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i 

ABSTRACT 

The work presented in this thesis focuses on the use of a forward-looking 

monocular camera to estimate the velocity of a ground vehicle and check the 

accuracy of its measurements. The proposed method processes the recorded 

video with a 2D-to-2D-based visual odometry approach to obtain an estimation 

of the camera pose of one frame with respect to the previous one using the 

information of salient corners on both images. However, the translation vector of 

this estimation is of unit length so a method to obtain the absolute scale has 

been also developed. Points on the road from two consecutive images are 

triangulated to obtain a virtual road plane to then measure the distance from it 

to the virtual camera. With the knowledge of the actual height of the sensor, a 

scale factor is computed and, together with the time between frames, the 

velocity is obtained. These raw measurements are noisy and also have unreal 

velocity peaks produced by the presence of other vehicles on the road, among 

other factors. To resolve this, a limit on the maximum allowed acceleration is set 

and a smoothing step is done. The influence of this threshold has been studied 

and demonstrated to be important when analysing the final results. Good 

estimations are achieved using the proposed methodology, showing that it is 

effective, giving accurate results, especially when the velocities are not too big 

and enough features are on the road. Additionally, it has been tested for 

different spatial and temporal resolutions, showing that their effect on the results 

is not very big, although, in general terms, better results have been obtained for 

the highest resolutions. 
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1 INTRODUCTION 

1.1 Context 

The work presented in this thesis has been done as a part of the MSc 

Autonomous Vehicle Dynamics and Control in Cranfield University and is 

sponsored by RACELOGIC, an English company based in Buckingham and 

dedicated to design, manufacture and sell systems to measure, analyse, display 

and simulate data from moving vehicles, especially racing ones. It also 

develops its own software for vehicle testing and motorsport to analyse the 

recorded telemetry. 

As the thesis title suggests, the main aim of the project is to measure the 

velocity of a UGV, or any other ground vehicle (a regular car has been utilised 

to gather the necessary data), using a forward-looking monocular camera 

placed in the dashboard or, as it was the case in this work, onto the roof of the 

car. The idea is to check whether these sensors can give an accurate estimate 

of the velocity of a vehicle to be used or not in future researches as a 

complementary sensor in a GPS-IMU system (Inertial Navigation System - INS). 

INS is a mature technology that works well, but it has some limitations. GPS 

antennas do not always have direct line of sight with GPS satellites so their 

measurements may be affected by multipath signals or even no measurements 

are done. IMUs can fill those gaps but they have the problem that their 

measurements drift with time leading to inaccurate readings after a while. It is in 

this context where the camera system wants to be utilised in a future to bound 

these errors and obtain a better estimation of the actual vehicle velocity. 

The data recorded by the camera is processed using visual odometry 

techniques, which allows for computing the relative motion of the camera and, 

therefore, of the vehicle, using the motion extracted from video frames. This is 

not the first time velocity has been tried to be measured or estimated using a 

monocular camera but, as it will be discussed later in section 2.2.3, it implies 

several challenges mainly caused by camera uncertainty sources, the lack of 

texture of the road and also by the fact that using a single camera does not give 
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depth information so measurements can only be recovered up to an unknown 

scale factor. In fact, an important part of this work is measuring or estimating 

that factor to get a proper measurement of the velocity. 

Current state of the art techniques for velocity estimation with a camera are 

mainly based on optical flow approaches, that is, analysing the movement of 

every pixel of each frame (or of a part of the frame) to derive the camera 

velocity. However, these methodologies have given results that are noisy or that 

work only under controlled circumstances and slow speeds. That is because 

optical flow approaches greatly rely in the texture of the captured images, 

especially the road/ground texture. In general, roads do not have much texture 

and when increasing the speed of the vehicle the displacements of the pixels 

from one frame to the next one are bigger and bigger so the optical flow 

computation is more likely to fail. 

In this thesis, a different approach has been followed. Instead of using optical 

flow techniques, the velocity has been estimated using salient features 

(corners) that are present in consecutive frames, so the camera pose relative to 

the previous one can be obtained and then scaled using a scale factor 

calculated using a known distance on the scene: the height of the camera. 

1.2 Aims and objectives 

As commented above, the main objective of this thesis is estimating the velocity 

of a ground vehicle using a forward-looking monocular camera. However, it is 

not the only objective of the present work. Below the main goals of the thesis 

are listed: 

• Build an algorithm that allows for estimating the relative motion of the 

camera from one pose to another. 

• Build an algorithm that allows for computing the scale factor necessary to 

know an estimation of the actual movement of the camera. 

• Compute de vehicle velocity with the knowledge of the frame rate and 

the motion of the camera. 
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• Analyse the influence of the feature tracking thresholds in the velocity 

estimation results. 

• Study the influence of spatial resolution in the velocity estimation results. 

• Study the influence of temporal resolution in the velocity estimation 

results. 

1.3 Thesis’ structure 

The rest of the report is structured as follows: 

1. INTRODUCTION 

2. LITERATURE REVIEW: description of the research done to be able to do 

the actual work of building and testing an algorithm for velocity estimation. 

2.1. Digital cameras and image sensors: brief introduction to how a 

camera sensor works, including information about CCD sensors, CMOS 

sensors, Noise on imaging sensors and External uncertainty 

sources. Here, Camera modelling is also explained. 

2.2. Visual Odometry: the topic of visual odometry is introduced here, that 

is, the estimation of the egomotion of a body using on-board cameras. A 

brief historical introduction is done in History, followed by the types of 

existing VO depending on the utilised number of cameras, in Stereo 

and Monocular VO, a review of some works that have faced Velocity 

estimation using visual odometry problems, and finally a classification 

of some Motion estimation techniques using feature-based 

methods, which is the approach followed in this work. 

3. UTILISED HARDWARE TO GATHER THE DATA: This chapter presents 

the hardware that was utilised to record the video and the synchronised 

GPS data as well as the camera modelling parameters. 

3.1. Hardware: brief description of the utilised hardware. 

3.2. Camera modelling: procedure followed to obtain the intrinsic camera 

matrix and the radial distortion coefficients. 

4. ALGORITHM OVERVIEW: in this chapter, the utilised algorithm to estimate 

the velocity is explained. 
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4.1. Pre-processing steps: some pre-processing steps must be done 

before starting with the VO algorithm itself. 

4.2. Motion estimation: 2D-to-2D: explanation of the way the camera pose 

can be estimated with respect to the previous one using a 2D-to-2D 

method. To do so, some steps must be follow: first Feature detection: 

FAST algorithm for corner detection, then Tracking the corner 

features and redetection and finally the Estimation of the essential 

matrix and extraction of R and t from it. 

4.3. Computing the scale factor: due to with a monocular camera the 

absolute scale of its translation cannot be computed directly with the 

above algorithm, here a way to estimate a scale factor is detailed. It 

consists in calculating the distance from the virtual camera to the virtual 

road plane by performing a Road feature detection, tracking and 

triangulation to then Fit a plane to the point cloud and compute the 

scale factor based on the knowledge of the actual camera height. 

5. ANALYSIS OF THE RESULTS: In this chapter, the explained algorithm in 

Chapter 4 is analysed in terms of accuracy of its output measurements. 

5.1. Description of the recorded data: brief description of the utilised video 

and trajectory followed by the car, as well as its subdivision in three 

sections to be independently analysed. 

5.2. Smoothing the raw VO output: explanation of the procedure utilised to 

smooth the raw noisy output of the VO algorithm. It consists in two 

steps: using a Moving average filter and establishing an Acceleration 

limit. 

5.3. Influence of the frame feature tracking threshold: in this section, the 

influence of the defined threshold to redetect corners in the whole frame 

is analysed. 

5.4. Influence of the road feature tracking threshold: in this section, the 

influence of the defined threshold to redetect corners in the road part is 

analysed. 

5.5. Influence of temporal and spatial resolution: in this section, the 

influence of both spatial and temporal resolutions is analysed. 
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6. SUMMARY AND CONCLUSIONS 

6.1. Summary: summary of the thesis work. 

6.2. Conclusions: obtained conclusions of the analysis. 

6.3. Further study: further study that can be carried out. 

1.4 Thesis’ contributions 

The main contributions of this work are in the technical part in terms of software 

development. Although the majority of that software is based in some already 

existing functions, the fact of putting everything together and, more important, 

making it work with good results is the key point in this work. Thus, the main 

contributions can be summarised as follows: 

• Development of the VO MATLAB software to estimate the camera 

movement from frame to frame (section 4.2). 

• Development of the MATLAB software to obtain a scaling factor and get 

a proper estimation of the actual translation vector of the camera from 

frame to frame (section 4.3). 

• Getting good results of the estimated velocities with the developed 

software after smoothing the raw measurements, and studying the 

influence of the threshold that limits the acceleration of the algorithm raw 

output (section 5.2). 

• Analysing the influence of the redetection feature tracking thresholds for 

both the whole frame and only the road, finding that their effect is almost 

non-existent (sections 5.3 and 5.4). 

• Analysing the influence of both the spatial and the temporal resolution in 

the results (section 5.5). 

• Find the limitations of the adopted approach as well as the range of 

applicability (Chapter 5). 
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2 LITERATURE REVIEW 

This chapter is a summary of the research done before beginning the actual 

work for velocity estimation. First of all, a brief introduction to the different 

imaging sensors is done in section 2.1 also including their main sources of 

noise and uncertainty as well as how a camera can be modelled to project 3D 

world points on to the image sensor 2D coordinate system. Then, in section 2.2, 

visual odometry is presented and explained, some works about velocity 

estimation using a camera are also introduced, and the motion estimation 

techniques using feature-based methods are expounded. 

The information collected in section  2.1 is mostly used as an introduction to the 

topic of computer vision. However, sub-section 2.1.5 presents the way a 

camera can be modelled and the found information about this topic is utilised 

later on in section 3.2. 

Section 2.2 introduces the topic of visual odometry and contains information 

about different techniques and the way some of them have been applied to the 

task of velocity estimation. All this knowledge has been useful to develop the 

contents of chapter 4. 

2.1 Digital cameras and image sensors 

Digital cameras are those that utilise digital sensors to capture images instead 

of a photographic film. The images are then stored in the memory of the device. 

Nowadays two main technologies of image sensors exist: CCD and CMOS 

sensors. 

2.1.1 CCD sensors 

The first kind of sensors, the CCD (charge-coupled device) sensors, are 

integrated circuits utilised in digital cameras to record an image. They have lots 

of individual semiconductor capacitors that can transform photons into electron 

charges thanks to the photoelectric effect. 

Sensor are located behind the camera’s lens, which focus the scene in front of it 

onto the sensor. When light falls on it, the capacitors accumulate electric charge 
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proportionally to the number of photos hitting that element, that is, proportionally 

to the light intensity. Then this charge is transferred line by line to its neighbour 

and the last one into an amplifier, converting that charge into a voltage. This 

way, CCD sensors works by shifting the content of each array of pixels to the 

next one obtaining at the end a sequence of voltages that are sampled, 

digitalised and stored in a memory. 

2.1.2 CMOS sensors 

This kind of camera sensors are based in the complementary metal-oxide-

semiconductor (CMOS) technology, which allows integrating more functions into 

a same sensor, such as luminosity control or an Analog-to-Digital Converter. 

These sensors are also based on the photoelectric effect. Each one has 

numerous photodiodes, one per pixel, that generates an electrical current that 

varies depending on the light intensity they receive. The main difference 

between this technology and the CCD is that CMOS sensors have an active 

amplifier for every photodiode that converts the charge into a voltage. 

The main advantages of CMOS sensors compared with CCD is that in general 

the former is cheaper and utilised less energy. CMOS sensors have also a 

better control of blooming and read more pixels simultaneously. However, they 

also have some drawbacks, such as the rolling shutter effect when capturing 

high speed movements caused by the fact that CMOS sensors read a line at a 

time. 

2.1.3 Noise on imaging sensors 

A way to measure the noise in imaging sensors is to measure the Signal-To 

Noise-Ratio (SNR). It is the relative magnitude of the signal compared to the 

uncertainty in that signal on a per-pixel basis, that is, it is the ratio of the 

measured signal to the overall measured noise (frame-to-frame) at that pixel [1]. 

Having this into account, in imaging sensors the objective is not to reduce the 

noise, but to extract a signal from the noise [2] or, what is the same, to have a 

greater value of SNR. Hence, although having a lower signal will provide less 

noise (of the type that increases with signal), it does not mean the information 
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obtained from that image is better than other with a higher signal and, therefore, 

more noise if the latter has a better SNR than the former. The main sources of 

noise in image systems are the ones listed below [1], [2]: 

• Photon noise: it is produced due to the natural variation of the incident 

photon flux into the sensor and increases with the intensity of the signal 

(see Figure 2-1 b). The number of photoelectrons gathered by each pixel 

have a Poisson distribution. 

• Dark noise: it is caused by the thermally generated electrons in the 

sensor, additionally to those generated by the absorption of photons. The 

number of electrons generated per unit of time depends on the 

temperature of the sensor. That is why this kind of noise is also known as 

thermal noise. It also follows a Poisson distribution. Cooling the sensor 

can reduce the dark noise. 

 

Figure 2-1 Image noise. In a) the amplitude of the noise remains constant as the 

signal level changes. In b) the amplitude of the noise increases as the square-

root of the signal level. 

• Read noise: this source of noise is due to electronic sources, 

representing the error introduced when quantifying the electronic signal 

on the sensor [1]. The main contribution to this kind of noise arises from 
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the amplifier and its amplitude does not depend on the light intensity (see 

Figure 2-1 a). Read noise can be reduced by a good design of the 

electronics. 

2.1.4 External uncertainty sources 

Apart from the inherent noise of the camera sensors, of internal nature, there 

also are other external uncertainty sources that does not depend on the camera 

hardware itself but on the recording conditions: 

• Vibrations: sudden and fast movements of the camera may alter the 

readings from the video sequence giving unexpected results due to those 

undesired movements. 

• Scene illumination: regular camera sensors capture visible light so to 

record a scene properly, there must be enough illumination. Sudden 

changes in illumination may affect the readings of the sensors and make, 

for example, some inter-frame tracking methods to have a worse 

performance [3]. 

• Contrast: this characteristic is very important especially if some salient 

features are needed. Images must have enough contrast to distinguish 

them from other regions of the picture, such as the background. 

Cameras have a limited dynamic range what leads to lose information in 

dark areas or in oversaturated backgrounds. 

• Shadows: this is another element that can influence the quality of the 

results of a computer vision application, especially if shadows come from 

moving objects, that is, if shadows are moving. The reason why, is that 

they may be confused with moving objects. 

