

LUA PROGRAMMING IN HRC
WORKSTATION DESIGN

Jiménez Sánchez, Juan Luis

Master of Science Thesis MKN 2018

KTH Industrial Engineering and Management

Machine Design

SE-100 44 STOCKHOLM

 1

Sammanfattning

Ett nära samarbete mellan mänskliga operatörer och industrirobotar är ett sätt att möta

utmaningarna av ökad global konkurrens och demografiska förändringar för tillverkningsföretag i

de utvecklade länderna. Dessa sammansättningssystem för humant industrirobotar (HRC)

kombinerar mänsklig flexibilitet, intelligens och taktil känsla med robothastighet, uthållighet och

repeterbarhet. Den nuvarande personliga säkerhetslagstiftningen begränsar emellertid de möjliga

samarbetsansökningarna som kan genomföras i praktiken, men stora forskningsinsatser görs för

att möjliggöra ett praktiskt genomförande av dessa framtida arbetsstationer.

När begränsningarna i säkerhetslagstiftningen tas upp, och samarbetssystemen kan genomföras,

kommer ett behov att simulera dessa system stiga. Virtuella simuleringar är en viktig komponent

i modern produktionssystemdesign och kommer att krävas i framtida montagearbetsstation design.

En ny befintlig programvara är i utveckling som kan simulera, visualisera och utvärdera HRC-

arbetsstationer. Det övergripande målet med simuleringsprogrammet är att designa "optimala"

arbetsstationer, och de möjliggör utvärderingar av flera designalternativ för att nå denna

"optimala". Skapandet av dessa designalternativ är utmanande idag eftersom det kräver mycket

manuellt arbete. Syftet med denna avhandling är att ta itu med denna fråga genom att bidra till

utvecklingen och förbättringen av simuleringsprogramvaran genom programmering av skript i

Lua-språket. Skripten utvecklades genom en iterativ och trial-and-error-process, kombinerad med

författarens förstahandsupplevelse i användningen av programvaran.

De resulterande skriptna möjliggör för användaren att utföra simuleringar på ett snabbt, effektivt,

automatiserat och förenklat sätt jämfört med den traditionella metoden, vilket minskar behovet av

manuellt arbete till ett minimum. En stor mängd simuleringar kan utföras på kort tid, även utan att

det behövs mänsklig interaktion.

Dessutom, med resultaten av simuleringarna som bas, har matematiska optimeringstekniker

använts för att hitta den optimala HRC-designen hos en fallstudiestation. Fallstudien har

genomförts på en arbetsstation i en tung fordonstillverkare. Resultatet av ärendet framhäver de

förbättringar som gjorts av programvaran av skripten och hur dessa kan användas för att effektivt

utforma framtida HRC-arbetsstationer.

 2

Abstract

One approach to address the future challenges of an increasingly global market’s competition and

the demographic changes of an aging workforce for manufacturing companies in developed

countries is the close collaboration between human operators and industrial robots. These human-

robot collaborative (HRC) assembly systems aim to combine the best characteristics of the human;

its flexibility, intelligence and tactile sense, with robotic speed, endurance and repeatability.

Although currently safety legislation limits the possible collaborative applications that could be

implemented in practice, large research efforts are put in order to enable practical implementation

of these future workstations.

Once these safety legislation limitations have been addressed, a need to simulate these systems

before implementing them will arise. Virtual simulations are an important part of modern

production system design and will be demanded in future assembly workstation design. A new

existing software is in development that can simulate, visualise and evaluate HRC assembly

workstations. The general goal with the simulation software is to design “optimal” workstations,

and they enable evaluations of multiple design alternatives to reach this “optimum”. The creation

of these design alternatives is challenging today as it demands a lot of manual work. The aim of

this thesis is to tackle this issue by contributing to the development and improvement of the

simulation software through the programming of scripts in the Lua language. The scripts were

developed through an iterative and trial-and-error process, combined with first-hand experience of

the author in the usage of the software.

The resulting scripts enable the user to perform simulations in a swift, efficient, automated and

simplified way in comparison to the traditional method, reducing the need of manual work to a

minimum. A large amount of simulations can be performed in a short amount of time, even without

the need of human interaction.

In addition, with the results of the simulations as a base, mathematical optimisation techniques

have been employed in order to find the optimal HRC design of a case study station. The case

study has been conducted at a workstation in a heavy vehicle manufacturer. The results of the case

highlight the improvements made to the software by the scripts and how these can be used to

efficiently design the HRC workstations of the future.

 3

FOREWORD

This chapter includes a Foreword by the author to acknowledge collaborators, family and friends.

Despite being the sole author of this thesis, I would never have achieved it without the help and

collaboration of a large group of people, whom I would like to thank here:

My supervisors, Fredrik Ore and Professor Xi (Vincent) Wang have had a huge impact on the

results of my thesis and have greatly supported me with their counsel.

My colleagues at KTH, and my Scania colleagues, the whole division of TE (Global Industrial

Development) in general, but also my TEID thesis group friends: Jim, Syed, Vijay, Vipasha and

Xiaomeng.

The FCC, specifically Domenico, Johan, Niclas and Peter, for their close and fruitful collaboration

in the development of my requests.

And last, but not least, my family and friends. Being abroad for my master studies in a foreign

country can be hard for the closest ones, so thanks to my parents and my sister for their support

and encouragement during these two years.

Juan Luis Jiménez Sánchez

Stockholm, June 2018

 4

NOMENCLATURE

This chapter presents the abbreviations that are frequently utilized in the report.

Abbreviations

IPS Industrial Path Solutions

HRC Human Robot Collaboration

HRI Human Robot Interaction

IMMA Intelligently Moving Manikins

IRB Industrial Robot

FCC Fraunhofer-Chalmers Research Centre

API Application Programming Interface

SAM Standard Allowed Minute

KTH Kungliga Tekniska Högskolan

CAD Computer Aided Design

TCP Tool Center Point

RULA Rapid Upper Limb Assessment

KPI Key Performance Indicator

 5

TABLE OF CONTENTS

SAMMANFATTNING 1

ABSTRACT 2

FOREWORD 3

NOMENCLATURE 4

TABLE OF CONTENTS 5

1 INTRODUCTION 6

1.1 Background 6

1.2 Purpose 7

1.3 Delimitations 7

2 FRAME OF REFERENCE 8

2.1 Human-Robot Collaboration 8

2.2 Industrial Path Solutions 9

2.3 LUA 12

2.4 Case study 13

3 METHOD 16

3.1 Case study approach 17

4 RESULTS 20

4.1 LUA scripts 20

4.2 Case solution 22

5 DISCUSSION AND CONCLUSIONS 26

5.1 Discussion of the LUA scripts 26

5.2 Discussion of the case solution 27

5.3 Conclusions 28

6 RECOMMENDATIONS AND FUTURE WORK 29

7 REFERENCES 30

APPENDIX A: COMPLETE SCRIPT CODE 33

 6

1 INTRODUCTION

This introductory chapter describes the background of the project, its purpose and research

questions, and its delimitations.

1.1 Background

Simulation software are used in manufacturing companies early in production development

processes to shorten development time, increase quality and reduce costs [1]. These tools are used

to support decision making in the companies and are an integral part of the engineering activities

in many manufacturing companies [2].

However, in design of Human-Robot Collaborative (HRC) workstations a commercial software

has not yet been widely developed. There is a new software under development that enables

simulation of collaborative tasks between human and industrial robots (Industrial Path Solutions,

IPS) ([3], [4], [5]). IPS demands manual inputs to create the workstation and to perform the task

allocation in an operation sequence. The software outputs are possible design alternatives and also

quantitative numbers on operation time and biomechanical load for each of these alternatives.

But a general goal with the simulation software is to design “optimal” workstations, and they

enable evaluations of multiple design alternatives to reach this “optimum”. The creation of these

design alternatives is challenging today as it demands a lot of manual work. To meet this has a

Lua API been developed in IPS in order to automate simulations through Lua programming.

Through well-defined objectives and limits on the design variables, the goal to automate the

simulation task and extract quantitative numbers on all the multiple layout alternatives [6], which

can then be compared to each other in order to find the “optimal” solution depending on the

designer’s criteria.

Figure 1. Static-Dynamic HRC diagram

 7

Figure 1 summarizes the thesis environment and its relation to HRC. The thesis focuses on the

“static” aspect of the design, the Simulation software. The software receives as main inputs the

specifications and initial state of the layout, as well as the current process information (operation

sequence). The author has performed improvements on the software so as to make it more

simplified, automated and efficient, enabling a large number of simulations to be performed in a

short time.

The outputs of the program are a layout design and an ergonomic evaluation, as well as quantitative

values (KPIs) for the processing time and ergonomic assessment. A third KPI, the layout score,

will be incorporated by the author of this thesis based on Muther’s method for Systematic Layout

Planning [7]. These outputs are then used in the “dynamic” environment of HRC, the real-world

stations, to optimize them.

The feedback information of the real-world workstation, i.e. real-time information and histogram

of events, could be used as a further input into the simulation software, as will be discussed in the

future work (Chapter 5.3).

1.2 Purpose

The objective of this thesis is to improve the demonstrator software IPS for efficient simulation,

visualisation, evaluation and optimisation of human robot collaboration (HRC) workstations in a

heavy vehicle assembly environment. To do so, a Lua API embedded in the software will be

utilized to develop a series of scripts, which will enable a user to perform several simulations in a

simple and automated way, saving time and resources.

Once these scripts have been developed, a specific case study will be used to design an HRC

workstation in an industry heavy vehicle manufacturer. With the quantitative outputs generated by

the software in the simulations (the KPIs), the possible solutions may be compared to each other

in an objective way in order to find an “optimal” solution design.

This objective is met through addressing the following research questions:

RQ1: How can simulation software for design of human–industrial robot collaboration

workstations be improved through programming of Lua scripts?

RQ2: How can a human–industrial robot collaborative workstation be optimised in an efficient

way using the improved software?

1.3 Delimitations

The case simulated in this thesis is from a single heavy vehicle manufacturer. The main purpose

of using the case is not to design the best HRC systems but to test the developed scripts and

highlight the improvements made to the demonstrator software; the single case company used does

not affect the end result to any large extent.

The software utilized during the thesis (IPS HRC) is still in development, which involves the

existence of a few errors and lack of functionalities that limited the thesis author’s possibilities

during the programming of the scripts.

 8

2 FRAME OF REFERENCE

The reference frame is a summary of the existing knowledge and former research performed on

the subject. This chapter presents the theoretical reference frame from the literature and state of

the art study that is necessary to understand the thesis development.

2.1 Human-Robot Collaboration

The demographic changes of an increase in average age of the available workforce has to be

addressed by adapting workstations to meet the new needs of the elder, since the increase in age

increases the risk for musculoskeletal disorders ([8], [9]). In addition to improving the ergonomics

of the workers ([10], [11]), the main reason to introduce robots in industry workstations is to

increase productivity, reducing production times ([12]).

The vision of closer collaboration between human and robots was already expressed by Tan et al.

([13]): “Human-robot collaboration (HRC) is a dream combination of human flexibility and

machine efficiency”. A more recent definition of HRC ([14]) establishes how, to be considered a

collaborative station, both the human and the robot have to simultaneously work with the same

product.

In an HRC station the desired robotic features are handling speed, endurance and repeatability;

whereas from the human, the preferred characteristics are flexibility, intelligence and tactile sense

are desired ([15], [16]).

One other current development in order to meet increased global competition is to focus on virtual

simulations of products and production processes in the manufacturing industry ([17]) in order to

provide a design method for these future HRC workstations.

Human-Robot Collaboration is a subset of all research and applications inside Human-Robot

Interaction. HRI includes a combination of a number of research areas such as cognition,

linguistics and physiology research combined with engineering, mathematics, computer science

and human factors ([18]). Walther and Guhl [19] present a classification of HRI that helps to

describe the vide variety of human–robot systems in a structured way.

Operation modes in human and industrial robot collaboration are, according to the ISO standard

ISO 10218 [20] divided into four modes: safety-rated monitored stop, hand guiding, speed and

separation monitoring, and power- and force-limiting. These are described ([20], [21], [22]) in the

following way: “Safety-rated monitored stop”; in this mode, when an operator enters the robotic

work area, the robot stops and will automatically resume its actions when the human leaves the

area. “Hand guiding” mode enables the human to control the robotic end-effector through

designated controls while standing in the robotic work area and moving the end-effector to a

designated position. When the human leaves the area, the robot starts its operation from that new

position. “Speed and separation monitoring” enables the human to be present in the robotic work

area while the robot is in operation. The distance between the human and the robot is constantly

measured and when predefined thresholds are passed, the robot either slows down, stops or moves

backwards from the human, all depending on the programmed responses. A “power- and force-

limiting” system includes a weak and slow robot (compared to the standard industry robot) that is

designed so as not to hurt humans in case of a collision.

