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Sammanfattning 

Ett nära samarbete mellan mänskliga operatörer och industrirobotar är ett sätt att möta 

utmaningarna av ökad global konkurrens och demografiska förändringar för tillverkningsföretag i 

de utvecklade länderna. Dessa sammansättningssystem för humant industrirobotar (HRC) 

kombinerar mänsklig flexibilitet, intelligens och taktil känsla med robothastighet, uthållighet och 

repeterbarhet. Den nuvarande personliga säkerhetslagstiftningen begränsar emellertid de möjliga 

samarbetsansökningarna som kan genomföras i praktiken, men stora forskningsinsatser görs för 

att möjliggöra ett praktiskt genomförande av dessa framtida arbetsstationer. 

När begränsningarna i säkerhetslagstiftningen tas upp, och samarbetssystemen kan genomföras, 

kommer ett behov att simulera dessa system stiga. Virtuella simuleringar är en viktig komponent 

i modern produktionssystemdesign och kommer att krävas i framtida montagearbetsstation design. 

En ny befintlig programvara är i utveckling som kan simulera, visualisera och utvärdera HRC-

arbetsstationer. Det övergripande målet med simuleringsprogrammet är att designa "optimala" 

arbetsstationer, och de möjliggör utvärderingar av flera designalternativ för att nå denna 

"optimala". Skapandet av dessa designalternativ är utmanande idag eftersom det kräver mycket 

manuellt arbete. Syftet med denna avhandling är att ta itu med denna fråga genom att bidra till 

utvecklingen och förbättringen av simuleringsprogramvaran genom programmering av skript i 

Lua-språket. Skripten utvecklades genom en iterativ och trial-and-error-process, kombinerad med 

författarens förstahandsupplevelse i användningen av programvaran. 

De resulterande skriptna möjliggör för användaren att utföra simuleringar på ett snabbt, effektivt, 

automatiserat och förenklat sätt jämfört med den traditionella metoden, vilket minskar behovet av 

manuellt arbete till ett minimum. En stor mängd simuleringar kan utföras på kort tid, även utan att 

det behövs mänsklig interaktion. 

Dessutom, med resultaten av simuleringarna som bas, har matematiska optimeringstekniker 

använts för att hitta den optimala HRC-designen hos en fallstudiestation. Fallstudien har 

genomförts på en arbetsstation i en tung fordonstillverkare. Resultatet av ärendet framhäver de 

förbättringar som gjorts av programvaran av skripten och hur dessa kan användas för att effektivt 

utforma framtida HRC-arbetsstationer. 
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Abstract 

One approach to address the future challenges of an increasingly global market’s competition and 

the demographic changes of an aging workforce for manufacturing companies in developed 

countries is the close collaboration between human operators and industrial robots. These human-

robot collaborative (HRC) assembly systems aim to combine the best characteristics of the human; 

its flexibility, intelligence and tactile sense, with robotic speed, endurance and repeatability. 

Although currently safety legislation limits the possible collaborative applications that could be 

implemented in practice, large research efforts are put in order to enable practical implementation 

of these future workstations. 

Once these safety legislation limitations have been addressed, a need to simulate these systems 

before implementing them will arise. Virtual simulations are an important part of modern 

production system design and will be demanded in future assembly workstation design. A new 

existing software is in development that can simulate, visualise and evaluate HRC assembly 

workstations. The general goal with the simulation software is to design “optimal” workstations, 

and they enable evaluations of multiple design alternatives to reach this “optimum”. The creation 

of these design alternatives is challenging today as it demands a lot of manual work. The aim of 

this thesis is to tackle this issue by contributing to the development and improvement of the 

simulation software through the programming of scripts in the Lua language. The scripts were 

developed through an iterative and trial-and-error process, combined with first-hand experience of 

the author in the usage of the software. 

The resulting scripts enable the user to perform simulations in a swift, efficient, automated and 

simplified way in comparison to the traditional method, reducing the need of manual work to a 

minimum. A large amount of simulations can be performed in a short amount of time, even without 

the need of human interaction. 

In addition, with the results of the simulations as a base, mathematical optimisation techniques 

have been employed in order to find the optimal HRC design of a case study station. The case 

study has been conducted at a workstation in a heavy vehicle manufacturer. The results of the case 

highlight the improvements made to the software by the scripts and how these can be used to 

efficiently design the HRC workstations of the future. 
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NOMENCLATURE 

This chapter presents the abbreviations that are frequently utilized in the report. 

Abbreviations 

IPS Industrial Path Solutions 

HRC Human Robot Collaboration 

HRI Human Robot Interaction 

IMMA Intelligently Moving Manikins 

IRB Industrial Robot 

FCC Fraunhofer-Chalmers Research Centre 

API Application Programming Interface 

SAM Standard Allowed Minute 

KTH Kungliga Tekniska Högskolan 

CAD Computer Aided Design 

TCP Tool Center Point 

RULA Rapid Upper Limb Assessment 

KPI Key Performance Indicator 
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1  INTRODUCTION 

This introductory chapter describes the background of the project, its purpose and research 

questions, and its delimitations. 

1.1 Background 

Simulation software are used in manufacturing companies early in production development 

processes to shorten development time, increase quality and reduce costs [1]. These tools are used 

to support decision making in the companies and are an integral part of the engineering activities 

in many manufacturing companies [2]. 

However, in design of Human-Robot Collaborative (HRC) workstations a commercial software 

has not yet been widely developed. There is a new software under development that enables 

simulation of collaborative tasks between human and industrial robots (Industrial Path Solutions, 

IPS) ( [3], [4], [5]). IPS demands manual inputs to create the workstation and to perform the task 

allocation in an operation sequence. The software outputs are possible design alternatives and also 

quantitative numbers on operation time and biomechanical load for each of these alternatives. 

But a general goal with the simulation software is to design “optimal” workstations, and they 

enable evaluations of multiple design alternatives to reach this “optimum”. The creation of these 

design alternatives is challenging today as it demands a lot of manual work. To meet this has a 

Lua API been developed in IPS in order to automate simulations through Lua programming. 

Through well-defined objectives and limits on the design variables, the goal to automate the 

simulation task and extract quantitative numbers on all the multiple layout alternatives [6], which 

can then be compared to each other in order to find the “optimal” solution depending on the 

designer’s criteria. 

 

Figure 1. Static-Dynamic HRC diagram 
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Figure 1 summarizes the thesis environment and its relation to HRC. The thesis focuses on the 

“static” aspect of the design, the Simulation software. The software receives as main inputs the 

specifications and initial state of the layout, as well as the current process information (operation 

sequence). The author has performed improvements on the software so as to make it more 

simplified, automated and efficient, enabling a large number of simulations to be performed in a 

short time. 

The outputs of the program are a layout design and an ergonomic evaluation, as well as quantitative 

values (KPIs) for the processing time and ergonomic assessment. A third KPI, the layout score, 

will be incorporated by the author of this thesis based on Muther’s method for Systematic Layout 

Planning [7]. These outputs are then used in the “dynamic” environment of HRC, the real-world 

stations, to optimize them. 

The feedback information of the real-world workstation, i.e. real-time information and histogram 

of events, could be used as a further input into the simulation software, as will be discussed in the 

future work (Chapter 5.3). 

1.2 Purpose 

The objective of this thesis is to improve the demonstrator software IPS for efficient simulation, 

visualisation, evaluation and optimisation of human robot collaboration (HRC) workstations in a 

heavy vehicle assembly environment. To do so, a Lua API embedded in the software will be 

utilized to develop a series of scripts, which will enable a user to perform several simulations in a 

simple and automated way, saving time and resources.  

Once these scripts have been developed, a specific case study will be used to design an HRC 

workstation in an industry heavy vehicle manufacturer. With the quantitative outputs generated by 

the software in the simulations (the KPIs), the possible solutions may be compared to each other 

in an objective way in order to find an “optimal” solution design. 

This objective is met through addressing the following research questions: 

RQ1: How can simulation software for design of human–industrial robot collaboration 

workstations be improved through programming of Lua scripts? 

RQ2: How can a human–industrial robot collaborative workstation be optimised in an efficient 

way using the improved software? 

1.3 Delimitations 

The case simulated in this thesis is from a single heavy vehicle manufacturer. The main purpose 

of using the case is not to design the best HRC systems but to test the developed scripts and 

highlight the improvements made to the demonstrator software; the single case company used does 

not affect the end result to any large extent. 

The software utilized during the thesis (IPS HRC) is still in development, which involves the 

existence of a few errors and lack of functionalities that limited the thesis author’s possibilities 

during the programming of the scripts. 
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2  FRAME OF REFERENCE 

The reference frame is a summary of the existing knowledge and former research performed on 

the subject. This chapter presents the theoretical reference frame from the literature and state of 

the art study that is necessary to understand the thesis development. 

2.1 Human-Robot Collaboration 

The demographic changes of an increase in average age of the available workforce has to be 

addressed by adapting workstations to meet the new needs of the elder, since the increase in age 

increases the risk for musculoskeletal disorders ( [8], [9]). In addition to improving the ergonomics 

of the workers ( [10], [11]), the main reason to introduce robots in industry workstations is to 

increase productivity, reducing production times ( [12]). 

The vision of closer collaboration between human and robots was already expressed by Tan et al. 

( [13]): “Human-robot collaboration (HRC) is a dream combination of human flexibility and 

machine efficiency”. A more recent definition of HRC ( [14]) establishes how, to be considered a 

collaborative station, both the human and the robot have to simultaneously work with the same 

product. 

In an HRC station the desired robotic features are handling speed, endurance and repeatability; 

whereas from the human, the preferred characteristics are  flexibility, intelligence and tactile sense 

are desired ( [15], [16]). 

One other current development in order to meet increased global competition is to focus on virtual 

simulations of products and production processes in the manufacturing industry ( [17]) in order to 

provide a design method for these future HRC workstations. 

Human-Robot Collaboration is a subset of all research and applications inside Human-Robot 

Interaction. HRI includes a combination of a number of research areas such as cognition, 

linguistics and physiology research combined with engineering, mathematics, computer science 

and human factors ( [18]). Walther and Guhl [19] present a classification of HRI that helps to 

describe the vide variety of human–robot systems in a structured way.  

Operation modes in human and industrial robot collaboration are, according to the ISO standard 

ISO 10218 [20] divided into four modes: safety-rated monitored stop, hand guiding, speed and 

separation monitoring, and power- and force-limiting. These are described ( [20], [21], [22]) in the 

following way: “Safety-rated monitored stop”; in this mode, when an operator enters the robotic 

work area, the robot stops and will automatically resume its actions when the human leaves the 

area. “Hand guiding” mode enables the human to control the robotic end-effector through 

designated controls while standing in the robotic work area and moving the end-effector to a 

designated position. When the human leaves the area, the robot starts its operation from that new 

position. “Speed and separation monitoring” enables the human to be present in the robotic work 

area while the robot is in operation. The distance between the human and the robot is constantly 

measured and when predefined thresholds are passed, the robot either slows down, stops or moves 

backwards from the human, all depending on the programmed responses. A “power- and force-

limiting” system includes a weak and slow robot (compared to the standard industry robot) that is 

designed so as not to hurt humans in case of a collision. 

Even though the collaborative modes are defined in the current robotic standard, the possibilities 

to build these HRC systems in industry are limited. Personal safety legislations in manufacturing 

industries are governed by the machine directive, which refers to standards in order to meet safety 

demands. ISO 10218 [20] regulates robots and robot system safety. This standard requires that 

some kind of fence (either physical or sensors acting as a fence) surrounds a traditional 

industrialised robot [23]. In HRC systems the robot is still considered dangerous, so in order to 
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guarantee the safety of the human operator other systems than fences have to be used, since fences 

would impair collaboration.; great research efforts are being made in this field. Current state of the 

art includes multiple depth cameras supervising the HRC area ( [24], [25]); robotic control systems 

having control of robot positions and movements [26], certified sensors assisting the depth cameras 

[25] and a network connecting all these systems into the goal of “a safe network of unsafe devices” 

[24]. 