2.1.5 Camera modelling 

To model the geometry of the camera, the perspective camera model and, in 

particular, the pinhole camera projection system is a well-known model and the 

most utilised for perspective cameras. 

In the pinhole camera model the image plane (grey rectangle in Figure 2-2) is 

assumed to be in front of the optical centre C at a distance f, which is the focal 
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length of the camera, and perpendicular to the optical axis. In addition, the 

optical centre is also the origin of the 3D camera coordinate system. 

 

Figure 2-2 Pinhole camera model with reference systems. In red, the image plane 

reference system, and in black, the 3D camera coordinate system. 

Using this model is easy to obtain the projection of any 3D world point into the 

image plane, taking into account that they are subjected to rigid body motion 

(see [4] for more details), using the next equation 

𝒙 = (
𝑓 0 0
0 𝑓 0
0 0 1

)(
1 0 0 0
0 1 0 0
0 0 1 0

)(

𝑟11 𝑟12 𝑟13 𝑡𝑥
𝑟21 𝑟22 𝑟23 𝑡𝑦
𝑟31 𝑟32 𝑟33 𝑡𝑧
0 0 0 1

)(

𝑋
𝑌
𝑍
1

) (2-1) 

where 𝒙 is the homogeneous coordinates of a point in the image plane, 𝑟𝑖𝑗 and 

𝑡𝑘 are the coefficients of the rotation-translation matrix, and X, Y, Z are the 

homogeneous coordinates of the 3D world point. 

But another transformation is required to obtain a projection of continuous 

points into a discrete reference system: the sensor coordinate system, 

measured in pixels. Following the reference [4], the next projection can be 

obtained: 

𝒖 = (

𝛼 𝑠𝜃 𝑜𝑥

0 𝛽 𝑜𝑦

0 0 1
)(

𝑟11 𝑟12 𝑟13 𝑡𝑥
𝑟21 𝑟22 𝑟23 𝑡𝑦
𝑟31 𝑟32 𝑟33 𝑡𝑧

)(

𝑋
𝑌
𝑍
1

) 

𝒖 = 𝑲 · 𝑾 · 𝑿 

(2-2) 
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where 𝛼 and 𝛽 are the focal lengths in x and y directions, respectively, 

measured in pixels, 𝑠𝜃 is the skewness of the image plane (usually ~ 0), 𝑜𝑥 and 

𝑜𝑦 are the location of the image centre in pixels, and 𝒖 is the sensor 

homogeneous coordinates. 𝑲 is the intrinsic camera matrix and contains the 

necessary information about the camera inner parameters to perform a 

complete perspective imaging transformation using (2-2); and 𝑾 is the matrix 

that contains the extrinsic parameters of the projection. 

The pinhole camera model described so far does not take into account any kind 

of distortion so it is not valid for a regular camera (supposing its lenses distorts 

the final image) unless the images are corrected. Lens distortion is usually a 

complex physical phenomenon that can be modelled with enough accuracy as a 

single-variable polynomial function [4]. The main types of lens distortion are 

pincushion and barrel, both depicted in Figure 2-3. 

 

Figure 2-3 Types of radial distortion compared with a non-distorted image [5]. 

Lens distortion affects the projection before the image-to-sensor transformation 

defined by the intrinsic camera matrix is applied [4]. Hence, a way to correct it is 

modifying the image plane coordinates before multiplying them by the intrinsic 

camera matrix. To do so, a radial distortion model is utilised, because it is the 

most common model used for correcting lens distortions: 

𝑥𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑒𝑑 = 𝑥(1 + 𝑘1 · 𝑟2 + 𝑘2 · 𝑟4) 

𝑦𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑒𝑑 = 𝑦(1 + 𝑘1 · 𝑟2 + 𝑘2 · 𝑟4) 

(2-3) 

where 
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𝑟2 = 𝑥2 + 𝑦2 

2.2 Visual Odometry 

According to [6], visual odometry (VO) can be defined as “the process of 

estimating the egomotion of an agent using only the input of a single or multiple 

cameras attached to it”. This term was given for its similarity to wheel odometry, 

which consists in the estimation of the motion of a vehicle by integrating the 

number of times the wheels spin. Nister was the one that helped to use this 

terminology thanks to its famous paper about VO [7]. Hence, once the 

egomotion of the vehicle has been recovered using cameras, it is also possible 

to obtain its velocity if the time between the images is known. Even with the 

knowledge of only the relative motion of the camera between two consecutive 

frames, a velocity estimation can be obtained, without the need of computing 

the whole vehicle trajectory. 

VO works in a similar way than wheel odometry but using images instead. The 

idea is to estimate the pose of the vehicle, in an incremental way, by studying 

the changes on the images, taken with the on-board cameras, produced by the 

movement of the agent. In order to do that, the imagery gathered by the 

cameras must be good enough, that is, it must be enough static scene 

sufficiently illuminated and with sufficient texture [6]. The reason for this is to be 

able to extract apparent motion. An additional requirement to make VO work 

properly is to have enough scene overlap from one image to another so 

common features can be identified in both. 

2.2.1 History 

VO is a particular case of what in computer vision is known as structure from 

motion (SFM), which consists in recovering the relative camera pose and 3D 

structure from a set of images [6]. SFM is a technique utilised since the 1980s 

in works such as [8] and [9], and is more general that VO as it solves the 

problem of reconstructing in three dimensions both the camera poses and the 

structure [6]. VO, however, focuses only in the 3D motion estimation of the 

camera. 
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The first researches in the field of visual odometry were made for planetary 

rovers also in the 1980s and 1990s, such as the one of Moravec [10] and the 

one of Lacroix et al [11]. In the former, for example, a computer utilises the 

information gathered with a slider stereo1 to plan an obstacle avoidance path to 

a certain destination. The system was reliable in the short term but it needs time 

to process the data, moving only one meter every ten minutes [10]. This work 

presented the baseline for VO, whose main ideas are still in use nowadays. 

2.2.2 Stereo and Monocular VO 

Stereo VO is the one that uses two cameras to compute the relative 3D position 

of the detected features directly by triangulation and then derive the relative 

motion [6]. Hence, the methodologies utilised by Moravec in [10] belongs to this 

group due to the pictures were taken from different perspectives, sliding the 

camera, but being the vehicle in the same place. 

In general, in stereo VO works the relative motion is computed in a 3D-to-3D 

basis, triangulating points for every stereo pair. Nister et al [7] improved those 

implementations changing some parts. Instead of tracking the features, they 

detect them independently in every frame and search for matches between 

them. They also set the problem as 3D-to-2D to estimate the relative motion of 

the camera. And finally, they also included RANSAC (Random Sample 

Consensus) outlier rejection algorithm in the motion estimation step [6]. 

On the other hand, it is the monocular VO. In this case only one camera is 

utilised. Its main disadvantages are that only bearing information is available 

and motion can only be recovered up to a scale factor [6]. The absolute scale 

can be determined by fusing it with other sensors, such as wheel odometry or 

IMUs, or by knowing the size of an element in the scene. The importance of 

monocular VO is that stereo VO degenerates to a monocular case when 

distances are much bigger than the one utilised as the baseline [6], typically the 

                                              

1 A slider stereo is a term utilised in [5] to refer to a single camera moving on a 
rail. 
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distance between both cameras. Hence, in this situation monocular methods 

are needed. 

According to [6], monocular VO works can be classified into three categories: 

• Feature-based methods. The main idea in works of this group, such as in 

[7], [12], is to detect and track salient features from frame to frame. The 

RANSAC method along with the five-point minimal solver, introduced in 

[13], are utilised in these and many other publications for outlier rejection 

and also for 3D-to-2D camera-pose estimation. 

• Appearance-based methods. The intensity information of all the pixels, or 

of a subregion of the image, is utilised to estimate the motion. Into this 

group, works that utilised optical flow are included, such as [14], [15] or 

[16]. The last one utilised optical flow only to estimate the velocity of a 

car. 

• Hybrid methods. These approaches are a combination of the other two. 

One of the main drawbacks of appearance-based methods is that they are not 

robust to occlusions [6] and also the computation of the optical flow over an 

entire image is computationally expensive [6], [15]. In general, they are less 

accurate than feature-based methods [6]. However, they have been utilised 

widely in monocular VO works because they are easier to implement than 

feature-based methods when compared with the stereo camera case [6]. But 

feature-based methods usually are faster and more accurate, being the most 

utilised approach in VO. 

2.2.3 Velocity estimation using visual odometry 

The main aim of this project is to make an estimation of the actual velocity of a 

car using a monocular camera. This is why, in this subsection, some works that 

do this are presented. 

To begin with, in [17] the authors present an algorithm to measure the velocity 

of on-road cars using a monocular camera detecting the relative motion of the 

road in front of the vehicle with respect to itself (Figure 2-4). But some 

assumptions and restrictions were made. It was developed to work only on 
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straight roads on a flat terrain and the road must have some distinctive 

landmarks (lane markers, edges of the road, etc.) in order to identify the road. 

The authors utilised three methods to compute the relative motion, two of them 

from the feature-based methods (feature matching and feature tracking) and the 

other one based on optical flow. The latter was the one that had the worst 

performance, mainly because of the lack of texture of the road. However, the 

final results with the other approaches were not very good either as they were 

noisy and did not follow well the actual velocity of the car. 

 

Figure 2-4 Representation of the ROI within the image [17]. 

The authors of [18] utilised a method based on optical flow techniques to 

estimate de velocity of a UGV with a camera located underneath its body 

pointing towards the ground, as shown in Figure 2-5. It was validated over 

several kinds of terrain surfaces, having good results when compared with 

actual velocities. However, the tested speeds were quite small (around 0.2 

km/h) to be useful in a real car moving much faster. One of the main 

parameters they had into account was the distance between the camera 

projection centre and the ground, since it greatly influenced the final results. 

Finally, a special mention is given to the work presented in [16], since it is the 

past year’s thesis about this topic. It utilised a fusion algorithm of data from IMU 

readings and a forward-looking monocular camera to estimate the velocity of a 

car. The latter data was processed using VO and, in particular, using the 

Farnebäck optical flow algorithm in order to extract the velocity of the vehicle by 
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estimating the velocity of each pixel and then filtering out the outliers. The 

proposed method worked well when the outputs of both sensors were 

combined, but the results obtained only with VO were quite noisy, although they 

follow a similar trend as the ground truth. 

 

Figure 2-5 Camera and terrain surface [18]. 

The aim of this thesis is to obtain an estimation of the velocity of a vehicle, but a 

different approach has been utilised. Instead of using optical flow as the works 

presented above, the methodology has consisted in using a feature-based 

method to not compute the movement of every single pixel, but of some salient 

features of the scene. Then, the movement of the camera can be estimated 

and, knowing the frame rate at which each image has been taken, the velocity 

can be computed. 

2.2.4 Motion estimation techniques using feature-based methods 

In a VO system, the motion estimation of the camera and, hence, of the vehicle 

(if the camera is rigidly mounted), using an image-pair is the most important 

step as it gives an estimate of how the camera has moved in the 3D world. 

Once this is known, its full trajectory can be obtained by concatenating every 

single movement, although, for velocity estimation only the individual camera 

movements are necessary. 
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In order to recover the camera pose of one frame with respect to the camera 

pose of the previous one using feature-based methods, different techniques 

exist: 

• 2D-to-2D: in this case the corresponding features of both frames are 

specified in 2D image coordinates. 

• 3D-to-2D: the features extracted from the previous frame are in 3D and 

the ones of the current frame are the reprojections of those 3D points 

into the current image. In the monocular case, at least three different 

images from different camera poses are necessary because the 3D 

structure is obtained by triangulating points from two adjacent views and 

then matched to 2D image features in a third view [6]. 

• 3D-to-3D: using this methodology implies both the features from one time 

and the previous one are in 3D. This is only possible in the stereo case 

[6]. 

Features can be lines or points but, in general, in VO point features are usually 

utilised due to the fact that are more common in unstructured scenes [6] and 

also because their position in the image can be measured precisely [19]. They 

can be either blobs (image patterns that differ in terms of colour, intensity… 

from its neighbourhood) or corners (point at the intersection of two or more 

edges). 

In order to detect those salient point features, different feature detectors exist, 

each of them with different properties and ways to find the features. But in 

general, the important properties they should have to be considered as good 

feature detectors, according to [19] are: 

• Localization accuracy. 

• Repeatability, so a large number of features can also be detected in 

next frames. 

• Computational efficiency. 

• Robustness to noise, compression artefacts, etc. 

• Distinctiveness, to accurately match features between frames. 
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• Invariance to geometric and photometric changes. 

In general, corner detectors, such as FAST, Harris or Moravec, are faster than 

blob detectors (SIFT or SURF, for instance) whereas the latter are more 

distinctive. However, the choice of one or another depends on several factors 

such as the time and computational constraints or the environment in which the 

VO algorithm is working. For example, in [19] is pointed out that for urban 

environments SIFT does not take into account corners and they are very 

abundant on those scenarios. 

From now on, when referring to features in this report, it will be referring to point 

features (and, as it will be explained in section 4.2.1, to corner features), unless 

it is clarified another kind of feature has been used. 

2.3 Conclusions of the literature review 

Estimation of velocity using a monocular camera requires the use of image 

processing and computer vision techniques to be applied to the direct output of 

that device. However, as any other sensor, images sensors have some noise 

and uncertainty sources that may affect the quality of the imagery in terms of 

extract valuable information from it. Hence, in order to be able to process the 

video to obtain a measure of the velocity of a vehicle, it is necessary to have a 

scene sufficiently illuminated and static with enough texture. 

The camera must be modelled to allow for knowing the equivalence of the 

position of a point in the real 3D world to its projection in the image sensor 

plane in 2D. To do so, the pinhole camera model is a good option because it is 

a well-known camera model and lens distortion can be corrected without 

changing the model itself. 

VO allows for estimating the egomotion of a vehicle and is the way to proceed 

to obtain the velocity of a car, as it is the case in this work. There are different 

techniques of VO but the ones that have been already utilised for velocity 

estimation are based on optical flow. However, these methodologies have given 

results that are noisy or that work only under controlled circumstances and slow 

speeds, mainly because they rely in in the texture of the captured images, 
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especially the road/ground texture, and they need small motion between frames 

to compute correctly that flow. 