Even though the collaborative modes are defined in the current robotic standard, the possibilities

to build these HRC systems in industry are limited. Personal safety legislations in manufacturing

industries are governed by the machine directive, which refers to standards in order to meet safety

demands. ISO 10218 [20] regulates robots and robot system safety. This standard requires that

some kind of fence (either physical or sensors acting as a fence) surrounds a traditional

industrialised robot [23]. In HRC systems the robot is still considered dangerous, so in order to

 9

guarantee the safety of the human operator other systems than fences have to be used, since fences

would impair collaboration.; great research efforts are being made in this field. Current state of the

art includes multiple depth cameras supervising the HRC area ([24], [25]); robotic control systems

having control of robot positions and movements [26], certified sensors assisting the depth cameras

[25] and a network connecting all these systems into the goal of “a safe network of unsafe devices”

[24].

This state of the art is constantly under development in order to enable use of HRC systems in

manufacturing industries. Today there are actually fenceless industrial robots introduced in

production environments. They are power- and force-limiting systems with small robots that have

been installed without fences within the current machine directive. This is possible when the

mandatory risk analysis shows that the risk for a human to work next to these robots is low, as

discussed in [27]. These robots are designed to be weak, move with slow speeds, lack sharp edges

and allow fenceless installation.

Once the limitations of safety legislation have been addressed and the collaborative systems can

be implemented, a need to design simulate these systems will arise. HRC design methods presented

in research publications are mainly limited to the work task allocation problem, i.e., which resource

is most suitable to perform a certain task: the human or the industrial robot? Pini et al. [28] also

base their design approach in the engineering design framework presented by Pahl and Beitz [29].

Chen et al. [30] present a method to use multi-objective optimisation techniques to choose a

suitable task allocation based on assembly time and economic cost. Tsarouchi et al. have a similar

approach in their task allocation method [31]. All these methods use time and cost as evaluation

criteria, but none of them describes how to gather data into the selection process. One approach is

to measure these before the task allocation can begin. However, in early phases of production

design it is difficult to achieve these data since no physical workstation exists. This highlights the

need of simulation software in order to make accurate production investment decisions early in the

production development process.

In order to meet this need, a demonstrator simulation software is currently being developed

(Industrial Path Solutions, IPS), making it possible to design and evaluate HIRC workstation

layouts early in the production development phases so as to gather the desired data [32].

2.2 Industrial Path Solutions

Industrial Path Solutions (IPS) is a math-based software tool for automatic verification of assembly

feasibility, design of flexible components, motion planning and optimization of multi-robot

stations, and simulation of key surface treatment processes. IPS is developed by Fraunhofer-

Chalmers Centre and Fraunhofer ITWM, and distributed by IPS AB and fleXstructures GmbH

[33] [34].

For this thesis, a research version of the software in the field of Human-Robot Collaboration has

been used (IPS HRC [3]), which enables simulation of hand-guiding HRC tasks in the

environment. It can be used to analyse reachability for both industrial robots and humans, present

layout alternatives and be a tool for risk assessment in HRC workstation design assignments. The

software generates quantitative outputs considering operation time and biomechanical load

assessments of the HRC workstation. These quantitative outputs can be used to compare

alternative solutions in an objective way [4].

The program has several modules available, and a combination of the following three was used in

the course of this project:

• IPS Rigid Body Path Planner: the IPS Path Planner lets simulation engineers import a

scene geometry from any CAD system, as a VRML or JT file. Any object in the scene can

be set as a so-called planning object, which IPS will find an efficient path for, provided

 10

that the object can be freely assembled along a path. The calculations done by IPS save

the engineer a substantial amount of time, which otherwise would have to be put into

manual planning of a collision free assembly path [35].

• IPS Robot Optimization: this module enables the user to define IRBs and their TCPs,

automatically generate a robot path planning and tasks, and optimize robotic operations

[36].

• IPS IMMA (Intelligently Moving Manikins): In order to analyse and control

biomechanical motions performed by humans during assembly of e.g. cars, virtual

modelling of mannequins is of great interest for the manufacturing industry [5]. This is

addressed in IMMA by development of a computer environment where analyses of

motions can be performed through simulation of manikins already in the production

development phase. Such analyses minimize the risk of potential body joint and muscle

problems for assembly personnel. Also, manikin analyses will help ensuring that the

assembly motions are collision free both for the human and the object to be assembled.

This type of computer analysis contributes to a more effective assembly process with a

reduced number of injuries and a higher level of quality [5].

The primary interface of IPS is shown in Figure 2. It is composed of a 3-D visualization window

which displays the current scene, as well as several menus on the top side, a log on the bottom

part, and the Scene and Process trees on the left.

Figure 2. IPS HRC Interface

The Scene tree contains all the elements and information about geometries in the scene, objects,

mechanisms, simulations, and others. For this thesis the following scene tree elements are

significative:

• Static geometries: objects of the scenery which have collision detection but that cannot be

utilized to generate path planning, nor be added to operation sequences, nor be interacted

with by manikins or robots.

• Active objects: includes rigid body objects and manikin families.

o Rigid body objects: transformed from static geometries, rigid body objects can be

added as actors to an operation sequence, can be used to generate motions in the

Rigid body path planner, and can be interacted with by the manikins and robots.

 11

o Manikin families: they are created within the software by the IMMA module with

the information of an anthropometric database. A manikin family can consist of one

or several manikins, and they can be added into an operation sequence to perform

actions such as grasping objects, moving to positions, and assuming postures. The

manikin in IMMA is built on a skeleton that consists of 81 segments connected by

74 joints resulting in 162 degrees of freedom.

• Mechanisms: include robot-related objects, such as the IRB itself, its defined TCP, and any

grippers attached to it.

• Simulations: here are displayed the paths generated by the path planners that are saved to

the scene. They can be added into operation sequences as motions for other objects to

follow.

Figure 3. IPS HRC Scene tree

The Process tree contains the elements and information related to path planning and operation

sequences:

• Path planning: although the installed modules offer the possibilities of utilizing both a

Rigid Body Path Planning and an IRB task planner for generating motions, for this thesis

only the rigid body planning has been used, since the limitations of the existing IPS Lua

API made it not possible to create a fully automated script with the IRB task planner.

o Rigid Body Path Planning: offers the possibility of selecting a rigid body to perform

a sequence of motions by moving between viapoints defined by the user. The

planner automatically calculates a collision-free path for the body to travel from

one viapoint to the next one until a goal position is reached. After a path has been

calculated, it can be saved into the scene tree as a Simulation, which can then be

incorporated into the operation sequence as motions.

 12

• Operation sequence: an example of an operation sequence can be seen in Figure 4. An

operation sequence can be defined by adding actors (e.g., a manikin family, an IRB, a rigid

body) that perform a series of actions (e.g., grasp an object, move to a position, follow a

motion path) in a sequential manner, which precedence orders that can be established

between the actions of different actors. The duration of the actions performed by the IRB

and the rigid bodies is based on the speed that is set for each of them, whereas the duration

of manikin actions can be fixed by the user or automatically generated by a predetermined

time standard method, SAM [37], included in IMMA.

The operation sequence is the ultimate goal of the scene, since by executing it the simulation is

performed, generating a visual representation of the actions in the sequence. The generated replay

contains information about the processing time for the whole sequence, and enables the user to

perform an Ergonomic evaluation, which generates a series of .csv files (one for each manikin) for

that particular simulation and stores them in a folder with timestamps. These .csv files contain

information about all the joint position values of that specific manikin in each frame of the

simulation. With this information, an ergonomic analysis method, such as RULA (Rapid Upper

Limb Assessment) [38] can be used to generate the biomechanical load assessment.

Figure 4. IPS HRC Operation Sequence

2.3 LUA

Lua is a free open-source, efficient, lightweight, embeddable scripting language. It supports

procedural programming, object-oriented programming, functional programming, data-driven

programming, and data description [39] [40]

Lua combines simple procedural syntax with powerful data description constructs based on

associative arrays and extensible semantics. Lua is dynamically typed, runs by interpreting

bytecode with a register-based virtual machine, and has automatic memory management with

incremental garbage collection, making it ideal for configuration, scripting, and rapid

prototyping [41].

Lua has been used in many industrial applications (e.g., Adobe's Photoshop Lightroom), with an

emphasis on embedded systems. Several versions of Lua have been released and used in real

applications since its creation in 1993. [42]

Lua is a fast language engine with small footprint that can be easily embedded into an application.

Lua has a simple and well documented API that allows strong integration with code written in

other languages. It is easy to extend Lua with libraries written in other languages and to extend

programs written in other languages with Lua.

The connection between IPS and Lua is made through an API provided by the developers of the

software. This Lua API contains the information for all the variables and functionalities that can

be executed through the script inside IPS. Any text editor can be used to write the Lua code and

save it as a .lua file, which can then be opened in IPS to run the script.

 13

2.4 Case study

In order to test the effectiveness of the improvements in the software and the feasibility to use the

scripts for HRC workstation design, a case study at the heavy vehicle manufacturer was proposed.

The flywheel cover assembly workstation at the engine assembly factory had prior to this project

been identified as a potential case to be used in another research project [4]. It was of interest to

simulate an HRC in that station since there were potential ergonomic difficulties when new and

heavier components were to be introduced at the same time as the station processing time needed

to be reduced.

In the current workstation, a worker picks up the flywheel cover from a carrier with the help of a

hanging crane hook; then, the worker moves the cover into the silicon applying machine, where

silicon is applied to the product. After this operation is finished, the worker picks the cover again

and places it in the engine, where it is screwed in position by another worker; once the cover has

been fixed to the engine, it is transported away, and a new engine arrives to the station, starting

the process again.

The postures and forces that the worker in charge of retrieving the flywheel cover has to execute

can lead to ergonomic issues, such as back injuries; thus, the aim of incorporating HRC in this

station would be to install a robot that would be in charge of retrieving and moving the cover up

to the step in which it has to be assembled into the engine, since this step requires the flexibility

of the human to accurately place the cover in the correct position in the engine, and this would

represent the point of collaboration. Thus, the value-adding tasks would be performed by the

human and the non-value-adding tasks by the robot, as described in [43].

The assembly station was reproduced into the IPS software by importing the static geometries of

the different objects that are part of the current station and that were previously modelled in a

standard CAD tool (in this case, CATIA V5). Of these static geometries, five were defined as

active objects: one of the carriers, the flywheel cover in the same carrier, the silicon machine, the

engine, and a pillar (Figure 6).

Next, a Robot model was imported to be placed into the station as an IRB: the KUKA KR 210

R2700 PRIME [44]; this model had been already utilized in previous works [4] and fulfilled the

requirements of reach and strength. In addition, a simplified gripper model was attached to the

robot to represent a real-life gripper that would enable it to pick up and move the flywheel cover.

Finally, after all the geometries had been placed into the program, a family of manikins was

imported to the scene; a total of 10 manikins (5 males and 5 females) of different height and weight

given by the Swedish anthropometric database [45], with a confidence level of 95%. The resulting

scene can be seen in Figure 5. A more detailed picture of the scene from the top view can be seen

in Figure 6, including distances between objects and significant positions.

 14

Figure 5. Case Study workstation in IPS

Once all the active objects, the IRB and the family of manikins have been placed in the scene, the

logic of the path planning and the operation sequence was defined. A Rigid Body Path Planning

was utilized instead of a robot planning; thus, the flywheel cover will be defined as the moving

object with several viapoints and the IRB TCP will grasp it and follow its motions. This is due to

the limitations of the Lua API, which does not contemplate the possibility of managing robot

motions in the Operation Sequence through the scripts, and, since the aim of the case study is to

test the developed scripts, those motions could not be used. Furthermore, in the current version of

the software the IRB does not have collision detection, so in order to prevent the cover object from

going through the robot during path planning a transparent “robot box” was placed in the position

of the IRB, with the same dimensions as its base.

The starting position (viapoint 0) for the flywheel cover in the Rigid Body Path Planning would

be in the carrier, with the IRB gripping it. Then, the cover would move to a point defined inside

the silicon machine (viapoint 1); since the applying time for the silicon is the same for every

product, it is not necessary to introduce it into the sequence, and thus after arriving into the machine

the cover proceeds immediately to the next point, which is the Hand-over position (viapoint 2).

Here, the family of manikins grabs the cover by two gripper points, placed by the author of the

thesis to represent a comfortable posture for grabbing the object. After this, the manikin family

proceeds to hand-guide the cover and the robot to a close position in front of the engine (viapoint

3), where the robot releases it and the human places the cover in the correct position (viapoint 4),

ending the simulation. A fixed speed of 250 mm/s was set for calculating the duration of the

product movements, whereas for the manikin operations the generated SAM [37] times were used.

