′y′ = (rk|k)
2

[
(1− cos(σθ))

2 0

0 0

]
(4.29)

4.3 Conflict detection

Despite the several methods to assess the presence of conflict, a probabilistic technique

was considered in this case. When approaching the problem from a stochastic point

of view, Monte Carlo approximations are the most accurate method. However, a high

number of samples is needed in order to achieve this good accuracy so it takes too

much time and computational cost to be used in real time applications. The expression

to calculate the conflict probability is NP-hard but it can be approximated by some

analytical expressions. The processing requirements to execute this kind of expressions

is minimal compared to Monte Carlo samplings and they have been proven to be very

accurate as well. In Sense and Avoid applications, processing speed is critical so later

a conflict is detected, lower the available time to avoid that conflict. Therefore, it is

important to obtain a method that can assess the conflict probability quickly so there is

enough time to execute an avoidance manoeuvre if needed. For this reason, the analytical

approximation from a probabilistic point of view was selected.
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In this case, the considered approach was based on the methodology of [14], who pro-

posed a simple method to obtain the conflict probability analytically. All the analytical

expressions proposed after this one are very similar but modifying the noise modelling

or some formulation.

4.3.1 Kinematic parameters calculation

In order to obtain some of the parameters, some kinematics must be calculated. The

considered situation is illustrated in Figure 4.3 where A represents the UAV and B is

the obstacle. At each time step, it was assumed that the relative velocity between both

elements would keep constant in the future to assess the probability of conflict, so the

state propagation was linear.

Figure 4.3: Relative motion scheme in 2D [14].

The miss distance is the minimum distance between the UAV and the obstacle when

both trajectories are propagated through the future space. By definition, it was calcu-

lated as:

r̄f = ĉ× (r̄ × ĉ) (4.30)

where r̄ was the relative position vector of the obstacle with respect to the UAV,

that is, the relative range vector; and ĉ was the unitary vector in the direction of the

relative velocity between both where c̄ = v̄B − v̄A:
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ĉ =
c̄

∥c̄∥
(4.31)

The Point of Closest Approach (PCA) is the point where the UAV will be the closest

to the obstacle according to the linear state propagation. In that point, the miss distance

vector and relative velocity vector are orthogonal:

r̄f · c̄ = 0 (4.32)

The time-to-closest-approach was defined by τ . Hence, assuming linear state propa-

gation at the relative velocity c̄, the miss distance vector could be expressed as:

r̄f = r̄ + c̄ · τ (4.33)

Solving Equations 4.32 and 4.33, the time-to-closest-approach τ could be calculated:

τ = − r̄ · c̄
c̄ · c̄

(4.34)

The time-to-closest approach was positive when approaching the obstacle and neg-

ative otherwise, so the conflict probability was automatically set to 0 when negative τ

were obtained. An important parameter in order to estimate the conflict probability is

the variance on the miss distance vector estimation. In this case, a simplistic approach

was considered by propagating the variance according to the time-of-closest-approach:

V ar(rf ) = σ2xσ
2
yσ

2
z + σ2vxσ

2
vyσ

2
vzτ

2 (4.35)

where σx, σy and σz were the standard deviations of the three components of the

position and the same with σvx , σvy and σvz with the velocity. Instead of guessing them,

those values were directly taken from the diagonal of the covariance matrix P obtained

from the Kalman filter at each time step.

4.3.2 Conflict probability

The conflict was defined as the situation when the distance between the UAV and the

obstacle was below certain value R. This parameter R should be set accordingly to the
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required distance that should be kept in order to ensure safety. This requirement was

modelled as a sphere around the object with radius R. Therefore, having previously

calculated the miss distance vector and its variance, the conflict probability can be

obtained by integrating the area under the probability distribution function between the

locations that correspond to R and −R:

P (conflict) =
1

σrf
√
2π

∫ R

−R
e
−

(x−r̄f )2

2σrf dx (4.36)

Finally, using a change of variable u =
x−r̄f√
2σrf

and the Gaussian error function:

erf(x) =
2√
π

∫ x

0
e−u2

du (4.37)

The conflict probability was calculated as:

P (conflict) =
1

2
erf

(
R+ r̄f√
2σrf

)
+

1

2
erf

(
R− r̄f√
2σrf

)
(4.38)

4.4 Avoidance manoeuvre

When the probability of conflict is over certain threshold, an avoidance manoeuvre should

be executed in order to avoid a collision. It was assumed that the UAV was following

certain trajectory which only should be modified in case of a conflict. Hence, only the

required deviation from the predefined trajectory was designed. A geometric approach

was considered in this case. The proposed technique was based on the solution from

[87]. In that case, it was designed to be used with a deterministic conflict assessment

and with two aircraft that could execute a cooperative avoidance trajectory. However,

it was adjusted to be used in this new application where the UAV was the unique

responsible to avoid the collision.

The avoidance technique consisted of using the same safe distance Rsafe introduced

in the previous section about conflict detection. If the conflict probability was high, that

meant that the UAV was very likely to cross that distance with respect to the obstacle.

