
Álvaro Brández Górriz

Design, Implementation, and Testing
of Hardware for Sensing and
Controlling the Dynamics of
Rotor-Bladed Systems
Master’s Thesis, February 2019

Álvaro Brández Górriz

Design, Implementation, and Testing
of Hardware for Sensing and
Controlling the Dynamics of
Rotor-Bladed Systems
Master’s Thesis, February 2019

Design, Implementation, and Testing of Hardware for Sensing and Controlling
the Dynamics of Rotor-Bladed Systems

Author(s):
Álvaro Brández Górriz

Supervisor(s):
Ilmar Ferreira Santos, Professor Dr.-Ing. Dr. Tech., MEK, DTU

Department of Electrical Engineering
Centre for Electric Power and Energy (CEE)
Technical University of Denmark
Elektrovej, Building 325
DK-2800 Kgs. Lyngby
Denmark

www.elektro.dtu.dk/cee
Tel: (+45) 45 25 35 00
Fax: (+45) 45 88 61 11
E-mail: cee@elektro.dtu.dk

Release date: February 24nd, 2019.

Class: 1 (Public)

Edition: First

Comments: This report is part of the requirements to achieve the Master of
Science in Engineering (M.Sc.Eng.) at the Technical University of
Denmark. This report represents 30 ECTS points.

www.elektro.dtu.dk/cee
cee@elektro.dtu.dk

PREFACE

This thesis is the final written submission of the Electrical Engineering M.Sc. degree
at the Technical University of Denmark. This master thesis is part of a bigger project
including other students: Maria Beneyto Gomez-Polo [1] and Ignacio Escudero Sarabia [2].
The other two thesis depended on the results of this one; this lead to some decisions that
affected the overall scope of this master thesis project.

The whole project was supervised by Professor Ilmar F. Santos who encouraged the project
to be developed. The research in this thesis is built on several other projects developed
in this specific field. The main source of the information needed was extracted from the
work of R.H Christensen [3], however the reports of Christian S. Jakobsen [4] and Jesper
B. Hansen [5] were really helpful.

i

ABSTRACT

In this thesis, the development of the hardware and software of active vibration control in
a rotor-blade system is researched. The implementation of feedback loop control in real
systems has several issues that will be discussed in this report. The development of this
kind of projects has a proper methodology that is also detailed in the thesis.

The project is based on the specific rotor-blade system simulated by a test-rig located
in the DTU Mechanical Engineering department. This structure had already a complete
active vibration control system, however the results were not satisfactory when some
control strategies were implemented. The purpose of this thesis is also to analyze the
characteristics of the previous control system and describe its weak points.

Once the analysis is performed, a new system is designed; the new design is based on
embedded technology. The three main components of the feedback control loop are updated:
sensors, actuators and control unit. Moreover, an improvement of the interconnections of
the system is implemented adding wireless technology to the communications in the active
vibration control system. The development of the software is also present in this report.

The active vibrations control loop software and hardware are implemented in the actual
test-rig and the performance of the embedded system and its components is tested. The
results are analyzed and some possible future improvements were included.

ii

TABLE OF CONTENTS

Preface i

Abstract ii

Table of Contents iii

List of Figures v

1 Introduction 1
1.1 State of the art . 1
1.2 Scope . 2

2 Test-Rig 3
2.1 Physical description . 3
2.2 Mathematical model . 4

2.2.1 Model dynamics . 6
2.3 Initial electronics . 6

2.3.1 Sensors . 7
2.3.2 Actuators . 8
2.3.3 Control unit . 8
2.3.4 Initial state of the electronics . 8

3 Sensing System 9
3.1 General considerations . 9
3.2 Hub sensors . 10
3.3 Blade sensors . 12
3.4 Amplifying electronics . 16

3.4.1 Powering of electronics . 17
3.5 Conclusions . 18

4 Actuating system 20
4.1 General considerations . 20
4.2 Actuators . 21

4.2.1 DC motor . 25
4.3 Power electronics . 25

4.3.1 Dynamics of the power electronics 28
4.4 Conclusions . 28

5 Control unit 31
5.1 Initial control system . 31
5.2 Control unit design . 32

5.2.1 Requirements . 33

iii

Table of Contents

5.2.2 Design criteria . 34
5.2.3 Development environment . 37

5.3 Embedded Software . 38
5.3.1 Hardware and software configuration 39
5.3.2 Code description . 40

5.4 Software testing . 47
5.5 Conclusions . 47

6 System interconnections 49
6.1 Previous interconnection structure . 49
6.2 New wiring configuration . 50
6.3 Wireless connection . 53

6.3.1 First implementation and results . 53
6.3.2 Wi-fi protocol improvement . 55

6.4 Final system configuration . 57

7 Conclusion 58
7.1 Results . 58

7.1.1 Perspectives . 59
7.2 Future work . 59

References 60

A Planes and data sheets 63

B Software code 86

iv

LIST OF FIGURES

2.1 Picture taken of the used test rig . 3
2.2 Mathematical model of the rotor-blade system 4
2.3 Rotor and blade physical and geometrical properties. By Rene 5
2.4 Basic feedback control loop by ISA . 6
2.5 Schematic of the active vibration control setup by Rene 7