The processing time of the simulation and the RULA ergonomic assessment score will be utilized

as KPIs to redesign the layout and optimize the workstation, as is further discussed in point 3.1.

 15

Figure 6. Top view of the workstation in IPS

Carrier

Pillar

Silicon machine

Engine

IRB

Hand-over

Manikin family

X: -1905 mm

Y: 2120 mm

X: 914 mm

Y: 2048 mm

X: 1247 mm

Y: 1933 mm

X

Y

X: 596 mm

Y: -1101 mm

X: 736 mm

Y: 1201 mm

 16

3 METHOD

In this chapter the methodology used in the thesis is described. The method is the structured

process through which the author of the thesis reached the goals for the project.

The research presented includes software development in the growing human–industrial robot

collaboration area. The design science research (DSR) concept is used as a methodological

approach since it describes how to perform, evaluate and present design science research in a clear

manner ([46], [47]).

The thesis project was divided into five tasks with defined timelines and milestones, which the

author followed to reach the goals of the project. Moreover, a literature search has been performed

continuously during the project in the area of human robot collaboration focusing on simulation

of such systems. The aim of this search was to gather basic knowledge of the state of the art of

human robot collaboration and simulation of such collaboration. The library database at KTH was

used, as well as the previous work of the thesis supervisor in the field; the search method used was

a systematic search with the following search terms: “HRC”, “Robot Human Collaboration”,

“Workstation design”, “Automated workstation design”, “Workstation optimisation”. In the

articles found a chain search was also made in order to find other interesting literature in order to

make the review more comprehensive.

A Gantt diagram of the tasks is presented in Figure 7.

• The first task was an introduction to the IPS software, the Lua language, and the definition

of the case study. The IPS software introduction was carried out by replicating a simple

HRC case in the program, which allowed the author of the thesis to become familiar with

the functionalities of the program. For the Lua language, a seminar was held by the

developers at Fraunhofer-Chalmers Research Centre in Göteborg, in which the author

developed short scripts and learned the basics of the language. Finally, the case study was

defined in collaboration with the thesis supervisor: the flywheel cover assembly station.

• For the second task, the case study was reproduced into an IPS scene, as explained in point

2.4. The constraints and variable parameters for the case were established with the

assistance of the supervisor (point 3.1), as well as the KPIs used for the workstation

optimisation. Initial drafts of the possible script improvements to the software were also

written in this phase.

• The third task was focused on the programming of the scripts themselves, with intensive

testing in the case study scene, and with frequent discussions and collaboration with the

software developers and the thesis supervisor.

• After the scripts had been developed, the fourth task encompassed the simulation of the

different scenarios for the case study workstation optimisation that were established in the

Figure 7. Gantt diagram of the thesis schedule

 17

second phase, and that will be further elaborated in point 3.1. The data obtained from these

simulations was analysed, and an “optimal” solution was defined.

• Finally, the fifth task was dedicated to the documentation of the thesis work, extraction of

conclusions, recommendations about future work and further literature search.

3.1 Case study approach

The aim of the case study was to design an HRC workstation in an industrial case by utilizing the

developed scripts to simulate different scenarios and compare the quantitative KPIs obtained as

output from the simulation software in order to find an “optimal” solution for the station layout.

Three KPIs were defined in collaboration with the supervisor of the thesis: the processing time

and RULA ergonomic score [48], both already integrated in the IPS software’s outputs, and a third

parameter that is not implemented in the program and was defined for this thesis in order to have

more objective indicators for the evaluation: the layout score, which would represent the

qualitative analysis regarding safety, product flow and workflow of the station.

This layout score is calculated as the sum of individual scores for each pair of elements in the

scene, which are the result of the division between their activity relationship closeness value [7],

displayed in Figure 8, and the physical distance between the elements in the scene in the X-Y

plane. Thus, the higher the distance between elements, the lower the layout score will be (except

for elements whose closeness is not desired).

𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑠𝑐𝑜𝑟𝑒 = 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 𝑉𝑎𝑙𝑢𝑒/𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑚) (1.1)

𝐿𝑎𝑦𝑜𝑢𝑡 𝑠𝑐𝑜𝑟𝑒 = ∑ 𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑠𝑐𝑜𝑟𝑒 (1.2)

The relationship value is a qualitative assessment which has an arbitrary quantitative score

assigned. In this case, the following scores have been assigned to each closeness value (Table 1):

Table 1. Quantitative scores assigned to qualitative values

Value: A E I O U X

Score: 100 75 50 25 0 -100

The qualitative assessment in the Activity relationship diagram was elaborated by the author of

the thesis in collaboration with the thesis supervisor, and is based on Muther’s method [7] for

assigning closeness values in activities with criteria other than product flow. The diagram obtained

is presented the Figure 8.

Figure 8 Activity relationship diagram for the case study

 18

Each of the five elements in the diagram represents the element of the same name in the layout

(see Figure 6. Top view of the workstation in IPS). Most of the elements’ desired closeness values are

of normal importance (I) due to the product flow reason: the flywheel cover moves from one

element to another, so it is desirable that they are as close as possible, but not critical. Other

relations are unimportant (U), since their closeness does not have any impact: the carrier and the

manikin, for example, do not have any kind of interaction.

One relation is of absolutely necessary closeness (A): the manikin and the engine must be as close

as possible, since the manikin has to work in the engine in order to assemble the flywheel cover

once it has been put into place. And finally, one relation has a not desirable closeness (X): the

manikin and the IRB, despite it being a collaborative workstation, should be as far as possible from

each other due to safety reasons, since while the manikin is working on assembling the cover if

the robot is too close a collision could take place, resulting in injuries.

After the KPIs were defined, the design method proposed in by Ore et al. in [6], [32] was utilized

to define the number of total simulations to be performed in order to design the workstation and

propose an “optimal” solution. Table 2 summarizes the results of applying the method to this case:

7 variables have been identified, and each of them has been defined as either a constant or having

a number of different alternatives.

Table 2. Definition of variables for the case study

Variable Nº of alternatives Constant

Robot variant - X

Robot position 6 -

Robot gripper - X

Carrier position 4 -

Hand-over position 20 -

Silicon machine position 4 -

Engine & pillar position - X

Manikin family - X

• The robot variant variable reflects the possibility of using different types of robots in the

workstation design; for this case, it has been defined as a constant, since only one model is

utilized (KUKA KR 210 R2700 PRIME [44]).

• The robot position variable indicates the different positions that the IRB can be displaced

at in the scene from its original location; a total of 6 alternatives have been proposed: two

displacements in the X axis, two in the Y axis, and two in the Z axis.

• The robot gripper variable alludes to the gripper element that is attached to the head of the

IRB in order to grab the product, and the different models that could be used for it. In this

case, it has been fixed as a constant, since only one model of the gripper is used.

• The carrier position, similar to the robot position, has four possible alternatives of

displacement: two in the X axis and two in the Y axis.

• The hand-over position in which the manikin starts to hand-guide the robot is a critical

point, since it will be the most impactful one in the ergonomic score. In this case, and given

the limitations of the Lua API that will be further discussed in point 5.1, the hand-over

position will be a fixed point in the X-Y plane. Thus, the 20 alternatives proposed in the

table will be of small incremental movements in the Z axis.

 19

• The silicon machine position, as in the case of the carrier, has four displacement positions:

two in the X axis and two in the Y axis.

• The engine and pillar position variables have been fixed as a constant, since it would not

be feasible to change their current position in the real workstation environment.

• Finally, the manikin family variable reflects the possibility of using different families from

different anthropometric databases. In this case, it is a constant, with the data for the family

utilized provided by the Swedish anthropometric database [45].

The combination of all the variables and their number of alternatives would give a total of

6𝑥4𝑥20𝑥4 = 1920 simulations, which is too large an amount for the scope of this thesis. For this

reason, and given that the only variable affecting the ergonomic assessment is the hand-over

position, it was decided to simulate those 20 alternatives separately in order to find an optimal

ergonomic score, and once that point is fixed the rest of the 6𝑥4𝑥4 = 96 simulations would be

used to compare different layouts regarding the other two KPIs, processing time and layout score.

 20

4 RESULTS

In this chapter are presented the results obtained with the method described in the previous

chapter.

4.1 LUA scripts

A total of three main scripts have been developed by the author, based on the requirements for

improvements that were established in the beginning of the thesis, and limited by the available

functionalities and time constraints of the project. Their aim is to enable the user to perform layout

changes in an existing simulation scene and automatically recompute the operation sequence and

generate a new simulation reflecting the alterations made. The three scripts have been key named

as: Initial Script, Free-move Script and Automated Script.

All three scripts are generalized within the possibilities of the API, so that they may be applicable

to a wide range of different scenarios, and not only the case study performed in this thesis. Thus,

the scripts will require input from the user in order to account for information that can not be

directly gathered from the existing scene, e.g., the object associated with each position or the

starting position of the IRB.

• Initial Script: this script must be the first one executed when starting the optimization of

a new workstation. It reads the existing scene and saves the following information in

vectors: the active objects in the scene tree and their positions, the existing body path

planning and all its viapoints, the IRB mode and its position (both TCP position and robot

base position), and the Operation Sequence actors and their sequence of actions.

Once all this information has been gathered, since the goal of the scripts is to be partially

generalized for different cases it will be required for the user to input some information

(see Figure 9). After having read the viapoints of the path plan and the active objects in the

scene, the script will prompt the user to select a related object to each of the viapoints (or

establish that there are no objects related). This enables the user to define what is the

sequence of movements of the product through objects, instead of viapoints. In the case

study example, the viapoint 0 would be associated with the Carrier object, the viapoint 1

with the Silicon machine, and the rest of the viapoints would have no object related to

them.

Finally, the script prompts the user to select the starting viapoint of the IRB TCP in order

to account for cases in which the IRB grabs the product in the middle of a sequence, instead

of at the beginning (as in the case study).

After the user has inputted the required information, the script proceeds to calculate and

store in vectors the relative position of every active object to their associated viapoint (as

well as the TCP). This information will be used by the other two scripts in order to correctly

reposition the viapoints in the scene after any objects have been moved.

Once the script has finished running, the user is free to move objects around and use the

Free-move script or run the Automated script for an automatic movement approach.

 21

Figure 9. Example of user inputs in the Initial Lua Script

• Free-move script: this script may be used at any moment after the initial script has been

run. The user should start by moving objects to their new desired positions and run the

script once they have been placed. A safeguard has been implemented in the script, which

will send an alert to the user if any of the objects have been moved out of range of the IRB,

and cancel the execution of the rest of the script.

This script does not require any user input, since all the information can be gathered from

the scene and the previously saved data. It will read the scene and retrieve the active objects

and their new positions; then, applying the data stored by the initial script regarding relative

positioning, it will calculate the new position of the viapoints and reposition them so that

they keep the same relative positioning as in the beginning. Then, it will proceed to

compute the new Layout score (point 3.1) and store it in a vector for later use. After this,

it will automatically run the new path planning, save the movement segments to the scene,

and replace the existing movement actions of the product actor in the Operation Sequence

by the new movements. Finally, it will execute the updated Operation Sequence, generating

a new simulation replay with the processing time, and run the Ergonomic evaluation to

obtain the .csv files that are used to compute the RULA score in MATLAB.

The goal of this script is to provide the user with the possibility of swiftly making

significant changes to the existing layout and exploring different options by moving objects

to completely different positions.

• Automated script: this script may be used at any moment after the initial script has been

run. Its goal is to provide a “fine tuning” approach to the layout design of the workstation

by allowing the user to select an object to move automatically in a 3-D direction for a

determinate distance in a certain number of steps.

This script will require several inputs from the user in order to establish the conditions for

the automated move (see Figure 10). Once the script is run, it will read the active objects

tree and immediately prompt the user to select an object to perform the automated move

on. After an object has been chosen, an option will be offered to the user to select in which

directions of the X-Y plane should the automated move be performed; after that, the user

will then select the direction in the Z axis. With the 3-D directions of movements

established, the user is given the option to enter the distances (in meters) that the object

should be displaced in each of the selected axis, and finally, input the number of steps that

have to be performed.

Once the user has finished inputting all the information, the script will start by calculating

the distances that the selected object has to be moved in each of the iterations by dividing

the total distance by the number of steps. Then, the script will displace the object by that

distance, and recalculate and reposition the viapoints of the path planning (with the

information stored by the Initial script regarding relative positioning of objects and

 22

viapoints) in a similar way to the Free-move script. After the viapoints have been relocated,

it will compute the new Layout score (point 3.1) and store it in a vector for later use. Then,

it will automatically run the new path planning, generate the new movements and replace

the existing ones in the Operation Sequence, execute the sequence to generate a new

simulation and Ergonomic evaluation, and re-do the same process for each iteration until a

number of simulations equal to the number of steps are achieved.

