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A new project about designing and implementing an autonomous golf cart is intro-

duced with the ultimate goal of running tests and cyber-attacks on it to develop new

techniques and improve existing ones for the improvement of resilience and security

of cyber-physical systems.

The current thesis tackles the two of the aspects of the cyber-physical system that is

the autonomous golf cart. In the physical part of the system the steering mechanism

and the braking mechanism are designed and well defined and an overview of a

solution for the mechanism of the accelerator is also covered.

On the cybernetic aspect of the project the algorithm of YOLO has been imple-

mented for the computer vision of the golf cart. This algorithm relies on a deep

convolutional neural network which architecture has been changed from the stan-

dard DarkNet to the MobilenetV2. MobileNetV2 provides good results for object

classification despite the fact that it has much less parameters than other architec-

tures, so this change has been done to test how good can it perform with respect to

DarkNet, which is the architecture which the algorithm was created with.

After training the network, it was able to make good detections of easy cases but

struggled with cases in where more elements to detect were present which could be

caused by the inability of MobileNetV2 to capture the complexity of the problem

or by an encounter of a local minimum during training.
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Chapter 1: Introduction

The population has been starting to imagine more clearly the idea of having the

streets filled with autonomous cars. This can be explained by the technological

advances that the media has shown, such as the new commercial and autonomous

Tesla cars, the research that’s taking place in the Mcity of the University of Michigan

[13] or the Google self-driving cars [12].

To reach the point at which the state of the art is now, there have been numerous

events in history that date back to much before that one could expect. The first

evidence that the human being had in mind the idea of autonomous driving was much

before than the invention of the car itself and dates back to 1478, when Leonardo da

Vinci invented the self-propelled car [5]. The self-propelled car was a very complex

mechanism by the time. It consisted of 3 wheels and a set of gears packed in a

wooden body that sized around 1x1 meters (Figure 1.1). The way that it worked

was that by turning a specific gear, a set of springs was compressed allowing the

storage of energy that would propel the mechanism. Then, the front wheel could be

adjusted so the car could follow a fixed trajectory along a desired path.

Figure 1.1: Da Vinci’s self-propelled car.
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Much later in 1939 we find the first presentation of an autonomous car by Norman

Bel Geddes in an exhibition at the fair Futurama. The project consisted in an

electrical autonomous car that could follow an electrical circuit that was embedded

in the pavement [2]. This was a huge advance in the field, but the car had the big

limitation that it required the electrical circuit to drive autonomously.

In 1980, a Mercedes Benz van modified by Ernst Dickmanns and his team in the

University of Munich was able to reach top speeds of 100 km/h in an empty highway

[4]. However, it could only drive in one lane until in the 1990’s they managed to

make it change lanes autonomously. The European Commission found this study

very promising and made an 800 million Euros investment in the project EUREKA

Prometheus with the aim of developing an autonomous vehicle.

Another very impactful event was the the DARPA challenge organized by the U.S

Defense Advanced Research Projects Administration [4], which first took place in

2004 and continued for the following years where major leaps in the field were

made. The first challenge was held in the desert and the contestants had to reach

the finish line with autonomous vehicles within a specific time limit. The result of

this event was unfortunate for the participants, as none of them were able to make

their autonomous vehicles to reach the finish line.

Although the next challenge presented more obstacles and turns, five out of the

twenty-three contenders were successful and reached the finish line, showing a big

improvement with respect to the last event. Lastly, in 2007 the Grand Challenge III

took place in a prepared urban environment where 40% of the participants made it

to the finish line within the 6-hour limit.
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Another more recent milestone in the field (that is already available to customers)

has been the Tesla Autopilot, which hardware was introduced in September 2014

and later complemented with it’s software in October 2015 with a simple update.

This is a feature of the car that allows for semi-autonomous driving, but that still

is far from being fully autonomous.

Up to this date, the Waymo vehicles [Figure 1.2] are the closest to being fully

autonomous, being able to provide testing services as taxis in the city of Phoenix in

Arizona [3].

Figure 1.2: Waymo self-driving car.

While these technological advances are very big and important, the current state of

the art in the field of autonomous driving is far from perfect in all the aspects.

In order to describe what the word ”perfect” would mean in terms of effective au-

tonomous driving, it is necessary to define some distinction in the levels of automa-

tion that can exist [7]:

• Level 0 : As the starting point, this level represents no automation.

• Level 1 : The system provides some driving assistance by performing small

steering, braking or acceleration tasks, but never more than one of these tasks
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simultaneously. One example of this would be the adaptive cruise control, in

which the system can regulate its velocity according to the velocity of other

vehicles. In this level of automation, the driver still is the main responsible

for driving.

• Level 2 : The system can combine 2 or more of the small tasks mentioned

before that allow to perform very easy maneuvers such as following the tra-

jectory of the lane. For slightly more complicated maneuvers, it requires the

driver’s intervention. Thus, the driver has to be aware of their environment

all the time.

• Level 3 : There is a conditional automation provided by the system. This

means that the system is able to drive autonomously under specific conditions,

but requires the driver to take over in other situations for which the system has

not been programmed. Thus, the vehicle still requires the driver’s supervision

all the time.

• Level 4 : At this level, there is a high automation, so the driver doesn’t

need to to intervene almost at any time. However, it’s still not able to drive

through areas that don’t figure in the system’s database and severe weather

may interfere with the sensors. Then, the system is still not considered to be

fully autonomous.

• Level 5 : At this level, the vehicle would be fully autonomous under any

conditions.

At this point in history, the most that we have reached has been level 4. This

achievement was reached by Waymo, a company that was originated as a project of
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Google responsible for the widely known Google self-driving cars.

It’s important to note that this classification is only accounting for the ability of the

vehicle to drive autonomously, but doesn’t consider other very important aspects,

such as the resilience against cyber-attacks. As it is known from experience, with

the implementation of technology in every aspect of society thus far, has come with

its consequent safety issues that the designers of the system have to account for.

Some predictions say that in 2030 autonomous vehicles will be commercially avail-

able [7], so it is crucial to improve the current state of the art techniques in cyber-

security in order to provide autonomous vehicles that are completely resilient and

safe.

1.1 Motivation

With the enormous leaps that the automation of processes and the internet of things

are having, cyber-physical systems become more efficient and reliable, but also more

vulnerable to cyber attacks.