This state of the art is constantly under development in order to enable use of HRC systems in 

manufacturing industries. Today there are actually fenceless industrial robots introduced in 

production environments. They are power- and force-limiting systems with small robots that have 

been installed without fences within the current machine directive. This is possible when the 

mandatory risk analysis shows that the risk for a human to work next to these robots is low, as 

discussed in [27]. These robots are designed to be weak, move with slow speeds, lack sharp edges 

and allow fenceless installation.  

Once the limitations of safety legislation have been addressed and the collaborative systems can 

be implemented, a need to design simulate these systems will arise. HRC design methods presented 

in research publications are mainly limited to the work task allocation problem, i.e., which resource 

is most suitable to perform a certain task: the human or the industrial robot? Pini et al. [28] also 

base their design approach in the engineering design framework presented by Pahl and Beitz [29]. 

Chen et al. [30] present a method to use multi-objective optimisation techniques to choose a 

suitable task allocation based on assembly time and economic cost. Tsarouchi et al. have a similar 

approach in their task allocation method [31]. All these methods use time and cost as evaluation 

criteria, but none of them describes how to gather data into the selection process. One approach is 

to measure these before the task allocation can begin. However, in early phases of production 

design it is difficult to achieve these data since no physical workstation exists. This highlights the 

need of simulation software in order to make accurate production investment decisions early in the 

production development process. 

In order to meet this need, a demonstrator simulation software is currently being developed 

(Industrial Path Solutions, IPS), making it possible to design and evaluate HIRC workstation 

layouts early in the production development phases so as to gather the desired data [32].  

2.2 Industrial Path Solutions 

Industrial Path Solutions (IPS) is a math-based software tool for automatic verification of assembly 

feasibility, design of flexible components, motion planning and optimization of multi-robot 

stations, and simulation of key surface treatment processes. IPS is developed by Fraunhofer-

Chalmers Centre and Fraunhofer ITWM, and distributed by IPS AB and fleXstructures GmbH 

[33] [34]. 

For this thesis, a research version of the software in the field of Human-Robot Collaboration has 

been used (IPS HRC [3]), which enables simulation of hand-guiding HRC tasks in the 

environment. It can be used to analyse reachability for both industrial robots and humans, present 

layout alternatives and be a tool for risk assessment in HRC workstation design assignments. The 

software generates quantitative outputs considering operation time and biomechanical load 

assessments of the HRC workstation. These quantitative outputs can be used to compare 

alternative solutions in an objective way [4]. 

The program has several modules available, and a combination of the following three was used in 

the course of this project: 

• IPS Rigid Body Path Planner: the IPS Path Planner lets simulation engineers import a 

scene geometry from any CAD system, as a VRML or JT file. Any object in the scene can 

be set as a so-called planning object, which IPS will find an efficient path for, provided 
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that the object can be freely assembled along a path. The calculations done by IPS save 

the engineer a substantial amount of time, which otherwise would have to be put into 

manual planning of a collision free assembly path [35].  

• IPS Robot Optimization: this module enables the user to define IRBs and their TCPs, 

automatically generate a robot path planning and tasks, and optimize robotic operations 

[36]. 

• IPS IMMA (Intelligently Moving Manikins): In order to analyse and control 

biomechanical motions performed by humans during assembly of e.g. cars, virtual 

modelling of mannequins is of great interest for the manufacturing industry [5]. This is 

addressed in IMMA by development of a computer environment where analyses of 

motions can be performed through simulation of manikins already in the production 

development phase. Such analyses minimize the risk of potential body joint and muscle 

problems for assembly personnel. Also, manikin analyses will help ensuring that the 

assembly motions are collision free both for the human and the object to be assembled. 

This type of computer analysis contributes to a more effective assembly process with a 

reduced number of injuries and a higher level of quality [5]. 

The primary interface of IPS is shown in Figure 2. It is composed of a 3-D visualization window 

which displays the current scene, as well as several menus on the top side, a log on the bottom 

part, and the Scene and Process trees on the left.  

 

Figure 2. IPS HRC Interface 

The Scene tree contains all the elements and information about geometries in the scene, objects, 

mechanisms, simulations, and others. For this thesis the following scene tree elements are 

significative:  

• Static geometries: objects of the scenery which have collision detection but that cannot be 

utilized to generate path planning, nor be added to operation sequences, nor be interacted 

with by manikins or robots. 

• Active objects: includes rigid body objects and manikin families. 

o Rigid body objects: transformed from static geometries, rigid body objects can be 

added as actors to an operation sequence, can be used to generate motions in the 

Rigid body path planner, and can be interacted with by the manikins and robots. 
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o Manikin families: they are created within the software by the IMMA module with 

the information of an anthropometric database. A manikin family can consist of one 

or several manikins, and they can be added into an operation sequence to perform 

actions such as grasping objects, moving to positions, and assuming postures. The 

manikin in IMMA is built on a skeleton that consists of 81 segments connected by 

74 joints resulting in 162 degrees of freedom. 

• Mechanisms: include robot-related objects, such as the IRB itself, its defined TCP, and any 

grippers attached to it. 

• Simulations: here are displayed the paths generated by the path planners that are saved to 

the scene. They can be added into operation sequences as motions for other objects to 

follow. 

 

Figure 3. IPS HRC Scene tree 

The Process tree contains the elements and information related to path planning and operation 

sequences: 

• Path planning: although the installed modules offer the possibilities of utilizing both a 

Rigid Body Path Planning and an IRB task planner for generating motions, for this thesis 

only the rigid body planning has been used, since the limitations of the existing IPS Lua 

API made it not possible to create a fully automated script with the IRB task planner. 

o Rigid Body Path Planning: offers the possibility of selecting a rigid body to perform 

a sequence of motions by moving between viapoints defined by the user. The 

planner automatically calculates a collision-free path for the body to travel from 

one viapoint to the next one until a goal position is reached. After a path has been 

calculated, it can be saved into the scene tree as a Simulation, which can then be 

incorporated into the operation sequence as motions. 
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• Operation sequence: an example of an operation sequence can be seen in Figure 4. An 

operation sequence can be defined by adding actors (e.g., a manikin family, an IRB, a rigid 

body) that perform a series of actions (e.g., grasp an object, move to a position, follow a 

motion path) in a sequential manner, which precedence orders that can be established 

between the actions of different actors. The duration of the actions performed by the IRB 

and the rigid bodies is based on the speed that is set for each of them, whereas the duration 

of manikin actions can be fixed by the user or automatically generated by a predetermined 

time standard method, SAM [37], included in IMMA. 

The operation sequence is the ultimate goal of the scene, since by executing it the simulation is 

performed, generating a visual representation of the actions in the sequence. The generated replay 

contains information about the processing time for the whole sequence, and enables the user to 

perform an Ergonomic evaluation, which generates a series of .csv files (one for each manikin) for 

that particular simulation and stores them in a folder with timestamps. These .csv files contain 

information about all the joint position values of that specific manikin in each frame of the 

simulation. With this information, an ergonomic analysis method, such as RULA (Rapid Upper 

Limb Assessment) [38] can be used to generate the biomechanical load assessment. 

 

Figure 4. IPS HRC Operation Sequence 

2.3 LUA 

Lua is a free open-source, efficient, lightweight, embeddable scripting language. It supports 

procedural programming, object-oriented programming, functional programming, data-driven 

programming, and data description [39] [40] 

Lua combines simple procedural syntax with powerful data description constructs based on 

associative arrays and extensible semantics. Lua is dynamically typed, runs by interpreting 

bytecode with a register-based virtual machine, and has automatic memory management with 

incremental garbage collection, making it ideal for configuration, scripting, and rapid 

prototyping [41]. 

Lua has been used in many industrial applications (e.g., Adobe's Photoshop Lightroom), with an 

emphasis on embedded systems. Several versions of Lua have been released and used in real 

applications since its creation in 1993. [42] 

Lua is a fast language engine with small footprint that can be easily embedded into an application. 

Lua has a simple and well documented API that allows strong integration with code written in 

other languages. It is easy to extend Lua with libraries written in other languages and to extend 

programs written in other languages with Lua. 

The connection between IPS and Lua is made through an API provided by the developers of the 

software. This Lua API contains the information for all the variables and functionalities that can 

be executed through the script inside IPS. Any text editor can be used to write the Lua code and 

save it as a .lua file, which can then be opened in IPS to run the script. 
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2.4 Case study 

In order to test the effectiveness of the improvements in the software and the feasibility to use the 

scripts for HRC workstation design, a case study at the heavy vehicle manufacturer was proposed. 

The flywheel cover assembly workstation at the engine assembly factory had prior to this project 

been identified as a potential case to be used in another research project [4]. It was of interest to 

simulate an HRC in that station since there were potential ergonomic difficulties when new and 

heavier components were to be introduced at the same time as the station processing time needed 

to be reduced. 

In the current workstation, a worker picks up the flywheel cover from a carrier with the help of a 

hanging crane hook; then, the worker moves the cover into the silicon applying machine, where 

silicon is applied to the product. After this operation is finished, the worker picks the cover again 

and places it in the engine, where it is screwed in position by another worker; once the cover has 

been fixed to the engine, it is transported away, and a new engine arrives to the station, starting 

the process again. 

The postures and forces that the worker in charge of retrieving the flywheel cover has to execute 

can lead to ergonomic issues, such as back injuries; thus, the aim of incorporating HRC in this 

station would be to install a robot that would be in charge of retrieving and moving the cover up 

to the step in which it has to be assembled into the engine, since this step requires the flexibility 

of the human to accurately place the cover in the correct position in the engine, and this would 

represent the point of collaboration. Thus, the value-adding tasks would be performed by the 

human and the non-value-adding tasks by the robot, as described in [43]. 

The assembly station was reproduced into the IPS software by importing the static geometries of 

the different objects that are part of the current station and that were previously modelled in a 

standard CAD tool (in this case, CATIA V5). Of these static geometries, five were defined as 

active objects: one of the carriers, the flywheel cover in the same carrier, the silicon machine, the 

engine, and a pillar (Figure 6). 

Next, a Robot model was imported to be placed into the station as an IRB: the KUKA KR 210 

R2700 PRIME [44]; this model had been already utilized in previous works [4] and fulfilled the 

requirements of reach and strength. In addition, a simplified gripper model was attached to the 

robot to represent a real-life gripper that would enable it to pick up and move the flywheel cover. 

Finally, after all the geometries had been placed into the program, a family of manikins was 

imported to the scene; a total of 10 manikins (5 males and 5 females) of different height and weight 

given by the Swedish anthropometric database [45], with a confidence level of 95%. The resulting 

scene can be seen in Figure 5. A more detailed picture of the scene from the top view can be seen 

in Figure 6, including distances between objects and significant positions. 

 



 14 

 

Figure 5. Case Study workstation in IPS 

Once all the active objects, the IRB and the family of manikins have been placed in the scene, the 

logic of the path planning and the operation sequence was defined. A Rigid Body Path Planning 

was utilized instead of a robot planning; thus, the flywheel cover will be defined as the moving 

object with several viapoints and the IRB TCP will grasp it and follow its motions. This is due to 

the limitations of the Lua API, which does not contemplate the possibility of managing robot 

motions in the Operation Sequence through the scripts, and, since the aim of the case study is to 

test the developed scripts, those motions could not be used. Furthermore, in the current version of 

the software the IRB does not have collision detection, so in order to prevent the cover object from 

going through the robot during path planning a transparent “robot box” was placed in the position 

of the IRB, with the same dimensions as its base. 