Figure 10. Example of the selection process for user inputs in the Automated Lua Script

A fourth minor script has been developed, with the purpose of displaying the stored values in the

Layout scores vector, so that the user does not need to keep track of the value after each individual

simulation.

4.2 Case solution

After the scripts had been developed, the case study was used to test their feasibility and

effectiveness in the case of a theoretical HRC workstation design. The methodology for the layout

design of the case study is explained in point 3.1.

 23

The Automated script has been used to displace the hand-over position along the Z axis in 20

different steps, from the initial position of 650 mm to a final position of 1600 mm, with a

simulation being performed every 50 mm. These are the results obtained regarding the RULA

score:

Table 3. RULA scores for the hand-over positions

Z Position
(mm)

RULA
score

 Z Position
(mm)

RULA score

650 3,379693

1150 3,261409

700 3,389751

1200 3,260751

750 3,405278

1250 3,259542

800 3,369042

1300 3,337237

850 3,385779

1350 3,319593

900 3,275278

1400 3,317369

950 3,279472

1450 3,314775

1000 3,201278

1500 3,315726

1050 3,275561

1550 3,311185

1100 3,275764

1600 3,316944

This RULA score is calculated as an average of the sum of scores of each of the 10 manikins (5

males and 5 females). An optimal solution is obtained for the Z position of 1000 mm; this will be

further elaborated in point 5.2.

After an optimal hand-over position has been determined, a combination of the Automated move

and Free-move script is used to perform the 96 simulations defined in point 3.1. The obtained

results regarding processing time and layout score are presented in Table 5 and charted in Figure

11. The code figures allude to the positioning of an object relative to their original location,

according to Table 4. From left to right, each of the three number is associated to the objects IRB,

Silicon machine, and Carrier respectively. Thus, the code 412 would refer to the layout in which

the IRB is displaced in the positive Y axis from its original position, the Silicon machine is

displaced in the negative X axis, and the Carrier is displaced in the positive X axis.

The magnitude of each of the displacements is of 0.2 meters in the indicated direction, with the

codes 5 and 6 being 0.2 and 0.4 meters in the positive Z axis, respectively.

Table 4. Code number and relative position assigned

Code: 1 2 3 4 5 6

Relative

position:

-X +X -Y +Y +Z +2Z

 24

Several layout codes can be observed to have processing times and scores of 0; these are cases in

which one or more of the objects in the scene were out of reach of the IRB after being displaced,

thus making it impossible to run the simulation.

The concept of Pareto-optimal solutions was used [49] [6] to create a trade-off curve between

layout score and processing times. Depending on the preferences of importance for the decision

makers, any of the solutions that are part of the pareto frontier (highlighted in Table 5) may be

chosen as an “optimal” solution. Results are further discussed in point 5.2.

Figure 11. Chart with the plotted results of the case solution, displaying the Pareto Frontier

0

1

2

3

4

5

6

0 20 40 60 80 100 120

La
yo

u
t

sc
o

re

Processing time

Pareto frontier

 25

Table 5. Results of the 96 simulations for the case study

Code Time (s) L. Score Code Time (s) L. Score

111 69,8935 4.585

411 69,149 4.742

112 66,6906 4.78

412 65,0734 4.921

113 70,1634 4.61

413 67,4314 4.757

114 68,6829 4.753

414 68,2286 4.908

121 87,3705 4.706

421 85,4815 4.879

122 83,8813 4.905

422 78,2054 5.06

123 83,7489 4.748

423 85,0823 4.91

124 88,0755 4.855

424 83,4873 5.025

131 89,3096 4.777

431 80,4263 4.937

132 81,8844 4.996

432 68,7017 5.14

133 84,3063 4.814

433 67,9424 4.964

134 73,5503 4.954

434 68,7903 5.111

141 70,6638 4.512

441 70,7861 4.678

142 69,6847 4.695

442 67,0303 4.845

143 68,2387 4.545

443 71,4246 4.731

144 70,6748 4.655

444 67,2093 4.914

211 0 0

511 68,9629 4.509

212 68,6488 4.568

512 64,6402 4.689

213 68,8519 4.415

513 68,8326 4.528

214 70,0953 4.559

514 68,2307 4.672

221 0 0

521 92,2686 4.63

222 67,2369 4.691

522 78,0863 4.813

223 69,3097 4.55

523 80,1342 4.665

224 69,3595 4.658

524 92,1586 4.773

231 0 0

531 81,198 4.693

232 69,5305 4.767

532 67,5337 4.896

233 69,9004 4.601

533 68,1475 4.723

234 68,9564 4.741

534 68,2125 4.863

241 0 0

541 70,2779 4.442

242 67,5647 4.493

542 64,8737 4.609

243 69,6372 4.36

543 68,2774 4.469

244 70,1285 4.471

544 68,2623 4.58

311 71,9864 4.327

611 69,044 4.509

312 67,7236 4.505

612 64,7205 4.689

313 73,5546 4.348

613 68,996 4.528

314 72,0618 4.485

614 68,2698 4.672

321 95,3873 4.435

621 89,8246 4.63

322 80,7559 4.616

622 77,1945 4.813

323 82,3327 4.473

623 79,9635 4.665

324 84,8349 4.573

624 82,842 4.773

331 72,6621 4.5

631 82,0146 4.693

332 70,0172 4.702

632 67,5341 4.896

333 74,1421 4.533

633 68,1468 4.723

334 69,8959 4.666

634 67,1765 4.863

341 72,7549 4.257

641 69,2785 4.442

342 68,0095 4.423

642 65,0041 4.609

343 70,4978 4.287

643 67,9199 4.469

344 71,2733 4.391

644 68,2624 4.58

 26

5 DISCUSSION AND CONCLUSIONS

In this chapter, a discussion of the results and the conclusions that the author has drawn during

the thesis are presented. The conclusions are based from the analysis with the intention to answer

the formulation of questions that was presented in Chapter 1.

5.1 Discussion of the LUA scripts

RQ1: How can simulation software for design of human–industrial robot collaboration

workstations be improved through programming of Lua scripts?

The first research question is answered by the developed Lua scripts presented in point 4.1. Three

main scripts have been developed: an Initial script to gather information from the scene and receive

input parameters from the user; a Free-move script that allows the user to quickly check different

layout designs in a broad manner; and an Automated script that enables the user to automatically

perform consecutive movements in order to fine tune the layout design of a workstation.

The scripts developed enable the user to perform simulations in a swift, efficient, automated and

simplified way in comparison to the traditional method. The scripts reduce the need of manual

work to a minimum, only requiring the user to input some parameters to decide which type of

movements to perform in the layout design, whereas with the previous procedure it would take a

large amount of time and effort to perform even a single simulation after changing the layout.

The time required to execute a simulation with a new layout using the new scripts in estimated to

be less than one sixth of the time required with the traditional method; furthermore, most of that

time is due to the software’s own calculation times for the path planning, with little to no manual

labour required.

Besides, with the addition of the Automated script, it is now possible for the user to perform a

large number of simulations consecutively without the need of interacting with the program,

potentially saving tens or hundreds of hours by running the program without supervision.

Moreover, the scripts can also be used to run the program as a “black box”, enabling users to utilize

the software without the need of being adepts at it, requiring only the basic knowledge to move

objects in the scene and run the scripts; this would, for example, allow layout designers to use the

program in order to design HRC workstations without the need of having to learn first all the

complexities that it entails.

Finally, since the scripts have been partially generalized, they may be used in different scenarios

other than the case study of this thesis, with the trade-off being the need of the user to input several

parameters. This partial generalization of the scripts enables them to be used in scenes that fulfil

the following requirements:

• The scene must have a single Rigid Body Path Planning that defines the product movement,

since it is not possible for the Lua API to incorporate Robot motions into the operation

sequence. The possibility of handling more than one body path planning was considered,

but deemed not necessary for most cases.

• The scene must contain a single IRB.

• The scene may have only one Manikin Family, since the current version of the software

does not allow to have more than a single family as actors in an operation sequence.

• The scene must have a fixed hand-over position in the X-Y plane. This is due to the fact

that it is not currently possible through the Lua API to retrieve the necessary information

to automatically set a new position for the manikin to move to.

These constraints are given by the currently existing Lua API functionalities, as expressed in the

delimitations of the thesis in point 1.3 and establish room for future work.

 27

5.2 Discussion of the case solution

RQ2: How can a human–industrial robot collaborative workstations be optimised in an efficient

way using the improved software?

The second research question is answered by the solution of the case study presented in point 4.2

Following the guidelines established in the case study approach (point 3.1), a two-step procedure

has been followed to offer an “optimal” solution for the case.

In the first place, the most favourable height from the ergonomics perspective for the hand-over

position has been found by using the Automated script to run the defined number of simulations

consecutively (Table 3). As it can be seen in the table, all the values for the RULA score are quite

similar; this is arguably due to the method used for computing the score, in which the average of

the family of 10 manikins (5 males and 5 females, representing 95% of the population spectrum

[45]) is calculated, which causes values for the score to not vary significantly since positions that

have a lower ergonomic score for people with smaller height may have a higher score for higher

people, and vice versa. However, the position of Z=1000 mm has the lowest RULA average value

by a notable margin, and thus it is safe to consider it as the optimal position from the ergonomics

perspective.

After having defined the optimal height for the hand-over position, the second step was to run the

96 simulations established in the case study and analyse the processing times and layout scores in

order to find an “optimal” solution through a Pareto frontier multi-objective optimization [49] [4].

As displayed in the graph in Figure 11 and highlighted in Table 5, three points comprise the Pareto

frontier: the ones corresponding to codes 412, 432 and 512. Any of these positions could be

considered an “optimal” one, and the best one should be selected depending on the preferences of

the importance of processing time over layout score.

All the simulations could be performed efficiently with the use of the developed scripts, saving a

large amount of time; however, some issues were found during the testing, which give room for

improvements and future work:

• When running the automated script to find the optimal height of the hand-over position, no

more than 5 simulation steps could be run consecutively; when running a sixth one, an

error would cause the script to be interrupted. This issue made it necessary to run the 21

required simulations in 5 different usages of the Automated script (5, 5, 5, 5 and 1 steps

respectively), resetting the program after each run of the script.

• Most of the manual work was dedicated to collecting the data from the Ergonomic

evaluation for calculating the RULA score. The .csv files of each simulation containing the

joint values for all manikins had to be transferred to MATLAB, where a different script

was used to calculate the score; afterwards, this score had to be manually inputted in an

excel file to keep track of the scores for each simulation.

• The processing times of each simulation had to be manually inputted into an excel file.

• When retrieving the information about the layout score, a short script was used to display

the score calculated in each of the simulations that had been run; this information had then

to be manually inputted into an excel file together with the processing times.

Once these issues are tackled, it will be possible to perform the simulations with little to no manual

work required, which will mark a significant improvement in the optimisation and layout design

of HRC workstations with this software.

 28

5.3 Conclusions

The general conclusion from the research performed is that it is possible to improve existing

software to simulate, visualise, evaluate and optimise HRC workstations through the use of Lua

scripts. With these scripts it is possible to efficiently design the layout of future HRC assembly

workstations by performing large amount of simulations in a reduced time and in an automated

way.

The main academic contribution of the thesis are the scripts themselves and the new methodology

developed by using them to design future HRC workstations. Thanks to the scripts, it is possible

to run a large number of simulations, achieving a greater degree of accuracy in the evaluation and

comparison of different alternatives in the layout design process, saving time and resources;

furthermore, with the addition of the Automated script it is also possible to perform those

simulations consecutively without the need of human interaction, which is a remarkable

improvement over the current simulation manual procedures.

The scripts are also the main part of the industrial contribution. Through them HRC workstations

layout can be designed and improved in an efficient way early in the production design process.

However, a number of issues need to be resolved before it can have a major impact in the

industries. One is that, even if the scripts have been partly generalized to adapt to different

workstations, it can still only cover a limited range of HRC station possibilities; the scripts would

need to be able to be utilized in a wider variety of situations for them to be utilized in industry.

One other obstacle is the maturity of the software, which has to increase through further

development in order to make the required improvements to the scripts, as is discussed in the

recommendations and future work.

 29

6 RECOMMENDATIONS AND FUTURE WORK

In this chapter, recommendations on improvements for the solution and future work in this field

are presented.

As discussed in Chapter 5.1, several issues and possible improvements to be made to the software

in development and the Lua API have been detected:

• The Lua API should include functionalities to enable the full script automation of the robot

path planning tool and its integration in the operation sequence. With this, it would be

possible to handle more than one product’s motions, as well as create robot movements

without having the product attached.

• The IRB object should be considered as a solid object for calculating collision avoidance

in path planning. This would eliminate the need of using a “robot box” when using the

rigid body path planner.

