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ABSTRACT 

This study assessed the effects of hydrological events on aquatic communities at the mesohabitat 

scale (pool, run and riffle) in the high Andean region. Four headwater sites in the Zhurucay 

microcatchment (southern Ecuador), with elevations higher than 3,500 m, were selected and 

monitored considering in each site a 50-m-long reach, and within each reach five cross-sections. 

In each of these reaches 19 sampling campaigns were conducted in the period December 2011 – 

October 2013, collecting macroinvertebrates and physical characteristics. A total of 27 

hydrological indices were calculated using the daily flow rate as input. Large Peak flow (LPF), 

Small Peak flow (SPF), and Low flow (LF) events were defined based on discharge thresholds. 

Multivariate statistics showed that 15 hydrological indices were significantly related to the aquatic 

community. Further, the study revealed that (i) peak events produced stronger effects on 

communities than LF events; (ii) the observed effects of LF events were weaker than those 

encountered in other latitudes; and (iii) local benthic communities have more resilience than 

similar communities studied in other latitudes. 

 

Keywords: Ecohydrology, Andean streams, hydrological indices, mesohabitat, 

macroinvertebrates, ecological responses 
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INTRODUCTION 

The influence of hydrological factors on benthic macroinvertebrate communities received 

increasing attention in the last decade (Chang et al., 2008; Belmar et al., 2012; Mesa, 2012). 

Several studies have shown that the prior hydrological flow conditions affect the temporality of 

habitats and the distribution of aquatic flora and fauna (Poff et al., 1997; Kennen et al., 2010; 

Rolls et al., 2012). Further, it is known that changes caused by variations in discharge result in 

periodic interruptions in the stable conditions of the habitats used by species and that when stable 

flow conditions return, new habitats are created that are then colonised and repopulated by the 

biota (Lake, 2003). Commonly, the influence of hydrological variability is analysed using 

hydrological indices and the physical characteristics of the riverbed, which are then associated 

with the macroinvertebrate communities (Lancaster and Hildrew, 1993; Suren and Lambert, 

2010). 

In this regard, previous studies concentrated on temperate zones, where the increased 

discharges from floods (i.e., hydrological pulses) and the reductions from droughts are clearly 

differentiated (Rolls et al., 2012; Leigh, 2013; Calapez et al., 2014). For instance, Suren and 

Jowett (2006) described clear variations in the composition and structure of aquatic communities 

between samples taken before and after flood or drought events. Following flood events of 

varying magnitude, significant decreases in the density and species richness of aquatic 

communities have been observed (Suren and Jowett, 2006; Robinson, 2012). On the other hand, 

it has been noticed that the effect of droughts on benthic communities depends on the duration of 

such events. When the duration is long, the area available for macroinvertebrate communities 

decreases, causing a dramatic decline in the density and species richness (Wood and Armitage, 

2004; Mouthon and Daufresne, 2006). 

In tropical zones, the climate is characterised by marked seasonality between wet and dry 

periods (Flecker and Feifarek, 1994); however, these seasons are less pronounced in the south 

Andean region of Ecuador due to the strong effect of the Andes range (Nouvelot et al., 1995; 

Buytaert et al., 2006). This range influences the specific characteristics of every fluvial network 

(discharge, vegetation cover, slope and substrate type), the air mass transferences and the 

transition zones between ecosystems, which affect the frequency, intensity, and amount of rainfall 

and, therefore, the volume and frequency of water reaching the rivers (Nouvelot et al., 1995; 

Bispo et al., 2006; Buytaert et al., 2006).  

Studies at medium altitude in the Andean region report a decrease in the density and species 

richness on the seasonal and annual time scales mainly due to an increase in shear stress during 

heavy floods in the rainy season (Jacobsen and Encalada, 1998; Ríos‐Touma et al., 2011; Mesa, 

2012). In the high Andes, only few of such studies have been carried out. For example, Moya et 

al. (2009) studied in Bolivian streams, at elevations higher than 3,000 m above sea level (a.s.l.), 

the effect of variations in streamflow on the density and species richness, although with a very 
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limited sampling period and seasonal variability. They concluded that seasonality is not a critical 

factor for the richness or density of macroinvertebrates in the riffles, except for the EPT taxa 

richness. With other words, aquatic communities at these altitudes seem not to be regulated only 

by seasonal features but also by aspects such as (i) the susceptibility of taxa to disturbances; (ii) 

the taxa ability to recolonise habitats; (iii) the number of colonising taxa; and (iv) the number of 

life cycles of the colonisers.  

The influence of hydrology on the natural dynamics of macroinvertebrate communities is 

very relevant for the conservation of the delicate High-Andean ecosystems. In this context, 

Ecuadorian regulations require environmental flow assessments for hydroelectricity projects, 

which normally are located at high elevations and carried out within the frame  of consulting 

works, little of this information is linked to the aquatic habitat density and composition, with the 

exception of a few efforts such as Herrera and Burneo (2017). In those studies, in general only a 

very limited set of hydrological indices are defined for estimating the monthly environmental 

flow but not for inspecting the effect of hydrological extreme events on the dynamics of the 

aquatic communities. Indeed, it is worth noticing that no one of the recently cited studies in 

tropical zones are considering hydrological indices to explore the effects of peaks and low flows 

on the aquatic community. 

In temperate zones recent studies are focusing on defining discharge thresholds, both for 

flooding and drought events, that significantly affect aquatic communities in natural (Wood et al., 

2000; Suren and Jowett, 2006; Monk et al., 2007; Chang et al., 2008) and altered rivers (Freeman 

et al., 2001; Armanini et al., 2014; Macnaughton et al., 2015). The studies on altered ecosystems 

focus particularly on the effects on fish (i.e., Freem et al., 2001; Armstrong, 2003; Macnaughton 

et al., 2017) and less on macroinvertebrates (Armanini et al., 2014; Miller et al., 2014) concentrate 

on the temporal variability of the aquatic communities as a function of the season in the year 

(Jacobsen and Encalada, 1998; Ríos�Touma et al., 2011; Mesa, 2012) discharge (i.e. 

hydrological) thresholds and their impact on aquatic communities. Exceptions hereon are the 

studies in altered rivers of Castro et al. (2013), Miserendino (2009), Herrera and Burneo (2017) 

that macroinvertebrates, and Lima et al. (2018) and García et al. (2011) of fish. 

In contrast to previous studies, this study assessed for the first time in an Andean 

microcatchment with an elevation higher than 3,500 m a.s.l. the effect of extreme hydrological 

events (characterised by both, suitable hydrological indices and flow thresholds) on community 

changes. The mesohabitat spatial scale was selected for this study, in line with a previous study 

on the same site (Vimos‐Lojano et al., 2017), which demonstrated that the distribution of aquatic 

communities is directly related to the physical characteristics of the habitat at this spatial scale. 