For this reason, a different approach has been utilised in this work. The followed 

methodology has consisted in using a feature-based VO method to compute 

only some salient features on the scene and then estimate the motion of the 

camera and measure how much it has been moved per unit time. 
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3 UTILISED HARDWARE TO GATHER THE DATA 

This chapter presents in the first place the hardware that was utilised to record 

the video and the synchronised GPS data. In section 3.1 the utilised hardware 

is presented and described and in section 3.2 the intrinsic camera matrix and 

the coefficients necessary to undistort the images are obtained. 

3.1 Hardware 

The utilised camera in this project has been the one that comes with the video 

data logger VBOX Video HD2 of RACELOGIC, shown in Figure 3-1. This 

system has two individual wide-angle cameras (only one has been used), both 

with the same technical specifications, and a GPS logging unit, which in this 

project has been utilised only to obtain the GPS velocity. Both data, video and 

GPS velocity, are time-synchronised. 

The main technical characteristics for this system are displayed in Table 3-1 

and Table 3-2. Finally, it is important to mention that the camera was firmly 

attached onto the roof of the car at a height of 1.46 m above the ground, since 

this distance is necessary to compute a scale factor (explained in 4.3). 

Clarify that the data utilised as ground truth is the one provided by the GPS unit. 

The measured velocity is only from the GPS (it is not fused with any other 

measurement device) and its accuracy would probably be less than the one 

specified on Table 3-2 since the test section where the data was gathered has 

trees, buildings and other elements that may affect the measurements. 

 

Figure 3-1 VBOX Video HD2 video data logger of RACELOGIC Ltd [20]. 
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Table 3-1 Technical specifications of the camera [20]. 

Resolution 1920 x 1080 pixels 

Frame rate 30 fps 

Focal length 1.97 mm 

Pixel size 2.8 μm x 2.8 μm 

Table 3-2 Technical specifications of the GPS logger [20]. 

Frequency of 

data logging 
10 Hz 

Accuracy 0.1 km/h 

Resolution 0.01 km/h 

3.2 Camera modelling parameters 

Both the intrinsic parameters and the radial distortion coefficients can be 

computed easily using already developed MATLAB functions, that is, doing a 

calibration process taking some especial pictures of a known pattern. However, 

the idea in this project is to not depend on external calibration processes as 

much as possible. That is why the unknown parameters has not been obtained 

this way but using the known technical specifications of the camera provided by 

RACELOGIC. 

3.2.1 Intrinsic camera matrix 

Using the data in Table 3-1 all coefficients of the intrinsic matrix (see eq. (2-2)) 

can be obtained. 𝛼 and 𝛽, the focal lengths in pixels, are considered to be the 

same. The can be obtained as follows 

𝛼 = 𝛽 =
𝑓

𝑃𝑖𝑥𝑒𝑙 𝑠𝑖𝑧𝑒
=

1.97 𝑚𝑚

2.8 · 10−3 𝑚𝑚/𝑝𝑖𝑥𝑒𝑙 
= 703.57 𝑝𝑖𝑥𝑒𝑙𝑠 (3-1) 

As the skewness is usually zero or very small, it has been assumed zero. 
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Finally, the position of the image centre in pixels has been set as half of both 

image dimensions: 

𝑜𝑥 =
𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ

2
= 960 𝑝𝑖𝑥𝑒𝑙𝑠 

𝑜𝑦 =
𝑉𝑒𝑟𝑡𝑖𝑐𝑙𝑎 𝑙𝑒𝑛𝑔𝑡ℎ

2
= 540 𝑝𝑖𝑥𝑒𝑙𝑠 

(3-2) 

Hence, the intrinsic camera matrix is 

𝑲 = [
703.57 0 960

0 703.57 540
0 0 1

] (3-3) 

However, it is important to emphasise that this intrinsic matrix is only valid when 

using the original video resolution, that is, Full HD. If the spatial resolution is 

downsampled, both the focal lengths and the position of the image centre will 

vary. The latter is quite straightforward to be calculated. If a scale factor s is 

defined (being s a value between 0 and 1), the position of the image centre will 

be 

𝑜′𝑥 = 𝑜𝑥 · 𝑠 

𝑜′𝑦 = 𝑜𝑦 · 𝑠 

(3-4) 

The same applies to the focal length since they form similar triangles (see 

Figure 3-2): 

𝑓′ = 𝑓 · 𝑠 (3-5) 

 

Figure 3-2 2D geometry of the focal length and image plane when the size of 

each frame is downsampled to a lower spatial resolution. 
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3.2.2 Radial distortion coefficients 

As commented in the description of the camera, it has a wide-angle lens that 

allows to capture more scene but at the cost of a big image distortion, as shown 

in Figure 3-3. 

 

Figure 3-3 Frame from the first seconds of the video. A big barrel distortion 

caused by the wide-angle lens can be appreciated. 

In this case it is a radial distortion, which occurs when light rays bend more near 

the edges of a lens than they do at its optical centre [5], and, in particular, it is 

barrel distortion (see Figure 2-3), typical from wide-angle lenses [4]. 

Obtaining the radial distortion coefficients has been made by trial and error, 

thanks to the first minute of video where the car is located in a car park with car 

park markings that are straight lines, as shown in the satellite image of Figure 

3-4. Because of the wide-angle lens, they appear to be curved in the footage 

(Figure 3-3 and Figure 3-5 left), so the parameters 𝑘1 and 𝑘2 from equation 

(2-3) have been chosen to straighten those lines. 

To do so, first of all the intrinsic camera matrix was defined in MATLAB using 

the command cameraParameters, since it is needed to use the command 

undistortImage. Two arbitrary numbers were also included in this MATLAB 

object as values for 𝑘1 and 𝑘2 based on values from other wide-angle cameras 

from [21]. 
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Figure 3-4 Satellite image of the car park with its car park markings where the 

motion of the vehicle starts in the video. (Photo courtesy of Apple Maps ⓒ 2012-

2016 Apple Inc.) 

 

Figure 3-5 Comparison of the original footage (in greyscale) with the images 

distorted (left images) and the same frames after the lens distortion correction 

(right images). The red straight lines have been added to these frames to make 

easier the comparative. 

Once the object was created, 𝑘1 and 𝑘2 were varied until a good result was 

obtained using undistortImage, shown in the right images in Figure 3-5. The 

obtained values are the next ones: 
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𝑘1 = −0.156 

𝑘2 = 0.013 

3.3 Conclusions 

Synchronised GPS and video data has been provided by RACELOGIC at 

different rates, 10 and 30 Hz respectively, that must be resampled in order to 

have a measurement of GPS for each frame of the video. 

A very important part of every computer vision problem is calibrating the camera 

to know the equivalence of the position of a point in the real 3D world to its 

position in the image sensor plane in 2D. To do so, the parameters that define 

the intrinsic camera matrix and the radial distortion model have not been 

obtained using a standard calibration processes but getting them from the 

hardware specifications and, in the case of the distortion model, by trial and 

error of different values until a good correction was obtained. 
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4 ALGORITHM OVERVIEW 

As explained in the section 2.2 Visual Odometry of the literature review, a 

camera can be used to estimate de egomotion of a vehicle and also its velocity. 

From the different feature-based methods that exists for VO (mentioned in 

section 2.2.4), in this project the 2D-to-2D approach has been selected due to 

the next reasons: 

• The available video data is from only one camera (monocular scheme). 

Thus, the 3D-to-3D is immediately discarded. 

• As it is mentioned in [6], the 2D-to-2D approach is better than the 3D-to-

2D case, mainly because the former does not need to triangulate points 

from the whole scene as the latter does. This triangulation step is the 

main challenge of this method because consistency and accuracy must 

be maintained for every set of triangulated points as well as the creation 

of 3D-to-2D matches for at least three consecutive views [6]. However, 

as it will be explained later on, a triangulation step has been included in 

the final 2D-to-2D algorithm, but only to compute the road plane in order 

to obtain the absolute scale of each movement and, hence, a proper 

estimation of the velocity. 

In Figure 4-1 a diagram of the main part of the algorithm is shown. First of all, 

the left branch is explained (section 4.2) and corresponds to the VO itself where 

features are detected in one frame to then be tracked to the next frames to 

compute the relative pose between them. When the number of features falls 

below a threshold, a redetection step is executed (it is not shown in the 

diagram). The right branch corresponds to the scale factor computation to 

obtain a real measurement of the displacement of the camera and is explained 

in section 4.3. But before those two sub-chapters, the pre-processing steps that 

have been done are presented in section 4.1. 
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Figure 4-1 Diagram of the core of the utilised VO algorithm. 

4.1 Pre-processing steps 

Before running the VO algorithm, some previous steps need to be done: 

1. Convert the original RGB video frames (image a in Figure 4-2) to 

greyscale (image b in Figure 4-2), because the feature detector and 

tracker that will be utilised later work only with greyscale images. 

2. Correct lens distortion of each video frame (image c in Figure 4-2), using 

the radial distortion coefficients obtained in the section 3.2.2, using the 

MATLAB command undistortImage. 

3. Rotate the image (image d in Figure 4-2). As it can be seen in the zoom 

of image c, the lamppost, which is a completely vertical object in an 

urban environment and is located in the centre of the image, is not 

vertical. This means that the camera is tilted a certain angle around its 

longitudinal axis resulting in a video that is rotated. That is why this step 

is necessary, to eliminate this rotation (that will cause the fitted plane, 

explained in section 4.3.2, to have an extra rotation and difficult its 

computation). The angle of rotation is 7º anticlockwise. 

4. Downsample the spatial resolution if necessary. 
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5. Downsample the temporal resolution (frame rate) if necessary. 

 

Figure 4-2 Pre-processing steps: a) Original frame (RGB); b) Greyscale frame; c) 

Undistorted frame; d) Rotated frame. The two bottom zooms highlight the 

inclination of the lamppost in image c) and the rotation correction in image d). 

4.2 Motion estimation: 2D-to-2D 

In this section, the left branch of the diagram of Figure 4-1 is explained step by 

step: 

1. Detect corner features on frame i (section 4.2.1). 

2. Track features to frame i+1 (section 4.2.2). 

3. Compute essential matrix for that frame pair (section 4.2.3). 
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4. Extract the relative camera pose from the essential matrix (section 4.2.3). 

5. If number of features: 

a. < threshold, go to step 1 

b. > threshold, go to step 2 

4.2.1 Feature detection: FAST algorithm for corner detection 

In section 2.2.4 a brief introduction to some point detectors was made. Here, 

one of them is chosen and explained. 

Table 4-1 Comparison of feature detectors: properties and performance [19]. 

 

As mentioned in that section, point detectors can be either for detecting corners 

of blobs. The former is faster whereas the latter are more distinctive, that is, 

they are accurately matched better between frames. Additionally, as it can be 

seen in Table 4-1, where some point detectors are compared, blob detectors 

have more repeatability and are more robust. However, point features will not 

be redetected in each frame but they will be tracked from frame to frame (see 

section 4.2.2), so properties such as repeatability are not very important in this 

case. This, together with the fact that blob detectors are less accurate in terms 

of localization, allows to discard blob detectors. Then, regarding the corner 

detectors, the FAST algorithm has been chosen mainly because it is scale 

invariant and it is the most efficient one (although the final VO algorithm is not 

thought to work in real time, it will help to obtain results quickly). Moreover, the 

FAST corner detector has been used in VO applications such as in [22], [23] 
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and [24] with good results and, as it will be shown later on in this report, the 

obtained velocities using FAST corner detector in the developed algorithm are 

close to the ground truth. 

4.2.1.1 FAST corner detector 

The way FAST (Features from Accelerated Segment Test) corner detector 

works is quite simple. Basically, what it does is analyse the intensities of sixteen 

pixels around a corner candidate p (shown in Figure 4-3). First of all, the 

algorithm selects possible corner candidates and rejects those that are not. To 

do so, the intensities of four of those pixels, 1, 5, 9 and 13, are compared with 

the one of p. If three of them are brighter than p plus a threshold, or darker than 

p minus a threshold it will be considered as a candidate [25]. Then, for the 

candidate points, if the intensities of 12 contiguous pixels of the circle are above 

or below the one of p by some threshold, then the candidate point p will be 

considered as a corner [25]. 

 

Figure 4-3 Example of the 12-point segment test corner detection used in FAST. 

The red squares represent the pixels utilised in the corner detection, being p the 

centre of the possible corner [25]. 

In MATLAB, this is implemented with the function detectFASTFeatures included 

in the Computer Vision System Toolbox. It receives as input an image, in this 

case each video frame, and also some other arguments to be defined: 

• MinQuality – this parameter defines the minimum quality of the corners. It 

“represents a fraction of the maximum corner metric value in the image” 

[26]. 
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• MinContrast – It is utilised to specify the minimum difference between the 

intensity of the corner and its surroundings [26]. 

• ROI – Region of interest where corners must be detected. 

The first two arguments have a strong influence in the number of features 

detected. For both of them, the greater they are (maximum 1) the less corners 

are found on an image. That is why their values have not been chosen to be 

very big. In fact, a value for MinContrast as low as 0.2 (with MinQuality by 

default, that is, 0.1) returns much less features than 0.1, 247 compared with 

2364 corners (see Figure 4-4 and Figure 4-5 as example). Moreover, for values 

equal or bigger than 0.3, the VO algorithm failed because at some points of the 

video there were not enough points to reliably estimate the essential matrix 

(explained in section 4.2.3). That is why MinQuality has been left with its 

default value, 0.1, and MinContrast as 0.05, to have a good quantity of corners 

to estimate the essential matrix. 

Then, another thing that has been made is something that is known as 

bucketing, which consists in dividing the image in several individual zones 

creating a grid, using the ROI parameter, to detect the corners separately in 

each zone. This is done to obtain a more uniform distribution of the features, 

because using the feature detector directly over the entire image would 

probably give zones with plenty of corners whereas other areas would have 

almost no features. Additionally, ROIs have been defined only on the top half of 

each frame to avoid detecting features on the bonnet that would give erroneous 

readings due to reflections. 

Finally, from the found corners, only the 70 with the strongest metric, their 

quality, from each bucket are utilised for the next step. This is done using the 

MATLAB command cornerPoints.selectStrongest where cornerPoints is the 

output of detectFASTFeatures. So, because in the bucketing part a grid of 10x5 

(wide x high) buckets is utilised, the maximum number of features per frame is 

be 3500 corners. 



 

47 

 

Figure 4-4 Detected corners (red crosses) in a frame of the video with the FAST 

feature detector configured as follows: Minimum quality = 0.1, Minimum Contrast 

= 0.2 and ROI = upper half of the image. Total detected corners = 247. 