• The operation sequence should be able to handle more than one family of manikins, to

represent the cases in which there is more than one human collaborating with the robot in

the HRC station.

• Additional functionalities should be added to the Lua API to be able to handle the

movements of the manikins, so that it can automatically create move actions to new

positions, removing the need for the hand-over position to be static.

• The error that causes the Automated script to fail execution when running more than five

consecutive steps should be solved.

• The RULA ergonomic assessment could be incorporated into the software, so that there is

no need for an external program to calculate the score.

• The layout score calculations methodology could be added into the software, removing the

need to implement it into the script.

• The data transfer method could be improved, by making it possible to automatically export

the processing times, RULA score and layout score to a datasheet file.

Aside from these improvements into the demonstrator software, further work should be put into

the scripts, making them more generalized by including different possibilities of HRC

workstations: more than one IRB collaborating with more than one human, different objects

moving at a same time, a manikin moving to different positions that change with the layout, etc.

Furthermore, as presented in the introductory point 1.1, future work in the project with relation to

the smart factory and Industry 4.0 concepts ([50], [51]) could be performed by focusing in the

information feedback from the real-time HRC stations and its histogram and how this information

may be used as inputs in the design process of the workstations.

 30

7 REFERENCES

[1] C. Murphy and T. Perera, “The definition of simulation and its role within an aerospace

company,” Simulation Practice and Theory, vol. 9, pp. 273-291, 2002.

[2] D. Mourtzis, N. Papakostas, D. Mavrikios, S. Makris and K. Alexopoulos, “The role of

simulation in digital manufacturing: applications and outlook,” International journal of

Computer Integrated Manufacturing, vol. 28, pp. 3-24, 2015.

[3] F. Ore, L. Hanson, N. Delfs and M. Wiktorsson, “Human industrial robot collaboration -

development and application of simulation software,” International Journal of Human

Factors Modelling and Simulation, vol. 5, no. 2, pp. 164-185, 2015.

[4] F. Ore, “Human - Industrial Robot Collaboration: Simulation, Visualisation and

Optimisation of future assembly workstations,” Mälardalen University Press Thesis,

Västerås, Sweden, 2015.

[5] IPS AB, [Online]. Available: http://www.fcc.chalmers.se/software/ips/ips-imma/.

[Accessed 20 May 2018].

[6] F. Ore, L. Hanson and M. Wiktorsson, “Method for design of human-industrial robot

collaboration workstations,” in 27th International Conference on Flexible Automation and

Intelligent Manufacturing, FAIM 2017, Modena, Italy, 2017.

[7] R. Muther and L. Hales, Systematic Layout Planning, Fourth Edition, Marietta, USA:

Management & Industrial Research Publications, 2015.

[8] L. Fritzsche, “Ergonomics risk assessment with digital human models in car assembly:

Simulation versus real life,” Human Factors and Ergonomics in Manufacturing & Service

Industries, vol. 20, no. 4, pp. 287-299, 2010.

[9] M. F. Zaeh and M. Prasch, “Systematic workplace and assembly redesign for aging

workforces,” Production Engineering, vol. 1, no. 1, pp. 57-64, 2007.

[10] S. Oberer-Treitz, T. Dietz and A. Verl, “Safety in industrial applications: From fixed

fences to direct interaction,” in 44th International Symposium on Robotics, ISR, Seoul,

Korea, 2013.

[11] G. Reinhart, R. Spillner and Y. Shen, “Apporaches of Applying Human-Robot-Interaction-

Technologies to Assist Workers with Musculoskeletal Disorders in Production,” in

Intelligent Robotics and Applications, 5th International Conference, ICIRA, Proceedings,

Part II, Montreal, Canada, 2012.

[12] J. Krüger, T. Lien and A. Verl, “A Cooperation of human and machines in assembly lines,

Keynote paper,” CIRP Annals - Manufacturing Technology, vol. 58, pp. 628-646, 2009.

[13] J. T. C. Tan, F. Duan, Y. Zhang, K. Watanabe, R. Kato and T. Arai, “Human-robot

collaboration in cellular manufacturing: Design and development,” in IEEE/RSJ

International Conference on Intelligent Robots and Systems, IROS, 2009.

[14] I. Aaltonen, T. Salmi and I. Marstio, Refining Levels of Collaboration to Support the

Design and Evaluation of Human-Robot Interaction in the Manufacturing Industry,

Stockholm, Sweden: paper approved for the 51st CIRP Conference on Manufacturing

Systems (CIRP CMS 2018), 2018.

[15] J. Krüger, B. Nickolay, P. Heyer and G. Seliger, “Image based 3D Surveillance for flexible

Man-Robot-Cooperation,” CIRP Annals - Manufacturing technology, vol. 54, pp. 19-222,

2005.

[16] A. Stopp, T. Baldauf, R. Hantsche, S. Horstmann, S. Kristensen, F. Lohnert, C. Priem and

B. Ruscher, “The manufacturing assistant: Safe, interactive teaching of operation

 31

sequences,” in 11th IEEE International Workshop on Robot and Human Interactive

Communication, Berlin, Germany, 2002.

[17] H. Kagermann, W. Wahlster and J. Helbig, “Recommendations for Implementing the

Strategic Initiative Industrie 4.0: Securing the Future of German Manufacturing Industry;

Final Report of the Industrie 4.0 Working Group,” Acatech, Berlin, Germany, 2013.

[18] M. A. Goodrich and A. C. Schultz, “Human-Robot Interaction: A Survey,” Foundations

and Trends in Human-Computer Interaction, vol. 1, no. 3, pp. 203-275, 2008.

[19] S. Walther and T. Guhl, “Classification of physical human-robot interaction scenarios to

identify relevant requirements,” in Proceedings of ISR/Robotik 2014, 41st International

Symposium on Robotics, 2014.

[20] ISO (2011b) ISO 10218-2:2011, Robots and robotic devices - Safety requirements for

industrial robots - Part 2: Robot systems and integration, Geneva, Switzerland:

International Organization for Standardisation.

[21] J. Fryman, “Updating the Industrial Robot Safety Standard,” in Proceedings of ISR/Robotik

2014; 41st International Symposium on Robotics, Munich, Germany, 2014.

[22] ISO (2011a) ISO 10218-1:2011, Robots and robotic devices - Safety requirements for

industrial robots - Part 1: Robots, Geneva, Switzerland: International Organization for

Standardisation.

[23] M. Vasic and A. Billard, “Safety Issues in Human-Robot Interactions,” in Procedings of

the 2013 IEEE International Conference on Robotics and Automation, ICRA, 2013.

[24] M. Bortolini, M. Gamberi, F. Pilati and A. Regattieri, Automatic Assessment of the

Ergonomic Risk for Manual Manufacturing and Assembly Activities Through Optical

Motion Capture Technology, Stockholm, Sweden: paper approved for the 51st CIRP

Conference on Manufacturing Systems (CIRP CMS 2018), 2018.

[25] L. Wang, B. Schmidt and A. Y. C. Nee, “Vision-guided active collision avoidance for

human-robot collaborations,” Manufacturing Letters, vol. 1, no. 1, pp. 5-8, 2013.

[26] P. Bobka, T. Germann, J. K. Heyn, R. Gerbers, F. Dietrich and K. and Dröder, “Simulation

Platform to Investigate Safe Operation of Human-Robot Collaboration Systems,” Procedia

CIRP, vol. 44, pp. 187-192, 2016.

[27] J. T. C. Tan, F. Duan, R. Kato and T. Arai, “Safety Strategy for Human-Robot

Collaboration: Design and Development in Cellular Manufacturing,” Advanced Robotics,

vol. 24, no. 10, pp. 839-860, 2012.

[28] F. Pini, F. Leali and M. Ansalomi, “A systematic approach to the engineering design of a

HRC workcell for bio-medical product assembly,” in IEEE 20th Conference on Emerging

Technologies & Factory Automation (ETFA), Luxembourg, 2015.

[29] G. Pahl, W. Beitz, J. Feldhusen and K. Grote, Engineering Design: A Systematic

Approach, London, UK: Springer-Verlag, 2007.

[30] F. Chen, K. Sekiyama, J. Huang, B. Sun, H. Sasaki and T. Fukuda, “An assembly strategy

scheduling method for human and robot coordinated cell manufacturing,” International

Journal of Intelligent Computing and Cybernetics, vol. 4, pp. 487-510, 2011.

[31] P. Tsarouchi, A.-S. Matthaiakis, S. Makris and G. Chryssolouris, “On a human-robot

collaboration in an assembly cell,” International Journal of Computer Integrated

Manufacturing, pp. 1-10, 2016.

[32] F. Ore, B. R. Vemula, L. Hanson and M. Wiktorson, “Human-Industrial Robot

Collaboration: Application of Simulation Software for Workstation Optimisation,”

Procedia CIRP, vol. 44, pp. 181-186, 2016.

[33] IPS AB, [Online]. Available: http://industrialpathsolutions.se/. [Accessed 20 May 2018].

 32

[34] FCC, [Online]. Available: http://www.fcc.chalmers.se/software/ips/. [Accessed 13 May

2018].

[35] IPS AB, [Online]. Available: http://industrialpathsolutions.se/ips-rigid-body-path-planner.

[Accessed 20 May 2018].

[36] IPS AB, [Online]. Available: http://industrialpathsolutions.se/ips-robot-optimization.

[Accessed 20 May 2018].

[37] J. Laring, M. Forsman, R. Kadefors and R. Örtengren, “MTM-based ergonomic workload

analysis,” International Journal of Industrial Ergonomics, vol. 30, no. 3, pp. 135-148,

2002.

[38] L. McAtamney and E. Corlett, “RULA: a survey method for the investigation of work-

related upper limb disorders,” Applied Ergonomics, vol. 24, pp. 91-99, 1993.

[39] R. Ierusalimschy, Programming in lua, Second Edition, Rio de Janeiro, Brazil, 2006.

[40] R. Ierusalimschy, L. H. De Figueiredo and W. Celes Filho, “Lua-an extensible extension

language,” Softw., Pract. Exper., vol. 26, no. 6, pp. 635-652, 1996.

[41] Lua, [Online]. Available: https://www.lua.org/about.html. [Accessed 12 May 2018].

[42] P. Mårdberg, J. Carlson, R. Bohlin, N. Delfs, S. Gustafsson, D. Högberg and L. Hanson,

“Using a formal high-level language and an automated manikin to automatically generate

assembly instructions,” International Journal of Human Factors Modeling and Simulation,

vol. 4, pp. 233-249, 2014.

[43] V. V. Unhelkar, H. C. Siu and J. A. Shah, “Comparative Performance of Human and

Mobile Robotic Assistants in Collaborative Fetch-and-Deliver Tasks,” in HRI '14:

Proceedings of the 9th ACM/IEEE International Conference on Human-Robot Interaction,

2014.

[44] Kuka, [Online]. Available: https://www.kuka.com/en-in/products/robotics-

systems/industrial-robots/kr-quantec-prime. [Accessed 16 May 2018].

[45] L. Hanson, L. Sperling, G. Gard, S. Ipsen and C. Olivares Vergara, “Swedish

anthropometrics for product and workplace design,” Applied Ergonomics, vol. 40, no. 4,

pp. 797-806, 2009.

[46] A. R. Hevner, “A Three Cycle View of Design Science Research,” Scandinavian Journal

of Information Systems, vol. 19, no. 2, pp. 87-92, 2007.

[47] A. R. Hevner, S. T. March, J. Park and S. Ram, “Design Science in Information Systems

Research,” MIS Quarterly, vol. 28, no. 1, pp. 75-105, 2004.

[48] F. Ore, L. Hanson, M. Wiktorsson and E. Yvonne, “Automation constraints in human-

industrial robot collaborative workstation design,” in 7th Swedish Production Symposium

(SPS) 2016, Lund, Sweden, 2016.

[49] E. M. Kasprzak and K. E. Lewis, “An Approach to Facilitate Decision Tradeoffs in Pareto

Solution Sets,” Journal of Engineering Valuation and Cost Analysis, vol. 3, no. 1, pp. 173-

187, 2000.

[50] S. Wang, J. Wan, D. Zhang, D. Li and C. Zhang, “Towards smart factory for industry 4.0: a

self-organized multi-agent system with big data based feedback and coordination,”

Computer Networks, vol. 101, pp. 158-168, 2016.

[51] W. Kühn, “Digital factory: Simulation Enhancing the Product and Production Engineering

Process,” in Proceedings of the Winter Simulation Conference, WSC 06, Monterey, US,

2006.