Further, as stated by Brunke et al. (2001) this scale provides a more appropriate approach to study 

the composition and structure of the community as a function of the fluctuation of flow in streams 

and rivers. Thus, the main objective of the research presented herein was to discern the effects of 
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the Large Peak flow (LPF), Small Peak flow (SPF) and Low flow (LF) events on the aquatic 

macroinvertebrate community in the headwaters of an Andean microcatchment with an elevation 

higher than 3,500 m a.s.l. Specifically, it was aimed at answering the following research 

questions: (i) which hydrological indices related to LPF, SPF and LF events are fundamental to 

explain the changes in the community’s structure and composition?; and (ii) what are the changes 

one can observe in the community as a result of the referred hydrological events?. 

 

MATERIALS AND METHODS 

Study site 

Four streams were selected in the headwater of the Zhurucay river microcatchment (7.5 km2), 

belonging to the Jubones river catchment. The microcatchment is located in southern Ecuador 

(9662500 m N, 9658750 m S, 694630 m W and 698010 m E; UTM coordinate system, Zone 17S, 

geoid PSAD56) at approximately 3,600 m a.s.l. (Fig. 1). The dominant vegetation type is 

grassland (Tussock grass, 58.6%, Calamagrostis intermedia,) with few patches of Quinoa trees 

(17.5%; Polylepis incana Kunth and Polylepis reticulata Kunth) and sparse small shrubs. There 

is a low degree of human intervention, consisting mainly of non-intensive farming activities 

(Hampel et al., 2010; Studholme et al., 2017).  

Climate in the region is characterised by the constant presence of fog and drizzle and annual 

(bimodal) rainfall average is approximately 1,289 mm. Six years of historical precipitation data 

were available, and the lowest rainfall occurred in the period June to September (minimum and 

maximum average of 65.97 mm and 113.73 mm respectively) while the rainy season stretches 

from October to May. February was the month with the highest inter-annual fluctuation in 

precipitation, with a maximum monthly value of 257 mm and a minimum value of 40.2 mm. The 

average daily temperature during the whole study period was 5.9°C and the relative humidity 

ranged between 82% and 91% (Padrón, 2013). The seasonal variation of temperature is very low 

(i.e. minimum daily average of 4.8 ° C in July of 2011, the maximum daily average of 6.7 ° C in 

November of 2011), while daily temperature fluctuation can exceed 15 ° C. 

With respect to the hydraulic conditions, the maximum velocity recorded throughout the 

sampling period (December 2011 to October 2013) was 1.51 m s-1, with an average of 0.31 ± 

0.012 m s-1. The highest Froude number (Fr) was 1.35, with an average of 0.27 ± 0.011. The 

maximum water depth was 0.49 m, with an average of 0.16 ± 0.004 m. The maximum stream 

channel width and slope were 1.61 m y 0.05 respectively. These hydraulic variables were recorded 

when the average discharge fluctuated between 33.9 l s-1 and 352.1 l s-1. The four studied streams, 

are characterised by a large substrate heterogeneity dominated by angular rocks, consisting of 

dominant cobbles > 50% (between 60 and 250 mm) and pebbles about 25% (between 20 and 60 

mm) in a matrix of gravel about 20% (between 0.2 and 20 mm) and sand about 5% (0.006 and 

0.2 mm). Additional hydrological and hydraulic characteristics of the studied stream reaches are 
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presented in Annex A. 

 

Sampling methods  

50-m-long reaches in each of the four selected streams were sampled in the period between 

December 2011 and October 2013. Five cross-sections were established in each of the four 50-

m-long reaches. A total of 19 sampling campaigns were carried out. A wide variety of 

hydrological conditions (wet and dry) was recorded in this period. 

 

Sampling of abiotic data 

In each sampling campaign, hydraulic measurements were taken at the biological sampling points 

located at the center of each of the five cross-sections. Were measured the water depth (m), width 

of the water surface (m) and average velocity (m s-1) at 60% of the water depth from the water 

surface (Wyżga et al., 2012) using a propeller flow meter (HydroMate CMC3, Sydney, Australia). 

Additionally, information regarding water levels was recorded at gauging stations located in each 

of the streams under study using the Mini-Diver DI1501 and Baro-Diver DI500 pressure sensors 

(Schlumberger Water Services, France) considering a measurement interval of 5 min. These water 

level data were converted to discharge data according to appropriate hydraulic equations for 

gauging weirs with known geometry and free spill (Chow et al., 1988); a process that was 

validated using the data recorded by the propeller flow meter. These sub-daily discharges were 

averaged to daily values by means of a simple arithmetic averaging process. The substrate was 

visually classified using six groups that were defined based on the simplified classification of 

Elosegi (2009), considering 25 x 25 cm2 reference quadrants. 

 

Sampling of biotic data 

Macroinvertebrate samples were collected each campaign using a modified Surber net (coverage 

area: 625 cm2; 250-µm net mesh opening; sampling effort: 30 s) vigorously stirred by hand, 

located near the center of each cross-section and the substrate. The collected sample was placed 

in a plastic bottle, preserved in a solution of 4% formalin and transferred to the laboratory, where 

the organisms were separated and identified to the genus level with the use of a stereomicroscope 

(Olympus SZ-6145TR, Japan) and species identification keys. Nevertheless, some non-insect 

specimens were identified at a higher taxonomic level (i.e., Hydrachnidia, Gasteropoda, 

Oligochaeta, and Sphaeriidae), including organisms of the Chironomidae family and the larvae 

of the Xiphocentronidae family whose taxonomical identification is complex (Domínguez et al., 

2009; Acosta and Prat, 2010). 

 

Hydrological and biological data processing 
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The daily discharge values were transformed into daily values of volume per unit catchment area 

(mm) to derive a single comparative scale of the discharges of the four studied streams (Chow et 

al., 1988). Then, the arithmetic mean (Qaver) of the transformed daily discharges were calculated 

(QS1, QS2, QS3 and QS4) to obtain a single series of representative discharges and derive one single 

set of hydrological indices. For assessing the similarity (i.e. representativeness) of Qaver regarding 

the magnitude and evolution of flow, a comparative analysis was made between Qaver and the 

individual daily hydrographs of the studied streams by means of three complementary procedures. 

The procedures applied at each of the monitored streams consisted in: (i) evaluation of the 

correlations between the magnitudes of the discharges and Qaver; (ii) calculation on a daily basis 

of the coefficient of variation (CV) using the discharge of the four streams in the same day of 

interest and the average of the entire timeseries of daily CV (CVaver), which constitutes an index 

of similarity among the discharges of the four monitored streams; and (iii) comparison of the 

evolution and magnitude of the duration curves of the average daily discharges. 

Accordingly, Qaver was used in this study to calculate 27 hydrological indices (Table 1) for 

each sampling campaign, which were defined based on Monk et al. (2006) and Chang et al. 