Therefore, the proposed avoidance trajectory consisted of modifying the UAV velocity

direction so it went through the surface of the safe sphere and, thus, going further from

the obstacle. This technique can be visualized in Figure 4.4.
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Figure 4.4: Avoidance manoeuvre technique.

The UAV would be flying with a velocity V̄ . Propagating that velocity until the

time-to-closest-approach τ , it gave the miss distance vector r̄f as discussed before. The

distance vector for obstacle avoidance r̄ov could be obtained by simple geometry as:

r̄ov = (Rsafe − rf ) ·
(
−

r̄f
∥r̄f∥

)
(4.39)

Hence, the unitary vector for the new velocity direction to point through the safe

circumference could be expressed as:

Ū =
V̄ · τ + r̄ov
∥V̄ · τ + r̄ov∥

(4.40)

Once the desired velocity vector was obtained, it was only needed to generate the

required control commands in order to execute this new velocity. The avoidance ma-

noeuvre consisted only of changing the velocity direction while maintaining the speed,

so no thrust control was considered as first approach. It was assumed that changing only

azimuth and/or elevation angles would generate the desired velocity direction. Hence,

the desired trajectory angles could be obtained from the desired director vector of the

new velocity:
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α = arctan

(
Uy

Ux

)
(4.41)

ψ = arctan

 Uz√
U2
x + U2

y

 (4.42)

Therefore, executing this manoeuvre ensured that the safe distance Rsafe was kept.

It would be generated by applying the corresponding azimuth and elevation angles to

change the velocity direction and it would be generated only when the conflict proba-

bility was over a threshold. Once the UAV got further from the obstacle, the conflict

probability would decrease and the avoidance manoeuvre would not be generated any

more, returning the UAV to its previous trajectory.

4.5 Performance assessment

The collision avoidance technique was assessed by simulation. MATLAB was the selected

platform and an environment was designed in order to test the vehicle ability to avoid

obstacles with this technique, once the objects had been detected. The simulation was

first developed in 2D and expanded to 3D later.

4.5.1 Scenario

The simulated scenario was a cubed volume of 12× 12× 12 km3, but these magnitudes

could be set at any values. The obstacle location was generated randomly around the

centre of the volume so each component was between 4 and 8 km. It could be defined

as static or dynamic. In case of choosing dynamic obstacle, it was possible to set the

velocity. As standard velocity, simulations with moving obstacles were carried out at a

speed of 5 m/s in the x direction. The UAV was initially located very close to the origin

and with random heading and pitch angles between 0 and 45 deg. The UAV speed was

set at 20 m/s and its minimum turn radius at 200 m. Its target point was generated near

the (12, 12, 12) km point. This setup was designed with the goal of achieving a different

situation at each simulation and being able to assess the behaviour at any scenario,

but ensuring that the conflict would exist so a collision avoidance manoeuvre would be

required. However, those were design parameters that could be changed at any time. In

Figure 4.5, an example is shown. The animation was updated after each iteration so it

was possible to see the result on real time. This Figure shows the final image after a
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simulation. The UAV and the obstacle were represented by red and black geometrical

shapes correspondingly and the safe distance around the obstacle was represented by 3

blue circles since the whole sphere would not allow to see the obstacle. The green line

represented the past trajectory of the UAV and the cyan line represented the past and

present estimated position of the obstacle as output from the EKF.

Figure 4.5: 3D simulation scenario.

The simulation consisted of a loop simulating each time step, so a sampling time 0.5 s

was considered between them. The initial values of the Kalman filter had been initialized

before the loop. In each loop, the range and velocity errors were calculated and the UAV

movement was generated with the Lyapunov Vector Field Guidance (LVFG) according

to the desired heading and pitch angles, that were set according to the direct range to

the target point and modified if that was required to avoid a conflict. Then, bearing and

elevation measurements were generated by taking the ground truth angles and adding

Gaussian noise according to the specified measurements noise in the matrix R of the

EKF. After that, the Kalman filter was executed so the relative range at that iteration

loop was estimated. With that estimation, the conflict probability was calculated and

the desired heading and pitch angles were generated taking into account whether that
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probability was above or below a previously defined threshold. To calculate the conflict

probability, a safe distance of 2 km between the obstacle and the UAV was considered.

In terms of trajectory, at the beginning there was some time when the UAV performed

a sinusoidal trajectory and did not head towards the target point. The reason to set that

trajectory was to ensure range observability. During this phase, bearing and elevation

measurements were taken and EKF started working to estimate the range. The reason to

use a sinusoidal trajectory was that the required manoeuvre to ensure range observability

must have an acceleration component perpendicular to the LOS so the obstacle should

have a sinusoidal trajectory too in the same direction that the UAV in order to avoid

range observability, what was considered to be very unlikely. However, the sinusoidal

trajectory was not the optimal one for this purpose. Active research is being carried

out in this area and it was not the aim of this work to study the optimal trajectory to

ensure observability, that would probably depend on the obstacle movement. Therefore,

a sinusoidal trajectory in the heading direction was considered. The duration of this

phase was set at 5 minutes and after that, the UAV guidance was activated so it went

towards the target point.