The starting position (viapoint 0) for the flywheel cover in the Rigid Body Path Planning would 

be in the carrier, with the IRB gripping it. Then, the cover would move to a point defined inside 

the silicon machine (viapoint 1); since the applying time for the silicon is the same for every 

product, it is not necessary to introduce it into the sequence, and thus after arriving into the machine 

the cover proceeds immediately to the next point, which is the Hand-over position (viapoint 2). 

Here, the family of manikins grabs the cover by two gripper points, placed by the author of the 

thesis to represent a comfortable posture for grabbing the object. After this, the manikin family 

proceeds to hand-guide the cover and the robot to a close position in front of the engine (viapoint 

3), where the robot releases it and the human places the cover in the correct position (viapoint 4), 

ending the simulation. A fixed speed of 250 mm/s was set for calculating the duration of the 

product movements, whereas for the manikin operations the generated SAM [37] times were used. 

The processing time of the simulation and the RULA ergonomic assessment score will be utilized 

as KPIs to redesign the layout and optimize the workstation, as is further discussed in point 3.1. 
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Figure 6. Top view of the workstation in IPS 
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3  METHOD 

In this chapter the methodology used in the thesis is described. The method is the structured 

process through which the author of the thesis reached the goals for the project. 

The research presented includes software development in the growing human–industrial robot 

collaboration area. The design science research (DSR) concept is used as a methodological 

approach since it describes how to perform, evaluate and present design science research in a clear 

manner ( [46], [47]).  

The thesis project was divided into five tasks with defined timelines and milestones, which the 

author followed to reach the goals of the project. Moreover, a literature search has been performed 

continuously during the project in the area of human robot collaboration focusing on simulation 

of such systems. The aim of this search was to gather basic knowledge of the state of the art of 

human robot collaboration and simulation of such collaboration. The library database at KTH was 

used, as well as the previous work of the thesis supervisor in the field; the search method used was 

a systematic search with the following search terms: “HRC”, “Robot Human Collaboration”, 

“Workstation design”, “Automated workstation design”, “Workstation optimisation”. In the 

articles found a chain search was also made in order to find other interesting literature in order to 

make the review more comprehensive.  

A Gantt diagram of the tasks is presented in Figure 7. 

• The first task was an introduction to the IPS software, the Lua language, and the definition 

of the case study. The IPS software introduction was carried out by replicating a simple 

HRC case in the program, which allowed the author of the thesis to become familiar with 

the functionalities of the program. For the Lua language, a seminar was held by the 

developers at Fraunhofer-Chalmers Research Centre in Göteborg, in which the author 

developed short scripts and learned the basics of the language. Finally, the case study was 

defined in collaboration with the thesis supervisor: the flywheel cover assembly station. 

• For the second task, the case study was reproduced into an IPS scene, as explained in point 

2.4. The constraints and variable parameters for the case were established with the 

assistance of the supervisor (point 3.1), as well as the KPIs used for the workstation 

optimisation. Initial drafts of the possible script improvements to the software were also 

written in this phase. 

• The third task was focused on the programming of the scripts themselves, with intensive 

testing in the case study scene, and with frequent discussions and collaboration with the 

software developers and the thesis supervisor. 

• After the scripts had been developed, the fourth task encompassed the simulation of the 

different scenarios for the case study workstation optimisation that were established in the 

Figure 7. Gantt diagram of the thesis schedule 
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second phase, and that will be further elaborated in point 3.1. The data obtained from these 

simulations was analysed, and an “optimal” solution was defined. 

• Finally, the fifth task was dedicated to the documentation of the thesis work, extraction of 

conclusions, recommendations about future work and further literature search. 

3.1 Case study approach 

The aim of the case study was to design an HRC workstation in an industrial case by utilizing the 

developed scripts to simulate different scenarios and compare the quantitative KPIs obtained as 

output from the simulation software in order to find an “optimal” solution for the station layout. 

Three KPIs were defined in collaboration with the supervisor of the thesis: the processing time 

and RULA ergonomic score [48], both already integrated in the IPS software’s outputs, and a third 

parameter that is not implemented in the program and was defined for this thesis in order to have 

more objective indicators for the evaluation: the layout score, which would represent the 

qualitative analysis regarding safety, product flow and workflow of the station. 

This layout score is calculated as the sum of individual scores for each pair of elements in the 

scene, which are the result of the division between their activity relationship closeness value [7], 

displayed in Figure 8, and the physical distance between the elements in the scene in the X-Y 

plane. Thus, the higher the distance between elements, the lower the layout score will be (except 

for elements whose closeness is not desired). 

𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑠𝑐𝑜𝑟𝑒 = 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 𝑉𝑎𝑙𝑢𝑒/𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑚)  (1.1) 

𝐿𝑎𝑦𝑜𝑢𝑡 𝑠𝑐𝑜𝑟𝑒 = ∑ 𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑠𝑐𝑜𝑟𝑒                (1.2)  

The relationship value is a qualitative assessment which has an arbitrary quantitative score 

assigned. In this case, the following scores have been assigned to each closeness value (Table 1): 

Table 1. Quantitative scores assigned to qualitative values 

Value: A E I O U X 

Score: 100 75 50 25 0 -100 

 

The qualitative assessment in the Activity relationship diagram was elaborated by the author of 

the thesis in collaboration with the thesis supervisor, and is based on Muther’s method [7] for 

assigning closeness values in activities with criteria other than product flow. The diagram obtained 

is presented the Figure 8. 

 

Figure 8 Activity relationship diagram for the case study 
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Each of the five elements in the diagram represents the element of the same name in the layout 

(see Figure 6. Top view of the workstation in IPS). Most of the elements’ desired closeness values are 

of normal importance (I) due to the product flow reason: the flywheel cover moves from one 

element to another, so it is desirable that they are as close as possible, but not critical. Other 

relations are unimportant (U), since their closeness does not have any impact: the carrier and the 

manikin, for example, do not have any kind of interaction. 

One relation is of absolutely necessary closeness (A): the manikin and the engine must be as close 

as possible, since the manikin has to work in the engine in order to assemble the flywheel cover 

once it has been put into place. And finally, one relation has a not desirable closeness (X): the 

manikin and the IRB, despite it being a collaborative workstation, should be as far as possible from 

each other due to safety reasons, since while the manikin is working on assembling the cover if 

the robot is too close a collision could take place, resulting in injuries. 

After the KPIs were defined, the design method proposed in by Ore et al. in [6], [32] was utilized 

to define the number of total simulations to be performed in order to design the workstation and 

propose an “optimal” solution. Table 2 summarizes the results of applying the method to this case: 

7 variables have been identified, and each of them has been defined as either a constant or having 

a number of different alternatives. 

Table 2. Definition of variables for the case study 

Variable Nº of alternatives Constant 

Robot variant - X 

Robot position 6 - 

Robot gripper - X 

Carrier position 4 - 

Hand-over position 20 - 

Silicon machine position 4 - 

Engine & pillar position - X 

Manikin family  - X 

 

• The robot variant variable reflects the possibility of using different types of robots in the 

workstation design; for this case, it has been defined as a constant, since only one model is 

utilized (KUKA KR 210 R2700 PRIME [44]). 

• The robot position variable indicates the different positions that the IRB can be displaced 

at in the scene from its original location; a total of 6 alternatives have been proposed: two 

displacements in the X axis, two in the Y axis, and two in the Z axis. 

• The robot gripper variable alludes to the gripper element that is attached to the head of the 

IRB in order to grab the product, and the different models that could be used for it. In this 

case, it has been fixed as a constant, since only one model of the gripper is used. 

• The carrier position, similar to the robot position, has four possible alternatives of 

displacement: two in the X axis and two in the Y axis. 

• The hand-over position in which the manikin starts to hand-guide the robot is a critical 

point, since it will be the most impactful one in the ergonomic score. In this case, and given 

the limitations of the Lua API that will be further discussed in point 5.1, the hand-over 

position will be a fixed point in the X-Y plane. Thus, the 20 alternatives proposed in the 

table will be of small incremental movements in the Z axis. 
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• The silicon machine position, as in the case of the carrier, has four displacement positions: 

two in the X axis and two in the Y axis. 

• The engine and pillar position variables have been fixed as a constant, since it would not 

be feasible to change their current position in the real workstation environment. 

• Finally, the manikin family variable reflects the possibility of using different families from 

different anthropometric databases. In this case, it is a constant, with the data for the family 

utilized provided by the Swedish anthropometric database [45]. 

The combination of all the variables and their number of alternatives would give a total of  

6𝑥4𝑥20𝑥4 = 1920 simulations, which is too large an amount for the scope of this thesis. For this 

reason, and given that the only variable affecting the ergonomic assessment is the hand-over 

position, it was decided to simulate those 20 alternatives separately in order to find an optimal 

ergonomic score, and once that point is fixed the rest of the 6𝑥4𝑥4 = 96 simulations would be 

used to compare different layouts regarding the other two KPIs, processing time and layout score. 
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4  RESULTS  

In this chapter are presented the results obtained with the method described in the previous 

chapter.  

4.1 LUA scripts 

A total of three main scripts have been developed by the author, based on the requirements for 

improvements that were established in the beginning of the thesis, and limited by the available 

functionalities and time constraints of the project. Their aim is to enable the user to perform layout 

changes in an existing simulation scene and automatically recompute the operation sequence and 

generate a new simulation reflecting the alterations made. The three scripts have been key named 

as: Initial Script, Free-move Script and Automated Script.  

All three scripts are generalized within the possibilities of the API, so that they may be applicable 

to a wide range of different scenarios, and not only the case study performed in this thesis. Thus, 

the scripts will require input from the user in order to account for information that can not be 

directly gathered from the existing scene, e.g., the object associated with each position or the 

starting position of the IRB. 

• Initial Script: this script must be the first one executed when starting the optimization of 

a new workstation. It reads the existing scene and saves the following information in 

vectors: the active objects in the scene tree and their positions, the existing body path 

planning and all its viapoints, the IRB mode and its position (both TCP position and robot 

base position), and the Operation Sequence actors and their sequence of actions. 

Once all this information has been gathered, since the goal of the scripts is to be partially 

generalized for different cases it will be required for the user to input some information 

(see Figure 9). After having read the viapoints of the path plan and the active objects in the 

scene, the script will prompt the user to select a related object to each of the viapoints (or 

establish that there are no objects related). This enables the user to define what is the 

sequence of movements of the product through objects, instead of viapoints. In the case 

study example, the viapoint 0 would be associated with the Carrier object, the viapoint 1 

with the Silicon machine, and the rest of the viapoints would have no object related to 

them. 

Finally, the script prompts the user to select the starting viapoint of the IRB TCP in order 

to account for cases in which the IRB grabs the product in the middle of a sequence, instead 

of at the beginning (as in the case study). 

After the user has inputted the required information, the script proceeds to calculate and 

store in vectors the relative position of every active object to their associated viapoint (as 

well as the TCP). This information will be used by the other two scripts in order to correctly 

reposition the viapoints in the scene after any objects have been moved.  

Once the script has finished running, the user is free to move objects around and use the 

Free-move script or run the Automated script for an automatic movement approach. 
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Figure 9. Example of user inputs in the Initial Lua Script 

• Free-move script: this script may be used at any moment after the initial script has been 

run. The user should start by moving objects to their new desired positions and run the 

script once they have been placed. A safeguard has been implemented in the script, which 

will send an alert to the user if any of the objects have been moved out of range of the IRB, 

and cancel the execution of the rest of the script. 