(2008). No specific indices of the duration of peak flows were computed, because peak events 

had an average duration of 1 day equal to the time basis of the daily discharge values. In line 

herewith, no indices of low flow duration were determined but, instead, different LF durations 

were explicitly considered in the analysis (i.e., 10, 30, 60, 75, 90, 115, and 140 days). For the 

identification of hydrological peaks, relevant to the present study, thresholds were defined based 

on the analysis of the series of discharge events that occurred in the one-year period prior to every 

sampling date. 

Thus, for Qaver and considering exceedance percentiles, large peak flows (LPfs) were 

defined as (see Fig. 2) flows with a value higher than the percentile 2% (Q2 = 130 mm); values 

between the percentile 5% (Q5 = 70 mm) and Q2 were considered small peak flows (SPFs); and 

values lower than the percentile 75% (Q75 = 8 mm) were considered low flows (LFs). Two or 

more peak flow pulses (LPFs and/or SPFs) were grouped together if the time lag between 

successive pulses was shorter than 20 days; this group of peak pulses was considered as a single 

(global) peak flow event (for instance, LPF 5 and LPF 7 in Fig. 2). For the calculations of the 

hydrological indices, the date of the last of these grouped peak pulses was adopted as the date of 

the global peak event. This consideration is based on the fact that  a period shorter than 20 days 

is not enough for observing a complete recovery of the aquatic communities (Flecker and 

Feifarek, 1994).  

On the contrary, a LF event was defined if the discharge was lower than or equal to Q75 

(Yulianti and Burn, 1998) during a period of at least 7 days. The extent of this event lasted until 

a water pulse more than Q10 (45 mm) occurred. The Q10 threshold was defined in this study based 

on the comparison of the effects of different pulses on the community metrics recorded in 
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successive sampling campaigns (i.e., comparing campaigns 5 with 6, 6 with 7, 7 with 8, 8 with 9, 

16 with 17, 17 with 18 and 18 with 19); in this context, water pulses with magnitudes lower than 

Q10 did not cause significant effects on the community metrics. Therefore, campaign 5 is not part 

of the LF event 5 (Fig. 2), despite being preceded by 7 days of discharges lower than Q75, since 

immediately after it a pulse higher than Q10 was recorded. 

Two tests were carried out to inspect on the congruency of the magnitude of the above 

defined discharge thresholds, namely (i) an extreme value (hydrological) analysis (EVA); and (ii) 

a comparison of the Q2 threshold with the discharge threshold for substrate movement (Qsubst). In 

this context, the EVA was conducted to verify that the SPF and LPF events defined by Q5 and Q2 

are part of the population of independent extreme flows at the studied streams, that is, are 

hydrologically independent. If that is the case, the peak discharge thresholds used in this study 

(i.e. Q5 and Q2) should be greater than, or at least equal to, the minimum peak threshold (QHydrol) 

necessary to obtain an optimal fitting of the time series of daily peaks to a generalised (extreme 

value) Pareto distribution (GPD; Pickands, 1975; Vázquez et al., 2009). Hence, the peak 

discharge data fitting was performed using the peak over threshold (POT) methodology. To this 

end, a series of daily extreme values was generated using the partial duration time series (PDS) 

methodology (Vázquez and Feyen, 2003; Vázquez et al., 2008). This PDS analysis was carried 

out with the aid of specific-task subroutines that were previously (Vázquez and Feyen, 2003; 

Vázquez et al., 2008) programmed with the FORTRAN and PERL (Practical Extraction and 

Report Language) programming languages. 

Since, substrate movement is an important factor influencing the composition and structure 

of communities (Milhous and Bradley, 1986), a second test on Q2 was performed to check on 

whether it is likely to produce substrate movement. Thus, for each of the four studied streams, 

Qsubst was generated using the equation of Milhous (Milhous, 1998); further, these values were 

averaged into a single one that was finally compared to Q2. The Milhous equation considers the 

relationship between the hydraulic radius (depending on the circulating flow), the slope and the 

physical properties of the riverbed, and the shear stress required by the substrate to start moving. 

Given the physical properties of the riverbed substrates in the study sites, shear stress was 

considered to be a dimensionless constant with a value of 0.050 (Milhous and Bradley, 1986; 

Olsen et al., 2014). 

With regard to the biological data, rare taxonomic groups (relative abundance less than 

0.01% with regard to the total number of individuals; Kennen et al. (2010)) were removed. 

Several community metrics were calculated, such as individual density m-2 (density), total taxa 

richness, Pielou’s evenness (evenness), and the Shannon-Wiener diversity index (diversity), using 

the PRIMER statistical software (Version 6; Ivybridge, UK). 
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 In addition, the EPT (Ephemeroptera, Plecoptera and Trichoptera) relative abundances, 

EPT taxa richness, and the non-insect taxa richness were calculated. Thus, the samples were 

grouped according to the type of mesohabitat, defined on the basis of the Froude number (Fr), 

which is a function of the discharge  and the hydraulic conditions of each sampling cross-section 

(Jowett, 1993). Hence, according to Jowett (1993) the different mesohabitats are pool (Fr < 0.18), 

run (0.18 < Fr < 0.41) or riffle (Fr > 0.41). Furthermore, the 10 most abundant taxa, representative 

of each mesohabitat, were chosen, and their relative abundances were calculated (Suren and 

Jowett, 2006) for further analysis. 

 

Statistical analysis 

To answer the first question of the study, concerning which hydrological indices related to LPF, 

SPF and LF events are determinant to explain the changes in the community’s structure and 

composition at high-Andean streams, a multiple regression analysis in successive steps (Monk et 

al., 2006; Suren and Jowett, 2006) was performed between the hydrological indices and the 

response variables (community metrics and relative abundances of taxa). For every predictor 

included in the regression analysis, the beta (standardised regression) coefficient (β), measuring 

how strongly each predictor influences the dependent variable, was calculated. The β have a t-

value and significance of the t-value (the p-value) associated with this. If the t-value is significant, 

then the β is significantly different from zero and, as such, significantly predicts the dependable 

variable. Hereafter, in this study, the stronger predictors were always considered for the 

description of the results and the respective discussion; the absolute values of their associated β 

were always at least 0.25 (i.e., subjectively, this absolute value was adopted herein as a minimum 

β threshold). Prior to the multiple regression analysis, redundant hydrological indices from each 

mesohabitat type were discarded (considering the correlation analysis parameters Spearman rho 

> 0.7, p ≤ 0.05) using the SPSS software (version 20; IMB/SPSS, Inc., Armonk, New York). A 

total of 20, 18, and 17 indices were included in the statistical analysis for the pool, run, and riffle 

mesohabitats, respectively. 