4.5.2 Parametric study

There were a lot of design parameters in the simulation that would affect the collision

avoidance performance with the developed technique. Hence, once the simulation had

been checked to work correctly, it was desired to perform a parametric study to check

the effect of some of these parameters on the avoidance performance, so they could be

tuned accordingly in order to obtain the best performance as possible. For the study

of each parameter, the same values for the rest of parameters were considered. Thus,

the same object and UAV initial locations and target position were fixed instead of

being generated randomly, in order to ensure the same conditions in all the simulations

and that only the corresponding parameter influence was considered. The only random

values allowed were the measurements generated at each time step; the mean value was

constant but the measurements were randomly generated with normal distribution.

Conflict probability threshold

First, the conflict probability threshold at which the UAV must perform an avoidance

manoeuvre was studied. Depending on this threshold, the UAV could perform the

manoeuvre too late or too soon, so the trajectory could lose safety or be too conservative.

The object was considered static and the UAV flying at a speed of 20 m/s. The UAV

started at the origin and the target was at the opposite corner while the obstacle was
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placed at the centre of the volume. Three different thresholds are shown in Figure 4.6:

10%, 50% and 90%. It can be seen that when the conflict probability threshold was high,

the safe distance could not be met so their relative range was below the safe value for

some period of time. The reason is that the UAV executed an avoidance manoeuvre too

late, when its manoeuvrability was not enough to avoid the conflict. On the other hand,

when the threshold was 10%, the safe range was not even reached but the trajectory

would deviate too much from the direct one. With the threshold at 50%, the safe distance

was respected and the original trajectory was not modified so much. From the conflict

probabilities graph, it can be seen that higher probabilities were achieved when higher

thresholds were considered. The reason is that at lower thresholds, the UAV executed

an avoidance manoeuvre at an earlier stage so it did not allow that the probability

reached so high. However, when the threshold was high, no manoeuvre was executed

until there was an actual risk of conflict so the probability kept increasing due to the

UAV approaching the obstacle with no avoidance manoeuvre.

Figure 4.6: Relative range (left) and conflict probability (right) at different conflict
probability thresholds.

An additional consideration is that at very low thresholds, the UAV would perform

an avoidance manoeuvre when its future state propagation would not even be inside

the safe sphere. Due to the geometric manoeuvre defined, the velocity vector would be

modified so it was tangent to that sphere, thus approaching the obstacle and decreasing

safety instead that increasing it. Therefore, low conflict probability threshold values

would also have a penalty on safety.
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Object and UAV speeds

The conflict probability threshold was set at 50% and different speeds were considered for

the UAV and the obstacle. In Figure 4.7, the relative range and the conflict probability

for different UAV speeds are shown. The main differences were about the required time

to reach the target and the time the conflict was detected. At lower speeds, the conflict

was detected later because the UAV approached the obstacle later and its probability

remained high for longer since it took more time to avoid that conflict. When the speed

was increased, this process was done faster but the conflict could not be avoided at 40

m/s as the safe distance limit was crossed. The reason is that at such high speed there

was short time between the object detection and the conflict so when the range could

be properly estimated, the UAV had already left the obstacle behind and the conflict

probability was null. That would be a risk when flying at high speeds since some time

is needed to estimate the relative range from the moment the object is detected. One

solution could be to slow down the vehicle when an object has been detected so the range

can be correctly estimated and then increase the speed once the conflict has already been

avoided.
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Figure 4.7: Relative range (left) and conflict probability (right) at different UAV speeds.

When a moving object was assumed, also its speed was considered. The estimated

range error can be seen in Figure 4.8. When the object was moving, it was more complex

to estimate the range since the UAV had also some movement and that complexity could

be seen from the range error. Higher the speed, higher the error. Therefore, faster objects
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would be more difficult to avoid due to the increased complexity in range estimation. A

longer initial phase with a prescribed manoeuvre for range observability would help to

decrease this error.

0 200 400 600 800 1000 1200

Time [s]

0

0.5

1

1.5

2

2.5

3

3.5

R
an

ge
 e

rr
or

 [k
m

]

Object speed = 5 m/s
Object speed = 10 m/s
Object speed = 15 m/s
Object speed = 20 m/s

Figure 4.8: Estimated range error with different object speeds.

EKF noise

Focusing on the EKF, one of the keys for a good performance is a correct tuning of noise.

In this application, the measurement noise would be given by the detection part of the

algorithm with ReLO. However, it was desired to check how the EKF would work with

different measurement and process noises. The rest of parameters were left as before,

with a conflict probability threshold at the 50%, static object and UAV flying at 20 m/s.

First, the process noise was set at 0.01 of standard deviation and the measurement noise

was varied. The same noise was considered for both bearing and elevation measurements.