3.1 Continuous blade scheme [3] . 9
3.2 First 3 mode shapes of blade 1 [5] . 10
3.3 Hub eddy current sensors (7&8) [3] . 10
3.4 Hub eddy current sensor (9) [3] . 11
3.5 Form of a resistance strain gauge [6] . 12
3.6 Form of a Wheatstone bridge [7] . 12
3.7 Previous electronics inside the rigid disk [3] . 13
3.8 Table with different sensors [8] . 14
3.9 Designed location for blade sensor [3] . 15
3.10 Axonometric view of the sensor supporting structure 15
3.11 Sensor mounted into the blades . 16
3.12 Scheme of non-inverting amplifier [2] . 17
3.13 Non-inverting amplifiers in the PCB . 17
3.14 Signals from the sensors at 300 rpm . 18
3.15 Signals from the blade sensor with a zero-input response 19

4.1 Schematic of the actuating setup [3] . 20
4.2 Schematic of the electromagnet physics [9] . 21
4.3 Electromagnet RS PRO 65 mm . 22
4.4 Theoretical waterfall diagram showing normalized frequency responses of the

rotor (a) and the blade movement (b) as function of the rotor angular velocity [3] 22
4.5 Electric circuit of electromagnet [1] . 23
4.6 Desired voltage (–) vs output voltage(-) [3] . 24
4.7 DC motor implementation . 25
4.8 H-bridge schematics . 26
4.9 H-bridge driver by ST electronics . 27
4.10 Power electronics inside the rigid disk . 27
4.11 Effects of PWM frequency by [10] . 28
4.12 Force of the magnet at 5 hertz . 29
4.13 Frequency spectrum with 5 Hz sinusoidal input 29
4.14 Experimental bode of the electromagnets . 30

5.1 dspace DS1103 PPC . 32
5.2 Schematic of the microcontroller internal setup [11] 33
5.3 Schematic of MCU requirements . 34

v

List of Figures

5.4 Arduino MEGA 2560 Rev3 . 35
5.5 ST electronics STM32F411RET6 . 36
5.6 Raspberry pi 3 model b+ . 36
5.7 Configuration of the MCUs and the computer 39
5.8 AD converter ADS1105 by Texas Instruments 40
5.9 Software PWM generation . 42
5.10 Control loop scheme in both Raspberry Pi´s 43
5.11 Control loop scheme in the Linux CPU . 44
5.12 Configuration of the final software system . 48

6.1 Slip-ring internal schematics . 49
6.2 Electronics that handle the actuating signals 50
6.3 Slip-ring installed in the test-rig . 51
6.4 Connections inside the rotating disk: Power drivers 52
6.5 Connections inside the rotating disk: PCB, ADC and Raspberry Pi 52
6.6 Wireless router installed: TP-Link Trådløs Gigabit Wi-Fi 53
6.7 TCP protocol header format . 54
6.8 Definite system configuration . 57

7.1 Final state of the Test-rig . 59

vi

1 INTRODUCTION

Rotor-bladed systems are present in many different industries, such as turbines,compressors
or electrical motors. Industry is demanding more efficiency and durability to these systems.
Performance of rotor-bladed systems with rotating dynamics is strictly connected to
vibration reduction. In order to reduce vibrations, two main paths arise: Active and
passive control.

Active control of vibrations with electromechanical components is one of many approaches
to the problem. This technique consists of continuously detecting oscillations in the system
and then externally actuate in the system to reduce vibrations. Choosing active control
comes with several issues regarding sensing, actuating and controlling algorithms.

In order to be able to control a rotating system, compactness and robustness are key to
perform a satisfactory of active vibration control. The position and size of each element
could affect the dynamics of the system. The approaches used so far are based on general
purpose computer systems [12]. In these systems, a computer gets the information from
the sensors and sends the control signal to the actuators. The control feedback loop is
closed with these three elements.

1.1 State of the art
Implementing feedback control in many different systems has become more and more
feasible within the past years. Both hardware and software are continuously improving in
performance and cost. Since the 1960´s compact electronic systems defined as embedded
systems have been used in many different applications.

An embedded system is based on a microcontroller instead of a computer and it is focused
on one or few tasks. The main advantage of embedded systems is compactness and reduced
cost. However, the development of applications in microcontrollers takes more time than
the same application in a general purpose computer.

Currently, embedded systems are being used in many different applications. From solutions
in high tech industry to small homemade projects. There is in the market a huge variety
of microcontrollers from different distributors such as: Atmel, STM or Microchip.

The last issue regarding this applications is the implementation of Internet of Things (IoT).
IoT is the concept of interconnecting all the subsystems within a wireless network. This
new paradigm offers substantial possible advantages regarding the possibilities of sharing
information between all the different systems in an industry. This innovation permits
the unification of smaller subsystems into a unique system. In consequence of this trend,
embedded systems are now able to be wireless connected within each other, offering new
possibilities to the performance of this type of compact systems.