Cyber-physical systems are composed of physical processes that strongly rely on

cyber components. As shown in Figure 1.3, the components in a cyber-physical

system rely on a network to synchronize and communicate all the different compo-

nents of the system [10]. Thus, cyber-attacks in the cyber domain can have physical

consequences.
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Figure 1.3: Communication of the different components in a cyber-physical system.

For this reason it is important to develop methods and techniques to make the

system resilient to cyber attacks.

This project will initiate the design and implementation process of an autonomous

golf cart which will be used by researchers in the University of Maryland to run

tests and perform attacks on it with the ultimate goal of developing new techniques

and improving existing ones in order to improve safety in autonomous driving and

other cyber-physical systems.
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Chapter 2: Methodology

An autonomous car is a cyber-physical system because it combines its physical com-

ponents (motors, actuators, transmission systems, etc.) with software components,

that serve as the brain of the whole system by connecting and coordinating all its

elements. As such, the thesis at hand will divide the project into these two fields,

and each field will be broken down into different modules with the aim of analyzing

each of them independently.

In the physical aspect of the autonomous driving system the scope of this thesis will

reach the following modules:

• Steering system: In order to give the car the ability to steer by itself, it will

be a requirement to be able to impose motion with the electronic signals pro-

vided by the software. In order to achieve this, a motor and some mechanism

to attach it to the steering column will be needed.

• Brakes: The way to impose motion for the brake will be by using a servo-

motor. Then with the help of a brake cable attached to the motor it will be

possible transform its rotational motion into the linear pulling motion that

the pedal achieves.

• Accelerator: In order to actuate on the throttle, the electrical system will be

modified. Thus, the instructions to transmit the appropriate amount of power

to the motor can be given by software.

The golf cart that will be used is electric with a 48 volts DC motor and a power of 2.5
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kW. The aim will be to use the six 8-volt batteries of the golf cart to provide enough

power to the all the components of the system. In case it can’t provide enough power

to keep the system functional under any load conditions, additional batteries can

be connected in series with the current batteries or be used independently (having

2 sets of batteries to run the car and the components separately).

In terms of software this thesis will create a computer vision algorithm that will rely

on cameras mounted around the golf cart to detect elements of interest on the road.

This algorithm will be programmed in python due to the great number of libraries

for machine learning that it has. In particular, keras with a tensorflow backend will

be used to create and train the convolutional neural network.

Finally, the computational power required to train the neural network will be ob-

tained by using a virtual machine from the Google Cloud Platform.

The remaining modules necessary to build the autonomous golf cart will be addressed

in future work by other students of the University of Maryland.
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Chapter 3: Theoretical framework

This section will introduce all the required theoretical concepts that will be used

in further sections. As the project consists of a hardware part (in where theory is

needed to understand the design of the gears) and software part (for the computer

vision algorithm), the theoretical framework will be divided accordingly.

3.1 Design of the gears

First, it is necessary to introduce some definitions of the elements of he gears. Figure

3.1 shows the main elements of a gear.

Figure 3.1: Elements of a gear.

From this figure some important definitions must be introduced:
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• Module (m): It is defined as the reference diameter divided by the number

of teeth (m = D
z

). Thus, it gives a reference of how big the gear is with respect

to the number of teeth.

• Pressure angle (ϕ): It is the angle that is formed between the shared tangent

line of the two pitch circles and the line of action of the force that one gear

exerts on the other.

• Gear ratio (G): It is defined as the relation between the input velocity and

the output velocity of the gear train. Due to the properties of the transmission

it can also be defined as: G =
win

wout

=
Rout

Rin

=
Tout

Tin

=
zout
zin

.

Then, the number of teeth for both of the gears must be determined in order to

have the desired gear ratio and thus, the desired torque and velocity. For this, it is

necessary to be aware of the interference that could occur if the number of teeth is

not sufficient. This phenomenon can produce abnormal wearing of the teeth of the

gears, produce undesired noise and vibrations and even could cause the gear train

to not work at all. Therefore, in order to determine the minimum number of teeth

for the wheel gear the following equation can be used:

zwmin
=

2Aw√
1 + 1

G
( 1
G
+ 2) sin2 ϕ− 1

(3.1)

Where Aw is the factor by which the module should be multiplied to obtain the

addendum of the gear and ϕ is the pressure angle.

Finally, the gears have to be designed to withstand the mechanical requirements

that the task will demand. For this, the bending stress equations established by the
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American Gear Manufacturers Association (AGMA) will be used in order to relate

the width of the gears (known as the face width) to a particular material in order

to fulfill the specifications.

The AGMA equations are:

σ = W tK0KvKs
KHKB

bmt Y

σall =
σFP YN

SFY0Yz

 (3.2)

The purpose of the first equation is to compute the bending stress produced by a

certain task given a set of gears. The second equation relates the AGMA bending

stress (σFP ) with the allowable bending stress for the application given specifica-

tions of temperature, reliability and number of cycles with a specified security factor.

Therefore, by setting the bending stress of the first equation equal to the the allow-

able bending stress of the second equation (σall) one can determine the requirements

of the material (σFP ).

All the physical phenomena that has been taken into consideration through the

different terms of the equations is explained below:

• Tangential force (W t): It is the force that one gear produces on the other

in the tangential direction of the pitch circle.

• Overload factor (K0): It is based on experience for particular applications

and accounts for variations in torque from the mean value.
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• Dynamic factor (Kv): It accounts for the fact that the operation of the

gears is not static and also for the manufacturing quality of the gears.

• Size factor (Ks): Reflects the heterogeneity of the material’s properties due

to size.

• Load distribution factor (KH): This factor considers the misalignment of

the gears.

• Rim factor (KB): If the gear has rim, this factor allows for the support that

it is able to provide to the teeth.

• Face width (b): It is the width of the gear.

• Tangential module (mt): It considers different orientations of the teeth by

projecting the model to the case of spur gears.

• Geometry factor (Y ): It considers the shape of the teeth.

• Bending stress cycle factor (YN): Accounts for the number of cycles that

the gears must withstand.

• Reliability factor (Yz): Considers the consistency in which the gears must

perform optimally.

• Temperature factor (Y0): Accounts for the effect of the temperature on the

lifespan of the gears.