In Figure 4.9, the estimated range error and the Kalman gain of the y component

of the relative range as example are plotted for three different standard deviations of

the measurements: 1, 5 and 10 degrees. When the measurement was of bad quality,

that is, with high standard deviation, obviously the errors in the estimated range were

greater than the ones with lower noise. However, with very low standard deviations,

the estimated range could diverge as happened with 1 deg. That is because the process

noise was fixed at 0.01 and if the measurement noise changes, thus the process noise

should also be modified accordingly to achieve the best results. The optimum behaviour

would happen with a standard deviation around 5 deg since the estimated range error
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was low and decreased over time, when more measurements were available. Looking

at the Kalman gain, it can be seen that higher values were reached when lower the

standard deviations were. The reason is that, in such cases, the EKF trusted more the

measurements than the predictions due to their low standard deviation so the Kalman

gain was higher and the estimated range had more influence in the measurements when

they were of higher quality. Anyway, it can be seen that their behaviour was the common

one with any standard deviation so the Kalman gain was high at the beginning when

there was almost no information about the process and tended to zero afterwards.
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Figure 4.9: Estimated range error and Kalman gain of the y component of the relative
range for different values of the standard deviation of both angle measurements.

To analyse the effect of the process noise, the standard deviation of the measurements

were set at 5 deg and the process noise was modified. The results of 3 cases with different

orders of magnitude of the process noise are shown in Figure 4.10. These results are

similar to the measurement noise ones. Higher noises lead to higher errors but very low

noises could cause the divergence as well as shown in the graph so it was important to

find the optimum one. With respect to the Kalman gain, all cases followed the typical

trend of Kalman gain decrement but the higher noise one had a peak after some time

due to its divergence. It is also remarkable the practically constant and equal to zero

value of the steady Kalman gain when the process noise was very low. The reason is

that the EKF finally trusted completely the predicted states while the measurements

were neglected.
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Figure 4.10: Estimated range error and Kalman gain of the y component of the relative
range for different values of the standard deviation of the process.

4.5.3 Collision avoidance performance

After performing multiple simulations with different scenarios with random vehicle and

object locations, target points and vehicle orientations and performing a parametric

study of some of the most influencing parameters, it could be concluded that the conflict

could be avoided with a correct tuning of the Kalman filter. In fact, the most important

part of this method was the EKF. If the relative range was accurately estimated, the

collision could be successfully avoided. Even if the EKF parameters were tuned correctly,

some external parameters such as the object speed could make the range estimating task

more difficult. Hence, the collision avoidance was highly dependent on the EKF. The

conflict detection and resolution showed to be very reliable and even if it was desired to

give increased safety, higher safe distances or lower conflict probability thresholds could

help on that.

Moreover, there were some advantages of using this collision avoidance method with

a detection and tracking technique based on neural networks. One was that the neural

network gave a bounding box around the object so that gave some information about its

size. According to this information, the safe distance could be set accordingly since it

was defined from the centre point of the object. With that information, the safe distance

could be calculated from the boundaries of the bounding box and not from the object

centre. An additional advantage is that neural networks also provided class information
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about the object. For example, the dynamics of a bird and an aircraft would be different

so different noises would be needed to tune the EKF because an aircraft would be known

to fly at an approximately constant and linear speed while birds’ movements are more

chaotic and the magnitudes of their speeds are different. With other methods, the class

would not be identified so general initial states, covariances or process noises would

be given. However, with this kind of technique, those parameters could be adjusted

according to the detected class, improving the estimation performance.
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Chapter 5

Experimental test

5.1 Objective

The Sense and Avoid algorithm was divided into two different parts: the sensing part and

the avoiding part. Each one of them was designed separately and assessed in different

ways. The object detection and tracking algorithm was assessed with pre-recorded videos

whereas the collision avoidance algorithm was tested with simulations. The aim of this

experimental test was to integrate both of them so information of the first part was used

in the second one.

When developing the simulation of the collision avoidance part, guessed values of the

measurement and process noises were considered in the EKF. Actually, measurement

noise is defined by the sensor technique while process noise is a design parameter to

optimize the filter behaviour. Therefore, the objective was to obtain the measurement

noise from the detection and tracking part of the algorithm. Once the real noise of the

measurement process was experimentally calculated, it was used to test the EKF again

but using this last value, since the measurement noise had been guessed in the previous

demonstration. By this method, it could be checked whether the collision avoidance

technique could be successful with the considered deep learning measuring process.

5.2 Test scenario

The test was carried out in the flying lab at Cranfield University. This room was equipped

with a VICON navigation system as shown in Figure 5.1. That system consisted of

multiple high-resolution cameras surrounding the capture volume. The VICON system
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can locate certain retroreflective markers with very high accuracy (a few millimetres) and

very low latency (1.5 ms). Hence, putting those markers on the objects in the capture

volume, it was possible to obtain a very accurate detection and tracking of them. Due

to its high accuracy, VICON measurements were considered as ground truth. That was

the reason why the experimental test was carried out in that location, so ground truth

was available.

Figure 5.1: Flying lab at Cranfield University equipped with a VICON navigation sys-
tem.

A vehicle as the one in Figure 5.2 was placed in the volume area. Since the objec-

tive was to check the object detection and range estimation, a rover was used in this

test. Hence, 2D dynamics were considered instead of 3D, although the results could be

extrapolated to the 3D easily later. The vehicle was equipped with an optical camera

onboard that would record the data that would be processed by the developed algo-

rithm. The camera was fixed to the vehicle and as aligned as possible with the vehicle

orientation. The camera model was a GoPro Hero 5 Black. Data was recorded at 4k

resolution (3840×2160), at its wide FOV and at 30 fps.