 33

APPENDIX A: COMPLETE SCRIPT CODE

This appendix includes the complete code of the three main Lua scripts developed by the author.

function calculateAngle(rotvector) --Function to calculate the angle given a rotation matrix R from

a transf3 object

 shift = 10 ^ 4 --Rounds the angle to the 4th decimal

 resultsin = math.floor(rotvector['r2x']*shift + 0.5) / shift

 resultcos = math.floor(rotvector['r1x']*shift + 0.5) / shift

 local angle=math.atan2(resultsin,resultcos); --Calculates the angle with the inverse of the

tangent

return angle

end

function calculateDistance(vector1,vector2) --Function to calculate the distance vector between

two points; returns module and angle

 distx=vector1['tx']-vector2['tx'];

 if distx<0 then --The sign of the relative x position has to be used to adjust the angle

in the pp2 script

 dirx=-1;

 else

 dirx=1;

 end

 disty=vector1['ty']-vector2['ty'];

 local ang=math.atan2(disty,distx); --Calculates the angle that forms the distance vector

between the two points

 local dist=math.sqrt(distx^2 + disty^2);

 return dist, ang, dirx

end

--Declaration of variables

 options=StringVector()

 irbpos=StringVector()

 layoutscore=NumberVector()

 object={}; coords={}; viapoints={}; relatedobject={};

 dist={}; relang={}; dir={}; posz={};

 ang1={}; ang2={}; diff_ang={};

 options:push_back("No object related");

--Go through the active objects tree

 root = Ips.getActiveObjectsRoot();

 child = root:getFirstChild();

 belowRoot=root:getNextSibling();

 obj=child;

 i=1;

while not(obj == nil) and not (obj:equals(belowRoot)) do

 if (obj:getType() == "RigidBodyObject") then

 object[i]=obj:toRigidBodyObject(); --Store rigid bodies in the

object vector

 coords[i]=object[i]:getFrameInWorld(); --Store the coordinates of the

rigid body in the coords vector

 options:push_back(obj:getLabel()); --Add the name of the object

to the options vector

 i=i+1;

 end

 34

 obj=obj:getObjectBelow();

end

--Get the IRB object and its coordinates

 root=Ips.getMechanismRoot();

 child = root:getFirstChild();

 belowRoot=root:getNextSibling();

 obj=child;

while not(obj == nil) and not (obj:getLabel()=="Simulations") do

 if (obj:getType() == "IRBObject") then

 obj=obj:toIRBObject();

 coordirb=obj:getTCPInWorld();

 end

 obj=obj:getObjectBelow();

end

--Get the rigid body planning object and its viapoints

 root = Ips.getProcessRoot();

 pp = root:getFirstChild();

 pp=pp:toRigidBodyPathPlanning();

 nviapoints=pp:getNumViaPoints();

--Store the viapoints in a vector

 viapoints[0]=pp:getStart();

 if nviapoints>0 then

 for i=1,nviapoints do

 viapoints[i]=pp:getViaPoint(i-1);

 end

 end

 viapoints[nviapoints+1]=pp:getGoal();

 totalpoints=nviapoints+2;

--Display a drop down list for the user to select the object related to each viapoint

for j=1, totalpoints do

choice=Ips.inputDropDownList("Object selection","Select the object related to Viapoint "..(j-1).."

:", options);

 for i=1, table.maxn(object) do

 if choice==i then

 relatedobject[j-1]=i; --For each viapoint saves in a vector what object is related

to it

 end

 end

end

--Goes through the related objects vector and calculates the relative spatial position of the viapoint

and its related object

for i=0, totalpoints-1 do

if relatedobject[i]~=nil then --Only use viapoints that have an object related

 dist[i],relang[i],dir[i]=calculateDistance(viapoints[i],coords[relatedobject[i]]);

 ang1[i]=calculateAngle(coords[relatedobject[i]])

 ang2[i]=calculateAngle(viapoints[i])

 diff_ang[i]=ang2[i]-ang1[i];

 posz[i]=viapoints[i]['tz']-coords[relatedobject[i]]['tz'];

 end

end

--Asks the user to select the starting point of the IRB

for i=0, totalpoints-1 do

 35

 irbpos:push_back(i)

end

irbstart=Ips.inputDropDownList("IRB selection","Select the starting viapoint of the IRB:",

irbpos);

--Calculates the relative spatial position of the IRB and the input viapoint

distirb,relangirb,dirirb=calculateDistance(coordirb,viapoints[irbstart]);

ang1_irb=calculateAngle(viapoints[irbstart])

ang2_irb=calculateAngle(coordirb)

diff_angirb=ang2_irb-ang1_irb;

poszirb=coordirb['tz']-viapoints[irbstart]['tz'];

print("PP1 ran succesfully - You can move objects around now.")

--Disables the reseting of variables when the script finishes, so that they can be used in other scripts

Script.resetStateWhenFinished(false);

function rotMatrix(anglestart,anglediff) --Calculates the new rotation matrix R from an start

angle and an angle increment

 local angle=anglestart+anglediff;

 r1=Vector3d(math.cos(angle),-math.sin(angle),0);

 r2=Vector3d(math.sin(angle),math.cos(angle),0);

 r3=Vector3d(0,0,1);

 local R=Rot3(r1,r2,r3);

 return R

end

function transVector(startpos,distance,angle,posz,dir) --Calculates the translation vector

with a starting position, distance and angle

 distx=distance*math.cos(angle); --The dir parameter is used to adjust the sign for the

relative position of the object in the x axis

 disty=distance*math.sin(angle);

 local t=Vector3d(startpos['tx']+distx,startpos['ty']+disty,startpos['tz']+posz);

 return t

end

function calculateAngle(rotvector) --Function to calculate the angle given a rotation matrix R

from a transf3 object

 local shift = 10 ^ 4

 resultsin = math.floor(rotvector['r2x']*shift + 0.5) / shift

 resultcos = math.floor(rotvector['r1x']*shift + 0.5) / shift

 local angle=math.atan2(resultsin,resultcos);

return angle

end

function calculateDistance(obj1,obj2) --Calculates the distance between two objects in the

X-Y plane

 local distx=obj1['tx']-obj2['tx'];

 local disty=obj1['ty']-obj2['ty'];

 local calculatedDistance=math.sqrt(distx^2+disty^2);

return calculatedDistance

end

function calculateScore(distance,relation)

 if relation==0 then

 return 0

 end

 local score=1/(distance*relation/100);

 36

 return score

end

--Get the Robot box

 root = Ips.getGeometryRoot();

 child = root:getFirstChild();

 belowRoot=root:getNextSibling();

 obj=child;

 while not(obj==nil) and not (obj:equals(belowRoot)) do

 obj=obj:getObjectBelow();

 if (obj:getLabel() == "Geometry Group 3") then

 irbbox=obj:toPositionedTreeObject();

 end

 end

--Offer option to select object to move

 --Get the active rigid bodies

 optionsmove=StringVector();

 root = Ips.getActiveObjectsRoot();

 child = root:getFirstChild();

 belowRoot=root:getNextSibling();

 obj=child;

 i=1;

while not(obj == nil) and not (obj:equals(belowRoot)) do

 obj=obj:getObjectBelow();

 if (obj:getType() == "RigidBodyObject") then

 object[i]=obj:toRigidBodyObject(); --Store rigid bodies in the

object vector

 coords[i]=object[i]:getFrameInWorld(); --Store the coordinates of the

rigid body in the coords vector

 optionsmove:push_back(obj:getLabel()); --Add the name of the

object to the options vector

 i=i+1;

 end

end

optionsmove:push_back("IRB");

optionsmove:push_back("No object to move"); --Add a not move anything option

choice1=Ips.inputDropDownList("Object selection","Select the object you want to move:",

optionsmove);

for i=1, table.maxn(object) do

 if choice1==i-1 then

 objecttomove=i; --Saves the index of the object to move

 end

end

if choice1==(table.maxn(object)+1) then

 do return end --End the script if the option not to move anything is chosen

end

--Offer option to select type of movement

optionsmovetype=Vector({'+X','-X','+Y','-Y','+X+Y','+X-Y','-X+Y','-X-Y','No movement in

XY'})

choice2=Ips.inputDropDownList("Movement selection","Select the direction in the XY plane:",

optionsmovetype);

optionsmovetype=Vector({'No Z movement','+Z','-Z'})

 37

choice3=Ips.inputDropDownList("Movement selection","Select the direction in the Z axis:",

optionsmovetype);

choice4=0; choice5=0; choice6=0;

--Offer option to select distance

if choice2==0 or choice2==1 or choice2==4 or choice2==5 or choice2==6 or choice2==7 then

 choice4=Ips.inputNumberWithDefault("Enter the distance in the X-axis (m): ", 1.0);

end

if choice2==2 or choice2==3 or choice2==4 or choice2==5 or choice2==6 or choice2==7 then

 choice5=Ips.inputNumberWithDefault("Enter the distance in the Y-axis (m): ", 1.0);

end

if choice3==1 or choice3==2 then

 choice6=Ips.inputNumberWithDefault("Enter the distance in the Z-axis (m): ", 1.0);

end

choice7=Ips.inputNumberWithDefault("Enter the number of steps: ", 5.0);

iterations=math.floor(choice7);

stepdistancex=choice4/iterations;

stepdistancey=choice5/iterations;

stepdistancez=choice6/iterations;

for w=1, iterations do

 w=w+1;

--Declaration of variables

 rotation={}; total_rot={};

 transf_t={}; transf_R={}; transf_T={};

--Performs a cleanup of motion simulations

 root=Ips.getSimulationsRoot();

 child=root:getFirstChild();

 belowRoot=root:getNextSibling();

 obj=child;

 while not(obj == nil) and not(obj:getLabel()=="Measures")do

 if (obj:getType() == "RBMotionSimulation") then

 child=obj:getNextSibling();

 Ips.deleteTreeObject(obj);

 end

 obj=child;

 end

--Get the IRB mechanism group and retrieve its current coordinates

 root = Ips.getMechanismRoot();

 child = root:getFirstChild();

 belowRoot=root:getNextSibling();

 obj=child;

 while not(obj==nil) and not (obj:equals(belowRoot)) do

 obj=obj:getObjectBelow();

 if (obj:getLabel() == "IRB") then

 irbbase=obj:getParent();

 irbbase=irbbase:toPositionedTreeObject();

 irbbasecoords=irbbase:getTWorld();

 end

 end

--Go through the active objects tree to retrieve the rigid bodies and current coordinates

 root = Ips.getActiveObjectsRoot();

 child = root:getFirstChild();

 38

 belowRoot=root:getNextSibling();

 obj=child;

 i=1;

 while not(obj == nil) and not (obj:getLabel()=="Mechanisms") do

 obj=obj:getObjectBelow();

 if (obj:getType() == "RigidBodyObject") then

 object[i]=obj:toRigidBodyObject(); --Store rigid bodies in

the object vector

 coords[i]=object[i]:getFrameInWorld(); --Store the

coordinates of the rigid body in the coords vector

 i=i+1;

 end

 end

--Get the IRB object and its mode

 root=Ips.getMechanismRoot();

 child = root:getFirstChild();

 belowRoot=root:getNextSibling();

 obj=child;

 while not(obj == nil) and not (obj:getLabel()=="Simulations") do

 obj=obj:getObjectBelow();

 if (obj:getType() == "IRBObject") then

 irb=obj:toIRBObject();

 mode=irb:getIKinMode();

 end

 end

--Move the object to a new position

 if choice1==table.maxn(object) then --If the object is the IRB

 if w<=(iterations+1) then

 if choice3==0 then

 elseif choice3==1 then

 irbbasecoords['tz']=irbbasecoords['tz']+stepdistancez;

 irbbase:setTWorld(irbbasecoords);

 elseif choice3==2 then

 irbbasecoords['tz']=irbbasecoords['tz']-stepdistancez;

 irbbase:setTWorld(irbbasecoords);

 end

 if choice2==0 then

 irbbasecoords['tx']=irbbasecoords['tx']+stepdistancex;

 irbbase:setTWorld(irbbasecoords);

 elseif choice2==1 then

 irbbasecoords['tx']=irbbasecoords['tx']-stepdistancex;

 irbbase:setTWorld(irbbasecoords);

 elseif choice2==2 then

 irbbasecoords['ty']=irbbasecoords['ty']+stepdistancey;

 irbbase:setTWorld(irbbasecoords);

 elseif choice2==3 then

 irbbasecoords['ty']=irbbasecoords['ty']-stepdistancey;

 irbbase:setTWorld(irbbasecoords);

 elseif choice2==4 then

 irbbasecoords['tx']=irbbasecoords['tx']+stepdistancex;

 irbbasecoords['ty']=irbbasecoords['ty']+stepdistancey;

 irbbase:setTWorld(irbbasecoords);