This script does not require any user input, since all the information can be gathered from 

the scene and the previously saved data. It will read the scene and retrieve the active objects 

and their new positions; then, applying the data stored by the initial script regarding relative 

positioning, it will calculate the new position of the viapoints and reposition them so that 

they keep the same relative positioning as in the beginning. Then, it will proceed to 

compute the new Layout score (point 3.1) and store it in a vector for later use. After this, 

it will automatically run the new path planning, save the movement segments to the scene, 

and replace the existing movement actions of the product actor in the Operation Sequence 

by the new movements. Finally, it will execute the updated Operation Sequence, generating 

a new simulation replay with the processing time, and run the Ergonomic evaluation to 

obtain the .csv files that are used to compute the RULA score in MATLAB. 

The goal of this script is to provide the user with the possibility of swiftly making 

significant changes to the existing layout and exploring different options by moving objects 

to completely different positions. 

 

• Automated script: this script may be used at any moment after the initial script has been 

run. Its goal is to provide a “fine tuning” approach to the layout design of the workstation 

by allowing the user to select an object to move automatically in a 3-D direction for a 

determinate distance in a certain number of steps. 

This script will require several inputs from the user in order to establish the conditions for 

the automated move (see Figure 10). Once the script is run, it will read the active objects 

tree and immediately prompt the user to select an object to perform the automated move 

on. After an object has been chosen, an option will be offered to the user to select in which 

directions of the X-Y plane should the automated move be performed; after that, the user 

will then select the direction in the Z axis. With the 3-D directions of movements 

established, the user is given the option to enter the distances (in meters) that the object 

should be displaced in each of the selected axis, and finally, input the number of steps that 

have to be performed. 

Once the user has finished inputting all the information, the script will start by calculating 

the distances that the selected object has to be moved in each of the iterations by dividing 

the total distance by the number of steps. Then, the script will displace the object by that 

distance, and recalculate and reposition the viapoints of the path planning (with the 

information stored by the Initial script regarding relative positioning of objects and 
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viapoints) in a similar way to the Free-move script. After the viapoints have been relocated, 

it will compute the new Layout score (point 3.1) and store it in a vector for later use. Then, 

it will automatically run the new path planning, generate the new movements and replace 

the existing ones in the Operation Sequence, execute the sequence to generate a new 

simulation and Ergonomic evaluation, and re-do the same process for each iteration until a 

number of simulations equal to the number of steps are achieved. 

 

 
 

  

  

Figure 10. Example of the selection process for user inputs in the Automated Lua Script 

A fourth minor script has been developed, with the purpose of displaying the stored values in the 

Layout scores vector, so that the user does not need to keep track of the value after each individual 

simulation. 

4.2 Case solution 

After the scripts had been developed, the case study was used to test their feasibility and 

effectiveness in the case of a theoretical HRC workstation design. The methodology for the layout 

design of the case study is explained in point 3.1. 
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The Automated script has been used to displace the hand-over position along the Z axis in 20 

different steps, from the initial position of 650 mm to a final position of 1600 mm, with a 

simulation being performed every 50 mm. These are the results obtained regarding the RULA 

score: 

Table 3. RULA scores for the hand-over positions 

Z Position 
(mm) 

RULA 
score 

 Z Position 
(mm) 

RULA score 

650 3,379693 
 

1150 3,261409 

700 3,389751 
 

1200 3,260751 

750 3,405278 
 

1250 3,259542 

800 3,369042 
 

1300 3,337237 

850 3,385779 
 

1350 3,319593 

900 3,275278 
 

1400 3,317369 

950 3,279472 
 

1450 3,314775 

1000 3,201278 
 

1500 3,315726 

1050 3,275561 
 

1550 3,311185 

1100 3,275764 
 

1600 3,316944 

 

This RULA score is calculated as an average of the sum of scores of each of the 10 manikins (5 

males and 5 females). An optimal solution is obtained for the Z position of 1000 mm; this will be 

further elaborated in point 5.2. 

After an optimal hand-over position has been determined, a combination of the Automated move 

and Free-move script is used to perform the 96 simulations defined in point 3.1. The obtained 

results regarding processing time and layout score are presented in Table 5 and charted in Figure 

11. The code figures allude to the positioning of an object relative to their original location, 

according to Table 4. From left to right, each of the three number is associated to the objects IRB, 

Silicon machine, and Carrier respectively. Thus, the code 412 would refer to the layout in which 

the IRB is displaced in the positive Y axis from its original position, the Silicon machine is 

displaced in the negative X axis, and the Carrier is displaced in the positive X axis.  

The magnitude of each of the displacements is of 0.2 meters in the indicated direction, with the 

codes 5 and 6 being 0.2 and 0.4 meters in the positive Z axis, respectively. 

 

Table 4. Code number and relative position assigned 

Code: 1 2 3 4 5 6 

Relative 

position: 

-X +X -Y +Y +Z +2Z 
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Several layout codes can be observed to have processing times and scores of 0; these are cases in 

which one or more of the objects in the scene were out of reach of the IRB after being displaced, 

thus making it impossible to run the simulation. 

The concept of Pareto-optimal solutions was used [49] [6] to create a trade-off curve between 

layout score and processing times. Depending on the preferences of importance for the decision 

makers, any of the solutions that are part of the pareto frontier (highlighted in Table 5) may be 

chosen as an “optimal” solution. Results are further discussed in point 5.2. 

 

Figure 11. Chart with the plotted results of the case solution, displaying the Pareto Frontier 

 

 

  

0

1

2

3

4

5

6

0 20 40 60 80 100 120

La
yo

u
t 

sc
o

re

Processing time

Pareto frontier 



 25 

Table 5. Results of the 96 simulations for the case study 

Code Time (s) L. Score  Code Time (s) L. Score 

111 69,8935 4.585 
 

411 69,149 4.742 

112 66,6906 4.78 
 

412 65,0734 4.921 

113 70,1634 4.61 
 

413 67,4314 4.757 

114 68,6829 4.753 
 

414 68,2286 4.908 

121 87,3705 4.706 
 

421 85,4815 4.879 

122 83,8813 4.905 
 

422 78,2054 5.06 

123 83,7489 4.748 
 

423 85,0823 4.91 

124 88,0755 4.855 
 

424 83,4873 5.025 

131 89,3096 4.777 
 

431 80,4263 4.937 

132 81,8844 4.996 
 

432 68,7017 5.14 

133 84,3063 4.814 
 

433 67,9424 4.964 

134 73,5503 4.954 
 

434 68,7903 5.111 

141 70,6638 4.512 
 

441 70,7861 4.678 

142 69,6847 4.695 
 

442 67,0303 4.845 

143 68,2387 4.545 
 

443 71,4246 4.731 

144 70,6748 4.655 
 

444 67,2093 4.914 

211 0 0 
 

511 68,9629 4.509 

212 68,6488 4.568 
 

512 64,6402 4.689 

213 68,8519 4.415 
 

513 68,8326 4.528 

214 70,0953 4.559 
 

514 68,2307 4.672 

221 0 0 
 

521 92,2686 4.63 

222 67,2369 4.691 
 

522 78,0863 4.813 

223 69,3097 4.55 
 

523 80,1342 4.665 

224 69,3595 4.658 
 

524 92,1586 4.773 

231 0 0 
 

531 81,198 4.693 

232 69,5305 4.767 
 

532 67,5337 4.896 

233 69,9004 4.601 
 

533 68,1475 4.723 

234 68,9564 4.741 
 

534 68,2125 4.863 

241 0 0 
 

541 70,2779 4.442 

242 67,5647 4.493 
 

542 64,8737 4.609 

243 69,6372 4.36 
 

543 68,2774 4.469 

244 70,1285 4.471 
 

544 68,2623 4.58 

311 71,9864 4.327 
 

611 69,044 4.509 

312 67,7236 4.505 
 

612 64,7205 4.689 

313 73,5546 4.348 
 

613 68,996 4.528 

314 72,0618 4.485 
 

614 68,2698 4.672 

321 95,3873 4.435 
 

621 89,8246 4.63 

322 80,7559 4.616 
 

622 77,1945 4.813 

323 82,3327 4.473 
 

623 79,9635 4.665 

324 84,8349 4.573 
 

624 82,842 4.773 

331 72,6621 4.5 
 

631 82,0146 4.693 

332 70,0172 4.702 
 

632 67,5341 4.896 

333 74,1421 4.533 
 

633 68,1468 4.723 

334 69,8959 4.666 
 

634 67,1765 4.863 

341 72,7549 4.257 
 

641 69,2785 4.442 

342 68,0095 4.423 
 

642 65,0041 4.609 

343 70,4978 4.287 
 

643 67,9199 4.469 

344 71,2733 4.391 
 

644 68,2624 4.58 
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5  DISCUSSION AND CONCLUSIONS 

In this chapter, a discussion of the results and the conclusions that the author has drawn during 

the thesis are presented. The conclusions are based from the analysis with the intention to answer 

the formulation of questions that was presented in Chapter 1.  

5.1 Discussion of the LUA scripts 

RQ1: How can simulation software for design of human–industrial robot collaboration 

workstations be improved through programming of Lua scripts? 

The first research question is answered by the developed Lua scripts presented in point 4.1. Three 

main scripts have been developed: an Initial script to gather information from the scene and receive 

input parameters from the user; a Free-move script that allows the user to quickly check different 

layout designs in a broad manner; and an Automated script that enables the user to automatically 

perform consecutive movements in order to fine tune the layout design of a workstation.  

The scripts developed enable the user to perform simulations in a swift, efficient, automated and 

simplified way in comparison to the traditional method. The scripts reduce the need of manual 

work to a minimum, only requiring the user to input some parameters to decide which type of 

movements to perform in the layout design, whereas with the previous procedure it would take a 

large amount of time and effort to perform even a single simulation after changing the layout. 

The time required to execute a simulation with a new layout using the new scripts in estimated to 

be less than one sixth of the time required with the traditional method; furthermore, most of that 

time is due to the software’s own calculation times for the path planning, with little to no manual 

labour required. 

Besides, with the addition of the Automated script, it is now possible for the user to perform a 

large number of simulations consecutively without the need of interacting with the program, 

potentially saving tens or hundreds of hours by running the program without supervision. 

Moreover, the scripts can also be used to run the program as a “black box”, enabling users to utilize 

the software without the need of being adepts at it, requiring only the basic knowledge to move 

objects in the scene and run the scripts; this would, for example, allow layout designers to use the 

program in order to design HRC workstations without the need of having to learn first all the 

complexities that it entails. 

Finally, since the scripts have been partially generalized, they may be used in different scenarios 

other than the case study of this thesis, with the trade-off being the need of the user to input several 

parameters. This partial generalization of the scripts enables them to be used in scenes that fulfil 

the following requirements: 

• The scene must have a single Rigid Body Path Planning that defines the product movement, 

since it is not possible for the Lua API to incorporate Robot motions into the operation 

sequence. The possibility of handling more than one body path planning was considered, 

but deemed not necessary for most cases. 

• The scene must contain a single IRB. 

• The scene may have only one Manikin Family, since the current version of the software 

does not allow to have more than a single family as actors in an operation sequence. 

• The scene must have a fixed hand-over position in the X-Y plane. This is due to the fact 

that it is not currently possible through the Lua API to retrieve the necessary information 

to automatically set a new position for the manikin to move to. 

These constraints are given by the currently existing Lua API functionalities, as expressed in the 

delimitations of the thesis in point 1.3 and establish room for future work. 
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5.2 Discussion of the case solution 

RQ2: How can a human–industrial robot collaborative workstations be optimised in an efficient 

way using the improved software? 

The second research question is answered by the solution of the case study presented in point 4.2 

Following the guidelines established in the case study approach (point 3.1), a two-step procedure 

has been followed to offer an “optimal” solution for the case.  