 

Figure 4-5 Detected corners (red crosses) in a frame of the video with the FAST 

feature detector configured as follows: Minimum quality = 0.1, Minimum Contrast 

= 0.2 and ROI = upper half of the image. Total detected corners = 2364. 
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4.2.2 Tracking the corner features and redetection 

Once a set of corners has been detected in one frame, the next step is to know 

their correspondences in the next image. To do so, two different approached 

can be used: feature matching and feature tracking. 

The first approach consists in detect salient features in each frame to then find 

correspondences between the two sets by comparing all feature descriptors of 

one image with all of the other. Sometimes one feature from the second frame 

may have two or more good matches with features of the first one. To solve this 

problem mutual consistency check is utilised. 

Tracking features, on the other hand, works differently. Corners are only 

detected in the first frame and then correspondences in the next frames are 

searched based on the previous ones. This approach works well in VO 

applications when the motion from one image to the next one is not very big 

[19], as it is the case in this project. The recorded video has a frame rate of 30 

fps, which means that at the highest speed the car was driven during the 

recording, 75.38 km/h, the distance travelled between frames is only 0.69 m. 

Hence, for slower velocities this distance is shorter. If the temporal resolution is 

downsampled to 15 fps, for example, the maximum distance between frames 

would be 1.39 m. It may appear a big distance, but it is what the camera moves 

and not what the features will move in the images. Points closer to the camera 

will move a bigger distance than those situated far away. However, as it will be 

seen in 5 ANALYSIS OF THE RESULTS, the results of the part of the video 

where those high speeds are reached are not very good. Nevertheless, on the 

rest of the footage it has work reasonably well. 

In addition, this approach has been demonstrated to be valid in VO in the 

implementation done in [22] with a video of only 5 fps. Then in [27] a 

comparative between feature matching and tracking for vision-based navigation 

was done, revealing that the tracker gives better results than other feature 

matching options in aspects as ratio of successfully localized features and 

smaller reprojection errors. Hence, the utilised methodology in this project will 

be tracking the features detected on one frame. 
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In particular, the tracker utilised in [22] and [27] was the known as Kanade-

Lucas-Tomasi (KLT) tracker, which is also mentioned in [19] as a good option 

for tracking features since it applies an affine-distortion model to them in order 

to take into account the changes in their appearance over long image 

sequences. KLT algorithm uses spatial intensity information to lead the search 

for the position (of a feature) that gives the best match. It examines fewer 

potential matches between the images than other trackers, what makes it a fast 

option when compared with other methods. 

The KLT feature-tracking algorithm is included in the Computer Vision System 

Toolbox of MATLAB in the form of a system object called vision.PointTracker 

[28]. It works as follows: 

1. Create the point tracker object using vision.PointTracker. This function 

also allows to include more properties about the point tracker that are 

briefly explained in section 4.2.2.1. 

2. Initialise the point tracker object using the command initialize. To do so, a 

video frame is necessary. It will be the first one of the video to be 

processed (or another one if the number of tracked features drops below 

a certain threshold, explained in section 4.2.2.2). It is also necessary the 

initial location of the point features (extracted from the mentioned frame 

with the FAST corner detector). 

3. Use the step method to track the previously initialised points to 

successive frames. The inputs to this function must be the point tracker 

object and the next frame. As outputs, the tracked points will be obtained 

together with a logical array, point_validity, containing the information of 

which of the tracked points have been reliably tracked. Due to several 

reasons, a point can be lost, such as it goes outside the frame, it is 

occluded or its maximum bidirectional error is greater than a threshold, 

for instance. 

4. Repeat 3 until the number of tracked features drops below a certain 

threshold.  Then, go to 2. 
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4.2.2.1 Properties of the KLT tracker MATLAB function 

The properties that can be set for the point tracker are the next ones: 

• NumPyramidLevels – This parameter represents the number of pyramid 

levels. The MATLAB implementation of KLT uses image pyramids, which 

are reduced resolution copies of the actual frame that allows the 

algorithm to track points at multiple levels of resolution, beginning with 

the lowest one [28]. The bigger the number of levels, the larger 

displacements could be tracked but at the cost of more computation 

resources. It has been left as default, that is, with a value of 3. 

• MaxBidirectionalError – Threshold for a forward-backward error. Its value 

represents the distance from the original position of a point in frame i-1 to 

its final location after tracking backwards from frame i to the frame i-1 

(see Figure 4-6). It has been fixed to 1 pixel. 

• BlockSize – It defines the size of the area, called neighbourhood, where 

the spatial gradient matrix is computed. It has been left as default, that is, 

with a value of [31 31]. 

• MaxIterations – Maximum number of search iterations for each point. It 

has been left as default, that is, with a value of 30 since, according to 

[28], the algorithm typically converges within 10 iterations. 

 

Figure 4-6 Diagram showing the definition of bidirectional error [28]. 

4.2.2.2 Feature redetection 

As mentioned above, when corners are tracked along video frames, they may 

disappear from one frame to another, especially if the camera is moving. Thus, 

there will be a moment in which all of them would disappear and no camera 

pose or velocity could be estimated. This is why they need to be redetected 

from time to time to maintain a minimum number of corners, that is, a threshold 
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is needed, which will be called frame feature tracking threshold (frame threshold 

for short). In section 5.3 the influence of this parameter is analysed and, based 

on the results, a frame feature threshold is chosen. 

4.2.3 Estimation of the essential matrix and extraction of R and t 

from it 

Let’s call [𝐼|0] and [𝑅|𝑡] to the extrinsic camera matrices of two consecutive 

frames where the former is the first view (placed at the origin and with a rotation 

matrix equal to the identity) and the latter the second view (where R is the 

rotation matrix and t the translation vector, both with respect to the first view). 

The camera matrices of those two images will be 

𝑃1 = 𝐾[𝐼|0] 

𝑃2 = 𝐾[𝑅|𝑡] 

(4-1) 

Knowing this, the essential matrix describes the geometric relations between 

two adjacent frames taken with a calibrated camera up to an unknown scale 

factor for the translation vector [6]: 

𝐸 ⋍ �̂�𝑘𝑅𝑘 (4-2) 

where ⋍ means the equivalence is true up to a scale factor and 

�̂�𝑘 = [

0 −𝑡𝑧 𝑡𝑦
𝑡𝑧 0 −𝑡𝑥

−𝑡𝑦 𝑡𝑥 0
] (4-3) 

Because the camera is calibrated, an important characteristic of 2D-to-2D 

motion estimation, the epipolar constraint (depicted in Figure 4-7), can be 

expressed as [6], [13] 

𝑝′𝑇𝐸𝑝 = 0 (4-4) 

Where p is the location of a feature in one image and p’ is the location of the 

same feature in another frame. Hence, knowing the 2D-to-2D correspondences 

between features of two different frames and using the above constraint the 

essential matrix can be obtained [6]. 
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Figure 4-7 Illustration of the epipolar constraint [6]. 

There is an algorithm, called the five-point algorithm, that solve this problem. 

The implementation proposed by Nister [13] is the most utilised when there are 

outliers in the problem and is already implemented on MATLAB with the 

function estimateEssentialMatrix. Presence of outliers is due to several factors 

such as wrong matching/tracking of the features, occlusion of some of them, 

changes in the scene properties (illumination, contrast, etc.), etc. In order to 

overcome this problem, together with the five-point algorithm, the outlier 

removal known as RANSAC is utilised [13], also implemented in the function 

estimateEssentialMatrix. 

RANSAC is an iterative method utilised to obtain the parameters of a 

mathematical model from a group of observations, the image corners in this 

case, with the presence of outliers. What RANSAC does is selecting random 

subsets of observations to then compute the model hypothesis with them [19]. 

After that, the hypotheses are checked with the rest of the points until one of 

them shows a high level of consistency with the model. Outliers will be those 

points that do not fit the model [19]. 

The estimateEssentialMatrix function needs as inputs the position, on both 

frames, of the points that have been successfully tracked from one frame to 

another, and the camera parameters. 

Once the essential matrix has been computed, both the rotation matrix R and 

the translation vector t can be extracted: 
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𝑅 = 𝑈𝑊𝑇𝑉𝑇 (4-5) 

�̂� = 𝑈𝑊𝑆𝑈𝑇 (4-6) 

where 𝑈,  𝑆 and 𝑉𝑇 come from the singular value decomposition (SVD) of E and 

W is 

𝑊 ≡ [
0 ±1 0

∓1 0 0
0 0 1

] 

To determine the ambiguities of this problem, it is necessary to assume the first 

camera matrix as [𝐼|0] and a translation vector t of unit length [13]. Four 

different solutions are obtained and the correct one can be found by 

triangulating one point that must satisfy the cheirality constraint, that is, the 

point should be in front of both cameras [13]. In MATLAB, the recovery of R and 

t is implemented in the function relativeCameraPose, which needs as inputs the 

essential matrix, the camera parameters and the inlier points that were utilised 

to compute the essential matrix (these are returned by the function 

estimateEssentialMatrix). 

4.3 Computing the scale factor 

This section explains the right branch of the diagram of Figure 4-1, which depict 

the core of the developed VO algorithm. A more detailed diagram of only this 

branch is shown in Figure 4-9. 

The 2D-to-2D motion estimation step gives the relative pose of the camera but 

with the limitation that the translation vector is always of unit length. In order to 

obtain an absolute scale of that movement from one frame to another and, 

therefore, of the car, some additional information is needed. In this scenario, 

GPS data is available but it does not make sense to use it as it is the same data 

utilised as ground truth. On the other hand, IMU data is also provided. However, 

it has not been used for scaling the VO results because the translation vector 

obtained with VO is always of the same length. Hence, to scale it an estimation 

or measurement of the real translation is needed, but using the IMU 
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measurements, or of other sensor, will lead to have VO translation vectors of 

the same magnitude as the IMU readings. Therefore, the only alternative to 

obtain the scale is using a known distance that can be recovered from the 

footage. One option could be using the road markings but there are not always 

and their size can vary from one place to another. Hence, the height of the 

camera has been utilised. This distance is always the same, it is constant. 

So, once the movement of the camera has been estimated, it is necessary to 

compute the road plane (named as virtual road) to obtain the distance from it to 

the virtual camera position and compute the scale factor using the actual height. 

To do it, the next hypothesis has been used: 

• The actual road plane has been considered flat. In the analysed 

scenario, this assumption is quite reasonable as there are not big slopes 

(the difference from the highest and the lowest points is only of about 10 

m, being the total length of the trajectory 1.7 km). 

• The camera is tilted around its X axis a certain angle θ (see Figure 4-8 

left) that is considered constant (angle between the longitudinal camera 

axis, Z, and the road) since the camera is firmly attached to the vehicle. 

 

Figure 4-8 Diagram of the geometry between the camera and the road plane 

where �⃗⃗�  is the normal to the road and 𝜽 the camera inclination angle. On the left, 

actual configuration (considering the road as a horizontal surface). On the right, 

result from road plane estimation (virtual road). 

Due to the second assumption, the virtual road will have a certain slope and will 

not be horizontal, as shown in Figure 4-8 right, because when the camera pose 

is estimated the camera is assumed to be in horizontal position in its reference 

system. 
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The strategy followed to estimate the height of the camera and, therefore, the 

scale factor, is depicted in the diagram of Figure 4-9. Basically, using two 

consecutive camera poses given by the VO part, a set of 3D road points are 

obtained by triangulating the 2D corners of the two associated frames. Then a 

plane is fitted to those points, applying the restriction of the inclination angle θ, 

and the distance to the virtual camera is calculated. Knowing it and the actual 

height, the scale factor and, consequently, the velocity, can be obtained. 

 

Figure 4-9 Diagram of the process of estimation of the height of the camera in 

order to obtain a scale factor that allows to compute an estimation of the 

velocity. 

But some problems may arise from this approach: 

• There are not always salient features on the road to be detected and 

tracked. 

• Road points are detected with FAST corner detector by defining one or 

more ROIs that cover only the road but, since the ROIs that can be 

defined in MATLAB are rectangles, they may cover parts of the frame 

that is not only the road itself, but also its margins (see Figure 4-10). This 

can be good and bad at the same time. On the one hand, it allows to get 

features just from the boundary although there are not any on the road. 

But on the other hand, on the sides of the road may be other objects, 
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such as vegetation, people, etc., that are not at the same height as the 

road, introducing an error in the estimation. 

• Sometimes, other cars are driving in the other lane, occluding the road. 

Additionally, points of those vehicles may be counted as road points 

when they are inside the corner detector ROIs. 

4.3.1 Road feature detection, tracking and triangulation 

As it is shown in Figure 4-10, two different ROIs have been defined in order to 

find features inside them, using the same methodology as in section 4.2.1.1 part 

but with a different value for MinContrast, 0.04 instead of 0.05 (to detect weaker 

corners). ROIs have been set up as a percentage of the image height and width 

to cover the road from side to side knowing the car is driving on its the left-hand 

side. However, not all of the road in front of the car has been included. Since 

the points from farther areas move just a few number of pixels from two 

consecutive frames originating errors in the triangulation step, they have been 

excluded. Hence only nearest zones of the road to the car have been included 

to look for corners. 

 

Figure 4-10 Frame from de video with two defined ROIs utilised to extract 

features (green crosses) only in that area. 
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Once the features have been computed on one frame, they are tracked along 

the next frames until they fall below a certain threshold, named road feature 

tracking threshold (road threshold for short), similarly as in subsection 4.2.2.2. 

The influence of this threshold is studied in section 5.4. 

After the tracking part, the triangulation of the 2D points is done. To do so, the 

MATLAB function triangulate, included in the Computer Vision System Toolbox, 

is utilised. It needs as inputs two sets (from two images) of matched or tracked 

points, the extrinsic matrix of the camera in the first position and the extrinsic 

matrix of the camera in the second position. Since the interest of this step is to 

obtain a plane to get a distance and not to obtain a 3D position of every point in 

a global reference system, the first camera matrix is set to [𝐼|0] and the second 

one is 

𝑊 = [𝑅|𝑡] (4-7) 

where  

𝑅 = 𝑅𝑝𝑜𝑠𝑒
𝑇  

𝑡 = −𝑡𝑝𝑜𝑠𝑒 · 𝑅 

(4-8) 

and 𝑅𝑝𝑜𝑠𝑒 and 𝑡𝑝𝑜𝑠𝑒  are the rotation matrix and translation vector in camera 

coordinates relative to the previous pose obtained from the motion estimation 

step. Hence, the obtained 3D points will be in a reference system centred in the 

position of the first camera pose. 

 

Figure 4-11 Illustration of the reprojection error [29] 
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Points with a reprojection error bigger than 0.5 (see Figure 4-11), those which 

are 50 units2 away from the camera (in 3D coordinates) and points triangulated 

behind the sensor are discarded. The reason why is to use only those points 

with bigger possibilities of being correctly triangulated. 