Figure 5.2: Rover vehicle used at the flying lab at Cranfield University.
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The detected object working as an obstacle was a desktop computer keyboard. Prior

tests were carried out with the GoPro camera and several objects in order to check

which was the most convenient since, due to the training of the neural networks, some

objects are easier to detect than others. Finally, due to its simplicity of handling and

transportation and the good performance with ReLO, a keyboard was used.

Therefore, the keyboard would be placed statically in a corner of the squared capture

area on the floor, which had a size of around 4×4 m2. The vehicle would also be

placed inside the capture area with the obstacle within the camera FOV. Both the

vehicle and the obstacle had some markers attached around them so they could be

detected by the VICON system. The vehicle would move around the capture area while

the GoPro camera onboard and the VICON system were recording data. The VICON

system recorded position and orientation data from both the vehicle and the obstacle

so information from the vehicle was considered as known data for the measurements

processing while obstacle information was used to calculate the ground truth. The

onboard camera would detect and track the obstacle getting only bearing measurements

since elevation measurements were discarded due to the 2D simplification. Both VICON

and camera measurements were post-processed offline once the experimental test was

over.

5.2.1 Test cases

5 different test cases were considered: 1 static and 4 dynamic. The first test case

consisted of the vehicle remaining static while recording the obstacle with the onboard

camera during 30 s. The objective of this test case was to detect any measurement

offset due to any misalignment between the camera and the vehicle or between the

location of the markers and the true orientations. The rest of test cases consisted of

different trajectories of the dynamic vehicle. Different trajectories were considered so

noise information could be extracted from different vehicle behaviours and, then, it could

be more robust. However, there were some limitations about available space and vehicle

manoeuvrability so only very simple trajectories were possible to perform. In any case,

four different trajectories were designed in order to calculate the measurement noise with

each one of them. The performed trajectories are shown in Figure 5.3. Each one of the

trajectories was repeated 3 times trying to be as similar as possible. The reason to do

that was to have more robust information about noise. Thus, in total, 13 tests were

carried out.
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Figure 5.3: Tested vehicle trajectories.

5.2.2 Limitations

The experimental tests carried out were very limited by the available scenario. With

respect to the test cases design, there were some considerations that limited the testing

possibilities. For example, the capture area was small so it did not allow complex ma-

noeuvres because there was not enough space. Furthermore, the vehicle manoeuvrability

was very limited. It was very sensitive to accelerations so it was difficult to make it ac-

celerate slowly and it was complex to perform proper curves with the controls. Although

more complex trajectories were tried, they were impossible to perform so eventually very

basic trajectories were considered.

An additional important limitation was about the bearing measurement. The rover

did not have a specific platform to fix the camera so it had to be fixed with simple

materials such as tape. Although that was done as strongly as possible, due to the fast

accelerations of the rover, it was possible that the camera could rotate some millimetres

modifying the detected object bearing. Furthermore, the rover’s attitude taken from

VICON data was considered to convert the measured bearing from the camera into

the relative bearing independent of the rover orientation. Although that data is very
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accurate in terms of position, the attitude error can be a bit higher since it depends on

the markers location. They were put as symmetrically as possible but small error could

be present.

5.3 Camera calibration

In order to obtain measurements as accurate as possible, a calibration process was per-

formed before handling camera data. Camera calibration was important in order to

obtain distorsion coefficients and intrinsic parameters such as the focal length and the

optical centre.

There are two types of distorsion: radial and tangential. The radial distorsion is

represented as:

xdistorted = x(1 + k1 · r2 + k2 · r4 + k3 · r6) (5.1)

ydistorted = y(1 + k1 · r2 + k2 · r4 + k3 · r6) (5.2)

While the tangential distorsion is represented as:

xdistorted = x+ [2 · p1 · x · y + p2(r
2 + 2 · x2)] (5.3)

ydistorted = y + [p1(r
2 + 2 · y2) + 2 · p2 · x · y] (5.4)

Therefore, there were 5 distorsion coefficients that were determined by calibration,

which were k1, k2, p1, p2 and k3. Also, the intrinsic parameters were obtained. These

parameters are the focal lengths and the optical centre and are represented by the camera

matrix:

camera matrix =

fx 0 cx

0 fy cy

0 0 1

 (5.5)
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The camera calibration was carried out making use of OpenCV 3.4.1. In order to

obtain all the required parameters, a set of images with a defined pattern were provided.

There were two possible patterns: a chess board or a circular grid. In this case, a chess

board was used so it was printed and attached to a rigid body before recording a video

with the GoPro Hero 5 Black moving the chess board around, reaching the limits of the

FOV and rotating it. Then, images were taken from that video and an OpenCV function

detected the corner points between squares as shown in Figure 5.4.

Figure 5.4: Example of corner detection for camera calibration using OpenCV 3.4.1.