 39

 elseif choice2==5 then

 irbbasecoords['tx']=irbbasecoords['tx']+stepdistancex;

 irbbasecoords['ty']=irbbasecoords['ty']-stepdistancey;

 irbbase:setTWorld(irbbasecoords);

 elseif choice2==6 then

 irbbasecoords['tx']=irbbasecoords['tx']-stepdistancex;

 irbbasecoords['ty']=irbbasecoords['ty']+stepdistancey;

 irbbase:setTWorld(irbbasecoords);

 elseif choice2==7 then

 irbbasecoords['tx']=irbbasecoords['tx']-stepdistancex;

 irbbasecoords['ty']=irbbasecoords['ty']-stepdistancey;

 irbbase:setTWorld(irbbasecoords);

 end

 end

 elseif choice1~=table.maxn(object) then

 if w<=(iterations+1) then

 if choice3==0 then

 elseif choice3==1 then

 coords[objecttomove]['tz']=coords[objecttomove]['tz']+stepdistancez;

 object[objecttomove]:setFrameInWorld(coords[objecttomove]);

 elseif choice3==2 then

 coords[objecttomove]['tz']=coords[objecttomove]['tz']-stepdistancez;

 object[objecttomove]:setFrameInWorld(coords[objecttomove]);

 end

 if choice2==0 then

 coords[objecttomove]['tx']=coords[objecttomove]['tx']+stepdistancex;

 object[objecttomove]:setFrameInWorld(coords[objecttomove]);

 elseif choice2==1 then

 coords[objecttomove]['tx']=coords[objecttomove]['tx']-stepdistancex;

 object[objecttomove]:setFrameInWorld(coords[objecttomove]);

 elseif choice2==2 then

 coords[objecttomove]['ty']=coords[objecttomove]['ty']+stepdistancey;

 object[objecttomove]:setFrameInWorld(coords[objecttomove]);

 elseif choice2==3 then

 coords[objecttomove]['ty']=coords[objecttomove]['ty']-stepdistancey;

 object[objecttomove]:setFrameInWorld(coords[objecttomove]);

 elseif choice2==4 then

 coords[objecttomove]['tx']=coords[objecttomove]['tx']+stepdistancex;

 coords[objecttomove]['ty']=coords[objecttomove]['ty']+stepdistancey;

 object[objecttomove]:setFrameInWorld(coords[objecttomove]);

 elseif choice2==5 then

 coords[objecttomove]['tx']=coords[objecttomove]['tx']+stepdistancex;

 coords[objecttomove]['ty']=coords[objecttomove]['ty']-stepdistancey;

 object[objecttomove]:setFrameInWorld(coords[objecttomove]);

 elseif choice2==6 then

 coords[objecttomove]['tx']=coords[objecttomove]['tx']-stepdistancex;

 coords[objecttomove]['ty']=coords[objecttomove]['ty']+stepdistancey;

 object[objecttomove]:setFrameInWorld(coords[objecttomove]);

 elseif choice2==7 then

 coords[objecttomove]['tx']=coords[objecttomove]['tx']-stepdistancex;

 coords[objecttomove]['ty']=coords[objecttomove]['ty']-stepdistancey;

 object[objecttomove]:setFrameInWorld(coords[objecttomove]);

 40

 end

 end

 end

--Get the rigid body planning object and its attached rigid body

 root = Ips.getProcessRoot();

 pp = root:getFirstChild();

 pp=pp:toRigidBodyPathPlanning();

 rigbod=pp:getRigidBody();

--For each viapoint with an object linked, calculate the new position of the viapoint based on the

new position of the object

 for i=0, totalpoints-1 do

 if relatedobject[i]~=nil then --Only use viapoints that have an object related

 ang2[i]=calculateAngle(coords[relatedobject[i]]); --New angle of the

object in world coordinates

 rotation[i]=ang2[i]-ang1[i]; --Calculates the rotation of the object from

the initial position in world coordinates

 total_rot[i]=rotation[i]+relang[i]; --Adds the rotation of the object to the

relative angle between object and viapoint

 transf_t[i]=transVector(coords[relatedobject[i]],dist[i],total_rot[i],posz[i],dir[i]) --Calls

the transVector function

 transf_R[i]=rotMatrix(calculateAngle(coords[relatedobject[i]]),diff_ang[i])

 --Calls the rotMatrix function

 transf_T[i]=Transf3(transf_R[i], transf_t[i]); --Creates the Transf3 element

with the spatial coordinates

--Places the viapoint in the new calculated coordinates

 if i==0 then

 pp:setStart(transf_T[i]);

 rigbod:setFrameInWorld(transf_T[i]);

 elseif i==(totalpoints-1) then

 pp:setGoal(transf_T[i])

 else

 pp:setViaPoint(i-1,transf_T[i]);

 end

 end

 end

--Updates the viapoints vector with the new positions of the viapoints

 viapoints[0]=pp:getStart();

 if nviapoints>0 then

 for i=1,nviapoints do

 viapoints[i]=pp:getViaPoint(i-1);

 end

 end

 viapoints[nviapoints+1]=pp:getGoal();

--Calculates the new starting position of the IRB

 ang2_irb=calculateAngle(viapoints[irbstart]);

 rotationirb=ang2_irb-ang1_irb;

 total_rotirb=rotationirb+relangirb;

--Checks if the IRB is in range of the viapoints

for i=0, totalpoints-1 do

transf_tirb=transVector(viapoints[i],distirb,total_rotirb,poszirb,dirirb)

transf_Rirb=rotMatrix(calculateAngle(viapoints[i]),diff_angirb)

transf_Tirb=Transf3(transf_Rirb, transf_tirb);

 41

transf_Tirb['r3z']=-1; --Sets the Z direction to negative

transf_Tirb['r1y']=transf_Tirb['r1y']*-1 --Changes the direction of the Y axis

transf_Tirb['r2y']=transf_Tirb['r2y']*-1 --Changes the direciton of the Y axis

if irb:setFacePlateInWorld(transf_Tirb,mode,false,0,0,0)==false then

 Ips.alert("Viapoint "..i.." out of IRB range")

 do return end

end

end

--Places the IRB faceplate in the new starting position

transf_tirb=transVector(viapoints[irbstart],distirb,total_rotirb,poszirb,dirirb)

transf_Rirb=rotMatrix(calculateAngle(viapoints[irbstart]),diff_angirb)

transf_Tirb=Transf3(transf_Rirb, transf_tirb);

transf_Tirb['r3z']=-1; --Sets the Z direction to negative

transf_Tirb['r1y']=transf_Tirb['r1y']*-1 --Changes the direction of the Y axis

transf_Tirb['r2y']=transf_Tirb['r2y']*-1 --Changes the direciton of the Y axis

irb:setFacePlateInWorld(transf_Tirb,mode,false,0,0,0)

--Places the IRB box in the new position of the IRB base

 --irbbox:getTWorld();

 --DO THE LAYOUT SCORE CALCULATION

--coords[1] is the pillar

--coords[2] is the Engine Group

--coords[3] is the Flywheel cover

--coords[4] is the Carrier

--coords[5] is the Silicon_machine

--irbbasecoords is the IRB

--viapoints[2] is the manikin

 A=100; E=75; I=50; O=25; U=0; X=-100; score={};

 totalscore=0;

 score[0]=calculateScore(calculateDistance(coords[4],coords[5]),I);

 score[1]=calculateScore(calculateDistance(coords[4],coords[2]),U);

 score[2]=calculateScore(calculateDistance(coords[4],irbbasecoords),I);

 score[3]=calculateScore(calculateDistance(coords[4],viapoints[2]),U);

 score[4]=calculateScore(calculateDistance(coords[5],coords[2]),I);

 score[5]=calculateScore(calculateDistance(coords[5],irbbasecoords),I);

 score[6]=calculateScore(calculateDistance(coords[5],viapoints[2]),U);

 score[7]=calculateScore(calculateDistance(coords[2],irbbasecoords),I);

 score[8]=calculateScore(calculateDistance(coords[2],viapoints[2]),A);

 score[9]=calculateScore(calculateDistance(irbbasecoords,viapoints[2]),X);

 for i=0,9 do

 totalscore=totalscore+score[i];

 end

 layoutscore:push_back(totalscore);

 print(tostring(totalscore));

--3rd Set the planning box for the path planning

 planningbox=pp:setAutoBox();

 planningbox.zmax=1.6; --Set maximum height to not get out of the robots range

 pp:setPlanningBox(planningbox);

--4th do the path planning with the new points and perform one smoothing on it

 pp:planPaths();

 pp:smooth();

 --pp:smooth();

 --pp:smooth();

 42

 --pp:smooth();

 local smoothedMotionSimulation = pp:pushToScene()

--5th set the velocity of the simulation to the maximum velocity of the robot (0.25)

 root = Ips.getSimulationsRoot();

 child = root:getFirstChild();

 belowRoot=root:getNextSibling();

 obj=child;

 while not(obj == nil) and not (obj:getLabel()=="Measures") do

 obj=obj:getObjectBelow();

 if (obj:getType() == "RBMotion") then

 motion=obj:toRigidBodyMotion();

 motion:setLocked(false);

 local nWaypoints = motion:getNumWayPoints()

 for i=0,nWaypoints-1 do

 wpoint=motion:getWayPoint(i);

 wpoint:setVelocity(0.25);

 end

 motion:setLocked(true);

 end

 end

 print("PP2 ran succesfully")

--1st Obtain the number of segments (number of viapoints + 1), and the rigid body used in the path

planning

 root = Ips.getProcessRoot();

 pp = root:getFirstChild();

 pp=pp:toRigidBodyPathPlanning();

 nviapoints=pp:getNumViaPoints();

 totalsegments=nviapoints+1;

 rigbod=pp:getRigidBody();

--Obtain the Operation Sequence tree object

 root=Ips.getProcessRoot();

 child=root:getFirstChild();

 belowRoot=root:getNextSibling();

 obj=child;

 while not(obj == nil) and not(obj:getType()=="OperationSequence")do

 obj=obj:getObjectBelow();

 end

 if (obj:getType() == "OperationSequence") then

 opseq=obj:toOperationSequence();

 end

--2nd Create vectors with the actions of the different actors

 actor=ActorVector();

 actor=opseq:getActors();

 nactors=actor:size();

 for i=0,nactors-1 do

 if actor[i]:getSgObject()==nil then

 irbactions=ActionVector();

 irbactions=opseq:getActorActions(actor[i]);

 elseif actor[i]:getSgObject():getLabel()==rigbod:getLabel() then

 body=actor[i];

 bodyactions=ActionVector();

 43

 bodyactions=opseq:getActorActions(body);

 --Clean up the current actions of the rigid body

 for i=0,bodyactions:size()-1 do

 opseq:removeAction(bodyactions[i]);

 end

 elseif actor[i]:getSgObject():getType()=="SGFamily" then

 manikinactions=ActionVector();

 manikinactions=opseq:getActorActions(actor[i]);

 end

 end

--3rd Create the new object's "follow motion" actions

 root=Ips.getSimulationsRoot();

 child=root:getFirstChild();

 belowRoot=root:getNextSibling();

 obj=child;

 i=1;

 segments={};

 --Save the motions in a vector

 while not(obj == nil) and not(obj:getLabel()=="Measures")do

 obj=obj:getObjectBelow();

 if (obj:getType() == "RBMotion") then

 segments[i]=obj:toRigidBodyMotion();

 i=i+1;

 end

 end

 --Turn the vector into actions

 for i=1, totalsegments do

 opseq:CreateActiveObjectFollow(body,segments[i]);

 end

 bodyactions=opseq:getActorActions(body);

--4th Establish precedence constraints

 bodyactions[0]:addPrecedenceAction(irbactions[0]);

 manikinactions[0]:addPrecedenceAction(bodyactions[1]);

 bodyactions[2]:addPrecedenceAction(manikinactions[1]);

 irbactions[1]:addPrecedenceAction(bodyactions[2]);

 bodyactions[3]:addPrecedenceAction(irbactions[1]);

 manikinactions[2]:addPrecedenceAction(bodyactions[3]);

--Set the current states as start states

 for i=0,nactors-1 do

 actor[i]:setCurrentStateAsStart();

 end

--5th Execute the sequence to generate the replay

 replay=opseq:executeSequence();

 tim=replay:getFinalTime();

--6th Perform the ergonomics analysis

 --replay:computeErgonomicScore("Demo",0,tim);

end

function rotMatrix(anglestart,anglediff) --Calculates the new rotation matrix R from an start

angle and an angle increment

 local angle=anglestart+anglediff;

 r1=Vector3d(math.cos(angle),-math.sin(angle),0);