• Safety factor (SF ): It determines how stronger the material is with respect

to what the intended load is. Thus, it is an indicator of how safe the system

is.
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3.2 Computer vision with deep learning

For the task of computer vision, a deep convolutional neural network will be used

along with the YOLO algorithm. In the following sections the basic theory needed

to understand its implementation and training will be introduced.

3.2.1 Concept of neural network

Neural networks are based on how brains work. Brains contain a great number of

neurons that are connected to each other and transmit nerve impulses to each other

with the final goal to produce an output on the body. Each of the neurons receives

the outputs of other neurons through its dendrites, and if the overall signal reaches

a certain threshold the neuron fires and transmits an output to the next neurons.

(a) Neuron. (b) Perceptron.

Figure 3.2: Comparison between neuron and perceptron.

Figure 3.2b shows a model called perceptron, which aims to replicate this behavior

of the neurons (Figure 3.2a). Note that the dendrites are modeled with connections
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where each xi is the output of a previous perceptron and wi are the weights that are

given to each of the outputs. Then, the perceptron combines all the input signals

with a weighted sum.

Note that at this point, the weighted sum would output the function ŷ =
∑

wi xi,

which passes through the origin of the coordinate system input (xi) vs output (ŷ).

Therefore, the model adds a term called bias (θ), to give the output that extra

degree of freedom in the input vs output plane.

Finally, the model of the perceptron adds a non-linearity called activation function,

with the purpose of providing the model with the ability of producing non-linear

outputs. Otherwise, the combination of many linear function would lead to another

linear function, which doesn’t add complexity and limits the model to the linear

domain.

By adding more neurons in layers and organizing the parameters in tensors, it is

possible to create artificial neural networks with a certain depth and width. As an

example, a neural network with depth 2 would produce an output like the one shown

in Equation 3.3, where fi are the activation functions of each layer.

ŷ = f2(w
T
2 f1(w

T
1 xi + θ1) + θ2) (3.3)

Therefore, given an input xi and a desired output y neural networks can act as

function approximator, which by changing their parameters can produce an output

ŷ similar to y.

In the task of detecting objects from images, the neural network must be able to

take into consideration the spatial distribution of the input. This means that given
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an object in an image, the neural network must be able to detect it and classify it

regardless the position, orientation and scaling of the object.

In order to consider the spatial distribution of images, convolutional neural networks

use filters where the parameters have a spatial layout that extracts the underlying

features of images by using the convolution operation.

Therefore, in the same way as fully connected layers take an input and transform it

with a weighted sum, convolutional neural networks take an input and transform it

into a subspace by using the convolution operation.

3.2.2 Training a neural network

In this project, the supervised learning paradigm will be used for training. This

means that the way to make the neural network learn will be by providing a ground

truth annotation/label to every input image. Therefore, given an input image (x),

the neural network will make a prediction (ŷ) that will try to resemble the ground

truth label (y).

In order to determine how close the output (ŷ) is from the label (y), an objective/loss

function has to be defined. This function must be convex and must measure a

distance between ŷ and y , i.e., the cost from ŷ to y is the same as the cost from y

to ŷ.

Therefore, the training process can be conceived as an optimization problem in which

the weights and biases of the neural network have to be modified for it to make

predictions that resemble as much as possible the labels, i.e., the loss is minimum.

For the purpose of optimizing the parameters of the network, one can utilize many
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optimizer algorithms. As an example, gradient descent will be explained as it’s

the base for the rest of optimization algorithms. For this project, the ADAM opti-

mizer will be used, which has the same working principle as gradient descent with

improvements that make it better.

Figure 3.3: Gradient descent.

In the loss function shown in 3.3, the initial weights of the neural network lead to the

loss value represented in point 1. Gradient descent consists in taking steps towards

the direction in which the slope is negative to reach a minimum of the function. The

size of the steps is determined by a hyperparameter called learning rate (α). Every

time a step is taken, the weights of the network are updated and a new value for

the loss is achieved. In Figure 3.3, points 2, 3, 4 and 5 represent consequent steps

that lead to the minimum of the function, which in this case is global.

This algorithm becomes unfeasible when dealing with large datasets, because would

require a lot of RAM to work with it all at once. Therefore, Stochastic Gradient De-
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scent is often used, which consists in taking small batches of the dataset to compute

the gradients. With this, the direction of the steps given towards the minimum is

also a little stochastic in the sense that they have little deviations from the optimum

direction. Thus, the smaller the batch size, the faster the training iterations, but

also the more stochastic the steps are.

3.2.3 YOLO algorithm

The YOLO (You Only Look Once) algorithm aims to perform object detection on

images by feeding the entire image into the convolutional neural network only once.

This algorithm consists in taking the input images and dividing them into grids.

Then, the labels are put into a tensor of size (SxSxAx(5+C)), where S is the number

of grid cells, A is the number of anchor boxes and C is the number of classes to

predict. Figure 3.4 shows an example of how an image containing a cat would be

labeled if the object detector was trying to detect cats and dogs.

Figure 3.4: Example of labeled image in the YOLO format.
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In this example, each cell in the image would contain the information of a score that

represents the presence of an object (s), the relative position of the center of the

box that contains the object with respect to the cell (x, y), the width and height of

the box (w, h) and a one hot vector determining the class that is contained in the

box. The values of x and w are normalized by dividing by the width of the cell in

pixels, whereas y and h are normalized with the height of the cell in pixels. Thus,

the values of x and y are always between 0 and 1 and the values of w and h can be

greater than 1.

Therefore, the label for the cell that contains the center of the bounding box shown

in Figure 3.4 would be [1, 0.95, 0.05, 1.5, 2.2, 1, 0] and the rest of the cells would

contain zeros.

Finally, the neural network would have to output a tensor of the same shape as

the labels that will be used for training. Then, to train the neural network it is

necessary to define a loss function that will determine how similar is the output to

the labels. This loss function [8] is defined in Equation 3.4 and will be the one to

optimize during training.

(3.4)

Loss = λcoord

S2∑
i=0

B∑
j=0

1
obj
ij

[
(xi − x̂i)

2 + (yi − ŷi)
2]

+ λcoord

S2∑
i=0

B∑
j=0

1
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Chapter 4: Design and implementation

4.1 Steering system

For the autonomous car to be able to actuate on the steering wheel, a motor needs

to be mounted in such a way in which it is able to transmit the rotation motion in

the axis of the steering shaft. In this section, all the considered configurations for

this attachment are explained and discussed with the objective of selecting the most

appropriate and efficient mechanism possible.