In the first place, the most favourable height from the ergonomics perspective for the hand-over 

position has been found by using the Automated script to run the defined number of simulations 

consecutively (Table 3).  As it can be seen in the table, all the values for the RULA score are quite 

similar; this is arguably due to the method used for computing the score, in which the average of 

the family of 10 manikins (5 males and 5 females, representing 95% of the population spectrum 

[45]) is calculated, which causes values for the score to not vary significantly since positions that 

have a lower ergonomic score for people with smaller height may have a higher score for higher 

people, and vice versa. However, the position of Z=1000 mm has the lowest RULA average value 

by a notable margin, and thus it is safe to consider it as the optimal position from the ergonomics 

perspective. 

After having defined the optimal height for the hand-over position, the second step was to run the 

96 simulations established in the case study and analyse the processing times and layout scores in 

order to find an “optimal” solution through a Pareto frontier multi-objective optimization [49] [4]. 

As displayed in the graph in Figure 11 and highlighted in Table 5, three points comprise the Pareto 

frontier: the ones corresponding to codes 412, 432 and 512. Any of these positions could be 

considered an “optimal” one, and the best one should be selected depending on the preferences of 

the importance of processing time over layout score. 

All the simulations could be performed efficiently with the use of the developed scripts, saving a 

large amount of time; however, some issues were found during the testing, which give room for 

improvements and future work: 

• When running the automated script to find the optimal height of the hand-over position, no 

more than 5 simulation steps could be run consecutively; when running a sixth one, an 

error would cause the script to be interrupted. This issue made it necessary to run the 21 

required simulations in 5 different usages of the Automated script (5, 5, 5, 5 and 1 steps 

respectively), resetting the program after each run of the script. 

• Most of the manual work was dedicated to collecting the data from the Ergonomic 

evaluation for calculating the RULA score. The .csv files of each simulation containing the 

joint values for all manikins had to be transferred to MATLAB, where a different script 

was used to calculate the score; afterwards, this score had to be manually inputted in an 

excel file to keep track of the scores for each simulation. 

• The processing times of each simulation had to be manually inputted into an excel file. 

• When retrieving the information about the layout score, a short script was used to display 

the score calculated in each of the simulations that had been run; this information had then 

to be manually inputted into an excel file together with the processing times. 

Once these issues are tackled, it will be possible to perform the simulations with little to no manual 

work required, which will mark a significant improvement in the optimisation and layout design 

of HRC workstations with this software. 
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5.3 Conclusions 

The general conclusion from the research performed is that it is possible to improve existing 

software to simulate, visualise, evaluate and optimise HRC workstations through the use of Lua 

scripts. With these scripts it is possible to efficiently design the layout of future HRC assembly 

workstations by performing large amount of simulations in a reduced time and in an automated 

way. 

The main academic contribution of the thesis are the scripts themselves and the new methodology 

developed by using them to design future HRC workstations. Thanks to the scripts, it is possible 

to run a large number of simulations, achieving a greater degree of accuracy in the evaluation and 

comparison of different alternatives in the layout design process, saving time and resources; 

furthermore, with the addition of the Automated script it is also possible to perform those 

simulations consecutively without the need of human interaction, which is a remarkable 

improvement over the current simulation manual procedures. 

The scripts are also the main part of the industrial contribution. Through them HRC workstations 

layout can be designed and improved in an efficient way early in the production design process. 

However, a number of issues need to be resolved before it can have a major impact in the 

industries. One is that, even if the scripts have been partly generalized to adapt to different 

workstations, it can still only cover a limited range of HRC station possibilities; the scripts would 

need to be able to be utilized in a wider variety of situations for them to be utilized in industry. 

One other obstacle is the maturity of the software, which has to increase through further 

development in order to make the required improvements to the scripts, as is discussed in the 

recommendations and future work. 
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6  RECOMMENDATIONS AND FUTURE WORK 

In this chapter, recommendations on improvements for the solution and future work in this field 

are presented. 

As discussed in Chapter 5.1, several issues and possible improvements to be made to the software 

in development and the Lua API have been detected: 

• The Lua API should include functionalities to enable the full script automation of the robot 

path planning tool and its integration in the operation sequence. With this, it would be 

possible to handle more than one product’s motions, as well as create robot movements 

without having the product attached. 

• The IRB object should be considered as a solid object for calculating collision avoidance 

in path planning. This would eliminate the need of using a “robot box” when using the 

rigid body path planner. 

• The operation sequence should be able to handle more than one family of manikins, to 

represent the cases in which there is more than one human collaborating with the robot in 

the HRC station. 

• Additional functionalities should be added to the Lua API to be able to handle the 

movements of the manikins, so that it can automatically create move actions to new 

positions, removing the need for the hand-over position to be static. 

• The error that causes the Automated script to fail execution when running more than five 

consecutive steps should be solved. 

• The RULA ergonomic assessment could be incorporated into the software, so that there is 

no need for an external program to calculate the score. 

• The layout score calculations methodology could be added into the software, removing the 

need to implement it into the script. 

• The data transfer method could be improved, by making it possible to automatically export 

the processing times, RULA score and layout score to a datasheet file. 

Aside from these improvements into the demonstrator software, further work should be put into 

the scripts, making them more generalized by including different possibilities of HRC 

workstations: more than one IRB collaborating with more than one human, different objects 

moving at a same time, a manikin moving to different positions that change with the layout, etc. 

Furthermore, as presented in the introductory point 1.1, future work in the project with relation to 

the smart factory and Industry 4.0 concepts ( [50], [51]) could be performed by focusing in the 

information feedback from the real-time HRC stations and its histogram and how this information 

may be used as inputs in the design process of the workstations. 
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APPENDIX A: COMPLETE SCRIPT CODE 

This appendix includes the complete code of the three main Lua scripts developed by the author. 

function calculateAngle(rotvector) --Function to calculate the angle given a rotation matrix R from 

a transf3 object 

 shift = 10 ^ 4 --Rounds the angle to the 4th decimal 

     resultsin = math.floor( rotvector['r2x']*shift + 0.5 ) / shift 

 resultcos = math.floor( rotvector['r1x']*shift + 0.5 ) / shift 

 local angle=math.atan2(resultsin,resultcos); --Calculates the angle with the inverse of the 

tangent 

return angle 

end 

function calculateDistance(vector1,vector2) --Function to calculate the distance vector between 

two points; returns module and angle 

 distx=vector1['tx']-vector2['tx']; 

 if distx<0 then  --The sign of the relative x position has to be used to adjust the angle 

in the pp2 script 

  dirx=-1; 

  else 

  dirx=1; 

 end 

 disty=vector1['ty']-vector2['ty']; 

 local ang=math.atan2(disty,distx); --Calculates the angle that forms the distance vector 

between the two points 

 local dist=math.sqrt(distx^2 + disty^2); 

 return dist, ang, dirx 

end 

--Declaration of variables 

 options=StringVector() 

 irbpos=StringVector() 

 layoutscore=NumberVector() 

 object={}; coords={}; viapoints={}; relatedobject={}; 

 dist={}; relang={}; dir={};  posz={}; 

 ang1={}; ang2={}; diff_ang={}; 

 options:push_back("No object related"); 

--Go through the active objects tree  

 root = Ips.getActiveObjectsRoot(); 

 child = root:getFirstChild(); 

 belowRoot=root:getNextSibling(); 

 obj=child; 

 i=1; 

while not(obj == nil) and not (obj:equals(belowRoot)) do 

 if (obj:getType() == "RigidBodyObject") then 

  object[i]=obj:toRigidBodyObject();   --Store rigid bodies in the 

object vector 

  coords[i]=object[i]:getFrameInWorld();  --Store the coordinates of the 

rigid body in the coords vector 

  options:push_back(obj:getLabel());   --Add the name of the object 

to the options vector 

  i=i+1; 

 end 
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 obj=obj:getObjectBelow(); 

end 

--Get the IRB object and its coordinates 

 root=Ips.getMechanismRoot(); 

 child = root:getFirstChild(); 

 belowRoot=root:getNextSibling(); 

 obj=child; 

while not(obj == nil) and not (obj:getLabel()=="Simulations") do 

 if (obj:getType() == "IRBObject") then 

  obj=obj:toIRBObject(); 

  coordirb=obj:getTCPInWorld(); 

 end 

 obj=obj:getObjectBelow(); 

end 

--Get the rigid body planning object and its viapoints  

 root = Ips.getProcessRoot(); 

 pp = root:getFirstChild(); 

 pp=pp:toRigidBodyPathPlanning(); 

 nviapoints=pp:getNumViaPoints(); 

--Store the viapoints in a vector 

 viapoints[0]=pp:getStart(); 

 if nviapoints>0 then 

  for i=1,nviapoints do 

   viapoints[i]=pp:getViaPoint(i-1); 

  end 

 end 

 viapoints[nviapoints+1]=pp:getGoal(); 

 totalpoints=nviapoints+2; 

--Display a drop down list for the user to select the object related to each viapoint 

for j=1, totalpoints  do 

choice=Ips.inputDropDownList("Object selection","Select the object related to Viapoint "..(j-1).." 

:", options); 

 for i=1, table.maxn(object) do 

 if choice==i then 

  relatedobject[j-1]=i; --For each viapoint saves in a vector what object is related 

to it 

  end 

 end 

end 

--Goes through the related objects vector and calculates the relative spatial position of the viapoint 

and its related object 

for i=0, totalpoints-1 do 

if relatedobject[i]~=nil then --Only use viapoints that have an object related 

 dist[i],relang[i],dir[i]=calculateDistance(viapoints[i],coords[relatedobject[i]]); 

 ang1[i]=calculateAngle(coords[relatedobject[i]]) 

 ang2[i]=calculateAngle(viapoints[i]) 

 diff_ang[i]=ang2[i]-ang1[i]; 

 posz[i]=viapoints[i]['tz']-coords[relatedobject[i]]['tz']; 

 end 

end 

--Asks the user to select the starting point of the IRB 

for i=0, totalpoints-1 do 
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 irbpos:push_back(i) 

end 

irbstart=Ips.inputDropDownList("IRB selection","Select the starting viapoint of the IRB:", 

irbpos); 

 

--Calculates the relative spatial position of the IRB and the input viapoint 

distirb,relangirb,dirirb=calculateDistance(coordirb,viapoints[irbstart]); 

ang1_irb=calculateAngle(viapoints[irbstart]) 

ang2_irb=calculateAngle(coordirb) 

diff_angirb=ang2_irb-ang1_irb; 

poszirb=coordirb['tz']-viapoints[irbstart]['tz']; 

print("PP1 ran succesfully - You can move objects around now.") 