 44

 r2=Vector3d(math.sin(angle),math.cos(angle),0);

 r3=Vector3d(0,0,1);

 local R=Rot3(r1,r2,r3);

 return R

end

function transVector(startpos,distance,angle,posz,dir) --Calculates the translation vector

with a starting position, distance and angle

 distx=distance*math.cos(angle); --The dir parameter is used to adjust the sign for the

relative position of the object in the x axis

 disty=distance*math.sin(angle);

 local t=Vector3d(startpos['tx']+distx,startpos['ty']+disty,startpos['tz']+posz);

 return t

end

function calculateAngle(rotvector) --Function to calculate the angle given a rotation matrix R

from a transf3 object

 local shift = 10 ^ 4

 resultsin = math.floor(rotvector['r2x']*shift + 0.5) / shift

 resultcos = math.floor(rotvector['r1x']*shift + 0.5) / shift

 local angle=math.atan2(resultsin,resultcos);

return angle

end

function calculateDistance(obj1,obj2) --Calculates the distance between two objects in the

X-Y plane

 local distx=obj1['tx']-obj2['tx'];

 local disty=obj1['ty']-obj2['ty'];

 local calculatedDistance=math.sqrt(distx^2+disty^2);

return calculatedDistance

end

function calculateScore(distance,relation)

 if relation==0 then

 return 0

 end

 local score=1/(distance*relation/100);

 return score

end

--Get the Robot box

 root = Ips.getGeometryRoot();

 child = root:getFirstChild();

 belowRoot=root:getNextSibling();

 obj=child;

 while not(obj==nil) and not (obj:equals(belowRoot)) do

 obj=obj:getObjectBelow();

 if (obj:getLabel() == "Geometry Group 3") then

 irbbox=obj:toPositionedTreeObject();

 end

 end

--Declaration of variables

rotation={}; total_rot={};

transf_t={}; transf_R={}; transf_T={};

--Performs a cleanup of motion simulations

 root=Ips.getSimulationsRoot();

 45

 child=root:getFirstChild();

 belowRoot=root:getNextSibling();

 obj=child;

 while not(obj == nil) and not(obj:getLabel()=="Measures")do

 if (obj:getType() == "RBMotionSimulation") then

 child=obj:getNextSibling();

 Ips.deleteTreeObject(obj);

 end

 obj=child;

 end

--Get the IRB mechanism group and retrieve its current coordinates

 root = Ips.getMechanismRoot();

 child = root:getFirstChild();

 belowRoot=root:getNextSibling();

 obj=child;

 while not(obj==nil) and not (obj:equals(belowRoot)) do

 obj=obj:getObjectBelow();

 if (obj:getLabel() == "IRB") then

 irbbase=obj:getParent();

 irbbase=irbbase:toPositionedTreeObject();

 irbbasecoords=irbbase:getTWorld();

 end

 end

--Go through the active objects tree to retrieve the rigid bodies and current coordinates

 root = Ips.getActiveObjectsRoot();

 child = root:getFirstChild();

 belowRoot=root:getNextSibling();

 obj=child;

 i=1;

while not(obj == nil) and not (obj:getLabel()=="Mechanisms") do

 obj=obj:getObjectBelow();

 if (obj:getType() == "RigidBodyObject") then

 object[i]=obj:toRigidBodyObject(); --Store rigid bodies in the

object vector

 coords[i]=object[i]:getFrameInWorld(); --Store the coordinates of the

rigid body in the coords vector

 i=i+1;

 end

end

--Get the IRB object and its mode

 root=Ips.getMechanismRoot();

 child = root:getFirstChild();

 belowRoot=root:getNextSibling();

 obj=child;

while not(obj == nil) and not (obj:getLabel()=="Simulations") do

 obj=obj:getObjectBelow();

 if (obj:getType() == "IRBObject") then

 irb=obj:toIRBObject();

 mode=irb:getIKinMode();

 end

end

--Get the rigid body planning object and its attached rigid body

 46

 root = Ips.getProcessRoot();

 pp = root:getFirstChild();

 pp=pp:toRigidBodyPathPlanning();

 rigbod=pp:getRigidBody();

--For each viapoint with an object linked, calculate the new position of the viapoint based on the

new position of the object

for i=0, totalpoints-1 do

if relatedobject[i]~=nil then --Only use viapoints that have an object related

 ang2[i]=calculateAngle(coords[relatedobject[i]]); --New angle of the object in world

coordinates

 rotation[i]=ang2[i]-ang1[i]; --Calculates the rotation of the object from the initial

position in world coordinates

 total_rot[i]=rotation[i]+relang[i]; --Adds the rotation of the object to the relative angle

between object and viapoint

 transf_t[i]=transVector(coords[relatedobject[i]],dist[i],total_rot[i],posz[i],dir[i]) --Calls

the transVector function

 transf_R[i]=rotMatrix(calculateAngle(coords[relatedobject[i]]),diff_ang[i])

 --Calls the rotMatrix function

 transf_T[i]=Transf3(transf_R[i], transf_t[i]); --Creates the Transf3 element with the spatial

coordinates

 --Places the viapoint in the new calculated coordinates

 if i==0 then

 pp:setStart(transf_T[i]);

 rigbod:setFrameInWorld(transf_T[i]);

 elseif i==(totalpoints-1) then

 pp:setGoal(transf_T[i])

 else

 pp:setViaPoint(i-1,transf_T[i]);

 end

end

end

--Updates the viapoints vector with the new positions of the viapoints

viapoints[0]=pp:getStart();

if nviapoints>0 then

 for i=1,nviapoints do

 viapoints[i]=pp:getViaPoint(i-1);

 end

end

viapoints[nviapoints+1]=pp:getGoal();

--Calculates the new starting position of the IRB

ang2_irb=calculateAngle(viapoints[irbstart]);

rotationirb=ang2_irb-ang1_irb;

total_rotirb=rotationirb+relangirb;

--Checks if the IRB is in range of the viapoints

for i=0, totalpoints-1 do

transf_tirb=transVector(viapoints[i],distirb,total_rotirb,poszirb,dirirb)

transf_Rirb=rotMatrix(calculateAngle(viapoints[i]),diff_angirb)

transf_Tirb=Transf3(transf_Rirb, transf_tirb);

transf_Tirb['r3z']=-1; --Sets the Z direction to negative

transf_Tirb['r1y']=transf_Tirb['r1y']*-1 --Changes the direction of the Y axis

transf_Tirb['r2y']=transf_Tirb['r2y']*-1 --Changes the direciton of the Y axis

if irb:setFacePlateInWorld(transf_Tirb,mode,false,0,0,0)==false then

 47

 Ips.alert("Viapoint "..i.." out of IRB range")

 do return end

end

end

--Places the IRB faceplate in the new starting position

transf_tirb=transVector(viapoints[irbstart],distirb,total_rotirb,poszirb,dirirb)

transf_Rirb=rotMatrix(calculateAngle(viapoints[irbstart]),diff_angirb)

transf_Tirb=Transf3(transf_Rirb, transf_tirb);

transf_Tirb['r3z']=-1; --Sets the Z direction to negative

transf_Tirb['r1y']=transf_Tirb['r1y']*-1 --Changes the direction of the Y axis

transf_Tirb['r2y']=transf_Tirb['r2y']*-1 --Changes the direciton of the Y axis

irb:setFacePlateInWorld(transf_Tirb,mode,false,0,0,0)

--Places the IRB box in the new position of the IRB base

 --irbboxcoords=irbbox:getTWorld();

 --DO THE LAYOUT SCORE CALCULATION

--coords[1] is the pillar

--coords[2] is the Engine Group

--coords[3] is the Flywheel cover

--coords[4] is the Carrier

--coords[5] is the Silicon_machine

--irbbasecoords is the IRB

--viapoints[2] is the manikin

 A=100; E=75; I=50; O=25; U=0; X=-100; score={};

 totalscore=0;

 score[0]=calculateScore(calculateDistance(coords[4],coords[5]),I);

 score[1]=calculateScore(calculateDistance(coords[4],coords[2]),U);

 score[2]=calculateScore(calculateDistance(coords[4],irbbasecoords),I);

 score[3]=calculateScore(calculateDistance(coords[4],viapoints[2]),U);

 score[4]=calculateScore(calculateDistance(coords[5],coords[2]),I);

 score[5]=calculateScore(calculateDistance(coords[5],irbbasecoords),I);

 score[6]=calculateScore(calculateDistance(coords[5],viapoints[2]),U);

 score[7]=calculateScore(calculateDistance(coords[2],irbbasecoords),I);

 score[8]=calculateScore(calculateDistance(coords[2],viapoints[2]),A);

 score[9]=calculateScore(calculateDistance(irbbasecoords,viapoints[2]),X);

 for i=0,9 do

 totalscore=totalscore+score[i];

 end

 layoutscore:push_back(totalscore);

 print(tostring(totalscore));

--3rd Set the planning box for the path planning

planningbox=pp:setAutoBox();

planningbox.zmax=1.6; --Set maximum height to not get out of the robots range

pp:setPlanningBox(planningbox);

--4th do the path planning with the new points and perform one smoothing on it

pp:planPaths();

pp:smooth();

--pp:smooth();

--pp:smooth();

--pp:smooth();

local smoothedMotionSimulation = pp:pushToScene()

--5th set the velocity of the simulation to the maximum velocity of the robot (0.25)

root = Ips.getSimulationsRoot();

 48

 child = root:getFirstChild();

 belowRoot=root:getNextSibling();

 obj=child;

while not(obj == nil) and not (obj:getLabel()=="Measures") do

 obj=obj:getObjectBelow();

 if (obj:getType() == "RBMotion") then

 motion=obj:toRigidBodyMotion();

 motion:setLocked(false);

 local nWaypoints = motion:getNumWayPoints()

 for i=0,nWaypoints-1 do

 wpoint=motion:getWayPoint(i);

 wpoint:setVelocity(0.25);

 end

 motion:setLocked(true);

 end

end

print("PP2 ran succesfully")

--1st Obtain the number of segments (number of viapoints + 1), and the rigid body used in the path

planning

 root = Ips.getProcessRoot();

 pp = root:getFirstChild();

 pp=pp:toRigidBodyPathPlanning();

 nviapoints=pp:getNumViaPoints();

 totalsegments=nviapoints+1;

 rigbod=pp:getRigidBody();

--Obtain the Operation Sequence tree object

 root=Ips.getProcessRoot();

 child=root:getFirstChild();

 belowRoot=root:getNextSibling();

 obj=child;

while not(obj == nil) and not(obj:getType()=="OperationSequence")do

 obj=obj:getObjectBelow();

end

 if (obj:getType() == "OperationSequence") then

 opseq=obj:toOperationSequence();

 end

--2nd Create vectors with the actions of the different actors

 actor=ActorVector();

 actor=opseq:getActors();

 nactors=actor:size();

 for i=0,nactors-1 do

 if actor[i]:getSgObject()==nil then

 irbactions=ActionVector();

 irbactions=opseq:getActorActions(actor[i]);

 elseif actor[i]:getSgObject():getLabel()==rigbod:getLabel() then

 body=actor[i];

 bodyactions=ActionVector();

 bodyactions=opseq:getActorActions(body);

 --Clean up the current actions of the rigid body

 for i=0,bodyactions:size()-1 do

 opseq:removeAction(bodyactions[i]);

 end

 49

 elseif actor[i]:getSgObject():getType()=="SGFamily" then

 manikinactions=ActionVector();

 manikinactions=opseq:getActorActions(actor[i]);

 end

 end

--3rd Create the new object's "follow motion" actions

 root=Ips.getSimulationsRoot();

 child=root:getFirstChild();

 belowRoot=root:getNextSibling();

 obj=child;

 i=1;

 segments={};

 --Save the motions in a vector

 while not(obj == nil) and not(obj:getLabel()=="Measures")do

 obj=obj:getObjectBelow();

 if (obj:getType() == "RBMotion") then

 segments[i]=obj:toRigidBodyMotion();

 i=i+1;

 end

 end

 --Turn the vector into actions

 for i=1, totalsegments do

 opseq:CreateActiveObjectFollow(body,segments[i]);

 end

 bodyactions=opseq:getActorActions(body);

--4th Establish precedence constraints

 bodyactions[0]:addPrecedenceAction(irbactions[0]);

 manikinactions[0]:addPrecedenceAction(bodyactions[1]);

 bodyactions[2]:addPrecedenceAction(manikinactions[1]);

 irbactions[1]:addPrecedenceAction(bodyactions[2]);

 bodyactions[3]:addPrecedenceAction(irbactions[1]);

 manikinactions[2]:addPrecedenceAction(bodyactions[3]);

 precac=bodyactions[0]:getPrecedenceAction();

 print(tostring(precac));

 print(tostring(precac[0]:getType()));

--Set the current states as start states

 for i=0,nactors-1 do

 actor[i]:setCurrentStateAsStart();

 end

--5th Execute the sequence to generate the replay

 replay=opseq:executeSequence();

 tim=replay:getFinalTime();

--6th Perform the ergonomics analysis

 --replay:computeErgonomicScore("Demo",0,tim);