Figure 4.1: The steering wheel of the golf car.

The steering shaft of the golf cart is shown in Figure 4.1. As shown in the figure,

the cover of the steering shaft and the steering wheel are accessible, which allows

for the consideration of several configurations for the coupling of the motor and the

steering system. The steering shaft forms 45º with respect to the floor of the car

and measures about 50 cm long and 42.5 mm of diameter.

In order to explain and analyze the available options a model of the golf cart has been

created in Autodesk Inventor. Only the components that are relevant to determine
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the configuration of the components to be installed has been represented in the

model. This model is shown in Figure 4.2.

Figure 4.2: 3D model of the golf cart.

4.1.1 First option

The first configuration that was considered was to directly attach the motor to the

intermediate steering shaft (Figure 4.3). This way the motor is hidden from the

users leaving more space for the passengers, as the steering column along with the

driving wheel would be eliminated.

The proposed initial attachment of the motor to the steering shaft was by substi-

tuting the original attachment made with part number 7, achieving a direct trans-

mission of torque from the motor to the rack and pinion system though the same

axis. This configuration was quickly disregarded as it had a very hard installation

process due to the inaccessibility of the steering shaft and the lack of space for the

motor.
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Figure 4.3: The original configuration of the steering shaft.

4.1.2 Second option

The next configuration that was considered aimed to solve the issues presented

in the previous configuration. This one consisted in cutting the steering column

and attaching it to the motor by using an axial coupling. Then the motor would

be mounted on the dashboard of the cart and thus the space that the previous

configuration provided would be maintained while having the motor in an accessible

position for maintenance and installation.

However, in this second configuration new installation problems appear. Cutting

the shaft of the motor is a destructive process that if performed incorrectly could

compromise the usability of the golf cart. Moreover, the cutting process would need

to be performed very precisely and at different points for the cover of the shaft
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and the shaft so that there’s access for installing the coupling. For this it would be

necessary to disassemble the steering column to cut it, as the cutting points wouldn’t

be directly accessible if the motor is desired to be mounted on the dashboard.

Finally, and also for the reason that the motor would be mounted on the dashboard,

the installation of the coupling would also be a hard task as it would be placed

inside the dashboard, which is not accessible without making any access holes on

the plastic. The placement of the motor for this configuration is shown in Figure

4.4.

Figure 4.4: Placement of the motor for the second configuration.

This configuration still can be done, but more possible configurations were explored

for the sake of reducing costs, potential installation problems and efforts.

4.1.3 Third option

The last configuration is proposed in Figure 4.5. This last configuration consists in

placing the motor parallel to the steering shaft and then making use of spur gears

to transfer the power from the motor to the steering wheel. This has the advantage

that cutting the steering shaft or disassembling major parts is no longer needed.
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Figure 4.5: Placement of the motor for the final configuration.

In addition, the motor rests in an accessible position where the problem of space is

no longer present and the maintenance of the motor and its electronic connections

can be made easily.

Moreover, it is possible to take advantage of the spur gears by using a gear ratio

(Gspur_gears) greater than 1 so that the transferred torque is increased by that factor

and the velocity is decreased also by that factor. Servomotors output high speeds

at a relatively low torque for this task, so a gearbox will be needed to meet the

specifications. Therefore, the spur gears will require a gearbox with Gspur_gears

times less gear ratio which will reduce the cost of the gearbox, whereas both of the

previous proposed configurations relied only on one gearbox to increase the torque

to meet the specifications.

Finally, this setup also allows switching from autonomous driving mode to manual

driving mode and vice versa, as it preserves the steering wheel.
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4.1.4 Final selection

All things considered, due to all the advantages that the last setup presented over

the others, it’s the one that has been selected for the steering system. Now it’s

necessary to determine the specifications that the task will demand to select the

motor and design the gears.

In particular, steering the driving wheel will demand an input torque and a velocity

at which the torque has to be applied. The most unfavorable combination of the

two will establish the power of the motor to be used.

The measurements of the torque were made by attaching a hand scale to the rim of

the steering wheel and pulling in the tangent direction. Then, the force obtained was

multiplied by the radius of the steering wheel to obtain the torque. The radius of the

steering wheel is 15 cm and the force measured with the scale ranged from 4 to 13

kg depending on whether the measurements were made close to the neutral position

of the steering wheel or close to the most right and left positions and whether the

cart was resting on a smooth or a rough floor. However, the force required doesn’t

surpass the 8 kg in about 90% of the range of motion, reaching 13 kg only at both

ends. This corresponds to a maximum torque of 19.3 Nm but the maximum for 90%

of the range of motion the maximum torque is 11.8 Nm.

For the velocity at which the steering needs to be done, the requirement that the

steering wheel must be able to go from the neutral position until the most right or

left positions in at least 1 second has been set. Considering that from the neutral

position until the most right or left positions the steering wheel has to make 1.75

revolutions, the speed at which the turn has to be made is 105 rpm.
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Consequently, the motor must have at least a power of 210.34 W. Now, considering

that it is desirable that the motor is powered with batteries of the car and that they

output 48 VDC, it is necessary to select a DC servo-motor that can be operated

also at 48 VDC. The motor will also need to have an encoder in order to make it

possible to control it. In particular, it is preferable that the encoder is an absolute

encoder so that the autonomous cart can determine its initial steering angle every

time it’s turned on.

The motor that has been selected to satisfy these requirements has been the mo-

tor ”PD6-CB87S048030-E-09” from https://us.nanotec.com, which has a rated

torque of 0.7 Nm, a peak torque of 2.1 Nm and a rated speed of 3000 rpm, which

corresponds to a rated power of 220 W. In addition, it has the advantage of having

an integrated controller.

The total transmission ratio that will be needed to reach both of the specifications

of 11.8 Nm and 105 rpm must be between 16.86 and 28.57, which with the maximum

torque of 2.1 that the motor can output would be sufficient to reach the required

torque of 19.3 Nm. The final transmission ratio of the gearbox to purchase will be

as low as possible within that range in order to reduce its cost and will depend on

the gear ratio of the gears that will connect the motor to the steering wheel.