With the data gathered from the corners detection, there was an additional OpenCV

function that calculated directly the distorsion coefficients and the camera matrix. The

obtained distorsion coefficients were:

k1 = −0.276

k2 = 0.0924

p1 = 0.000391

p2 = −0.001136

k3 = 0.01086

From these coefficients, the frames taken from the camera could be undistorted before

processing them so data would be more accurate. The parameters of the camera matrix

in pixels were:
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fx = 1782.9

fy = 1782.4

cx = 1943.8

cy = 1034.8

With these values, some additional extrinsic parameters from the camera dependent

on the resolution and the sensor size could be determined. In this case, 4k resolution

corresponding to 3840×2160 pixels was used and the sensor size was 6.17×4.55 mm2.

The additional parameters were the FOV in both horizontal and vertical directions, the

total focal length, the principal point and the aspect ratio, which were given as:

FOVx = 94.2 deg

FOVy = 62.4 deg

f = 16.16 mm

c = (17.62, 12.29) mm

AR = 0.99975

5.4 Results

Once the data had been gathered and the camera calibrated, a post-processing method

was performed. First, the camera measurements were extracted by running the recorded

videos through the designed algorithm. Then, measurement noise was obtained by com-

paring the measured results with the ground truth data. After that, the process noise

of the EKF was accordingly tuned and it was checked that collisions could be avoided

with the noise associated to the considered detection and tracking mechanism.

5.4.1 Camera measurements

The recorded videos were run through ReLO in order to generate the bounding box

around the keyboard and to track it. The first step was to check that the keyboard could

be detected. Despite the previous checking with the camera, the different orientations

or light conditions could affect the image features so it was possible that the keyboard
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could not be detected in the flying lab. However, it was checked that it was correctly

detected and tracked as shown in Figure 5.5.

Figure 5.5: Keyboard detection from experimental test using ReLO.

Once the bounding box had been generated, the angle measurements were obtained

as explained before so only bearing measurements were taken into account due to the

2D assumption. Since the EKF considered the relative bearing without taking into ac-

count the vehicle attitude, the directly measured bearing was corrected with the current

azimuth angle of the rover.

5.4.2 Static test case

First, the static test case was processed. This case was used to detect any offset between

the measurement and the ground truth, so it was important to compare results later.

The rover did not move in this test case, so the relative bearing should be constant.

In Figure 5.6, both the measured and ground truth bearings are represented as well as

the absolute error between them. Hence, it could be seen that the approximated offset

between measurement and ground truth was about 8.25 deg so this modification would

be added to the dynamic measurements in order to have comparable magnitudes. This

error is mainly due to two misalignment errors: one due to the camera position with

respect to the true rover orientation and the other due to the chosen markers position

that give an orientation with some error with respect to the true rover orientation. If

the errors were in the same direction, they could compensate each other but, if they are

in opposite directions, the error is magnified. The markers position on the keyboard

could also influence this error since the ground truth could be slightly different to the

mid-point of the measured bounding box, and small errors could give bigger angle errors

at long distances.
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Figure 5.6: Measured and ground truth bearings (up) and absolute bearing error (down)
of the static test case.

5.4.3 Measurement noise

All the dynamic test cases were performed in order to compare the measured bearing

angles with the ground truth. The 8.25 deg offset measured from the static case was

added to all the dynamic tests measurements. In Figure 5.7, an example of the result

obtained from a test case of the Trajectory 4 is shown. Both the ground truth obtained

with the VICON system and the relative bearing obtained from the angle measurement

are represented as well as the angle error between them. It can be seen that the mea-

surement noise using the considered deep learning technique is much greater that the

one using a high precision sensor system such as VICON.
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Figure 5.7: Measured and ground truth bearings (up) and absolute bearing error (down)
of the Trajectory 4.

An additional consideration was given in some test cases such as in the Trajectory

1 as shown in Figure 5.8. It can be seen that the error was higher at the end of the

recording time. The reason was that the object was near the limit of the camera FOV

so only part of the object was inside the frame. However, ReLO was capable to keep

tracking it although the generated bounding box was not around the whole object but

around the visible part of the object. Since the measured angle was obtained from the

centre point of the bounding box, it did not match with the real location of the whole

object. Therefore, the error of the angle measurement was higher when only part of the

object was inside the frame and, hence, the measurement accuracy was reduced when

the object was near the FOV limits. However, this effect only happened in some of the

test cases since, in some others, the object could not be detected if it was not entirely

inside the frame so this error did not appear but the object was tracked for shorter time.

In the cases where this effect happened, the measurements were subsampled so this last

part was not considered in order to obtain its standard deviation.
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Figure 5.8: Measured and ground truth bearings (up) and absolute bearing error (down)
of the Trajectory 1.

Therefore, the standard deviations of the bearing errors of each of the dynamic test

cases were obtained, giving the results of Table 5.1. It can be seen that there was some

dependency on the trajectory. For example, the measurements extracted from the test

cases of the Trajectory 3 were the noisiest. The reason is that the manoeuvre in those

cases were more complex so the bearing angle measured by the camera changed quickly.

Thus, ReLO accuracy was affected since the considered past measurements were more

different between them. Furthermore, due to the manoeuvrability of the rover, turns

were very aggressive so the camera could experience a slight rotation. The standard

deviation associated to the measurement process was calculated as the average of all

the standard deviations obtained from the test cases. Hence, the result was a standard

deviation of σθ = 4.97 deg.