--Disables the reseting of variables when the script finishes, so that they can be used in other scripts 

Script.resetStateWhenFinished(false); 

 

function rotMatrix(anglestart,anglediff) --Calculates the new rotation matrix R from an start 

angle and an angle increment 

 local angle=anglestart+anglediff; 

 r1=Vector3d(math.cos(angle),-math.sin(angle),0); 

 r2=Vector3d(math.sin(angle),math.cos(angle),0); 

 r3=Vector3d(0,0,1); 

 local R=Rot3(r1,r2,r3); 

 return R 

end 

function transVector(startpos,distance,angle,posz,dir) --Calculates the translation vector 

with a starting position, distance and angle 

 distx=distance*math.cos(angle); --The dir parameter is used to adjust the sign for the 

relative position of the object in the x axis 

 disty=distance*math.sin(angle); 

 local t=Vector3d(startpos['tx']+distx,startpos['ty']+disty,startpos['tz']+posz); 

 return t 

end 

function calculateAngle(rotvector) --Function to calculate the angle given a rotation matrix R 

from a transf3 object 

 local shift = 10 ^ 4 

    resultsin = math.floor( rotvector['r2x']*shift + 0.5 ) / shift 

 resultcos = math.floor( rotvector['r1x']*shift + 0.5 ) / shift 

 local angle=math.atan2(resultsin,resultcos); 

return angle 

end 

function calculateDistance(obj1,obj2) --Calculates the distance between two objects in the 

X-Y plane 

 local distx=obj1['tx']-obj2['tx']; 

 local disty=obj1['ty']-obj2['ty']; 

 local calculatedDistance=math.sqrt(distx^2+disty^2); 

return calculatedDistance 

end 

function calculateScore(distance,relation) 

 if relation==0 then 

  return 0 

 end 

 local score=1/(distance*relation/100); 
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 return score 

end 

--Get the Robot box 

 root = Ips.getGeometryRoot(); 

 child = root:getFirstChild(); 

 belowRoot=root:getNextSibling(); 

 obj=child; 

 while not(obj==nil) and not (obj:equals(belowRoot)) do 

  obj=obj:getObjectBelow(); 

  if (obj:getLabel() == "Geometry Group 3") then 

   irbbox=obj:toPositionedTreeObject(); 

  end 

 end 

--Offer option to select object to move 

 

 --Get the active rigid bodies 

 optionsmove=StringVector(); 

 root = Ips.getActiveObjectsRoot(); 

 child = root:getFirstChild(); 

 belowRoot=root:getNextSibling(); 

 obj=child; 

 i=1; 

while not(obj == nil) and not (obj:equals(belowRoot)) do 

 obj=obj:getObjectBelow(); 

 if (obj:getType() == "RigidBodyObject") then 

  object[i]=obj:toRigidBodyObject();   --Store rigid bodies in the 

object vector 

  coords[i]=object[i]:getFrameInWorld();  --Store the coordinates of the 

rigid body in the coords vector 

  optionsmove:push_back(obj:getLabel());   --Add the name of the 

object to the options vector 

  i=i+1; 

 end 

end 

optionsmove:push_back("IRB"); 

optionsmove:push_back("No object to move"); --Add a not move anything option 

choice1=Ips.inputDropDownList("Object selection","Select the object you want to move:", 

optionsmove); 

for i=1, table.maxn(object) do 

 if choice1==i-1 then 

  objecttomove=i; --Saves the index of the object to move 

  end 

end 

if choice1==(table.maxn(object)+1) then 

 do return end --End the script if the option not to move anything is chosen 

end 

--Offer option to select type of movement 

optionsmovetype=Vector({'+X','-X','+Y','-Y','+X+Y','+X-Y','-X+Y','-X-Y','No movement in 

XY'}) 

choice2=Ips.inputDropDownList("Movement selection","Select the direction in the XY plane:", 

optionsmovetype); 

optionsmovetype=Vector({'No Z movement','+Z','-Z'}) 
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choice3=Ips.inputDropDownList("Movement selection","Select the direction in the Z axis:", 

optionsmovetype); 

choice4=0; choice5=0; choice6=0; 

--Offer option to select distance 

if choice2==0 or choice2==1 or choice2==4 or choice2==5 or choice2==6 or choice2==7 then 

 choice4=Ips.inputNumberWithDefault("Enter the distance in the X-axis (m): ", 1.0); 

end 

if choice2==2 or choice2==3 or choice2==4 or choice2==5 or choice2==6 or choice2==7 then 

 choice5=Ips.inputNumberWithDefault("Enter the distance in the Y-axis (m): ", 1.0); 

end 

if choice3==1 or choice3==2 then 

 choice6=Ips.inputNumberWithDefault("Enter the distance in the Z-axis (m): ", 1.0); 

end 

choice7=Ips.inputNumberWithDefault("Enter the number of steps: ", 5.0); 

iterations=math.floor(choice7); 

stepdistancex=choice4/iterations; 

stepdistancey=choice5/iterations; 

stepdistancez=choice6/iterations; 

for w=1, iterations do 

 w=w+1; 

--Declaration of variables 

 rotation={}; total_rot={}; 

 transf_t={}; transf_R={}; transf_T={}; 

 

--Performs a cleanup of motion simulations 

 root=Ips.getSimulationsRoot(); 

 child=root:getFirstChild(); 

 belowRoot=root:getNextSibling(); 

 obj=child; 

 while not(obj == nil) and not(obj:getLabel()=="Measures")do 

  if (obj:getType() == "RBMotionSimulation") then 

   child=obj:getNextSibling(); 

   Ips.deleteTreeObject(obj);  

  end 

  obj=child; 

 end 

--Get the IRB mechanism group and retrieve its current coordinates 

 root = Ips.getMechanismRoot(); 

 child = root:getFirstChild(); 

 belowRoot=root:getNextSibling(); 

 obj=child; 

 while not(obj==nil) and not (obj:equals(belowRoot)) do 

  obj=obj:getObjectBelow(); 

  if (obj:getLabel() == "IRB") then 

   irbbase=obj:getParent(); 

   irbbase=irbbase:toPositionedTreeObject(); 

   irbbasecoords=irbbase:getTWorld(); 

  end 

 end 

--Go through the active objects tree to retrieve the rigid bodies and current coordinates 

 root = Ips.getActiveObjectsRoot(); 

 child = root:getFirstChild(); 
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 belowRoot=root:getNextSibling(); 

 obj=child; 

 i=1; 

 while not(obj == nil) and not (obj:getLabel()=="Mechanisms") do 

  obj=obj:getObjectBelow(); 

  if (obj:getType() == "RigidBodyObject") then 

   object[i]=obj:toRigidBodyObject();   --Store rigid bodies in 

the object vector 

   coords[i]=object[i]:getFrameInWorld();  --Store the 

coordinates of the rigid body in the coords vector 

   i=i+1; 

  end 

 end 

--Get the IRB object and its mode 

 root=Ips.getMechanismRoot(); 

 child = root:getFirstChild(); 

 belowRoot=root:getNextSibling(); 

 obj=child; 

 while not(obj == nil) and not (obj:getLabel()=="Simulations") do 

  obj=obj:getObjectBelow(); 

  if (obj:getType() == "IRBObject") then 

   irb=obj:toIRBObject(); 

   mode=irb:getIKinMode(); 

  end 

 end 

--Move the object to a new position 

 if choice1==table.maxn(object) then --If the object is the IRB 

  if w<=(iterations+1) then 

   if choice3==0 then 

   elseif choice3==1 then 

 irbbasecoords['tz']=irbbasecoords['tz']+stepdistancez; 

    irbbase:setTWorld(irbbasecoords); 

   elseif choice3==2 then 

    irbbasecoords['tz']=irbbasecoords['tz']-stepdistancez; 

    irbbase:setTWorld(irbbasecoords); 

   end 

   if choice2==0 then 

 irbbasecoords['tx']=irbbasecoords['tx']+stepdistancex; 

    irbbase:setTWorld(irbbasecoords); 

   elseif choice2==1 then 

    irbbasecoords['tx']=irbbasecoords['tx']-stepdistancex; 

    irbbase:setTWorld(irbbasecoords); 

   elseif choice2==2 then 

 irbbasecoords['ty']=irbbasecoords['ty']+stepdistancey; 

    irbbase:setTWorld(irbbasecoords); 

   elseif choice2==3 then 

    irbbasecoords['ty']=irbbasecoords['ty']-stepdistancey; 

    irbbase:setTWorld(irbbasecoords); 

   elseif choice2==4 then 

 irbbasecoords['tx']=irbbasecoords['tx']+stepdistancex; 

 irbbasecoords['ty']=irbbasecoords['ty']+stepdistancey; 

    irbbase:setTWorld(irbbasecoords); 
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   elseif choice2==5 then 

 irbbasecoords['tx']=irbbasecoords['tx']+stepdistancex; 

    irbbasecoords['ty']=irbbasecoords['ty']-stepdistancey; 

    irbbase:setTWorld(irbbasecoords); 

   elseif choice2==6 then 

    irbbasecoords['tx']=irbbasecoords['tx']-stepdistancex; 

 irbbasecoords['ty']=irbbasecoords['ty']+stepdistancey; 

    irbbase:setTWorld(irbbasecoords); 

   elseif choice2==7 then 

    irbbasecoords['tx']=irbbasecoords['tx']-stepdistancex; 

    irbbasecoords['ty']=irbbasecoords['ty']-stepdistancey; 

    irbbase:setTWorld(irbbasecoords); 

   end 

  end  

 elseif choice1~=table.maxn(object) then 

  if w<=(iterations+1) then 

   if choice3==0 then 

   elseif choice3==1 then 

 coords[objecttomove]['tz']=coords[objecttomove]['tz']+stepdistancez; 

 object[objecttomove]:setFrameInWorld(coords[objecttomove]); 

   elseif choice3==2 then 

 coords[objecttomove]['tz']=coords[objecttomove]['tz']-stepdistancez; 

 object[objecttomove]:setFrameInWorld(coords[objecttomove]); 

   end 

   if choice2==0 then 

 coords[objecttomove]['tx']=coords[objecttomove]['tx']+stepdistancex; 

 object[objecttomove]:setFrameInWorld(coords[objecttomove]); 

   elseif choice2==1 then 

 coords[objecttomove]['tx']=coords[objecttomove]['tx']-stepdistancex; 

 object[objecttomove]:setFrameInWorld(coords[objecttomove]); 

   elseif choice2==2 then 

 coords[objecttomove]['ty']=coords[objecttomove]['ty']+stepdistancey; 

 object[objecttomove]:setFrameInWorld(coords[objecttomove]); 

   elseif choice2==3 then 

 coords[objecttomove]['ty']=coords[objecttomove]['ty']-stepdistancey; 

 object[objecttomove]:setFrameInWorld(coords[objecttomove]); 

   elseif choice2==4 then 

 coords[objecttomove]['tx']=coords[objecttomove]['tx']+stepdistancex; 

 coords[objecttomove]['ty']=coords[objecttomove]['ty']+stepdistancey; 

 object[objecttomove]:setFrameInWorld(coords[objecttomove]); 

   elseif choice2==5 then 

 coords[objecttomove]['tx']=coords[objecttomove]['tx']+stepdistancex; 

 coords[objecttomove]['ty']=coords[objecttomove]['ty']-stepdistancey; 

 object[objecttomove]:setFrameInWorld(coords[objecttomove]); 

   elseif choice2==6 then 

 coords[objecttomove]['tx']=coords[objecttomove]['tx']-stepdistancex; 

 coords[objecttomove]['ty']=coords[objecttomove]['ty']+stepdistancey; 

 object[objecttomove]:setFrameInWorld(coords[objecttomove]); 

   elseif choice2==7 then 

 coords[objecttomove]['tx']=coords[objecttomove]['tx']-stepdistancex; 

 coords[objecttomove]['ty']=coords[objecttomove]['ty']-stepdistancey; 

 object[objecttomove]:setFrameInWorld(coords[objecttomove]); 
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   end 

  end 

 end 

--Get the rigid body planning object and its attached rigid body 

 root = Ips.getProcessRoot(); 

 pp = root:getFirstChild(); 

 pp=pp:toRigidBodyPathPlanning(); 

 rigbod=pp:getRigidBody(); 

--For each viapoint with an object linked, calculate the new position of the viapoint based on the 

new position of the object 

 for i=0, totalpoints-1 do 

  if relatedobject[i]~=nil then --Only use viapoints that have an object related 

   ang2[i]=calculateAngle(coords[relatedobject[i]]);  --New angle of the 

object in world coordinates 

   rotation[i]=ang2[i]-ang1[i];  --Calculates the rotation of the object from 

the initial position in world coordinates 

   total_rot[i]=rotation[i]+relang[i];  --Adds the rotation of the object to the 

relative angle between object and viapoint 

 transf_t[i]=transVector(coords[relatedobject[i]],dist[i],total_rot[i],posz[i],dir[i]) --Calls 

the transVector function 

 transf_R[i]=rotMatrix(calculateAngle(coords[relatedobject[i]]),diff_ang[i]) 