4.3.2 Fit a plane to the point cloud and compute the scale factor 

Once all the road points have been triangulated for an image pair, a plane can 

be fitted since all of them should ideally be contained in the plane defined by the 

road. To do so, the MATLAB function pcfitplane, included in the Computer 

Vision System Toolbox, is used. Four input arguments can be given to the 

function: 

• The 3D point cloud obtained when triangulating the road points. 

• referenceVector: normal vector to the plane. Knowing the inclination 

angle is 𝜃 = −16.31º, the value of this parameter has been fixed to a 

vector contained in the YZ plane of the camera reference system (see 

Figure 4-8) and with an angle of −16.31º + 90º, that is, �⃗� =

(0 −1 −0.2927). 

• maxDistance: parameter that indicates the maximum distance from an 

inlier point to the plane. Fixed to a value of 0.5 units. 

• maxAngularDistance: it is the maximum absolute angular distance 

between the reference vector and the normal vector of the fitted plane. 

Its value has been chosen to be 0.5º to give a certain degree of freedom 

because if not, to many plane fitting operations fail. 

In Figure 4-12, an example of a resulting plane is shown. There, it is possible to 

see how the cloud of points follows a plane of an inclination very similar to the 

one of the actual camera inclination (of the fitted plane). However, there may be 

some situations where the point cloud has a different slope because of some 

external disturbances such as points on cars, on vegetation or, even the plane 

is not computed because not enough inliers are found to find a plane that meets 

                                              

2 Note that in this context 1 unit is the distance between the two camera poses. 
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the specified requirements. In the last case, the result is that for that time there 

is no high estimation. 

 

 

 

Figure 4-12 Example of a plane fitted to a cloud of points corresponding to the 

2D road points (in green) of the bottom image). Units are expressed as a multiple 

of the separations between the two camera poses (1 unit). 
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Once the plane has been computed, obtaining the scale factor is 

straightforward. The distance from a point (camera position) to a plane (virtual 

road) is calculated 

𝑑 =
𝑎𝑏𝑠(𝐴 · 𝑥𝑐𝑎𝑚 + 𝐵 · 𝑦𝑐𝑎𝑚 + 𝐶 · 𝑧𝑐𝑎𝑚 + 𝐷)

√𝐴2 + 𝐵2 + 𝐶2
 (4-9) 

where A, B, C and D are the coefficients of the implicit equation of the plane (𝐴 ·

𝑥 + 𝐵 · 𝑦 + 𝐶 · 𝑧 + 𝐷 = 0) and 𝑥𝑐𝑎𝑚, 𝑦𝑐𝑎𝑚 and 𝑧𝑐𝑎𝑚 are the coordinates of the 

camera position. 

With this, the scale factor is 

𝑠𝑐𝑎𝑙𝑒 𝑓𝑎𝑡𝑜𝑟 =
ℎ𝑎𝑐𝑡𝑢𝑎𝑙

𝑑
 (4-10) 

where ℎ𝑎𝑐𝑡𝑢𝑎𝑙 is the actual camera height, ℎ𝑎𝑐𝑡𝑢𝑎𝑙 = 1.46 𝑚. And because the 

length of the translation vector is 1 unit, the velocity can be computed using 

directly the scale factor 

𝑣𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑑 =
𝑠𝑐𝑎𝑙𝑒 𝑓𝑎𝑐𝑡𝑜𝑟

𝑡𝑠𝑡𝑒𝑝
 (4-11) 

where 𝑡𝑠𝑡𝑒𝑝 is the time step between frames. 

4.4 Conclusions 

From the existing feature-based VO methods, the 2D-to-2D approach is the one 

that has been chosen to address the problem of velocity estimation. However, it 

has a problem: all the translation vectors are of unit length. That is why, 

together with the VO algorithm, another step is done to obtain a scale factor 

knowing that the height of the camera is constant. 

So, after correcting the video frames (lens distortion and frame rotation), the 

corners of the first frame are extracted using the FAST feature detector and 

then are tracked to the following images using the KLT tracker. Since the 

number of corners will decrease with new incoming images and, eventually, 

disappear, a redetection step is done when they fall below a certain threshold. 
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At the same time, a road feature detection and tracking is done to find salient 

points that are only on the road and its margins. 

From the corner correspondences between two consecutive frames the relative 

camera pose is obtained by firstly estimating the essential matrix (using the five-

point algorithm together with RANSAC to discard outliers), but the computed 

translation vector is of unit length. Then, knowing the relative position between 

the two camera poses, the 3D position of the road points is obtained by 

triangulation and a plane is fitted to them that will represent the virtual road. The 

distance from that plane to the camera position is computed and the scale 

factor is obtained and utilised to rescale the unit length translation vector of the 

camera movement and to estimate the velocity of the vehicle between the two 

correspondent frames. 
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5 ANALYSIS OF THE RESULTS 

In this chapter, the explained algorithm in Chapter 4 is analysed in terms of 

accuracy of its output measurements. A brief explanation of the recorded data is 

presented in section 5.1. Then, in section 5.2, how to get a smoother velocity 

profile than the raw output is explained. After that, the algorithm is tested for 

four different frame tracking thresholds (section 5.3) and four road tracking 

thresholds (section 5.4) to see their influence in the final results and select one 

to continue with the next analysis. Finally, the algorithm is run for nine 

combinations of spatial and temporal resolution to see their influence on the 

estimations (section 5.5). 

It is worth to mention that the obtained results may not be the optimal solution 

as many parameters contribute to the final estimation and many different 

combinations exist. Additionally, the objective of this thesis is not to obtain an 

optimal tool to estimate the velocity but to prove it is possible to get good 

results.  

Moreover, all the studies, until section 5.4 included, have been done using a 

smaller spatial and temporal resolutions of the video data (960x540 pixels and 

15 fps) in order to not lose much time, since analysing 1 minute of video at 

these resolutions takes around 15 minutes. 

5.1 Description of the recorded data 

The available data has been recorded by RACELOGIC and consists in a 5-

minute video with the corresponding synchronised GPS data. In this section, a 

brief description of the video is given, utilising some of the GPS data to help in 

that task. 

First of all, Figure 5-1 shows the path the vehicle followed while gathering the 

data. As it can be seen, it is characterised by a long quasi-straight road, where 

the car was driven twice (blue and yellow lines), and a shorter path with six 90° 

curves (orange line in Figure 5-1 and Figure 5-2). This allows to split the whole 

trajectory in three individual and shorter sections: 
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• Section 1 (from second 80 to 1533): section characterised by being a 

quasi-straight road with some traffic on the opposite lane and velocities 

between 21 and 42 km/h. 

• Section 2 (from second 160 to 2203): section characterised by having six 

sharp curves (see Figure 5-2 for a more detailed view) and several static 

vehicles close to the car on both sides of the road between curves 3 and 

4, and by velocities between 8 and 27 km/h. This section is the only one 

in which part of the road has road markings. The times at which the car is 

turning are: 

o Curve 1: 162 – 166 s. 

o Curve 2: 168 – 171 s. 

o Curve 3: 180 – 185 s. 

o Curve 4: 191 – 197 s. 

o Curve 5: 203 – 207 s. 

o Curve 6: 217 – 221 s. 

• Section 3 (from second 234 to 2843): section characterised by being a 

quasi-straight road (the same one as section 1 but in the opposite 

direction) with the especial characteristic of reaching the highest speed 

of the dataset, 75.38 km/h. That is why this video section will be referred 

as the high-speed section. Velocities are between 20 and 75.38 km/h. 

In addition to these three sections, there is more footage but is not relevant to 

the analysis. Before the first section the car is stopped during almost one 

minute and then it leaves a car park (footage utilised in section 3.2.2 to obtain 

the radial distortion coefficients). 

Finally, the GPS velocity has had to be resampled to match the video footage 

frequency from 10 to 30 Hz. 

                                              

3 The time intervals utilised here, and in the following pages and plots of this 
chapter, refer to the video time. 
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Figure 5-1 Trajectory followed by the car in the three sections in which the video 

data has been divided. Dots indicate the initial position of the car in each 

section. 

 

Figure 5-2 Detail of the track of video section 3 with its six curves numbered in 

order of appearance. 

5.2 Smoothing the raw VO output 

The velocities estimated directly from the algorithm presented in Chapter 4 

(from now on raw velocities/output/results) are quite noisy, as shown in Figure 

5-3 for the three video sections, but follows a trend very close to the ground 

truth. The origin of this noise is probably that the virtual plane estimations are 

not always good, depending on the quality of the detected road corners and 

their tracked positions. That is because the road, in general, has few features 

and the road detector has been set up with a low contrast level so the found 
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points may not be very good, and therefore, they may be wrongly tracked 

sometimes. Additionally, the raw outputs have velocity peaks that are unreal 

because of the huge accelerations that should occur to reach them. The utilised 

configuration to obtain the mentioned figure, and the ones utilised in section 5.2, 

are the ones obtained after selecting both tracking thresholds in sections 5.3 

and 5.4 and at 15 fps and 960x540 pixels. They are used here because this is a 

previous step and to show how the raw VO velocities must be processed to 

obtain a better estimation than the raw output itself. To do so, two tasks are 

done after obtaining the raw results: 

• Use a moving average filter to smooth the raw output eliminating the 

noise. 

• Establish an acceleration limit to discard those raw measurements that 

are much bigger than the previous ones, that is, those with large 

accelerations. 

5.2.1 Moving average filter 

In order to eliminate, or at least reduce, the noise of the raw velocity, a moving 

average filter has been utilised. The size of the filtering window is important. 

Small windows are good to capture sudden and rapid changes in the velocity 

but can also give wrong results if those changes are due to noisy data. On the 

other hand, bigger windows help to eliminate the latter but at the cost of not 

following well real changes in the velocity. That is why a window length of 1 

second forwards and 1 second backwards, that is, 20, 30, and 60 samples in 

total for 10, 15 and 30 fps respectively, has been chosen and, unless the 

contrary is specified, it is the window size utilized from now on. As it is shown in 

section 5.2.2, after setting an acceleration limit to remove the velocity peaks, 

the selected window size works well. 

The results after moving averaging the raw output, shown in Figure 5-3 in black, 

are much better than he noisy raw velocity, although there are still some 

velocity peaks, but not as big as before, and also some points where the 

smoothed velocity differs from the actual one. In the next subsections, these 

discrepancies are explained.  
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Figure 5-3 Comparison of the raw VO velocity with its smoothed version and the 

GPS ground truth in the three video sections. Resolutions: 960x540 pixels and 15 

fps.  
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5.2.1.1 Discrepancies in video section 1 

In Figure 5-4 the main discrepancies that appear after smoothing the raw 

velocity of video section 1 are highlighted. It is remarkable that most of them are 

due to other vehicles driving on the same road but, in this case, only on the 

opposite lane. These peaks happen because, when a car is inside the ROIs 

defined to detect road features, some of them will be on that car and they are 

above the actual road plane (see Figure 5-5 as an example). This, together with 

the fact that cars are moving (they introduce an error in the triangulation of 

those points) leads to compute a wrong plane that is above the real one and, 

therefore, the distance to the camera is smaller, resulting in a bigger scale 

factor and, consequently, a bigger estimated velocity. Additionally, the covered 

road has no road markings and just few shadows so the majority of the detected 

corners actually correspond to its margins where there is some vegetation that 

also increase the estimated height of the plane (see Figure 5-5). Then, there is 

another part where the lack of accuracy is due to another factor. Between the 

seconds 90 and 95, orange circle in Figure 5-4, there is an area with not many 

road features and where most of them are only on the right-hand side of the 

road, as shown in Figure 5-6. 

 

Figure 5-4 Velocity profile of section 1 after smoothing the raw VO output. In 

green, parts of the video where other cars appear on the opposite lane or parked 
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are highlighted. In orange, a zone where there are few corners on the road is also 

highlighted. Resolutions: 960x540 pixels and 15 fps. 

 

Figure 5-5 Part of a frame corresponding to the part highlighted in green in the 

second 104 in Figure 5-4 where road corners are represented with green circles. 

In this specific example, the majority of the road points are not on the road but 

on the car and on the lateral vegetation. 

 

Figure 5-6 Part of a frame corresponding to the part highlighted in orange in 

Figure 5-4 (video time: 90 – 95 sec) where road corners are represented in green. 

5.2.1.2 Discrepancies in video section 2 

In the section 2 of the video, characterised by having six 90º curves, similar 

problems to the ones of section 1 occur. Again, other vehicles cause wrong 

estimations, as shown in Figure 5-7. In the first and third curves, from 162 to 

166 seconds and from 180 to 185, other cars appear just in front of the camera, 

producing a similar effect as those described for video section 1. The main 

difference between these two curves is that in the latter the other vehicles are 

parked on both sides and very close to the camera, as shown in Figure 5-8. 

Finally, the last remarkable point of this part of the video where the 

measurements fail is between 208 and 213 seconds. In this occasion, there is a 

big bush on the left-hand side, shown in Figure 5-9, that again makes most of 

the road points to not be on the road. 
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Figure 5-7 Velocity profile of section 2 after smoothing the raw VO output. In 

green, parts of the video where other cars appear on the opposite lane or parked 

are highlighted. In orange, a zone where there are bushes very close to the car is 

also highlighted. Finally, red rectangles point out parts of the video where the 

car was turning. Resolutions: 960x540 pixels and 15 fps. 

 

Figure 5-8 Part of a frame corresponding to the part highlighted in green in  

Figure 5-7 at video time 180 sec, where road corners are represented in green. 

 

Figure 5-9 Part of a frame corresponding to the part highlighted in orange in  

Figure 5-7 (video time: 208 and 213 sec) where road corners are represented in 

green. 
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5.2.1.3 Discrepancies in video section 3 

Finally, in video section 3, similar things happen, highlighted in Figure 5-10. In 

this case, the most remarkable dissimilarity between the smoothed and the 

actual velocities is the part from 265 to 277 sec where the car is moving at more 

than 50 km/h. This is the fastest section of the video and the measurements are 

very noisy and apparently fail because of the speed. It is the same track than 

from 90 sec to 112 of video section 1 (Figure 5-4), but returning. In section 1 the 

raw measurements are also noisy (including the effect of other cars) but not as 

much as in this situation (where there are no cars in this period of time). 

 

Figure 5-10 Velocity profile of section 3 after smoothing the raw VO output. In 

green, parts of the video where other cars appear. In orange, zones where there 

are bushes very close to the car are also highlighted. Finally, in red, a section 

where the car is driving fast. Resolutions: 960x540 pixels and 15 fps. 