Table 5.1: Bearing measurement standard deviation for each test case.

Test Trajectory 1 Trajectory 2 Trajectory 3 Trajectory 4

Cases 1 2 3 4 5 6 7 8 9 10 11 12

Standard

deviation 1.03 3.77 2.06 2.73 2.85 5.41 12.62 7.49 10.01 4.80 3.81 3.12

(deg)
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5.4.4 Process noise tuning

The measurement noise information obtained from the experimental tests was used to

run again the designed EKF so the process noise could be tuned accordingly and the

true behaviour associated to the real performance of the measuring process could be

considered. Therefore, the 2D case was considered in this case since only bearing mea-

surement noise was available. The standard deviation was directly introduced as 4.97

deg so the measurement matrix, that was a scalar number in this case due to the 2D

assumption, was fixed. Then, different values of the process noise were tested in order

to check which one gave the best results. The results obtained with a static obstacle are

shown in Figure 5.9. It can be seen that the estimated range diverged when the process

noise had a standard deviation of 1. With smaller standard deviations, the results were

very similar and accurate from a standard deviation of 0.1. Therefore, that would be an

acceptable value for the process noise.
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Figure 5.9: Range errors (left) and y position Kalman gains (right) with an static object
for different process noise.

In Figure 5.10, the results of different process noises are shown for the case when

the obstacle is moving with constant velocity. Similar results to the static case were

obtained. However, it can be seen that the range error diverged after some time when

the process noise was 0.1. Hence, it could be concluded that the very small process noise

should be considered in such cases.
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Figure 5.10: Range errors (left) and y position Kalman gains (right) with a constant
velocity object for different process noise.

However, the previous scenarios were very simple. The behaviour of the EKF was also

studied in a case when the velocity changed at some point. An additional simulation was

carried out in which the obstacle started moving with constant velocity in the y direction

and suddenly changed to the x direction. The results for three different process noises

can be seen in Figure 5.11. For small process standard deviation such as 0.01, the EKF

tried to follow the considered process so when it changed, as happened with the change of

velocity direction, the range error increased and it also diverged later. When the process

standard deviation was high such as 1, the EKF relied on the measurements so the range

error did not increase when the velocity changed but it was noisier and it diverged. It

can also be checked that the Kalman gain did not decrease completely to zero but it kept

considering measurements so that is why the range error kept noisy. When the process

noise was 0.1, however, the range error increased a bit when the velocity changed but

it quickly decreased again, keeping small after that and not so noisy as the case with a

standard deviation of 1.
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Figure 5.11: Range errors (left) and y position Kalman gains (right) with a varying
velocity object for different process noise.

Therefore, according to the performed simulations, the best range estimation per-

formance was achieved when the process noise was considered as 0.1. However, there

can be some cases when different process noises can be more convenient, as happened

with the constant velocity case when the smaller the process noise, the smaller the range

error. One advantage of using neural networks for the detection part of the algorithm

is that class information is available. Hence, it is known what kind of obstacle is being

tracked. Therefore, the process noise could be considered as 0.1 as general basis but

could be adjusted accordingly to the detected object. For example, if an aircraft in the

high airspace was detected, it would be likely to fly at constant velocity for the time it

remained in the UAV FOV. Thus, the process noise considered in the EKF in this case

could be adjusted using smaller values so better range estimations could be obtained.

5.4.5 Collision avoidance check

Once the Kalman filter was tuned with the measurement noise associated to the de-

tection and tracking process performed with ReLO, the rest of the collision avoidance

technique was also simulated in order to check that conflicts could be avoided with this

method. Measurement noise of 4.97 deg and process noise of 0.1 were considered. Several

simulations were run with random conditions of the UAV and object initial positions,

orientations and target positions. It was possible to confirm that the conflict was always
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avoided when considering a conflict probability threshold of 50% as shown in Figure

5.12. Although the estimated range was below the safety distance for a short time, this

conflict probability threshold allowed that the true range was always above this value so

it could also help to enhance robustness to measurement or estimation noise. However,

as it was explained before, this threshold could also be tuned to enhance safety.

(a) Considered scenario.
(b) True and estimated relative range and safety
distance.

Figure 5.12: Collision avoidance check with static object.

Collision avoidance was also checked for the case of an object with constant positive

velocity in the x direction as shown in Figure 5.13. Therefore, the conflict was also

avoided when the detected object was moving and results showed that the most impor-

tant stage was the range estimation, since collision could always be avoided if range was

correctly estimated.

(a) Considered scenario.
(b) True and estimated relative range and safety
distance.

Figure 5.13: Collision avoidance check with dynamic object.
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Chapter 6

Closing remarks

6.1 Conclusions

Hybrid Convolutional and Recurrent Neural Networks are an emerging kind of neural

networks with very attractive characteristics for Sense and Avoid applications. Small

UAVs that would be equipped with only a visual camera could take advantage of them.

Therefore, a complete Sense and Avoid technique was developed making use of this kind

of method in order to identify possible issues and assess feasibility.