Regarding the second research question, concerning what changes can be observed in the 

community as the result of peak (LPF and SPF) and LF events, the differences in community 

metrics and the relative abundance of the 10 most dominant taxa, before and after events, were 

analysed for each mesohabitat. In addition, in the case of LF events, changes occurring in the 

community metrics and relative abundances of taxa were analysed throughout the entire LF 

periods. Specifically, the biological variables were compared, in terms of time, between the first 

sampling campaign occurring in the LF period and the posterior campaigns that are included in 

the same LF period. These differences were statistically analysed by means of the PERMANOVA 

test based on the Bray-Curtis similarity analysis (Anderson, 2001; Suren and Jowett, 2006) using 
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the PAST software (version 3.08; Øyvind Hammer, Natural History Museum, University of 

Oslo). 

 

RESULTS 

A total of 361 biological samples were analysed between December of 2011 and October of 2013. 

The number of aquatic macroinvertebrate specimens identified was 106,996, belonging to 38 

different taxonomic groups (with an average density of 5,604 ind. m-2) as detailed in Annex B. 

The Orthocladiinae subfamily was the most dominant taxon, accounting for 31.3% of all 

individuals, followed by the Girardia genus with 24.0%, the Chironominae subfamily with 7.2%, 

and Hyalella with 7.1%. The other taxa did not exceed individually the 5.0% of all individuals. 

The most frequent taxa (present in over 80% of the samples) were Orthocladiinae, Hyalella, 

Girardia, Hydrachnidia, and Austrolimnius. 

The recorded discharges at the four study sites exhibit significant correlations among them. 

In what follows QSi stands for the discharge observed in the i-th stream, with i = 1, 2, 3 and 4 (Fig. 

1). Regarding the correlation between Qaver and each of the monitored time series, the range of 

values of the Pearson correlation coefficient varied between 0.95 for QS4 to 0.97 for QS1. 

Additionally, the current study suggested an acceptable similarity (i.e., low value of CVaver = 0.39) 

of the magnitude and temporal variability of the daily discharge series. The analysis of the 

duration curves of the daily flows confirmed the latter. Given the similar hydrological behaviour 

were the collected samples grouped in the statistical analysis. 

The EVA showed that the time series of daily peaks optimally fitted an exponential 

distribution (a particular case of a GPD) for peak values greater than or equal to QHydrol = 52.6 

mm. This hydrological threshold is lower than both Q2 = 130 mm and Q5 = 70 mm, implying that 

the LPF and SPF events defined in this study, based on Q2 and Q5, follow the extreme value 

exponential distribution and, as such, are part of the population of independent extreme flows in 

the studied streams; that is, are hydrologically independent. Further, the average (Qsubst) of the 

threshold values generated for each stream by the method that is based on the equation of substrate 

movement (Milhous, 1998) was 119.8 ± 6.6 mm. It is lower than Q2, suggesting that the events 

defined herein as LPF had a significant effect on the community metrics and taxa due to the 

implicit mobilisation of the benthic substrate. 

 

Key hydrological indices 

A total of 15 hydrological indices were identified by the multiple regression analyses as being 

influential on the following aspects: (i) community metrics; and (ii) the relative abundance of the 

10 most abundant taxa. Of both aspects, eight variables were influential in the pool mesohabitats, 

four in the run mesohabitats and six in the riffle mesohabitats (Table 2). Some of the hydrological 

indices were important in more than one of the mesohabitats. 
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In the pool mesohabitats, the multiple regression analyses on the LPF variables revealed 

that with absolute values higher than 0.33 of the β (i.e., standardised slope of the regression) 

negative correlations were obtained between MAXDAYQ(7) and density, and FH(1) and total 

taxa richness and ETP taxa richness (Table 2 and Annex C). On the other hand, also with a β 

absolute value of 0.33, the LF index FL(3) was negatively correlated with EPT taxa richness. In 

taxonomic terms, two dominant non-insect taxa were recorded (Annex D), namely, the Helobdella 

genus (42.6%) and the Lymnaeidae family (15.9%). With β absolute values higher than 0.25, the 

LPF indices FH(4) and MAXDAYQ(60) were negatively correlated with Lymnaeidae dominant 

taxa. With similar β absolute values the LF index QMIN(1) was positively correlated with 

Hydrachnidia and Heterelmis (Annex D).  

In the run mesohabitats, the multiple regression analyses on the LPF variables indicated 

that, with β absolute values above 0.40, negative correlations were recorded between 

MAXDAYQ(7) and density, FH(2) and total taxa richness, and FH(3) and non-insect richness 

and diversity. With β absolute values higher than 0.30, some LF variables exhibited a positive 

correlation, namely, QMIN(1) and FL(1) with the density, and COMINDAY with evenness and 

diversity (Table 2 and Annex C). In taxonomic terms, Girardia was the main dominant taxa, 

representing 27.8% of the community, followed by the Chironominae with 6.1% (Annex D). With 

β absolute values over 0.4, the LPF variable FH(3) was negatively correlated with the relative 

density of Chironominae (Annex D). 

The multiple regression analyses on the LPF variables in the riffle mesohabitats showed 

that with β absolute values higher than 0.30, negative correlations were obtained between FH(2) 

and the total taxa richness, FH(4) and non-insect richness, and COMAXDAY and diversity. 

Furthermore, the LF variable QMIN(1) showed a negative correlation with density (Table 2 and 

Annex C). In taxonomic terms, Hyalella is the most dominant taxon representing 10.1% of the 

community, followed by Metrichia (Tricoptera), with 9.8% (Annex D). With β absolute values 

exceeding 0.25, the LPF variable FL(1) was negatively correlated with the relative abundance of 

Metrichia (Annex D). 

With regard to the analysis of antecedent peak flow conditions, some hydrological indices 

such as MAXDAYQ(7), COMAXDAY, FH(1) and FH(2), indicated the time-accumulated effects 

of past high flow events (i.e. antecedent conditions) on the community structure at a given 

sampling date (Table 2). In this context, the density, the EPT and the non-insect relative 

abundances and the different metrics of richness (total, non-insect and EPT) and the diversity 

exhibited changes owing to peaks occurring between 7 and 120 days prior to sampling dates. 

Specifically, in the pool mesohabitats the most important hydrological indices (MAXDAYQ(7) 

and FH(1)) showed an effect of past peak flows on the community between 7 and 30 days. In the 

run mesohabitats the effects of past peaks occurring longer ago from the sampling dates (up to 90 
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days) were noticed through the indices MAXDAYQ(7), FH(1) FH(2) and FH(3). In the riffle 

mesohabitats the effects of past peaks happening even longer ago (up to 120 days) from the 

sampling dates were reflected by the indices COMAXDAY, FH(2) and FH(4). 

 

Effect of peak and low flow events 

Figure 3 shows the temporal variation of the community metrics as a function of the flow in the 

pool, run, and riffle mesohabitats throughout the study period. The general trend in density (Fig. 

3a) was positive in the LF periods increasing up to approximately 30,000 ind. m-2 in the run 

mesohabitats; for the other mesohabitat types (pool and riffle) the density values were always less 

than 13,000 ind. m-2. In terms of the total taxa richness (Fig. 3b), the results showed higher values 

in the three types of mesohabitats during LF events. However, this trend was not observed for the 

EPT taxa richness (Fig. 3c), as this metric fluctuated significantly throughout the period of 

analysis. Furthermore, it was observed that the EPT relative abundance (Fig. 3d) increased with 

flooding and decreased with LFs in the run and riffle mesohabitats; these differentiated trends 

were not that obvious in the pool mesohabitats. 