 --Calls the rotMatrix function 

   transf_T[i]=Transf3(transf_R[i], transf_t[i]); --Creates the Transf3 element 

with the spatial coordinates 

--Places the viapoint in the new calculated coordinates 

   if i==0 then 

    pp:setStart(transf_T[i]); 

    rigbod:setFrameInWorld(transf_T[i]); 

   elseif i==(totalpoints-1) then 

    pp:setGoal(transf_T[i]) 

   else 

    pp:setViaPoint(i-1,transf_T[i]); 

   end  

  end 

 end 

--Updates the viapoints vector with the new positions of the viapoints 

 viapoints[0]=pp:getStart(); 

 if nviapoints>0 then 

  for i=1,nviapoints do 

   viapoints[i]=pp:getViaPoint(i-1); 

  end 

 end 

 viapoints[nviapoints+1]=pp:getGoal(); 

--Calculates the new starting position of the IRB 

 ang2_irb=calculateAngle(viapoints[irbstart]); 

 rotationirb=ang2_irb-ang1_irb; 

 total_rotirb=rotationirb+relangirb; 

--Checks if the IRB is in range of the viapoints 

for i=0, totalpoints-1 do 

transf_tirb=transVector(viapoints[i],distirb,total_rotirb,poszirb,dirirb) 

transf_Rirb=rotMatrix(calculateAngle(viapoints[i]),diff_angirb) 

transf_Tirb=Transf3(transf_Rirb, transf_tirb); 
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transf_Tirb['r3z']=-1;     --Sets the Z direction to negative  

transf_Tirb['r1y']=transf_Tirb['r1y']*-1 --Changes the direction of the Y axis 

transf_Tirb['r2y']=transf_Tirb['r2y']*-1 --Changes the direciton of the Y axis 

if irb:setFacePlateInWorld(transf_Tirb,mode,false,0,0,0)==false then 

 Ips.alert("Viapoint "..i.." out of IRB range") 

 do return end 

end 

end 

--Places the IRB faceplate in the new starting position 

transf_tirb=transVector(viapoints[irbstart],distirb,total_rotirb,poszirb,dirirb) 

transf_Rirb=rotMatrix(calculateAngle(viapoints[irbstart]),diff_angirb) 

transf_Tirb=Transf3(transf_Rirb, transf_tirb); 

transf_Tirb['r3z']=-1;     --Sets the Z direction to negative  

transf_Tirb['r1y']=transf_Tirb['r1y']*-1 --Changes the direction of the Y axis 

transf_Tirb['r2y']=transf_Tirb['r2y']*-1 --Changes the direciton of the Y axis 

irb:setFacePlateInWorld(transf_Tirb,mode,false,0,0,0) 

--Places the IRB box in the new position of the IRB base 

 --irbbox:getTWorld(); 

 --DO THE LAYOUT SCORE CALCULATION 

--coords[1] is the pillar 

--coords[2] is the Engine Group 

--coords[3] is the Flywheel cover 

--coords[4] is the Carrier  

--coords[5] is the Silicon_machine 

--irbbasecoords is the IRB 

--viapoints[2] is the manikin 

 A=100; E=75; I=50; O=25; U=0; X=-100;  score={};

 totalscore=0; 

 score[0]=calculateScore(calculateDistance(coords[4],coords[5]),I); 

 score[1]=calculateScore(calculateDistance(coords[4],coords[2]),U); 

 score[2]=calculateScore(calculateDistance(coords[4],irbbasecoords),I); 

 score[3]=calculateScore(calculateDistance(coords[4],viapoints[2]),U); 

 score[4]=calculateScore(calculateDistance(coords[5],coords[2]),I); 

 score[5]=calculateScore(calculateDistance(coords[5],irbbasecoords),I); 

 score[6]=calculateScore(calculateDistance(coords[5],viapoints[2]),U); 

 score[7]=calculateScore(calculateDistance(coords[2],irbbasecoords),I); 

 score[8]=calculateScore(calculateDistance(coords[2],viapoints[2]),A); 

 score[9]=calculateScore(calculateDistance(irbbasecoords,viapoints[2]),X); 

 for i=0,9 do 

 totalscore=totalscore+score[i]; 

 end 

 layoutscore:push_back(totalscore); 

 print(tostring(totalscore)); 

--3rd Set the planning box for the path planning 

 planningbox=pp:setAutoBox(); 

 planningbox.zmax=1.6; --Set maximum height to not get out of the robots range 

 pp:setPlanningBox(planningbox); 

--4th do the path planning with the new points and perform one smoothing on it  

 pp:planPaths(); 

 pp:smooth(); 

 --pp:smooth(); 

 --pp:smooth(); 
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 --pp:smooth(); 

 local smoothedMotionSimulation = pp:pushToScene() 

--5th set the velocity of the simulation to the maximum velocity of the robot (0.25) 

 root = Ips.getSimulationsRoot(); 

 child = root:getFirstChild(); 

 belowRoot=root:getNextSibling(); 

 obj=child; 

 while not(obj == nil) and not (obj:getLabel()=="Measures") do 

  obj=obj:getObjectBelow(); 

  if (obj:getType() == "RBMotion") then 

   motion=obj:toRigidBodyMotion(); 

   motion:setLocked(false); 

   local nWaypoints = motion:getNumWayPoints() 

   for i=0,nWaypoints-1 do 

    wpoint=motion:getWayPoint(i); 

    wpoint:setVelocity(0.25); 

   end 

   motion:setLocked(true); 

  end 

 end 

 print("PP2 ran succesfully") 

--1st Obtain the number of segments (number of viapoints + 1), and the rigid body used in the path 

planning 

 root = Ips.getProcessRoot(); 

 pp = root:getFirstChild(); 

 pp=pp:toRigidBodyPathPlanning(); 

 nviapoints=pp:getNumViaPoints(); 

 totalsegments=nviapoints+1; 

 rigbod=pp:getRigidBody(); 

--Obtain the Operation Sequence tree object  

 root=Ips.getProcessRoot(); 

 child=root:getFirstChild(); 

 belowRoot=root:getNextSibling(); 

 obj=child; 

 while not(obj == nil) and not(obj:getType()=="OperationSequence")do 

  obj=obj:getObjectBelow(); 

 end 

  

 if (obj:getType() == "OperationSequence") then 

  opseq=obj:toOperationSequence(); 

 end 

--2nd Create vectors with the actions of the different actors 

 actor=ActorVector(); 

 actor=opseq:getActors(); 

 nactors=actor:size(); 

 for i=0,nactors-1 do 

  if actor[i]:getSgObject()==nil then 

   irbactions=ActionVector(); 

   irbactions=opseq:getActorActions(actor[i]); 

  elseif actor[i]:getSgObject():getLabel()==rigbod:getLabel() then 

   body=actor[i]; 

   bodyactions=ActionVector(); 
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   bodyactions=opseq:getActorActions(body); 

   --Clean up the current actions of the rigid body 

   for i=0,bodyactions:size()-1 do 

    opseq:removeAction(bodyactions[i]); 

   end 

  elseif actor[i]:getSgObject():getType()=="SGFamily" then 

   manikinactions=ActionVector(); 

   manikinactions=opseq:getActorActions(actor[i]); 

  end 

 end 

--3rd Create the new object's "follow motion" actions 

 root=Ips.getSimulationsRoot(); 

 child=root:getFirstChild(); 

 belowRoot=root:getNextSibling(); 

 obj=child; 

 i=1; 

 segments={}; 

 --Save the motions in a vector 

 while not(obj == nil) and not(obj:getLabel()=="Measures")do 

  obj=obj:getObjectBelow(); 

  if (obj:getType() == "RBMotion") then 

   segments[i]=obj:toRigidBodyMotion(); 

   i=i+1; 

  end 

 end 

 --Turn the vector into actions 

 for i=1, totalsegments do 

  opseq:CreateActiveObjectFollow(body,segments[i]); 

 end 

 bodyactions=opseq:getActorActions(body); 

--4th Establish precedence constraints 

 bodyactions[0]:addPrecedenceAction(irbactions[0]); 

 manikinactions[0]:addPrecedenceAction(bodyactions[1]); 

 bodyactions[2]:addPrecedenceAction(manikinactions[1]); 

 irbactions[1]:addPrecedenceAction(bodyactions[2]); 

 bodyactions[3]:addPrecedenceAction(irbactions[1]); 

 manikinactions[2]:addPrecedenceAction(bodyactions[3]); 

--Set the current states as start states 

 for i=0,nactors-1 do 

  actor[i]:setCurrentStateAsStart(); 

 end 

--5th Execute the sequence to generate the replay 

 replay=opseq:executeSequence(); 

 tim=replay:getFinalTime(); 

--6th Perform the ergonomics analysis 

 --replay:computeErgonomicScore("Demo",0,tim); 

  

end 

function rotMatrix(anglestart,anglediff) --Calculates the new rotation matrix R from an start 

angle and an angle increment 

 local angle=anglestart+anglediff; 

 r1=Vector3d(math.cos(angle),-math.sin(angle),0); 



 44 

 r2=Vector3d(math.sin(angle),math.cos(angle),0); 

 r3=Vector3d(0,0,1); 

 local R=Rot3(r1,r2,r3); 

 return R 

end 

function transVector(startpos,distance,angle,posz,dir) --Calculates the translation vector 

with a starting position, distance and angle 

 distx=distance*math.cos(angle); --The dir parameter is used to adjust the sign for the 

relative position of the object in the x axis 

 disty=distance*math.sin(angle); 

 local t=Vector3d(startpos['tx']+distx,startpos['ty']+disty,startpos['tz']+posz); 

 return t 

end 

function calculateAngle(rotvector) --Function to calculate the angle given a rotation matrix R 

from a transf3 object 

 local shift = 10 ^ 4 

    resultsin = math.floor( rotvector['r2x']*shift + 0.5 ) / shift 

 resultcos = math.floor( rotvector['r1x']*shift + 0.5 ) / shift 

 local angle=math.atan2(resultsin,resultcos); 

return angle 

end 

function calculateDistance(obj1,obj2) --Calculates the distance between two objects in the 

X-Y plane 

 local distx=obj1['tx']-obj2['tx']; 

 local disty=obj1['ty']-obj2['ty']; 

 local calculatedDistance=math.sqrt(distx^2+disty^2); 

return calculatedDistance 

end 

function calculateScore(distance,relation) 

 if relation==0 then 

  return 0 

 end 

 local score=1/(distance*relation/100); 

 return score 

end 

--Get the Robot box 

 root = Ips.getGeometryRoot(); 

 child = root:getFirstChild(); 

 belowRoot=root:getNextSibling(); 

 obj=child; 

 while not(obj==nil) and not (obj:equals(belowRoot)) do 

  obj=obj:getObjectBelow(); 

  if (obj:getLabel() == "Geometry Group 3") then 

   irbbox=obj:toPositionedTreeObject(); 

  end 

 end 

 

--Declaration of variables 

rotation={}; total_rot={}; 

transf_t={}; transf_R={}; transf_T={}; 

--Performs a cleanup of motion simulations 

 root=Ips.getSimulationsRoot(); 
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 child=root:getFirstChild(); 

 belowRoot=root:getNextSibling(); 

 obj=child; 

 while not(obj == nil) and not(obj:getLabel()=="Measures")do 

  if (obj:getType() == "RBMotionSimulation") then 

   child=obj:getNextSibling(); 