As discussed in the next subsection, the transmission ratio for the gears will be 2.2

so the gearbox to purchase will need at least a ratio of 7.66. The selected gearbox for

this matter is the ”GPLE60-1S-8-F87” also from https://us.nanotec.com which

has a gear ratio of 8. Therefore, the final transmission ratio of the combination of

the gearbox and the gears will be 17.6.
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4.1.4.1 Design of the gears

First, the distance between the axis of the motor and axis of the steering shaft has

to be established. Considering that the diameter of the cover of the steering column

is 42.5 mm and that the distance from the axis of the motor to one of its sides is 43

mm, the axis can’t be separated by less than 64.25 mm. Considering that for the

motor to be mounted on the cover of the steering shaft a 35.75 mm tall base will

be needed, it can be stated that the final separation between both axes will be 100

mm (Figure 4.6).

Figure 4.6: Distances considered for the design of the gears and the coupling of the
motor.

As stated in previous sections, it is desired that the gear ratio is greater than 1 in

order to increase the torque and reduce the speed. This is achieved if of the 2, the

input gear is the small one (pinion) and the output gear is the big one (wheel).

Let the gear ratio be 2.2. Then:
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Rp +Rw = 100

Rw

Rp

= 2.2

 ⇐⇒


Rp = 31.25mm

Rw = 68.75mm

(4.1)

In order to determine the number of teeth for each of the spur gears, the formula

for the minimum number of teeth (zwmin
) is used for the wheel. Assuming Aw = 1

and a pressure angle (ϕ) of 20 degrees:

zwmin
=

2Aw√
1 + 1

G
( 1
G
+ 2) sin2 ϕ− 1

=
2 · 1√

1 + 1
2.2

( 1
2.2

+ 2) sin2 20− 1
= 31.61 (4.2)

Next, to calculate the number of teeth for the pinion, zwmin
has to be divided by the

transmission ratio. As an integer value for zp is desired and the next divisible value

by 2.2 is 33, which is very close to 31.61, the next divisible value will be chosen,

which is 44. Therefore, the final number of teeth for both of the spur gears will be:

zw = 44

zw
zp

= 2.2

 ⇐⇒


zw = 44

zp = 20

(4.3)

Now it’s only left to determine the face width (b) of the gears. For this the AGMA

bending equations will be used (Equations 3.2).

To do so, all the different factors have to be computed of both of the equations and

the bending stress that the task will produce given a face width b. Then, it will

be ensured that the allowed stress given by the chosen material is greater than the

computed stress for the task.
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Geometry factor (Y)

Figure 4.7: Graph of the geometry factor for spur gears with a pressure angle of 20º.

From the graph of the geometry factor for spur gears with a pressure angle of 20º

the geometry factor is: Y = 0.325.

Tangential force (W t)

For the tangential force, first calculate the tangential velocity has to be calculated

and then divide the power by the tangential velocity as shown in Equation 4.4.

W tV t = Power

V t =
2πwt

w Rw

60

 ⇐⇒


W t =

Power

V t
=

220

0.76
= 291N

V t =
2 π 105 · 68.75 · 10−3

60
= 0.76 m/s

(4.4)

Note that the force has been calculated with the values of the wheel but using the

values for the pinion leads to the same result: W t = 291N .
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Tangential module (mt)

Multiplying the module by the cosine of the angle that the teeth form with the axis

of the gears, the tangential module is obtained:

mt = 3.125 cos(0) = 3.125 mm (4.5)

In this case, α = 0 because they are spur gears.

Overload factor (K0)

Figure 4.8: Table for the overload factor.

As there are no shocks in this application, the assumption will be that the trans-

mitted power is uniform at worst conditions. Therefore, K0 = 1.

Dynamic factor (Kv)

B = 0.25(12−Qv)
2/3

A = 50 + 56(1−B)

Kv =
(

A+
√
200V t

A

)B


⇐⇒



B = 0.25 (12− 5)2/3 = 0.9148

A = 50 + 56 (1− 0.9148) = 54.7697

Kv =

(
54.7697 +

√
200 0.76

54.7697

)0.9148

= 1.2

(4.6)

As shown in equation 4.6, the AGMA quality factor Qv has been considered to be

5 because it is the worst case scenario. As the way the gears will be manufactured

is still unknown this is a safe consideration.
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Size factor (Ks)

This is considered an optional factor by the AGMA association. Therefore: Ks = 1.

Rim factor (KB)

As the gears won’t have rims this factor won’t be taken into consideration. There-

fore: KB = 1.

Load distribution factor (KH)

The formula to compute this factor is the following:

KH = 1 + Cmc (Cpf Cpm + Cma Ce) (4.7)

Cmc can be 1 or 0.8 depending on weather the gears have uncrowned teeth or crowned

teeth respectively. In this case, the gears will be manufactured with uncrowned

teeth, so Cmc = 1.

For the factor Cpf equation 4.8 is used, where b
10d

= 0.05 if b
10d

< 0.05.

Cpf =



b

10d
− 0.025 b ≤ 25mm

b

10d
− 0.0375 + (4.92 · 10−4) b 25 < b ≤ 425mm

b

10d
− 0.1109 + (8.15 · 10−4) b− (3.53 · 10−7) b2 425 < b ≤ 1000mm


(4.8)

As the shaft of the gearbox where the pinion will be attached has a keyway modifica-

tion that is 25 mm long, b won’t be considered to be greater than 25 mm. Therefore,

as b

10 · 2 · 31.25
< 0.05 for all b ≤ 25mm:

30



Cpf = 0.05− 0.025 = 0.025 (4.9)

The Cpm factor can be 1 for straddle-mounted pinion with S1/S < 0.175 or 1.1 for

straddle-mounted pinion with S1/S ≥ 0.175. The values of S and S1 are shown

in Figure 4.9. As in this case the pinion won’t be supported on one of the sides:

Cpm = 1.1.

Figure 4.9: Dimensions of S and S1 [1].

Next, with Equation 4.10, Cma will be computed by using the values for A, B and

C shown in Figure 4.10.

Figure 4.10: Table for the mesh alignment factor [1]. The values are in the imperial
system.