A detection and tracking model was designed based on two open source codes: the

Convolutional Neural Network YOLO to detect objects and the hybrid Convolutional

and Recurrent Neural Network Re3 to track them. The resulting algorithm was called

ReLO and was capable to correctly detect and track multiple objects in complex envi-

ronments. A refresh parameter was introduced in order to get a better trade-off between

speed and detection performance. This parameter should be adjusted accordingly to

the working environment. The detection capability depended on YOLO, which could

have misdetection or wrong-class detections, whereas tracking relied on Re3, which had

tracking limitation with very fast objects. In terms of an important requirement in Sense

and Avoid applications such speed is, ReLO showed to work more than 4 times faster

than the fastest CNNs.

The collision avoidance technique was also designed in order to complete the Sense

and Avoid algorithm. Angle measurements were obtained from the detection data ex-

tracted with the neural networks and they were used to estimate the relative range

between the object and the UAV using an Extended Kalman Filter. Then, the conflict

was assessed by an analytical probabilistic method and an avoidance trajectory based on

a geometrical approach was generated. The resulting performance showed to be highly
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dependent on the range estimation done by the Kalman filter, since the collision could be

reliably avoided once the range had been estimated correctly. Therefore, the parameters

in the EKF must be accurately tuned according to the measurements and the scenario.

Furthermore, some parameters such as the safe distance for conflict and the conflict

probability threshold could be adjusted according to the required safety level.

Experimental tests were also performed. Real measurement noise information as-

sociated to angle measurements extraction with ReLO was obtained. Then, the EKF

was tuned according to this true measurement noise so the collision avoidance behaviour

could be checked with this additional information. It was confirmed that collisions could

be successfully avoided with the noise associated to ReLO but further simulations in

different scenarios would be needed to check its robustness.

In general, hybrid Convolutional and Recurrent Neural Networks showed to be a

promising tool in the considered context. Speed was increased with respect to the most

traditional neural networks used for image processing while the detection performance

was kept. Therefore, further research on this kind of neural networks is recommended

since it was shown that it could be feasible to use them in Sense and Avoid applications.

The most important dependencies found were the detection performance, which is a field

where there is much research currently being developed, and the range estimation, where

different filters or approaches could also be studied.

6.2 Further research

Since hybrid Convolutional and Recurrent Neural Networks are very new, its application

to Sense and Avoid systems is in a very early stage. The aim of this project was to study

the feasibility of this kind of technique. Therefore, the most important limitations have

been identified and the corresponding research areas can be proposed.

With reference to the detection and tracking algorithm, further research should be

carried out on hybrid CRNN. Recently, there has been much research in common neural

networks such as CNN and RNN, specially CNN in computer vision. However, the

capabilities of CRNN have not been widely explored yet. It was difficult to find available

codes for this purpose while all the best CNNs are open source. If approaches such as

ReLO would be preferred, special attention would be required in YOLO since tracking

works fast and accurately but it depends on the initial bounding boxes provided by the

CNN. Improving the detection performance of neural networks by increasing reliability

and reducing noise would lead to much better results. Moreover, it will be needed to

assess the detection performance so quantitative results can be provided in order to make
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it easier to compare them. Temporal occlusions and rotations should also be considered

so one of the most important advantages of hybrid CRNN can be evaluated.

The simulations performed with the collision avoidance technique showed that they

could have a very good performance. However, the variety of simulations was limited.

More simulations in different scenarios are required in order to assess performance in

other situations such as with multiple objects with different dynamics, since in this

case only a single object with linear velocity was considered. Furthermore, the optimal

trajectory to ensure range observability should also be studied.

As with simulations, additional experimental tests would also be required. Before

testing the whole algorithm, some part of it could be tested first. Experimental tests with

a moving vehicle detecting and tracking an obstacle and estimating the relative range

should be carried out in order to check the correct EKF performance. Different scenarios

with different objects and vehicles trajectories and speeds should be considered. Then,

multiple objects could be introduced.

It would also be convenient to assess the algorithm performance as a whole. Two

different approaches are proposed. The first one is to test the complete Sense and

Avoid technique experimentally. However, that should be done in a reliable way so

there is no harm in case that the system fails. Therefore, first the algorithm should

be tested in the same processing unit that the vehicle in order to check that it can

work on real time. Then, during the test, additional accurate sensors should be used

for safety reasons. The vehicle would trust only the algorithm results except when a

safety-critical condition is detected with some of the other sensors, so safety is ensure

in case that the proposed method is not working. Furthermore, the vehicle should be a

UAV and the obstacles should be objects that a UAV could find while operating. The

second approach to test the overall technique would be with Virtual Reality (VR). This

would be safer since there would not be real equipment in danger. The camera on the

UAV would sense the virtual environment and the corresponding control input would

be applied when required to avoid a collision, so the virtual vehicle would perform the

avoidance manoeuvre. However, this environment would need to have available multiple

objects that the UAV could find in reality, as well as to be as close to reality as possible,

so results could be generalised. Nevertheless, there are no open source Virtual Reality

environments available that are advanced enough to carry out this kind of tests. In any

case, further research will be needed previously to find the best methods to perform

each of the stages in the Sense and Avoid algorithm. Once there is strong confidence

about every stage, the complete algorithm should be tested. This process could take

some years that will probably bring Virtual Reality developments.
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