5.2.2 Acceleration limit 

The raw measurements are processed before doing the smoothing in order to 

remove those peaks as much as possible. To do so, the selected technique 

consists in fixing an acceleration limit and discard those speeds that exceed the 

limiting speed change when compared with the previous valid velocity. 

Figure 5-11 shows the results after applying this limit and smoothing the raw 

data for five different acceleration thresholds: 10, 20, 30, 40 and 50 km/h/s. The 

first one could be a normal acceleration for a regular car as it is the case; the 
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next two, and even the fourth, could be the ones of a sport car; 50 km/h/s, 

however, would be too much for a car (from 0 to 100 km/h in just 2 sec). 

Nonetheless, the velocities to which these limits are applied are the ones of the 

raw VO output, that is, their strong accelerations are due to its noisy nature. 

Hence, although those thresholds may be not very realistic, are just utilised to 

eliminate the biggest accelerations and keep those that follow a trend. 

In general, all of the them give similar velocity profiles, as might be expected 

since all of them use the same raw output. However, some works better than 

others: 

• 40 and 50 km/h/s limits do not work well in points where, as shown in 

Figure 5-4, Figure 5-7 and Figure 5-10, there are discrepancies with the 

ground truth: in seconds 92, 145 (section 1), 186, 211 (section 2) and 

from 265 to 280 (section 3). Nevertheless, the rest of the differences 

have been greatly removed. 

• The 10 km/k/s limit also works well but at certain points it behaves worse 

than the others, since it does not follow well the actual velocity profile: 

seconds 92, 128 (section 1), 186, 203 (section 2) and, again, from 265 to 

280 (section 3). 

• Finally, the 20 and 30 km/k/s limits are very similar. However, the first 

one follows better the actual velocity although both of them also 

misestimate the actual velocity from 265 to 280 (section 3). 

Having a look at Figure 5-12, where the maximum and mean errors and 

standard deviations4 are plotted against the acceleration limits, it is possible to 

see that effectively the 20 km/h/s threshold has the minimum maximum 

absolute and relative errors, especially in the first two sections and also has one 

of the smallest maximum and mean standard deviations. 

However, all of them work well, having errors below 3 km/h in the first section 

and below 6 km/h in the second. In terms of mean and RMS errors all the limits 

                                              

4 Standard deviations are computed using the method of moving standard 
deviation, utilising the same window size as for the moving average filter. 
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are small indicating that, as shown in Figure 5-11, they follow well the ground 

truth velocity and the measurements are accurate (mean errors very close to 1 

km/h in sections 1 and 2). A more detailed view of the evolution of the absolute 

and relative errors is shown in Figure A-1 and Figure A-2 of the Appendix A. 

 
Figure 5-11 Velocity profiles of the three sections for five different acceleration 

limits. Resolutions: 960x540 pixels and 15 fps.  
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Figure 5-12 Error analysis of the three sections for five different acceleration 

limits. Resolutions: 960x540 and 15 fps. 
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Figure 5-13 Error analysis of section 3 (from 234 to 260 sec) for five different 

acceleration limits. Resolutions: 960x540 and 15 fps. 
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velocity. The most outstanding parts where it is outside are in second 182, the 
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Figure 5-14 Velocity estimation in section 1 from VO using a video of 960x540 

pixels and 15 fps and an acceleration limit of 20 km/h/s. Dashed lines correspond 

to the moving standard deviation limits. 

 

Figure 5-15 Velocity estimation in section 2 from VO using a video of 960x540 

pixels and 15 fps and an acceleration limit of 20 km/h/s. Dashed lines correspond 
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to the moving standard deviation limits. Vertical dashed and dash-dot line pairs 

indicate each one of the six 90º curves (Note that the last one does not finish 

inside the plot). 

 

Figure 5-16 Velocity estimation in section 3 from VO using a video of 960x540 

pixels and 15 fps and an acceleration limit of 20 km/h/s. Dashed lines correspond 

to the moving standard deviation limits. 
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5-8) and a bush in second 209 (see Figure 5-9), both explained in 

5.2.1.2. Both of them, plus the one in 201 sec, also correspond to 

moments in which the car is changing its speed. 

• Section 3 (Figure 5-16): in this case the biggest standard deviations 

correspond to the moments in which the car is moving at high speeds 

and at the same time accelerating or decelerating. 

5.3 Influence of the frame feature tracking threshold 

Taking into account that the maximum number of corners detected by the FAST 

feature detector is 3500 (using the configuration explained in section 4.2.1.1) 

the frame threshold must be less or equal than 3500. 

An analysis has been made to see the influence of the frame threshold on the 

results and to select one. To do so, the three sections of the video has been 

utilised using the next configuration: 

• The FAST feature detector configuration explained in section 4.2.1.1 for 

frame features and the one in section 4.3.1 for road corners. 

• A threshold for the road feature tracking of 30 corners (it is explained in 

section 4.3.1) 

• A resolution of 960x540 pixels at 15 fps 

• An acceleration limit of 20 km/h in 1 second. 

• A moving average filter window of 1 second forward and 1 backward 

(30-samples size). 

Figure 5-17 and Figure 5-18 show the results for the four chosen frame 

thresholds: 25%, 50%, 75% and 100% of the maximum possible number of 

corners, that is, 875, 1750, 2625 and 3500 corners respectively. The last one 

means that at every frame the number of detected corners will be below the 

threshold and, therefore, the redetection step is executed for each new image. 

In Figure 5-17, it can be seen how the four velocity profiles are in general quite 

similar to the ground truth, especially in section 1. However, there are some 

points where they differ more: 
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• Between the seconds 90 and 95 (video section 1), the curve of 3500 

corners has a worse performance than the other three, but very small. 

• In video section 2, between 193 and 197 seconds, the curve of 3500 

corners stands out because it does not follow well the actual velocity. 

• As seen before, in video section 3, between 265 and 280 seconds, all of 

the estimations fail, with a maximum error of around 36 km/h, in the case 

of 875 corners, and around 20 km/h for the other three thresholds. 

Figure 5-18 shows how the frame threshold of 1750 corners has the smallest 

maximum errors, both absolute and relative (below 3 km/h and 10%), in video 

section 1. There, the standard deviation is the second smallest. In terms of the 

average or RMS errors there is no much difference between using one 

threshold or another, being all of them between 1 and 2 km/h (4 - 6%). 

However, the one that has a smaller standard deviation corresponds to 2625 

corners. In video sections 2 and 3 the maximum errors correspond to the 

threshold of 875 corners, whereas the other three have similar values (4 km/h in 

section 2 and 20 km/h in section 3). Finally, because of the big standard 

deviation and errors of video section 3, compared with the other two, caused by 

the high-speed part, this section has been shortened to take into account only 

its first part, until before the high-speed zone. Its error analysis is shown in 

Figure 5-19, having a performance similar to the other two cases. 

Because all of the exposed above, the final choice is the threshold of 1750 

corners because the errors, both absolute and relative, are the smallest 

(especially the maximums) in video section 1 where the maximum standard 

deviation is the second smallest. In section 2, although the maximum standard 

deviation is the worst one of the four alternatives, they are quite similar and in 

terms of errors it is a good option. Finally, in the first part of section 3 the 

smallest maximum standard deviation also corresponds to 1750 corners and 

the errors are between the two best ones. 

However, it can be concluded that the frame feature tracking threshold does not 

have a big influence on the results, at least for the tested range, although some 

small discrepancies may arise at some points.  
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Figure 5-17 Ground truth velocity (in red) compared with the estimations 

obtained from VO with four different frame tracking thresholds. Resolutions: 

960x540 and 15 fps.  
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Figure 5-18 Errors as a function of the frame feature tracking threshold (number 

of corners). Resolutions: 960x540 and 15 fps. 
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Figure 5-19 Error analysis of section 3 (from 234 to 260 sec) for four different 

frame feature tracking thresholds. Resolutions: 960x540 and 15 fps. 
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itself and in the error analysis indicating that this parameter does not affect the 

final results very much. But a value is needed for further analysis, so the 

threshold of 60 corners is chosen because it has the smallest errors in sections 

1 and 2 with a standard deviation similar to the other options in section 1. 

 

 

 

Figure 5-20 Ground truth velocity (in red) compared with the estimations 

obtained from VO with four different road feature tracking thresholds. 

Resolutions: 960x540 and 15 fps.  
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Figure 5-21 Errors as a function of the road feature tracking threshold (number of 

corners). Resolutions: 960x540 and 15 fps. 
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5.5 Influence of temporal and spatial resolution 

Finally, in this section the algorithm performance is tested for a range of both 

spatial and temporal resolutions. In particular three different cases of each are 

studied leading to nine different combinations: 

• Spatial resolutions: 

o 1920x1080 pixels (original), from now on FHD (Full High 

Definition). 

o 960x540 pixels, from now on HD (High Definition). 

o 640x360 pixels, from now on SD (Standard Definition). 

• Temporal resolutions: 

o 30 fps (original). 

o 15 fps. 

o 10 fps. 

Recall that the previous analyses were done using the intermediate spatial and 

temporal resolutions. 

Below, the analyses are divided into four subsections. The first three 

correspond to each one of the three frame rates. Inside each one the 

differences between the spatial resolution are studied. Then, a comparative of 

all the results is done simultaneously to also see the dissimilarities and points in 

common between using distinct temporal resolutions. 

5.5.1 Temporal resolution: 30 fps 

First of all, the original temporal resolution, 30 fps, is studied in the 3 sections of 

the video, shown in Figure 5-22, Figure 5-23 and Figure 5-24.  

In section 1 of the video, Figure 5-22, both FHD and HD are quite similar and 

follow well the ground truth with the exception of the parts from 96 sec to 116 

sec and 140 sec to the end. The former is the one where the road has no road 

markings and just few shadows so the majority of the detected corners on the 

road actually correspond to its margins where there are bushes. This introduces 

errors that may make these results different. The latter is of a place where two 
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cars are on the other lane. This shows that FHD resolution may be more 

sensitive to this kind of disturbances. Nonetheless, it is not affected by the other 

vehicles that the car encountered during this section. The SD, for its part, is 

more different from 86 sec to around 117 sec, which means that reducing the 

resolution so much may reduce the effectiveness of the measurements at 

speeds above 30 km/h. Nevertheless, no error is bigger than 4 km/h or 12% 

(see Figure B-1), which is a good estimation of the actual speed. 

Having a look at the moving standard deviation values (Figure 5-22 bottom), 

they are very similar independently of the spatial resolution. However, the FHD 

one has a big value at the end corresponding to the previously described part 

with cars. 

 

Figure 5-22 Comparative, of the video section 1, of three different spatial 

resolutions: FHD, HD and SD at 30 fps. 
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Figure 5-23 Comparative, of the video section 2, of three different spatial 

resolutions: FHD, HD and SD at 30 fps. Vertical dashed and dash-dot line pairs 

indicate each one of the six 90º curves (Note that the first and last ones do not 

start/finish inside the plot). 

 

Figure 5-24 Comparative, of the video section 3, of three different spatial 

resolutions: FHD, HD and SD at 30 fps. 
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Moving to the next video section, shown in Figure 5-23, results are again very 

alike, including the standard deviations. But in this occasion, something different 

happened when measuring the velocity. At the second 178, the car is moving 

straight and its actual speed drops below 11 km/h so the difference between 

one frame and the adjacent one is very small (the car moves only 10 cm per 

frame). In this situation, the algorithm fails in computing a reliable essential 

matrix and, therefore, a reliable movement of the camera. That is why between 

178 sec and 182 sec the velocity was not calculated and there is a straight line 

in the plot. This part is the one with the biggest errors, both absolute and 

relative (the latter especially because the slow velocities), being the smallest 

one when using FHD resolution. This is not only because of the slow velocity 

but also because in curve 3 there are some vehicles very close to the camera 

(explained in 5.2.1.2). In general errors are less than 3 km/h, with the exception 

of that slow part (see Figure B-2). 

In the section 3 of the video, once more, the results are very similar before and 

after the high-speed part, both in terms of velocity and standard deviations 

(Figure 5-24). Errors, shown in Figure B-3, are below 3 km/h and 10% before 

the high-speed part. Here, the FHD results stand out because their error is less 

than 1 km/h from the beginning to second 253, that is, during 17 sec, which is a 

straight road with static shadows on the ground, that is, more corners can be 

extracted from the actual road plane. 

Then, as explained several times, the velocity estimation greatly fails in the 

high-speed part, even though the temporal resolution is higher. 

5.5.2 Temporal resolution: 15 fps 

When using a frame rate of 15 fps the results for the first section, shown in 

Figure 5-25, are again very similar for the FHD and HD spatial resolutions with 

the same exceptions commented above for 30 fps. Figure B-4 shows the same 

plot but with the associated errors. When using the lowest spatial resolution, 

SD, the errors are, in general, bigger, but less than 5 km/h. For HD and FHD 

errors are less than 3.8 km/h. 
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Figure 5-25 Comparative, of the video section 1, of three different spatial 

resolutions: FHD, HD and SD at 15 fps. 

 

Figure 5-26 Comparative, of the video section 2, of three different spatial 

resolutions: FHD, HD and SD at 15 fps. Vertical dashed and dash-dot line pairs 
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indicate each one of the six 90º curves (Note that the first and last ones do not 

start/finish inside the plot). 

Results for section 2, shown in Figure 5-26, look less alike to each other this 

time in general, especially when the car is turning. At the very beginning the 

FHD line has a big error (see Figure B-5) corresponding to the vehicle the 

camera recorded just in front of it in that curve (explained in 5.2.1.2). Then, as 

always, the measurements fail in the part around 185 sec, corresponding to the 

third curve with parked cars very close to the camera, also having a big 

standard deviation. As shown in Figure B-5, errors are generally smaller for 

FHD and HD spatial resolutions. SD results are worse, with error peaks in the 

curves. Nonetheless, errors are below 3 km/h with the exception of curves 1 

(only for FHD) and 3. 

In the section 3 of the video, the estimated velocities are very similar to each 

other before and after the high-speed part, both in terms of velocity and 

standard deviations (Figure 5-27). Errors, which are shown in Figure B-6, are 

again small in that first part for the three resolutions (below 4 km/h) and, once 

more, FHD resolution stands out for its small error there (less than 2 km/h and 

10% during the first 20 sec). 

 

Figure 5-27 Comparative, of the video section 3, of three different spatial 

resolutions: FHD, HD and SD at 15 fps. 
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5.5.3 Temporal resolution: 10 fps 

Finally, if the original temporal resolution is downsampled to only 10 fps, the 

next results are obtained. 