Cma = A+B b+ C b2 (4.10)

As the values of A, B and C are in the imperial system b will be used in inches for

this factor. The gearing will be open and the face width (b) will be 20 mm as a first
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iteration. If more face width is needed for the gears to fulfill the requirements this

factor will be recomputed. Therefore, the mesh alignment factor is:

Cma = 0.247 + 0.0167

(
20

25.4

)
− 0.765 · 10−4

(
20

25.4

)2

= 0.26 (4.11)

The last factor to compute KH is Ce, which can have the values of 1 (if there is

adjustment at assembly or compatibility is improved by lapping) or 0.8 (for all the

other conditions). Considering that there won’t be any special mounting, Ce = 1.

Finally, the load distribution factor will be:

KH = 1 + 1 (0.025 · 1.1 + 0.26 · 1) = 1.28 (4.12)

The bending stress for this task will then be:

σ = 291 · 1 · 1.2 · 1 1.28 · 1
20 · 3.125 · 0.325

= 22MPa (4.13)

On the other hand, the bending stress that the material will need has to be calculated

in order to determine the material to use for the gears. Consulting the charts and

tables found in the AGMA standards [1] the following coefficients are found:

• Bending stress cycle factor (YN): Considering a life of 107 cycles, YN = 1.

• Reliability factor (Yz): Considering a 99% reliability, Yz = 1.

• Temperature factor (Y0): As the temperature will always be less than 120º,

Y0 = 1.
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And lastly, the bending stress that the material has to withstand (σFP ) can be

computed with Equation 3.2 by setting the allowable bending stress equal to the

computed bending stress. For this, it has been decided to have a safety factor of 2.

Therefore:

σFP =
σallSFY0Yz

YN

=
22 · 2 · 1 · 1

1
= 44MPa (4.14)

With this information, the selected material has been Poly-Lactic-Acid plastic, which

can be printed in 3D. Thus, the specifications can be met while still being able to

easily make shapes that will adapt to the steering shaft and keeping the cost of

manufacturing the gears low with respect to other manufacturing techniques.

4.1.4.2 Assembly of gears and motor

In order to assemble the gears and the motor new 3D printed parts will be made.

In the case of the gears, they will have a special design to fit the steering wheel and

the motor shaft.

On the other hand, the motor will rest inside of a 3D printed box that will both

protect the motor and clamp it to the cover of the steering shaft.

Starting with the design of the gear that will be mounted on the steering wheel, the

objective is to have the gear rest on the flat part of the steering wheel and attached

to its conic surface (Figure 4.12a). For this, the gears were printed as shown in

Figure 4.12b.
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(a) Inner view of the conic surface of the
steering wheel.

(b) The 3D printed spur gears.

Figure 4.11: View of the gears (left) and the steering wheel (right).

In order to attach both of the elements together, 8 holes will be drilled on the conic

surface of the steering wheel, matching the holes of the conic surface of the gear.

Then, they will be firmly attached with the help of 8 bolts and 8 nuts.

The measurements for the big gear were made with the help of a caliper for the

cylindrical surface of the steering wheel while the angle of the conic surface was

measured with image processing with the help of a computer.

(a) (b)

Figure 4.12: Big gear attached to the steering wheel.
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Finally, the result of the attachment of the two elements is shown in Figure 4.12.

On the other hand, the motor will rest in the 3D printed box. Observe that the box

will be clamped onto the cover of the steering shaft with the help of two 42 mm

clamps that will be fastened to the box with bolts. The final result of the entire

assembly is shown in Figure 4.13.

Figure 4.13: Final assembly of the motor and gears.

4.2 Braking system

In the same way that the steering system needs a motor to actuate on the steering

wheel, the braking system will also need one to actuate on the brakes. The brakes

of the golf cart consist in a metallic rod attached to the pedal and to a bracket that

at the same time is attached to the 2 brake cables that actuate on the 2 rare wheels.

By pressing the brake pedal, the metallic road is pulled by means of a class 2 lever,
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i.e., the rod (which is where the load is applied) is attached between where the

pedal’s fulcrum is and the tip of the pedal (where the force is applied). Therefore,

in order to replicate the braking process with a motor, it will be necessary to make

it pull from the bracket that holds the two other cables. This pull has to be made

from the middle of the bracket, as it’s purpose is to distribute the braking force

between the 2 cables appropriately.

These cables, the metallic rod and the class 2 lever are underneath the floor of the

golf cart, inside of a box. This configuration is shown in Figure 4.14.

Figure 4.14: Brakes of the golf cart.

Considering that a force of 35 kg applied at the tip of the pedal is needed to brake

effectively according to the measurements, the force with which the metallic rod will

pull from the bracket can be calculated setting the summation of moments equal to

zero. The class 2 lever to consider is shown in Figure 4.15.
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Figure 4.15: Class 2 lever of the brakes of the golf cart. The fulcrum of the lever is
where the starting point of the annotations is.

Therefore, the force that the motor will need to pull from the bracket will be:

F =
317.5 · 35
75.93

= 146.4 kg (4.15)

And in order to provide that force, a brake cable will be attached to the motor by

means of the 3D printed pulley shown in Figure 4.16.

Figure 4.16: 3D printed pulley for the motor of the brakes.

The shown pulley will be attached to the motor. Then its flat part will hold the

brake cable, which upon rotation will pull from the bracket, which will be attached
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to the other end of the cable. The rail of the pulley where the brake cable will rest

is 20 mm away from the motor shaft. Thus, the force that the motor will transmit

to the cable will be this distance times its torque.

The selected motor for this task has been the ”PD6-CB80M048030-E-09” and it has

been purchased from the same company as the motor used for the steering system.

In fact, it is of the same lineup, but in this case the motor is able to provide a torque

of 1.7 Nm.

Then, the needed gear ratio for the gearbox can be calculated knowing that the

torque of the motor times the transmission ratio divided by the distance between

the shaft of the motor and the cable has to be equal to a force of 146.4 kg. This

calculation is shown in Equation 4.16.

G =
Fbrake Rcable

Tmotor

=
146.4 · 9.81 · 0.02

1.7
= 16.9 (4.16)

Therefore, the selected gearbox is the ”GPLE60-2S-20-F87” which has a gear ratio

of 20.