To evaluate the effects of the different hydrological events on the community metrics and 

relative abundance of the 10 most abundant taxa, the sampling campaigns are numbered in Fig. 2 

following a chronological order. With respect to the assessment of the effects of LPFs on the 

communities, the LF campaigns that are immediately posterior to these peak events are compared 

to the respective ones that are preceding them. Hereafter, the LF campaigns that are posterior to 

LPFs (i.e., for LPF 5, campaigns 3 and 4; for LPF 6, campaign 12; and for LPF 7, campaign 15) 

were compared to the preceding LF campaigns (i.e., for LPF 5, campaigns 1 and 2; for LPF 6, 

campaign 11; and for LPF 7, campaign 13, although this latter campaign, similarly to campaign 

12, is not strictly a LF campaign, given that the duration of the respective LF event was shorter 

than 7 days). On the other hand, campaigns 10 and 11 preceding and proceeding a SPF (Fig. 2) 

were compared for evaluating whether the SPF in between had any effect on the communities. In 

the same context, campaigns 13 and 14 were as well compared. Although no other SPF were 

recorded in the studied period, some events, smaller in terms of magnitude than SPFs were also 

studied. Concretely, three events were analysed, respectively, by the following preceding and 

proceeding campaigns: 1 and 2, 5 and 6, and 9 and 10 (Fig. 2). The applied PERMANOVA 

analysis suggested no significant differences in community metrics among the respective 

campaigns (i.e., 1 and 2, 5 and 6, and 9 and 10) and, as such no significant effects of the inspected 

small events. 

The LPF value of 160.4 mm (LPF 5) on community metrics led to a significant decrease in 

the density in the three studied mesohabitats (Table 3). However, the LPF of 131.7 mm (LPF 6) 

only had a negative effect on the density in the riffle mesohabitats. Positive effects of LPFs on 
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evenness were observed in the pool mesohabitats after LPF 5 and in the riffle mesohabitats after 

LPF 6. In addition, LPF 5 exerted a negative influence on the total taxa richness in the pool and 

run mesohabitats. A positive effect occurred in terms of the EPT relative abundance in the pool 

(after LPF 7), run (after LPF 5 and LPF 6) and riffle (after LPF 5) mesohabitats. In the pool and 

riffle mesohabitats produced LPF 7 an increase in the relative abundance of Hydrachnidia, while 

in the run mesohabitats LPF 5 produced an increase in the relative abundance of Metrichia (7.5%) 

and a decrease in the relative abundance of Girardia genus (-16.1%) and Chironominae subfamily 

(-9.2%). The relative abundance of Oligochaeta exhibited two different responses, i.e., firstly, an 

increase (7.9%) with a discharge of 131.7 mm day-1 and a decrease (-2.9%) with a higher 

discharge of 160.4 mm day-1. In the riffle mesohabitats, after LPF 5, a sharp decline was observed 

in the proportion of the relative abundance of Girardia (-21.1%). Further, positive effects of LPF 

7 on Contulma (6.4%) were observed. 

The events of maximum duration of LF (Fig. 2) started in campaigns 6 (LF 5) and 16 (LF 

9). To observe changes in the community during LF events, the samples from campaigns 6 and 

16 were compared respectively with the samples from the posterior campaigns (i.e., for LF 5, 

campaigns 7, 8 and 9; and for LF 9, campaigns 17, 18 and 19). In the pool mesohabitats, a major 

density increase was observed in the first 90 days with LFs (Table 4); the opposite effect was 

observed for evenness and diversity. When the period was longer, i.e. 115 days, a further increase 

in the density was noticed. The total taxa richness was reduced (-3.5 taxa) in the first 10 days with 

LFs; however, the opposite trend was observed (11.8 taxa) after 30 days with LFs. After 30 days 

with LFs the relative abundance of EPT was reduced with 12.7%. With LFs, the EPT taxa richness 

exhibited a negative tendency after 10 days, which was maintained after 115 days. Regarding the 

taxa, the relative abundance of Psychoda genus decreased (-4.7%) over the first 30 days with LFs; 

however, this trend reversed after a longer LF event (115 days). In addition, a 5.2% decrease was 

observed in the relative abundance of Hydrachnidia over a period of 30 days. In the run 

mesohabitats, a negative effect was observed on the density after 75 and 115 days, and in the total 

taxa richness after 115 days. Furthermore, a significant increase in the relative abundance of the 

Orthocladiinae subfamily (8.6%) was observed over a LF period of 115 days. No significant 

trends were noticed in the riffle mesohabitats. 

 

DISCUSSION 

Use of hydrological indices 

The use of hydrological indices to assess the effects of extreme flow conditions on the dynamics 

of aquatic communities increased in the last decade (Wood et al., 2000; Belmar et al., 2012; 

Greenwood and Booker, 2015). According to Greenwood and Booker (2015) affect flow 

conditions directly the diversity, abundance and composition of aquatic communities. In this 

context, this study aimed at examining the effect of river flow on aquatic communities in the high 
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Andean region above 3,500 m a.s.l., more in particular the influence of antecedent peak events. 

The multiple regression analysis showed that the impact of high discharge events (LPFs) on the 

density of macroinvertebrates in the pool and run mesohabitats is significant negative because of 

an increase in drag (Fig. 4). The rise in shear forces influence certain benthic taxa (Ríos‐Touma 

et al., 2011; Rocha et al., 2012), mainly of the non-insect class (e.g. Lymneidae, Girardia) (Rios-

Touma et al., 2012), which do not have body features to cope with the increase in shear stress 

associated with high flow conditions (Tomanová and Usseglio-Polatera, 2007). For instance,  

Lymneidae lacks legs, supporting structures, to cope with flooding (Lam and Calow, 1988; Rios-

Touma et al., 2012).  

In the run and riffle mesohabitats leads an increase in drag during flooding to a decrease in 

the diversity and total taxa richness. Sueyoshi et al. (2014) suggested that some of the taxa leaving 

other mesohabitats end up in pools, characterised by lower hydraulic stresses, given that 

connectivity between mesohabitats is warranted (Pringle, 2001). In this study area, situated at an 

altitude above 3,500 m a.s.l. and significant slopes, the multiple regression analysis does not 

indicate an increment in diversity in the pool mesohabitats; further, the total and the EPT richness, 

indirect measures of diversity, exhibit a decrement. This, notwithstanding, as depicted in Fig. 4, 

pool mesohabitats are the ones with the gentlest conditions, even during peak events. However, 

it has to be noticed that the pools in our study are smaller, steeper and less isolated than the ones 

studied for instance by Sueyoshi et al. (2014); as such, they can be affected more by high flow 

events.  