In section 1, the dissimilarities between the three spatial resolutions become 

more evident in the part between 96 sec and 116 sec in terms of the estimated 

speed, although their standard deviations are very similar, specially their trends 

(see Figure 5-28). It is worth to remind that in this part of the video the car was 

driven on a road with some cars, without road markings or other kind of road 

features apart from some few shadows and also with bushes on its margins. 

The fact that now the camera pose has to be estimated from frames that are 

less similar than with higher temporal resolutions (at 40 km/h the camera moves 

1.10 m compared to the 0.37 m with 30 fps) together with the lack of road 

features, may make the algorithm fail more, especially with the SD spatial 

resolution, where the detected features are more likely to be tracked wrongly 

because they are less salient. 

 

Figure 5-28 Comparative, of the video section 1, of three different spatial 

resolutions: FHD, HD and SD at 10 fps. 
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Figure 5-29 Comparative, of the video section 2, of three different spatial 

resolutions: FHD, HD and SD at 10 fps. Vertical dashed and dash-dot line pairs 

indicate each one of the six 90º curves (Note that the first and last ones do not 

start/finish inside the plot). 

 

Figure 5-30 Comparative, of the video section 3, of three different spatial 

resolutions: FHD, HD and SD at 10 fps. 
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In terms of errors (shown in Figure B-7), they are less than 15% for the whole 

section (smaller than 6 km/h). The FHD estimation has a good performance 

from 103 sec to the end with an absolute error always smaller than 2 km/h or, in 

relative terms, less than 6%. Part of this period of time is on the track described 

in the above paragraph, which means that using higher spatial resolutions, FHD 

in this case, can help the algorithm to work better when the temporal resolution 

is small. 

In section 2, shown in Figure 5-29, the SD resolution is the one more affected 

by the reduction of the frame rate. Apart from the already explained times where 

all of the spatial resolutions fail, the SD estimations have bigger errors than 

FHD and HD around 170 sec, 200 sec and 214 sec as shown in Figure B-8. 

And, lastly, using a frame rate of 10 fps in the last section of the video does not 

have a big impact on the results if the high-speed part is omitted (see Figure 

5-30 and Figure B-9). Errors are again below 4 km/h from the beginning until 

second 258 (first 22 sec). 

5.5.4 Full comparative 

Finally, comparative plots for each section of the video and every 

spatial/temporal resolution studied are shown from Figure B-10 to Figure B-12, 

where it is visible how all of them, in general terms, are quite good estimations 

of the actual velocity with some exceptions: 

1. Parts between 90 sec and 116 sec in section 1 (Figure B-10) and 255 

sec to 280 sec in section 3 (Figure B-12): in these two parts of the 

video the car was driven on the same road with some cars on the 

opposite lane (only section 1), without road markings or other kind of 

road features apart from some few shadows and also with bushes on its 

margins. All of these factors together have made the results to be so 

different from each other. The biggest the spatial resolution is the more 

overestimated is the velocity. And all the way around, the smaller it is the 

more underestimated is the obtained speed. Additionally, in video section 

3, it is the error caused by the high velocities. Then, having a look at the 
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differences caused by the frame rate, there is not a clear pattern. In the 

majority of points where these discrepancies occur the 10-fps line is 

below the 15 fps results and this one, in turn, is below the one of 30 fps. 

However, this is not always true and, in addition, sometimes the results 

of the three temporal resolutions are very similar. 

2. Part between 142 sec and 149 sec in section 1 (Figure B-10): in this 

small part of the video (straight road) two cars are driving on the opposite 

lane very close one to each other. Both 15 and 30 fps of the FHD spatial 

resolution and the 10 fps HD case fail here. 

3. Part between 161 sec and 166 sec in section 2 (Figure B-11): the 

vehicle is turning while, at the same time in front of it on the opposite line, 

there is another car which covers the road. Working with big temporal 

resolutions handles well this problem, but when using smaller ones, such 

as 10 fps or even 15 fps (in the case of FHD), errors increase. 

4. Part between 180 sec and 191 sec in section 2 (Figure B-11): this 

comprises the curve 3 (the one with vehicles parked very close to the 

car) and the straight street from that curve until just before the curve 4 

(more vehicles are parked on both sides). 

It is worth to mention that, in general and specially for higher spatial resolutions, 

errors are minimum in zones where there were good features on the ground, 

such as static shadows (from 124 sec to 152 sec in section 1 and from 236 sec 

to 255 sec in section 3, shown in Figure 5-31) or road markings (from 161 sec 

to 174 sec and from 200 sec to 217 sec in section 2, Figure 5-32). 

The absolute and relative errors (maximum, mean and RMS) are shown in 

Figure 5-33 and Figure 5-345. It is clear how, in general terms, mean and RMS 

absolute errors decrease when increasing the spatial or the temporal resolution, 

and they are below 3 km/h, which means that the results are quite accurate. 

                                              

5 Errors of video section 3 has been obtained from the part before the high-
speed section to compare only results where the algorithm works. 
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Figure 5-31 Part of a frame corresponding to video section 3 second 245 sec 

where there are static shadows on the road. Road corners are represented in 

green. 

 

Figure 5-32 Part of a frame corresponding to video section 3 second 245 sec 

where there are road markings. Road corners are represented in green. 

Maximum absolute errors are below 6.30 km/h, but it is worth to explain that 

they occur when: 

• Section 1 (5.78 km/h): when the car is at the point 1 of the above list and 

for 10 fps and SD resolutions. 

• Section 2 (6.30 km/h): when the car is at the point 4 of the above list and 

for 10 fps and FHD. 

• Section 3 (5.37 km/h): omitting the high-speed part, the maximum error 

corresponds again to 10 fps and SD resolutions but, in this case, it 
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occurs just at the beginning of this section where the car overtakes a 

stopped car. 

In terms of relative errors, it is similar to the absolute ones, but not as clear as 

before since their values depend also on the actual speed of the car so, for the 

same absolute error, they will be bigger for smaller velocities: 

• In the case of sections 1 and 3 (without the high-speed part) the 

maximum mean and RMS relative errors are similar. They are below 

8.60%, or below 6% when using the biggest spatial and temporal 

resolutions. In terms of maximums, they are smaller than 16% in section 

1 and 21% in section 3 that can be 8.4% for section 1 using 30 fps and 

HD resolution and 6% for section 3 with 30 fps and FHD. But again, 

increasing the spatial and/or the temporal resolutions improves the 

results. 

• In section 2 the maximums are much bigger, from 30% to 70%. The 

explanation for this is the slow velocities of the car plus the fact that they 

occur when the car is on the part of the road explained in the point 4 of 

the list of page 94. If that part is not taken into account, maximum relative 

errors are around 12% and 25%. 
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Figure 5-33 Absolute errors (maximum, mean and RMS) of the three sections for 

the nine spatial and temporal resolution tested combinations. 
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Figure 5-34 Relative errors (maximum, mean and RMS) of the three sections for 

the nine spatial and temporal resolution tested combinations. 
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5.6 Conclusions of the analysis 

The studied dataset presented some interesting characteristics front the point of 

view of analysing the performance of the developed VO algorithm in different 

situations. The video has been divided into three main sections, each of them 

with some special characteristics: the first one is a quasi-straight road with 

some traffic on the opposite lane, the second one has six curves and the car 

moves at low speeds, and the third section is characterised by having a part at 

higher velocities than the other two. 

Once the above is clear, the next step is smoothing the raw output 

measurements given by the algorithm, probably due to the low quality and 

contrast of the found corners on the road, which are important to determine the 

scale factor. So, to obtain a better estimation, the raw velocities are moving 

average filtered and an acceleration limit is also applied to discard those 

velocity peaks that are unreal (mainly caused by the presence of other cars). 

The influence of this last threshold has been demonstrated to be important. A 

very small value would eliminate too many measurements leading to a curve 

that miss small real changes of velocity. On the other hand, big acceleration 

limits do not eliminate those unreal speed peaks. Thus, the final choice was a 

20-km/h/s acceleration limit. 

Once the acceleration limit was fixed, the evolution of the moving standard 

deviation along the three studied sections was analysed, finding that at some 

points the measurements are not very precise, that is, they had big standard 

deviations. Some of these points are situations in which the car is accelerating 

or decelerating, but they also take place when there are other objects close to 

the vehicle, when the road has no road markings and just few shadows so the 

majority of the detected corners on the road actually correspond to its margins 

(with vegetation, other vehicles, etc. that increase the estimated height of the 

plane) and when the car is moving at high speeds. 
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The influence of both the frame and road feature tracking thresholds have also 

been studied, showing that they do not have a real influence on the final results. 

Only small discrepancies were found at some specific points. 

Finally, the most interesting study was done: analysing the effect of both the 

spatial and temporal resolutions on the final estimations. Nine different 

combinations were tested using three different resolutions of each type. The 

main finding was that, excepting some specific parts of the footage, all the 

results are quite similar, especially in terms of the followed trend, with errors of 

a maximum of 5 km/h. The mentioned exceptions are points where some of 

these conditions were met: 

1. Cars on the opposite lane, roads without road markings or other kind of 

road features apart from some few shadows and also with bushes on its 

margins. 

2. Objects (mainly other vehicles), placed just in front of the car when 

turning. 

3. Objects (mainly parked vehicles and vegetation) very close to the car 

and, therefore, to the road margins. 

4. High-speed sections. 

With all of this, the biggest errors correspond to the point where conditions 1 

and 3 were true (section 3), especially when the resolutions are 15 fps and SD: 

32.88 km/h (43.73% in relative form). Then, in video section 1, the maximum 

absolute errors take place when the first condition is true on a part of the track, 

but this time with errors smaller than 6 km/h (smaller than 15% in relative form). 

In general, for the rest of the analysed footage (discarding the high-speed part 

due to its big errors), absolute errors decrease when increasing the spatial, the 

temporal resolution or both. Both the mean and RMS absolute errors are below 

3 km/h, meaning the results are quite accurate. On the other hand, relative 

errors also depend on the actual velocity so, for the same absolute error, the 

smaller the true velocity is the bigger the relative error is. This implies that the 

trend the absolute errors follow is not always the same in this case. Taking this 

into account, mean and RMS relative errors are below 8.6%, or even below 6% 
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if 30 fps are utilised, for sections 1 and 3 with maximums of 16% and 21% 

respectively, that can be 8.4% for section 1 using 30 fps and HD resolution and 

6% for section 3 with 30 fps and FHD. In section 2, relative errors are bigger 

due to the slow velocities of the car, being around 12% and 25% (if curve 3 is 

not considered), with means under 10% or even under 6% if a frame rate of 30 

fps is utilised. 

From all of this, some important findings have been made, mainly related with 

the range of applicability of the proposed method: 

• Algorithm works (small errors): 

o Algorithm works better, i.e. is more accurate, in zones where the 

road has features: static shadows (as from 124 sec to 152 sec in 

section 1 and from 236 sec to 255 sec in section 3) or road 

markings (from 161 sec to 174 sec and from 200 sec to 217 sec in 

section 2). 

o The proposed algorithm has been checked to perform well when 

other cars are driving on the opposite lane and the road have 

enough features (from 124 sec to 152 sec in section 1). 

• Algorithm does not work well: 

o Algorithm measurements have low precision, i.e. big standard 

deviation, when the road does not have enough features and has 

other objects on its margins (for instance bushes as in Figure 4-10 

or Figure 5-9). 

• Algorithm does not work: 

o Failure of computing the essential matrix and, therefore, of the 

camera pose, when the velocities are very small (under 11 km/h 

for 30 fps). 

o At high speeds (around more than 50 km/h) on roads with not 

enough features and with other objects on their margins the 

estimations are not good (big errors and standard deviations). 
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6 SUMMARY AND CONCLUSIONS 

This final chapter includes a summary of the whole report in section 6.1, the 

obtained conclusions after analysing all the results in section 6.2, and some 

guidelines for a further study in section 6.3. 

6.1 Summary 

Following the main objective of this project, measuring the velocity of a ground 

vehicle using a forward-looking monocular camera, a brief study of the current 

state of the art was made to see how this problem was approach in previous 

works. In general, the methodologies that have been already utilised for velocity 

estimation are based on optical flow. However, these techniques have given 

results that are noisy or that work only under controlled circumstances and slow 

speeds, mainly because they rely in in the texture of the captured images, 

especially the road/ground texture, and they need small motion between frames 

to correctly compute that flow. 

For this reason, a different approach has been utilised in this thesis. A feature-

based VO method, in particular a 2D-to-2D approach, has been used to 

compute the camera pose with respect to the previous one by only using salient 

features of the image, i.e. corners, instead of all its pixels. However, this 

methodology has the problem that the computed camera poses have always a 

translation vector of unit length. That is why, together with the VO algorithm, 

another step is done simultaneously to obtain a scale factor that allows for 

obtaining a proper estimation of the movement of the camera. 

From the VO itself the relative camera pose is obtained by detecting corner 

features using the FAST feature detector which are then tracked to the following 

images using the KLT tracker. Since the number of corners will decrease with 

new incoming images and, eventually, disappear, a redetection step is done 

when they fall below a certain threshold. Simultaneously, a road feature 

detection and tracking is also done to find salient points that are only on the 

road and its margins and that are utilised to obtain the plane that defines the 

road. 
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From the corner correspondences between two consecutive frames the relative 

camera pose is obtained but always with a translation vector of unit length. 

Then, knowing the relative position between the two camera poses, the 3D 

position of the road points is obtained by triangulation and a plane is fitted to 

them that will represent the virtual road. The distance from that plane to the 

virtual camera position, together with the actual camera height, are utilised to 

obtain a scale factor that allows to compute a proper velocity estimation. 

But to do all of the above, a very important part of every computer vision 

problem, including this one, is calibrating the camera to know the projection of 

the position of a point in the real 3D world to its position in the image sensor 

plane in 2D. To do so, the intrinsic camera matrix must be obtained as well as 

the parameters that describes the distortion produced by the camera lens, 

which in this case is a wide-angle lens. The former has been obtained from the 

camera specifications, and the latter has been set by trial and error thanks to a 

part of the analysed video where the vehicle was in a car park with straight lines 

on the ground that seem to be curved on the recorded images. 

6.2 Conclusions 

The available and analysed data provided by RACELOGIC consists in a video 

with synchronised GPS measurements. This data has been divided into three 

sectors, each of them with some special characteristics: the first one is a quasi-

straight road with some traffic on the opposite lane, the second one has six 90º 

curves and the car moves at low speeds, and the third section is characterised 

by having a part at higher velocities than the other two. 