Finally, it has to be ensured that the requirement of speed is also fulfilled. To do so,

the displacement of the cable to actuate the brakes effectively has been measured.

This displacement is of 20 mm, and it is desired that the braking process takes place

in half a second. Consequently, the brake cable has to be pulled at 40 mm/s, which

corresponds to an angular velocity at the output of the gearbox of 19.1 rpm and 382

rpm at the shaft of the motor. Thus, considering that the rated speed of the motor

is 3000 rpm, the specification of the speed is also fulfilled.

As for the placement of the motor, it has to be placed in such a way that the perpen-
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dicular plane of the shaft of the gearbox (where the brake cable will be attached) is

aligned with the bracket to which the cable will be attached. Therefore, the motor

has been placed behind the box that contains the brakes and under the dashboard.

The final position of the motor is shown in Figure 4.17. This will be done by welding

a metallic board to the lower face of the structural beams. This board will act as a

floor that will support the motor and fix it with the help of a 3D printed container.

Figure 4.17: Final position of the motor for the brakes.

It is important to note that the setup for the brakes presented in this section doesn’t

substitute the original braking system. Thus, the possibility of braking by pressing

the pedal is still present, which allows switching the driving mode from autonomous

to manual and vice versa very easily and also represents an important safety feature

when testing the autonomous golf cart, because the passenger can press the brake

at any time upon unexpected behavior.

4.3 Accelerator

Unlike the brake pedal, the accelerator is not entirely a mechanical system. The

way it works is that when the pedal is pressed, an MCOR (Motor Controller Output
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Regulator) is rotated, which acts like a potentiometer that regulates the amount of

power that the electric motor of the golf cart will demand.

In order to be able to control the amount of power that is transmitted to the motor,

it will suffice to use a PWM (Pulse-Width Modulation) controller instead of the

MCOR. This has the advantage that it not only can control the amount of power

that wants to be transmitted to the motor but also its polarity, so it is possible to

drive the golf cart forward or in reverse.

Note that fully substituting the MCOR by the PWM controller would eliminate

the possibility of controlling the golf cart manually. Therefore, both elements must

coexist by having a manual switch that will allow the selection of the desired driving

mode.

4.4 Object detector

For the golf cart to be autonomous, it must be able to replace all the tasks that

a human driver would carry out when driving. Therefore, the cart must sense its

environment and manage this information efficiently. For this purpose, the car will

have lidars installed that will allow the cart to make a map of its surroundings, and

also cameras that will help identify the elements that surround the cart and thus,

allow it to make decisions.

In this project, the attention will be put into the computer vision algorithm that will

be used to identify and localize different objects that can be found on the road. The

cameras of the golf cart will sample images from the road and send feed them into

a neural network that will be trained to do the task of identification and detection.
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In particular, the neural network will be a convolutional neural network (CNN).

This selection is based on the fact that CNNs are widely used for image classification

tasks, as they use filters where the parameters have a spatial layout that extracts

the underlying features of images by using the convolution operation. This feature

extraction allows the CNN to deal with translation, scaling and other operations on

an object in an image and still detect it.

The dataset that will be used to train the CNN will be the 2014 release of the COCO

dataset [6], which has 80 different categories. This dataset has clean labels with no

noise, so it can be classified into the supervised learning paradigm. The distribution

of the number of annotations per category is shown in Figure 4.18.

Figure 4.18: Number of annotations per category in the COCO dataset [6].

From this dataset, the classes that will be relevant to the task at hand will only be:

person, car, truck, bicycle, motorcycle, cat, dog, bus, stop sign, street sign, traffic

light and train.

The training process was initially made removing from the dataset the non relevant

classes, but this led to unsatisfactory results in where most of the predictions were

false positives for the class ”person”. The reason for this is that if most of the

categories are removed, the dataset becomes imbalanced with predominance of the
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category ”person”. Note that in Figure 4.18 is shown how the number of annotations

for the class ”person” is well above the rest of the categories, so removing most of

the categories accentuates the predominance of the class ”person”. Thus, as the

CNN trains over much more instances of ”person” than the rest, it tends to make

predictions for ”person” than for the other categories.

Therefore, despite the fact that most of the classes in the dataset are not relevant to

the task, the CNN has been finally trained considering all of the 80 classes. Then,

at inference time every detection of a non relevant class will simply be disregarded.

As mentioned before CNNs are good at classification tasks, but for the purpose of

object detection they must rely on algorithms. There are many algorithms that

researchers are still improving and using, but among all the options that can be

used, these are the ones that have been considered for this project:

• R-CNNs: It uses selective search which consists in using color segmentation

at different scales to create region proposals around the image by grouping

together adjacent pixels by texture, color or intensity to identify objects [11].

Thus, this region proposals become bounding boxes that potentially contain

objects. Then, each of these bounding boxes are fed separately to the convo-

lutional neural network which classifies each of the boxes into a category.

If the CNN predicts that there is no object of interest in the proposed region

it is simply disregarded, but if it predicts that it contains an object of interest

the proposed bounding box is highlighted as a detection.

• YOLO: As its name suggests (You Only Look Once), the image is only fed

once into the neural network to detect all of the elements of interest. This
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is achieved by dividing the images into grids, and in every cell of the grid, a

prediction is made. This predictions consist of a set of coordinates for the boxes

that want to be predicted and for each box, the score for the presence of an

object and a one hot encoded array to determine the class of the object. Once

the network outputs the predictions, an algorithm called Non-max suppression

is performed in order to suppress the boxes that have low confidence scores as

well as the ones that have high IOU with other boxes that have better scores

for the same class.The fact that this method only sees the image once, makes

it faster than the rest of the methods at inference time.

The chosen algorithm for this project has been YOLO for the speed and good accu-

racy that it can provide. In particular, YOLO allows the model to work with videos

at 45 frames per second [8]. The algorithm is less accurate than other algorithms

such as R-CNN, but still gives good accuracy, and due top the fact that the task

will require fast detection as the car will move at a relatively high speed, the fast

inference time that it provides will be very helpful for this application. This method

has the versions YOLOv1, YOLOv2, YOLO9000, YOLOv3 and Fast YOLO, which

have small differences between each other that represent improvements in accuracy

or speed in every new version. The YOLO that has been used for this project is

between YOLOv1 and YOLOv2, because it introduces the usage of anchor boxes,

but doesn’t use some of the preprocessing methods that YOLOv2 utilizes.