The above discussion does not account for the time variability and is based solely on the 

analysis of the density and diversity metrics. When the rest of the metrics and the time variability 

are included in the analysis, then the current study suggests that, with regard to a sampling date, 

antecedent peak events have a very decisive influence on the aquatic community composition at 

that particular date. Further, the study points out which type of mesohabitats is least affected 

(pool) in time by the antecedent peak flow conditions and which one the most affected (riffle) 

(Table 2). As shown in Fig. 4 are the pool mesohabitats the gentlest environment for the aquatic 

communities under peak events; nevertheless they are not really a refuge for the dragged taxa. 

With respect to the change of taxa in the pool mesohabitats associated to peak events before the 

sampling date, an important increase of relative abundance of Helobdella and Hyalella (Annex 

D) was observed, notwithstanding their individual contribution as predictors in the multiple 

regression is relatively low. Both, Helobdella (Stubbington and Wood, 2013) and Hyalella 

(McElravy and Resh, 1991) have the capacity of hiding in the substrate, which makes them less 

sensitive to higher drag forces.  

In the run mesohabitats was the genus Girardia, the second dominant group, negatively 

affected by peak events occurring 30 days before the sampling date. Tomanová and Usseglio-

Polatera (2007) reports that the orden Planaria, to which the genus Giardia belongs, possesses 
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low ability to adhere to the bottom materials of the streams despite their flattened shape, 

explaining why the genus Girardia does not resist to significant discharges. At the other hand, 

Metrichia, owing to its body conditions (characteristics of the case), has the potential of adhering 

to the surrounding substrate (Barbero et al., 2013), which enables this genus to resist the drag 

forces associated to peak events. In both, the run and riffle mesohabitats, the Chironominae shows 

a decrease of relative abundance with peak events occurring between 90 (run) and 120 (riffle) 

days before the sampling date (Annex D). Similar to Girardia, this taxon lacks the capacity to 

adapt to significant discharges. An important invertebrate in the riffle mesohabitats is the genus 

Metrichia, which is negatively correlated to the low discharge indices. Most likely the decrease 

in drag, associated with low flow, makes that other organisms different from this taxon (i.e., 

Hyalella and Chironominae) gradually enter and re-colonise these mesohabitats (Townsend and 

Hildrew, 1976), decreasing the relative abundance of Metrichia. 

 

Effect of hydrological events on aquatic communities 

In aquatic ecology the drag forces associated to LPFs are known as being catastrophic (Melo and 

Froehlich, 2004; Snyder and Johnson, 2006), producing serious repercussions on benthic 

biodiversity (Belmar et al., 2012; Mesa, 2012) and even altering the hydromorphological 

conditions of a river  (Belmar et al., 2012; Mesa, 2012; Worrall et al., 2014). In this study, the Q2 

(130 mm) discharge threshold that defines the LPF events is higher than the Qsubst = 119.8 mm 

(mean velocity = 0.99 m s-1) for substrate movement, and likely affects certain aquatic 

communities owing to substrate movement as  observed in other studies carried out at different 

latitudes (Cobb et al., 1992).  

 Lake (2000) describes two types of peak perturbations, i.e., (i) extreme events of high 

magnitude and of very short duration, known as pulses, that drastically reduces the density and 

species richness in the community; and (ii) continuous variation of the discharge and the presence 

of high peaks over time, known as ramps, that reduce the re-colonisation capacity of all taxa. In 

this study LPFs can be either type, namely LPF 6 in Fig. 2 can be considered as a pulse, whilst 

LPF 5 and LPF 7 may be regarded as being ramp events. Density decreased more than 60% and 

EPT relative abundance increased more than 15% in the three types of mesohabitats affected by 

either pulse or ramp type of peak event. Similar effects, although with different proportions of 

density decreased and EPT relative abundance increased from what is here reported, have been 

observed in several studies (Suren and Jowett, 2006; Worrall et al., 2014). Moreover, LPF effects 

were evident through the decrease in total taxa richness and density in the mesohabitats pool and 

run, which resulted in the increase of evenness in the pool mesohabitats. 

The comparison of the metrics calculated before and after peak events confirmed what was 

concluded analysing the relationship between hydrological indices and community metrics, in the 

sense that less adapted aquatic taxa are more easily affected by peak events and their associated 
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drag forces (Poff et al., 1997; Lamouroux et al., 2004; Bonada et al., 2007; Blanckaert et al., 

2012). For instance, in the mesohabitats run and riffle a decrease in the proportions of Girardia 

and Chironominae after peak flows was observed, which indicates that the forms and structures 

of both pose little resistance to significant discharges, mainly due to their low ability to adhere to 

the bottom and bank material of streams (Tomanová, 2007). Hence, the negative effect on the 

abundances of Girardia and Chironominae possibly caused a significant increase in the 

proportion of individuals of the genus Metrichia in the run mesohabitats, favoured by their 

relatively small size and their preference to be attached to sites with thick substrates (Brooks et 

al., 2005; Barbero et al., 2013). Thus, in the run mesohabitat, it is likely that the organisms less 

adapted to the increase of discharge produced a faster re-colonisation of Metrichia, in comparison 

to organisms that arrived by the drift and which re-colonised with a slower rate (Townsend and 

Hildrew, 1976). In this regard, in stable environments, the genus Metrichia is less abundant and 

competitively inferior to other organisms with biological characteristics adapted more to low 

discharge conditions (Gibbins et al., 2001).  

Further, LPF 6 had positive effects on Oligochaeta ratios, whilst LPF 5 had negative ones, 

confirming that these are two different types of peak events. LPF 5 previously had several 

continuous disturbances of high discharges which led to a loss of the interstitial zone of the reach 

(Bruno et al., 2010), and in turn to the sustained decline of the relative abundance of Oligochaeta. 

In contrast, LPF 6 was isolated in time, as well as the associated entrainment, allowing those 

organisms to settle down in the interstitial zone (Bruno et al., 2010), to remain and increase their 

ratios in relation to other groups. On the other hand, the effects of discharges of the evaluated LF 

events were lower than in other latitudes (Leigh, 2013) where magnitude and duration may cause 

large changes in aquatic communities (Rolls et al., 2012), since head or small streams are reduced 

to small intermittent pools, the only refuge for the aquatic biota at summer time (Dekar and 

Magoulick, 2007). This fact contrasts with the high Andean head streams, which maintain a 

permanent flow in the periods of low discharge due to the capacity of flow regulation of the 

surrounding soils, through absorption and retention (Crespo et al., 2012).  