After running the developed algorithm over those three video sections, the raw 

output was quite noisy, probably due to the low quality and contrast of the found 

corners on the road, which are important to determine the scale factor. So, to 

obtain a better estimation, the raw velocities are moving average filtered and an 

acceleration limit is also applied to discard some velocity peaks that are unreal 

(mainly caused by the presence of other cars) and obtain a smoothed velocity 

profile. 
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The acceleration limit is important since its value affects the final results. A very 

small value would eliminate too many measurements leading to a curve that 

miss small real changes of velocity. On the other hand, big acceleration limits 

do not eliminate those unreal speed peaks. 

The influence of both the frame and road feature tracking thresholds for 

redetection have also been studied, showing that they do not have a real 

influence on the final results. Only small discrepancies were found at some 

specific points. 

Finally, nine different combinations of spatial and temporal resolutions were 

tested (30, 15 and 10 fps and 1920x1080, 960x540 and 640x360 pixels). 

Results are very similar to each other with maximum errors of 5 km/h, with the 

exception of some parts of the footage where they are bigger: 

1. Cars on the opposite lane, roads without road markings or other kind of 

road features apart from some few shadows and also with vegetation on 

its margins. 

2. Objects (mainly other vehicles), placed just in front of the car when 

turning. 

3. Objects (mainly parked vehicles and vegetation) very close to the car 

and, therefore, to the road margins. 

4. High-speed sections. 

In general, discarding the high-speed part due to its big errors, absolute errors 

decrease when increasing the spatial, the temporal resolution or both. Both the 

mean and RMS absolute errors are below 3 km/h, meaning the results are quite 

accurate. On the other hand, relative errors also depend on the actual velocity 

so, for the same absolute error, the smaller the true velocity is the bigger the 

relative error is. Taking this into account, mean and RMS relative errors are 

below 8.6%, or even below 6% if 30 fps are utilised, for sections 1 and 3, with 

maximums of 16% and 21% respectively, that can be 8.4% for section 1 using 

30 fps and HD resolution and 6% for section 3 with 30 fps and FHD. In section 

2, relative errors are bigger due to the slow velocities of the car, reaching 
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maximums around 12% and 25% (if curve 3 is not considered), whit means 

under 10% or even under 6% if 30 fps are utilised. 

From all of this, some important findings have been made, mainly related with 

the range of applicability of the proposed method: 

• Algorithm works (small errors): 

o Algorithm works better, i.e. is more accurate, in zones where the 

road has features such as static shadows or road markings. 

o The proposed algorithm has been checked to perform well when 

other cars are driving on the opposite lane and the road have 

enough features. 

• Algorithm does not work well: 

o Algorithm measurements have low precision, i.e. big standard 

deviation, when the road does not have enough features and has 

other objects on its margins (for instance, vegetation). 

• Algorithm does not work: 

o Failure of computing the essential matrix and, therefore, of the 

camera pose, when the velocities are very small (under 11 km/h 

for 30 fps). 

o At high speeds (around more than 50 km/h), on roads with not 

enough features and with other objects on their margins the 

estimations are not good (big errors and standard deviations). 

6.3 Further study 

The analyses done in this thesis can be further extended by: 

• Calibrating the camera with one of the available calibration tools and 

checking the performance of the algorithm to see if the results can be 

improved just by doing this step. 

• Running the code on a video recorded on a road with road markings and 

also at higher speeds to check whether or not the results are affected by 

the high speeds if a road with enough features is available. 
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• Checking the performance of the algorithm on other conditions such as 

with rain, low light, more traffic, etc. 

• Using other corner detectors. 

• Studying the influence of the images texture, especially the one of the 

road, on the results. 

Additionally, some improvements or changes can be made to the algorithm 

itself: 

• Change the algorithm to work at low speeds (for instance, by just 

switching to a smaller frame rate when the speed is below a threshold). 

• Matching features between frames instead of tracking them could help to 

obtain better results when the velocities are high. 

• Detect cars to avoid detecting points on them. 

• Compute road plane, or even the scale factor, in a different way. 
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APPENDICES 

Appendix A Acceleration limit analysis 

This appendix contains some plots regarding the analysis done in section 5.2.2 

Acceleration limit that are quite big to be in the main structure of the report. 

 

Figure A-1 Velocity profile of section 1 with the corresponding absolute and 

relative errors for five different acceleration limits. For more details go to page 72 
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Figure A-2 Velocity profile of section 2 with the corresponding absolute and 

relative errors for five different acceleration limits. For more details go to page 72 

 

165 170 175 180 185 190 195 200 205 210 215

Time [sec]

10

15

20

25

30

S
p
e

e
d

 [
k
m

/h
]

Section 210 km/h in 1 sec

20 km/h in 1 sec

30 km/h in 1 sec

40 km/h in 1 sec

50 km/h in 1 sec

GPS velocity (Ground truth)

165 170 175 180 185 190 195 200 205 210 215

Time [sec]

0

1

2

3

4

5

6

A
b
s
o
lu

te
 e

rr
o
r 

[k
m

/h
]

165 170 175 180 185 190 195 200 205 210 215

Time [sec]

0

10

20

30

40

50

60

R
e

la
ti
v
e
 e

rr
o

r 
[%

]



 

114 

 

Figure A-3 Velocity profile of section 3 with the corresponding absolute and 

relative errors for five different acceleration limits. For more details go to page 75 
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Appendix B Spatial and temporal resolution analysis 

This appendix contains some plots regarding the analysis done in section 5.5 

Influence of temporal and spatial resolution that are quite big to be in the main 

structure of the report. 

B.1 30 fps 

 

Figure B-1 Velocity profile of section 1 with the corresponding absolute and 

relative errors for the three analysed spatial resolutions at 30 fps. More details 

on page 86. 
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Figure B-2 Velocity profile of section 2 with the corresponding absolute and 

relative errors for the three analysed spatial resolutions at 30 fps. Vertical 

dashed and dash-dot line pairs indicate each one of the six 90º curves (Note that 

the first and last ones do not start/finish inside the plot). More details on page 88. 
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Figure B-3 Velocity profile of section 3 with the corresponding absolute and 

relative errors for the three analysed spatial resolutions at 30 fps. More details 

on page 88. 
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B.2 15 fps 

 

Figure B-4 Velocity profile of section 1 with the corresponding absolute and 

relative errors for the three analysed spatial resolutions at 15 fps. More details 

on page 88. 
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Figure B-5 Velocity profile of section 2 with the corresponding absolute and 

relative errors for the three analysed spatial resolutions at 15 fps. Vertical 

dashed and dash-dot line pairs indicate each one of the six 90º curves (Note that 

the last one does not finish inside the plot). More details on page 90. 

165 170 175 180 185 190 195 200 205 210 215

Time [sec]

10

15

20

25

30

S
p

e
e
d

 [
k
m

/h
]

Spatial resolution comparison (Section 2)

15 fps, 640 x 360 pixels

15 fps, 960 x 540 pixels

15 fps, 1920 x 1080 pixels

GPS velocity (Ground truth)

165 170 175 180 185 190 195 200 205 210 215

Time [sec]

0

1

2

3

4

5

6

A
b
s
o
lu

te
 e

rr
o
r 

[k
m

/h
]

165 170 175 180 185 190 195 200 205 210 215

Time [sec]

0

10

20

30

40

R
e
la

ti
v
e

 e
rr

o
r 

[%
]



 

120 

 

Figure B-6 Velocity profile of section 3 with the corresponding absolute and 

relative errors for the three analysed spatial resolutions at 15 fps. More details 

on page 90. 

  

240 245 250 255 260 265 270 275 280 285 290

Time [sec]

20

30

40

50

60

70

S
p

e
e
d

 [
k
m

/h
]

Spatial resolution comparison (Section 3)

15 fps, 640 x 360pixels

15 fps, 960 x 540pixels

15 fps, 1920 x 1080pixels

GPS velocity (Ground truth)

240 245 250 255 260 265 270 275 280 285 290

Time [sec]

0

10

20

30

40

A
b
s
o
lu

te
 e

rr
o
r 

[k
m

/h
]

240 245 250 255 260 265 270 275 280 285 290

Time [sec]

0

10

20

30

40

R
e
la

ti
v
e

 e
rr

o
r 

[%
]



 

121 

B.3 10 fps 

 

Figure B-7 Velocity profile of section 1 with the corresponding absolute and 

relative errors for the three analysed spatial resolutions at 10 fps. More details 

on page 93. 
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Figure B-8 Velocity profile of section 2 with the corresponding absolute and 

relative errors for the three analysed spatial resolutions at 10 fps. Vertical 

dashed and dash-dot line pairs indicate each one of the six 90º curves (Note that 

the last one does not finish inside the plot). More details on page 93. 
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Figure B-9 Velocity profile of section 3 with the corresponding absolute and 

relative errors for the three analysed spatial resolutions at 10 fps. 
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B.4 All spatial and temporal resolutions 

 

Figure B-10 Velocity profile of section 1 with the corresponding absolute and 

relative errors for all the analysed spatial and temporal resolutions. More details 

on page 93.  
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Figure B-11 Velocity profile of section 2 with the corresponding absolute and 

relative errors for all the analysed spatial and temporal resolutions. Vertical 

dashed and dash-dot line pairs indicate each one of the six 90º curves (Note that 

the last one does not finish inside the plot). More details on page 94. 

  

165 170 175 180 185 190 195 200 205 210 215

Time [sec]

10

15

20

25

30

S
p

e
e

d
 [

k
m

/h
]

Spatial and temporal resolution comparison (Section 2)

30 fps, 1920 x 1080 pixels

15 fps, 1920 x 1080 pixels

10 fps, 1920 x 1080 pixels

30 fps, 960 x 540 pixels

15 fps, 960 x 540 pixels

10 fps, 960 x 540 pixels

30 fps, 640 x 360 pixels

15 fps, 640 x 360 pixels

10 fps, 640 x 360 pixels

GPS velocity (Ground truth)

165 170 175 180 185 190 195 200 205 210 215

Time [sec]

0

1

2

3

4

5

6

A
b

s
o

lu
te

 e
rr

o
r 

[k
m

/h
]

165 170 175 180 185 190 195 200 205 210 215

Time [sec]

0

10

20

30

40

50

R
e

la
ti
v
e
 e

rr
o

r 
[%

]



 

126 

 

Figure B-12 Velocity profile of section 3 with the corresponding absolute and 

relative errors for all the analysed spatial and temporal resolutions (this two 

plots are partially shown to see better the parts where the algorithm works well). 

More details on page 93. 
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Appendix C Software 

In this appendix the structure of the developed MATLAB scrips, as well as their 

individual purposes, are explained. 

There is a total of 11 scripts/functions that can be divided into two main group: 

• Scripts to read the raw data of the GPS and camera, and save the 

interesting information into a .mat file to be accessed quickly when it is 

required in other scripts/functions: 

o cam_parameters.m (function). 

o filtering_data.m (function). 

o GPS_reading_save.m 

o GPS_resampling.m 

o read_save_video.m 

o timevector.m (function). 

• Scripts to estimate the velocity: 

o main_VO.m 

o bucketFeatures.m (function). 

o bucketFeatures_road.m (function). 

o SCALE_FACTOR.m (function). 

o track.m (function). 

Now, each of them is briefly explained. 

C.1 Scripts to read and save the raw data 

From these code files, the ones that generates the output (.mat file) that will 

directly be read by the velocity estimation scripts are GPS_reading_save.m (or 

GPS_resampling.m if the data is resampled and low-pass filtered) and 

read_save_video.m. 

C.1.1 GPS_reading_save.m 

It is a code to create time series of GPS data time-synchronized with the video. 

It reads the raw data from a .xlsx document and exports the latitude, longitude, 

height, velocity and time to a .mat file called GPS_data_sync.mat. 
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This script uses the custom function timevector.m, which creates a time vector 

and time series of data using video time as reference. 

Then, if the data needs to be resampled and low-pass filtered, the 

GPS_resampling.m script is utilised. It needs the GPS_data_sync.mat file, and 

what it does is: 

1. Transform latitude and longitude into Cartesian coordinates. 

2. Low-pass filter the raw measurements (both position and velocity) to 

eliminate higher frequencies with the custom function filtering_data.m. 

3. Resample the filtered measurements (to 30 Hz in this thesis, since the 

video data was recorded at that frequency). 

4. Save the resampled velocity (position is not saved but is used in this 

script to make some plots about the trajectory of the vehicle). 

C.1.2 read_save_video.m 

It is a code to read a video file and save its frames and other specific 

information in a .mat file. Apart from that, before saving the .mat, file other tasks 

are also done, explained in 4.1 Pre-processing steps: 

1. Convert each frame to greyscale. 

2. Remove lens distortion from each frame. 

3. Rotate each frame. 

4. Reduce size of the greyscale frames (if necessary), that is, 

reduce the spatial resolution of the video. 

This script uses the created function cam_parameters.m to define the camera 

parameters and the lens distortion coefficients to then create a 

cameraParameters object that will be need not only in read_save_video.m, but 

also in main_VO.m 

Apart from the frames, other parameters are also exported that will be needed 

in main_VO.m: 

• Duration of the exported video frames. 

• Starting time of the video from which the frames are exported. 
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• Scale of reduction of the spatial resolution. 

• Frame rate. 

• Camera parameters. 

C.2 Scripts to estimate the velocity 

From this scripts/functions the main one is main_VO.m. This is the core of the 

velocity estimation (explained in 4 ALGORITHM OVERVIEW). It needs as 

inputs the .mat files created with the scripts of C.1: GPS_data_sync.mat and the 

video frames with their information about the video. 

Then, the rest of functions are utilised to do different tasks described below. 

C.2.1 bucketFeatures.m 

Function to detect corner features on the top-half part of the image using the 

bucketing technique to ensures a uniform distribution of features over the image 

(described in 4.2.1 Feature detection: FAST algorithm for corner detection). 

C.2.2 bucketFeatures_road.m 

Function to detect corner features only on the road using the FAST feature 

detector (described in 4.3.1 Road feature detection, tracking and triangulation). 

C.2.3 SCALE_FACTOR.m 

Function to estimate the scale factor of the camera pose estimation (described 

in 4.3 Computing the scale factor): 

1. Triangulate detected/tracked corners from two adjacent views. 

2. Fit a plane to the resultant 3D points. 

3. Compute distance from that plane to camera position. 

4. Obtain scale factor. 

C.2.4 track.m 

Function to track corner features from previous frame to current one using the 

KLT tracker. 
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