Therefore, it is necessary to convert the COCO dataset into the right format for

YOLO. This means that for every image in the dataset, its corresponding label has

to be a volume of shape (SxSxAx(C+5)) where S is the grid size into which the image

is divided, A is the number of anchor boxes that will be used, C is the number of
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classes to learn and 5 refers to the 4 coordinates of the predicted bounding box plus

1 score for the presence of an object in the box.

Usually, the YOLO algorithm is used along with an architecture for the convolutional

neural network called Darknet. However, in this project the architecture that has

been used is MobileNetV2 instead. This is to provide the fields of machine learning

and computer vision with some experimentation on other architectures in the YOLO

algorithm.

Figure 4.19: MobilenetV2 building block.

The MobileNetV2 architecture consists of 17 of the blocks shown in Figure 4.19 put

one after the other, followed by a 1x1 convolution, a global average pooling layer,

and a classification layer. In order to adapt the architecture to the YOLO algorithm,

it is necessary to change the output to the desired shape, which is the shape of the

labels (SxSxAx(C+5)). For this, the last layers were substituted by the block shown

in Figure 4.20.
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Figure 4.20: New final layers of the CNN’s architecture.

Note that the first layer of the added block is connected to a previous convolutional

layer of the original MobileNetV2. Then, 2 convolutional layers have been added:

• The first convolutional layer has a stride of 2 in order to reduce the shape of

the output feature map from 14x14 to 7x7. This is because the grid size in

which the images will be divided is of shape 7x7.

• The second convolutional layer has 425 filters. This is because the algorithm

will be using 5 anchor boxes and will be predicting 80 classes. Thus, 5x(80+5)

is equal to 425.

Finally, the 425 feature maps produced by the 425 filters are reshaped into the

desired shape of (5x85). Thus, the final output of the CNN is (7x7x5x85).

The ReLU (Rectified linear unit) activations have been substituted by Leaky ReLU

activations due to the fact that ReLU killed the gradients in the training process.
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Figure 4.21 shows that when the input of a ReLU activation is negative the gradient

is zero, which impedes updating the parameters of the CNN in backpropagation.

Figure 4.21: ReLU and Leaky ReLU activations and their derivatives.

Once the architecture of the neural network has been built, it must be trained. For

this task it is necessary to have a great amount of computational power, which can’t

be provided by a regular computer. Thus, a virtual machine has been created with

the service of Google Cloud. The virtual machine has 40 GB of storage, 4 vCPUs,

15 GB of RAM and one GPU NVIDIA Tesla K80.

Then all the files containing the model and the dataset have been uploaded to

this virtual machine and all the dependencies necessary to run the code have been

installed.

Finally, the training was performed with the following configuration:

• Grid size: The grid size has been set to 7x7. This number has been set to

an odd number because as it has been found that having a central cell helps
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the model make better predictions as usually objects tend to appear in central

positions of the images [9].

Scale factors for the YOLO loss: They have been set to the most standard

values used except for the no-object scale, which has been increased from 0.5

to 1 due to previous results leading to false positive predictions. The standard

values for the rest of the factors are 1, 5 and 1 for the scales of ”presence of

object”, ”box coordinates” and ”classification” losses respectively.

• Batch size: The batch size has been set to 16 as in previous experiences with

the Google Cloud, CUDA ran out of memory with batch sizes of 24. This

value for the batch size seems to work well.

• Anchor boxes: For determining this hyperparameter a k-means clustering

algorithm has been performed on the dataset in order to determine the number

of anchor boxes and their width and height. The algorithm has been run for

k = 5 clusters and the resulting average IOU value for the 5 anchor boxes was

0.52, while the final values for the height and width of the anchor boxes were

[0.62,0.38 , 1.87,1.04 , 3.96,2.52 , 10.15,3.6 , 14.12,8.52].

• Learning Rate and decay: The learning rate has been set to 1 · 10−4 with

a decay of zero in the ADAM optimizer.

• Data augmentation: The method to avoid overfitting that has been used is

data augmentation. This consists in scaling, translating, rotating and mirror-

ing the images of the dataset to create more data points that are similar to

the original data point. This makes it hard for the model to overfit to all the

data points, so the variance of the model is reduced.
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4.4.1 Results

Figure 4.22: Results for detections of 6 of the categories.
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Figure 4.22 shows some pictures with detections that the convolutional neural net-

work has output after the training. Note that the predictions are good in most cases,

even when the objects are covered by other elements.

However, the objects are detected with lower confidence scores than what the Dark-

Net architecture achieves in state of the art YOLO object detectors, so the detection

threshold has to be lowered to 0.4 to start detecting objects. This means that the

model is not separating as much the cases where there is not an object from when

there is, causing false negative errors and false positive errors more often than with

DarkNet. One example of this is the false negative error in the bottom right picture,

where the train behind the stop sign is not detected.

Therefore, one can conclude that the MobileNetV2 architecture achieves decent

results, but DarkNet is much more suited for the object detection task using the

YOLO algorithm.
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Chapter 5: Discussion

In this document the advances on the autonomous golf cart project have been covered

in the aspects of hardware and software. In the hardware aspect, all the mechanical

components necessary to actuate on the elements that allow driving the car with

software commands has been designed and implemented successfully.

On the other hand, the software aspect of the autonomous driving was covered

with the training of a convolutional neural network that uses the YOLO algorithm

to detects elements on the road. The architecture for the neural netwrk was Mo-

bileNetV2 instead of DarkNet, which is the most commonly used architecture for

this algorithm. The resulting object detector was able make accurate detections in

most of the cases, but the overall performance is still significantly higher with the

DarkNet architecture. The reason for this can be that instead of a global minimum,

a local minimum was found in the objective function during training, or simply that

the MobileNetV2 architecture doesn’t have the ability to capture the complexity of

the problem.

If it is the former, this could be solved by using random restart during training to

find other minima in the function, which requires more training time to explore all

the domain and thus, more resources.

The remaining efforts to complete the project will have to focus on providing the

car with sensors and cameras that will gather information of the surroundings of

the golf cart, and also on powering and programming all the mechanical components
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implemented in this thesis and setting up a SCADA system to synchronize all the

components into a functional unit.
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