The observed response in the pool mesohabitats after a long period with low discharges 

was an increase in both, the density and the total taxa richness. For density, a similar increase was 

reported by Bogan and Lytle (2011) at pool mesohabitats in a temperate river, while, on the 

contrary, for the total taxa richness a decrease was observed by García-Roger et al. (2011) at pool 

mesohabitats also in a temperate river. In addition, a decrease of the proportions of EPT relative 

abundance and taxa richness was observed in pools which may be due to the sensitivity of the 

EPT to the decrease in discharge, as observed by Dewson et al. (2007), although, in riffle 

mesohabitats of several New Zealand rivers. Another factor that might influence the decrease in 

the proportion of EPT is the increase and dominance of certain taxonomic groups, generally 

belonging to the order Diptera (Psychoda), owing to their tolerance to low discharge conditions 
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and to their short life cycles (Ledger et al., 2011); a  tendency not observed in the current study 

(Table 4). On the contrary, in the run mesohabitats, LF conditions decreased the density and total 

taxa richness. There was a significant loss of individuals with prolonged LF periods (greater than 

75 days), almost to what was reported by McIntosh et al. (2002) who, for riffle mesohabitats in 

the Iao river (Hawai), observed a decline of the community (density and total taxa richness) for 

LF periods longer than 100 days. In the present study, reduction of water depth and discharge 

may have influenced the area of the available habitats in LF periods (Rolls et al., 2012). Further, 

no response was observed on community metrics or taxonomic groups for low discharges in the 

riffle mesohabitats, suggesting that this type of events, characterised by low velocities, is of little 

importance to the aquatic communities in this type of mesohabitats. As already stated, the latter 

differs from the results found by McIntosh et al. (2002). 

 

CONCLUSIONS 

The presented research is unique in assessing the influence of hydrological events of 

different magnitude on aquatic communities in three different mesohabitats (i.e., pool, run and 

riffle) located above 3,500 m a.s.l. The observed peak events can be classified as pulses and ramps 

and were defined on the basis of the Q2 percentile, which is a much stronger discharge threshold 

than the ones commonly used to define peak events elsewhere. The latter suggests that the aquatic 

communities in high Andean streams have more resilience to peak flow variations and conditions 

than similar communities that live in streams at different latitudes and elevations. Further, either 

pulses or ramps dragged away organisms, particularly, from the run and riffle mesohabitats. The 

majority of these organisms did not refuge in pool habitats, as it has been reported in temperate 

and flat zones, except for few taxa. It is likely to be the result of the fact that the pools in our study 

are smaller (i.e., horizontally and vertically), steeper and less isolated than the ones studied 

elsewhere; as such, they can be affected more by peak events. 

Different analyses coincided in the general idea that the dominant taxa with the least 

adapted body characteristics are the most sensible to peak events. In this context, some taxa 

belonging to the EPT groups, that pose suitable traits, were the ones less affected by peak 

conditions. When all metrics and time variability of peak events occurring prior to the sampling 

date were considered, then the current study suggests that, with regard to a sampling date, 

antecedent peak events are an important factor in evaluating the aquatic community composition 

at that particular date. Further, the study points out which type of mesohabitats is least affected 

(pool) in time by antecedent peak flow conditions and which one is most affected (riffle). The 

latter implies that in the current study site the pool mesohabitats were the gentlest environment 

for the aquatic communities under peak events, although they did not act as a permanent refuge 

for the dragged taxa.  
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The study showed that peak flow events had stronger effects on the communities than low 

flows. Low flow events had less effects on the communities than the ones observed in temperate 

regions where streams tend to be intermittent under long low flow periods, which is not the case 

in high Andean streams because surrounding soil continuously provide water to the streams 

preventing stream intermittence. Further, in low flow events pools are important since different 

taxa can find suitable habitat whilst run mesohabitats are strongly impacted by the reduction of 

their area. 

The current study may be considered as a first step towards future environmental flow 

assessments, a relevant task still to be done in South Andean regions under scientific 

considerations. 
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Figure 1. Location of (a) the Jubones river catchment in Ecuador and the Rircay river 

subcatchment; (b) the study site (Zhurucay microcatchment headwater), located inside the Rircay 

river subcatchment; and (c) the four sampling points in the study site. 
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Figure 2. Average daily discharge (Qaver) hydrograph and time evolution of the sampling 

campaigns (identified by means of dots); Large Peak flow (LPF) events (Q > Q2; identified 

through vertical arrows); and Low flow (LF) events (Q < Q75 and for internal pulses Q < Q10; 

identified through a solid black line in the hydrograph). Qsubst (119.8 mm) is the flow threshold 

for movement of substrate. Q is the discharge. Discharge thresholds refer to exceedance 

percentiles. 
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Figure 3. Temporal variation of the average community metrics as a function of the mesohabitat 

type, namely, (a) density (ind. m-2); (b) total taxa richness (# total); (c) EPT taxa richness (# total); 

and (d) EPT relative abundance (%). 
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Figure 4. Typical cross-sections observed in pool, run, and riffle mesohabitats, showing levels of 

water surface under different discharge conditions, namely, Large Peak flow (LPF), Small Peak 

flow (SPF), Low flow (LF) and median (M, observed in the period from 2011 to 2013). Froude 

number (Fr), and shear stress (SS; N m-2) values are given for these discharge conditions as a 

function of the type of mesohabitat. 
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Table 1. Description of the hydrological indices calculated from the mean daily discharges (Qaver). Ni is 

the total number of values that a given hydrological index may adopt as a function of the number of 

days (n) used in its calculation. 

Index Ni Description 
Qsample 1 Mean daily discharge recorded on the sampling date. 
MAXDAYQ(n) 4 Maximum discharge observed in periods of n = 7, 15, 30 and 90 days before 

the sampling date. 
COMAXDAY 1 Coefficient of variation of the four values of MAXDAYQ(n). 
FHA 1 Number Large Peak flow pulses observed throughout a one-year period 

before each sampling campaign. 
QMAX(k) 3 k-th Large Peak flow pulse occurring immediately before the sampling date, 

where k = 1, 2, and 3 reflect occurrence in chronological order. 
COQMAX 1 Coefficient of variation of the three QMAX values. 
FH(m) 5 Number of Large Peak flow and Small Peak flow pulses occurring in the 

five periods defined by m = 1, 2, 3, 4, and 5 months before the sampling 
date. 

MINDAYQ(n) 4 Minimum discharge observed in periods of n = 7, 15, 30 and 90 days before 
the sampling date. 