   Ips.deleteTreeObject(obj);  

  end 

  obj=child; 

 end 

--Get the IRB mechanism group and retrieve its current coordinates 

 root = Ips.getMechanismRoot(); 

 child = root:getFirstChild(); 

 belowRoot=root:getNextSibling(); 

 obj=child; 

 while not(obj==nil) and not (obj:equals(belowRoot)) do 

  obj=obj:getObjectBelow(); 

  if (obj:getLabel() == "IRB") then 

   irbbase=obj:getParent(); 

   irbbase=irbbase:toPositionedTreeObject(); 

   irbbasecoords=irbbase:getTWorld(); 

  end 

 end 

--Go through the active objects tree to retrieve the rigid bodies and current coordinates 

 root = Ips.getActiveObjectsRoot(); 

 child = root:getFirstChild(); 

 belowRoot=root:getNextSibling(); 

 obj=child; 

 i=1; 

while not(obj == nil) and not (obj:getLabel()=="Mechanisms") do 

 obj=obj:getObjectBelow(); 

 if (obj:getType() == "RigidBodyObject") then 

  object[i]=obj:toRigidBodyObject();   --Store rigid bodies in the 

object vector 

  coords[i]=object[i]:getFrameInWorld();  --Store the coordinates of the 

rigid body in the coords vector 

  i=i+1; 

 end 

end 

--Get the IRB object and its mode 

 root=Ips.getMechanismRoot(); 

 child = root:getFirstChild(); 

 belowRoot=root:getNextSibling(); 

 obj=child; 

while not(obj == nil) and not (obj:getLabel()=="Simulations") do 

 obj=obj:getObjectBelow(); 

 if (obj:getType() == "IRBObject") then 

  irb=obj:toIRBObject(); 

  mode=irb:getIKinMode(); 

 end 

end 

--Get the rigid body planning object and its attached rigid body 
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 root = Ips.getProcessRoot(); 

 pp = root:getFirstChild(); 

 pp=pp:toRigidBodyPathPlanning(); 

 rigbod=pp:getRigidBody(); 

--For each viapoint with an object linked, calculate the new position of the viapoint based on the 

new position of the object 

for i=0, totalpoints-1 do 

if relatedobject[i]~=nil then --Only use viapoints that have an object related 

 ang2[i]=calculateAngle(coords[relatedobject[i]]);  --New angle of the object in world 

coordinates 

 rotation[i]=ang2[i]-ang1[i];  --Calculates the rotation of the object from the initial 

position in world coordinates 

 total_rot[i]=rotation[i]+relang[i];  --Adds the rotation of the object to the relative angle 

between object and viapoint 

 transf_t[i]=transVector(coords[relatedobject[i]],dist[i],total_rot[i],posz[i],dir[i]) --Calls 

the transVector function 

 transf_R[i]=rotMatrix(calculateAngle(coords[relatedobject[i]]),diff_ang[i]) 

 --Calls the rotMatrix function 

 transf_T[i]=Transf3(transf_R[i], transf_t[i]); --Creates the Transf3 element with the spatial 

coordinates 

 --Places the viapoint in the new calculated coordinates 

 if i==0 then 

  pp:setStart(transf_T[i]); 

  rigbod:setFrameInWorld(transf_T[i]); 

  elseif i==(totalpoints-1) then 

  pp:setGoal(transf_T[i]) 

  else 

  pp:setViaPoint(i-1,transf_T[i]); 

 end  

end 

end 

--Updates the viapoints vector with the new positions of the viapoints 

viapoints[0]=pp:getStart(); 

if nviapoints>0 then 

 for i=1,nviapoints do 

  viapoints[i]=pp:getViaPoint(i-1); 

 end 

end 

viapoints[nviapoints+1]=pp:getGoal(); 

--Calculates the new starting position of the IRB 

ang2_irb=calculateAngle(viapoints[irbstart]); 

rotationirb=ang2_irb-ang1_irb; 

total_rotirb=rotationirb+relangirb; 

--Checks if the IRB is in range of the viapoints 

for i=0, totalpoints-1 do 

transf_tirb=transVector(viapoints[i],distirb,total_rotirb,poszirb,dirirb) 

transf_Rirb=rotMatrix(calculateAngle(viapoints[i]),diff_angirb) 

transf_Tirb=Transf3(transf_Rirb, transf_tirb); 

transf_Tirb['r3z']=-1;     --Sets the Z direction to negative  

transf_Tirb['r1y']=transf_Tirb['r1y']*-1 --Changes the direction of the Y axis 

transf_Tirb['r2y']=transf_Tirb['r2y']*-1 --Changes the direciton of the Y axis 

if irb:setFacePlateInWorld(transf_Tirb,mode,false,0,0,0)==false then 
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 Ips.alert("Viapoint "..i.." out of IRB range") 

 do return end 

end 

end 

--Places the IRB faceplate in the new starting position 

transf_tirb=transVector(viapoints[irbstart],distirb,total_rotirb,poszirb,dirirb) 

transf_Rirb=rotMatrix(calculateAngle(viapoints[irbstart]),diff_angirb) 

transf_Tirb=Transf3(transf_Rirb, transf_tirb); 

transf_Tirb['r3z']=-1;     --Sets the Z direction to negative  

transf_Tirb['r1y']=transf_Tirb['r1y']*-1 --Changes the direction of the Y axis 

transf_Tirb['r2y']=transf_Tirb['r2y']*-1 --Changes the direciton of the Y axis 

irb:setFacePlateInWorld(transf_Tirb,mode,false,0,0,0) 

--Places the IRB box in the new position of the IRB base 

 --irbboxcoords=irbbox:getTWorld(); 

  --DO THE LAYOUT SCORE CALCULATION 

--coords[1] is the pillar 

--coords[2] is the Engine Group 

--coords[3] is the Flywheel cover 

--coords[4] is the Carrier  

--coords[5] is the Silicon_machine 

--irbbasecoords is the IRB 

--viapoints[2] is the manikin 

 A=100; E=75; I=50; O=25; U=0; X=-100;  score={};

 totalscore=0; 

 score[0]=calculateScore(calculateDistance(coords[4],coords[5]),I); 

 score[1]=calculateScore(calculateDistance(coords[4],coords[2]),U); 

 score[2]=calculateScore(calculateDistance(coords[4],irbbasecoords),I); 

 score[3]=calculateScore(calculateDistance(coords[4],viapoints[2]),U); 

 score[4]=calculateScore(calculateDistance(coords[5],coords[2]),I); 

 score[5]=calculateScore(calculateDistance(coords[5],irbbasecoords),I); 

 score[6]=calculateScore(calculateDistance(coords[5],viapoints[2]),U); 

 score[7]=calculateScore(calculateDistance(coords[2],irbbasecoords),I); 

 score[8]=calculateScore(calculateDistance(coords[2],viapoints[2]),A); 

 score[9]=calculateScore(calculateDistance(irbbasecoords,viapoints[2]),X); 

 for i=0,9 do 

 totalscore=totalscore+score[i]; 

 end 

 layoutscore:push_back(totalscore); 

 print(tostring(totalscore)); 

--3rd Set the planning box for the path planning 

planningbox=pp:setAutoBox(); 

planningbox.zmax=1.6; --Set maximum height to not get out of the robots range 

pp:setPlanningBox(planningbox); 

--4th do the path planning with the new points and perform one smoothing on it  

pp:planPaths(); 

pp:smooth(); 

--pp:smooth(); 

--pp:smooth(); 

--pp:smooth(); 

local smoothedMotionSimulation = pp:pushToScene() 

--5th set the velocity of the simulation to the maximum velocity of the robot (0.25) 

root = Ips.getSimulationsRoot(); 
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 child = root:getFirstChild(); 

 belowRoot=root:getNextSibling(); 

 obj=child; 

while not(obj == nil) and not (obj:getLabel()=="Measures") do 

 obj=obj:getObjectBelow(); 

 if (obj:getType() == "RBMotion") then 

  motion=obj:toRigidBodyMotion(); 

  motion:setLocked(false); 

  local nWaypoints = motion:getNumWayPoints() 

  for i=0,nWaypoints-1 do 

   wpoint=motion:getWayPoint(i); 

   wpoint:setVelocity(0.25); 

  end 

  motion:setLocked(true); 

 end 

end 

print("PP2 ran succesfully") 

--1st Obtain the number of segments (number of viapoints + 1), and the rigid body used in the path 

planning 

 root = Ips.getProcessRoot(); 

 pp = root:getFirstChild(); 

 pp=pp:toRigidBodyPathPlanning(); 

 nviapoints=pp:getNumViaPoints(); 

 totalsegments=nviapoints+1; 

 rigbod=pp:getRigidBody(); 

--Obtain the Operation Sequence tree object  

 root=Ips.getProcessRoot(); 

 child=root:getFirstChild(); 

 belowRoot=root:getNextSibling(); 

 obj=child; 

while not(obj == nil) and not(obj:getType()=="OperationSequence")do 

 obj=obj:getObjectBelow(); 

end 

 if (obj:getType() == "OperationSequence") then 

  opseq=obj:toOperationSequence(); 

 end 

--2nd Create vectors with the actions of the different actors 

 actor=ActorVector(); 

 actor=opseq:getActors(); 

 nactors=actor:size(); 

 for i=0,nactors-1 do 

  if actor[i]:getSgObject()==nil then 

   irbactions=ActionVector(); 

   irbactions=opseq:getActorActions(actor[i]); 

  elseif actor[i]:getSgObject():getLabel()==rigbod:getLabel() then 

   body=actor[i]; 

   bodyactions=ActionVector(); 

   bodyactions=opseq:getActorActions(body); 

   --Clean up the current actions of the rigid body 

   for i=0,bodyactions:size()-1 do 

    opseq:removeAction(bodyactions[i]); 

   end 
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  elseif actor[i]:getSgObject():getType()=="SGFamily" then 

   manikinactions=ActionVector(); 

   manikinactions=opseq:getActorActions(actor[i]); 

  end 

 end 

--3rd Create the new object's "follow motion" actions 

 root=Ips.getSimulationsRoot(); 

 child=root:getFirstChild(); 

 belowRoot=root:getNextSibling(); 

 obj=child; 

 i=1; 

 segments={}; 

 --Save the motions in a vector 

 while not(obj == nil) and not(obj:getLabel()=="Measures")do 

  obj=obj:getObjectBelow(); 

  if (obj:getType() == "RBMotion") then 

   segments[i]=obj:toRigidBodyMotion(); 

   i=i+1; 

  end 

 end 

 --Turn the vector into actions 

 for i=1, totalsegments do 

  opseq:CreateActiveObjectFollow(body,segments[i]); 

 end 

 bodyactions=opseq:getActorActions(body); 

--4th Establish precedence constraints 

 bodyactions[0]:addPrecedenceAction(irbactions[0]); 

 manikinactions[0]:addPrecedenceAction(bodyactions[1]); 

 bodyactions[2]:addPrecedenceAction(manikinactions[1]); 

 irbactions[1]:addPrecedenceAction(bodyactions[2]); 

 bodyactions[3]:addPrecedenceAction(irbactions[1]); 

 manikinactions[2]:addPrecedenceAction(bodyactions[3]); 

 precac=bodyactions[0]:getPrecedenceAction(); 

 print(tostring(precac)); 

 print(tostring(precac[0]:getType())); 

--Set the current states as start states 

 for i=0,nactors-1 do 

  actor[i]:setCurrentStateAsStart(); 

 end 

--5th Execute the sequence to generate the replay 

 replay=opseq:executeSequence(); 

 tim=replay:getFinalTime(); 

--6th Perform the ergonomics analysis 

 --replay:computeErgonomicScore("Demo",0,tim);  

 

 