COMINDAY 1 Coefficient of variation of the four values of MINDAYQ(n). 
QMIN 1 Low flow pulse occurring immediately before the sampling date. 
FL(m) 5 Number of Low flow pulses occurring in the five periods defined by m = 1, 

2, 3, 4, and 5 months before the sampling date. 
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Table 2. Beta coefficients (β) of the multiple regression analysis using the hydrological indices as independent variables and community metrics and relative abundance of the 
10 most abundant taxa as dependent variables, as a function of the mesohabitats. The sample sizes were: N = 141 in the pool mesohabitats (Po); N = 144 in the run mesohabitats 
(Ru); and N = 76 in the riffle mesohabitats (Ri). The metrics and taxa that are listed have an associated significance probability p ≤ 0.05. For the description of the hydrological 
indices refer to Table 1. 
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METRICS                
Density -0.405Po         -0.211Ru             0.306Ru   0.454Ru 

 -0.496Ru              -0.377Ri 
EPT Rel. Abund.    -0.172Po       0.178Po  -0.287Ri   
Non-insect Rel. 
Abund.     -0.231Ru -0.441Ru    -0.231Ri      
Total taxa richness     -0.396Po -0.364Ri    0.298Ri 0.259Ru    -0.177Po  
EPT taxa richness     -0.420Po     0.181Po    -0.332Po  
Non-insect richness    -0.290Ri -0.240Po  -0.589Ru -0.301Ri  0.190Ru   -0.191Ru   
Evenness  0.323Po          0.342Ru    
Diversity       -0.377Ri     -0.441Ru     0.333Ru   0.561Ru       
TAXA                
Chironominae       -0.217Ru     -0.453Ru -0.298Ri               
Girardia     -0.290Ru     -0.180Ru      
Helobdella    0.226Po            
Hyalella 0.200 Po     -0.232Ri          
Lymnaeidae   -0.255Po     -0.250Po        
Metrichia*          0.257Ru     0.212 Po         -0.264Ri     

* Taxonomic groups belonging to the EPT orders. 
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Table 3. Effects of Large Peak (LPFs) and Small Peak flows (SPFs) on community metrics and 

relative abundance of taxa as a function of the type of mesohabitats according to the statistical 

test PERMANOVA. The values of the average (), standard deviation (SD), and F statistic (F) of 

the metrics and taxa are listed with the associated significance probability p ≤ 0.05. Froude 

number (Fr) and shear stress (SS, N m-2) estimates for each mesohabitat type and peak flow event 

are also included. 

Mesohabitat 
Event characteristics Community 

metric/taxa  SD F P 
Type 

POOL 

LPF 5 (160.4 mm) Density -3,972 1609 5.49 0.040 
Fr = 1.07; SS = 135.0 Evenness 0.13 0.02 12.07 0.020 
  Total taxa richness -5.3 3.45 5.24 0.050 
LPF 7 (157.2 mm) EPT Rel. Abund. 20.2 11.85 7.68 0.026 
Fr = 1.04; SS = 132.3  Hydrachnidia 4.2 2.74 7.86 0.022 
SPF (108.0 mm) 

Oligochaeta -1.2 0.42 8.02 0.030 
Fr = 0.72; SS = 90.9 

RUN 

LPF 5 (160.4 mm) Density -6,602 3,260 7.93 0.000 
Fr = 2.02; SS = 521.7 Total taxa richness -5.6 2.04 11.84 0.000 
  EPT Rel. Abund. 20.5 4.79 4.77 0.020 

  
Metrichia* 7.5 3.9 3.82 0.030 
Girardia -16.1 5.91 6.53 0.010 

  Chironominae -9.2 3.71 16.69 0.000 
  Oligochaeta -2.9 1.85 4.21 0.020 
LPF 6 (131.7 mm) EPT Rel. Abund. 15.1 3.34 8.03 0.020 
 Fr = 1.66; SS = 428.4 Oligochaeta 7.9 4.73 2.74 0.050 
SPF (108.0 mm) Evenness -0.1 0.02 8.83 0.020 
Fr = 1.36; SS = 351.3 Diversity -0.4 0.13 7.69 0.020 
  Helobdella -0.6 0.2 3.88 0.040 

RIFFLE 

LPF 5 (160.4 mm) Density -5,022 1,866 4.57 0.010 
Fr = 3.76; SS = 1,903.4 EPT Rel. Abund. 26.0 8.06 4.52 0.030 
  Girardia -21.1 11.32 4.33 0.040 
LPF 6 (131.7 mm) Density -2,560 583 6.63 0.010 
Fr = 3.09; SS = 1,562.8 Evenness 0.13 0.04 5.77 0.050 
  Chironominae -6.3 4.15 15.73 0.010 
LPF 7 (157. 2 mm) Hydrachnidia 3.9 3.02 4.92 0.030 
Fr = 3.69; SS = 1,865.4 Contulma 6.4 6.81 2.46 0.031 

* Taxonomic groups belonging to the EPT orders. 
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Table 4. Effects of duration (n, in days) of Low flow on community metrics and relative 

abundance of taxa as a function of the type of mesohabitat according to the statistical test 

PERMANOVA. The values of the average (), standard deviation (SD), and F statistic (F) of the 

metrics and, in the case of taxa, the differences in relative abundances between two compared 

campaigns, are listed with an associated significance probability p ≤ 0.05. 

Mesohabitat 
Type n Community 

metric/taxa  SD F p 

POOL 

90 Density 3,515.4 749.2 5.10 0.030 
115   6,393.3 1,543.3 11.44 0.030 
60 Evenness -0.1 0.04 6.95 0.020 
90   -0.2 0.06 17.52 0.030 
10 Total taxa richness -3.5 1.12 6.12 0.020 
30   11.8 3.71 8.18 0.030 
90 Diversity -0.4 0.09 8.74 0.010 
30 EPT Rel. Abund. -12.7 2.78 15.96 0.030 
10 EPT taxa richness -2.7 0.33 7.07 0.020 
115   -1.0 0.71 6.01 0.050 
30  Hydrachnidia -5.2 5.85 4.50 0.030 
30 Psychoda -4.7 6.74 4.35 0.030 
115   1.6 1.21 2.77 0.040 
75 Claudioperla* -1.3 0.51 3.87 0.030 

RUN 

75 Density -21,997.8 11,671.41 9.42 0.030 
115   -7,403.3 3,228.87 14.37 0.000 
115 Total taxa richness -2.8 1.19 7.75 0.030 
115 Orthocladiinae 8.6 6.49 5.27 0.030 

* Taxonomic groups belonging to the EPT orders. 
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ANNEXES 

 

Annex A. Main physical characteristics of the four studied streams (S1, S2, S3 and S4). 

 

Annex B. Presence of taxa as a function of the studied mesohabitats and streams (S1, S2, S3 and 

S4). 

 

Annex C. Beta coefficients (β) of the multiple regression analysis using the hydrological indices 

as independent variables and the community metrics as dependent variables, as a function of the 

mesohabitats. The sample sizes were: N = 141 in the pool mesohabitats; N = 144 in the run 

mesohabitats; and N = 76 in the riffle mesohabitats. The metrics that are listed have an associated 

significance probability p ≤ 0.05. 

 

Annex D. Beta coefficients (β) of the multiple regression analysis using the hydrological indices 

as independent variables and the relative abundance of the 10 most dominant macroinvertebrate 

taxa as dependent variables, as a function of the mesohabitats. The sample sizes were: N = 141 in 

the pool mesohabitats; N = 144 in the run mesohabitats; and N = 76 in the riffle mesohabitats. 

The taxa that are listed have an associated significance probability p ≤ 0.05. 

 