1

1. Introduction

1.2 Scope
The objective of this project is to develop an electronic system that is able to perform
active vibration control in a rotor-bladed system. Specifically, the control is going to be
implemented in a test-rig of the mechanical department of DTU.

Previous approaches have been implemented into the test-rig and part of this project is to
analyze the previous state of the system. This analysis will conclude which parts of the
system have to be change and which ones can still be used.

The requirements of the system will be chosen after the analysis of the test-rig. The
characteristic of the new system regarding sensing, actuation and control will need to be
sufficiently satisfactory to implement successfully any kind of control algorithm.

This report will be organized in several chapters, the first one will analyze in detail the
test-rig and the initial state when the project started. The next two chapters will describe
the sensing and actuating subsystems. The report will continue with the control unit and
communications and finally some conclusion with a discussion of the results of the thesis.
The thesis is said to be concluded with the implementation of an embedded system in the
test-rig that is capable to perform active control of vibrations of the rotor-blade system.

2

2 TEST-RIG

This chapter is a description of the test-rig, first the physical characteristics and second
the electrical components that were implemented at the beginning of the project.

2.1 Physical description

The test-rig is a rotor-bladed system, this mechanical structure was designed to emulate
other mechanic systems such as: turbines, compressors or pumps.

The mechanic structure starts with a fixed external frame made of steel. This supporting
structure is going to be the inertial frame of reference. Attached to the external frame is the
hub. The hub is the mechanical structure where the rotor is located. The hub joins with
the external frame through several flexible beams made of a metal whose characteristics
are known. Coupled to the hub through two bearings is the shaft. The rotor is mounted to
the shaft . This component transmits the forces from the rotor to the hub and vice versa.

The rotor is a steel circular structure. This metallic disk has within it, four blades. Each
blade is a metallic beam with known mechanical characteristics. The blade is radially
clamped to the center of the rotor. In the tip of each beam there is a mass in order to
accentuate the vibrations.The layout of the test rig is shown below on Figure 2.1.

Figure 2.1. Picture taken of the used test rig

3

2. Test-Rig

2.2 Mathematical model

This structure has been modelled in previous research works [12] [3]. This rotor-bladed
system is described through the mechanical structure characteristics and its degrees of
freedom. The main movements that the system is able to perform due to its structural
characteristics are: lateral motion of the rotor and flexible motion for the blades. These
movements will define the vibrations of the entire system. Rotor lateral motion is coupled
with the flexible motion of the blades.

The mathematical model was developed making the following assumptions: Rotor angular
movements and gyroscopic effects are negligible. The joint between disk and shaft is
completely rigid. The suspension of the hub is considered massless. In conclusion, the hub
is considered to be suspended with a stiffness and a damping.

On the other hand, the blades are located completely perpendicular to the disk and
therefore torsional vibrations are neglected. Moreover, the effect of axial vibrations of the
shaft in the blades can also be considered null.

The model also assumes the placement of the measurements and actuating forces. For the
actuating system, the forces generated are; first in the hub, both horizontal and vertical
forces, second in each blade, one orthogonal force placed near the tip of the blade. For the
sensors, the model takes as measurements, the hub vertical and horizontal displacements.
Moreover, the displacement of the tip of the blade is also measured.

Figure 2.2. Mathematical model of the rotor-blade system

4

2. Test-Rig

The final mathematical model is described on Figure 2.2. The reference, as explained
before is the external frame, as it is considered as completely rigid and fixed. Therefore,
horizontal (xh) and vertical (yh) movements of the hub are parallel to the respective edges
of the external frame. Located on the frame are the strings and damps that represent the
hub suspension.

The angular position of the blades is determined by the angle between the horizontal axe
and the first blade with the rest of the blades referenced to this first blade. As it is a two
dimensional scheme, the angular position and velocity are explained with θ and Ω.

The forces of the actuators are here represented by: Fhx and Fhy for the shaft forces and
Fb for the force applied to the blade. The position of the forces depend on the allocation
of the actuators. The actuators that generate each forces will be described in the next
sections.

The measurements considered in this model are the displacements of the hub and the tip
of the blades. The measurement of the displacement of the hub coincides with the vertical
and horizontal axes. On the other hand, the displacement of the blades is located to its
own local reference frame. This displacement di is orthogonal to the surface of the blade.

The different physical parameters that are needed to complete the description of the
physical model are in Figure 2.3

Figure 2.3. Rotor and blade physical and geometrical properties. By Rene

5

2. Test-Rig

2.2.1 Model dynamics

Once the mathematical model is defined, an analysis of the dynamics of the system is
realized. The dynamics can be described based on previous thesis or articles [13] [12] [3].
The hub displacements are modelled as a damped-mass string system whereas the blade´s
dynamics are described with the previous explained mode shapes. The natural frequency
of the vibrations of the hub is around 11-13 hertz while the blade´s natural frequency
is 18 hertz. These frequencies will be key in diverse design decisions regarding sensing,
actuating and the controller. On the other hand the couplings are also non negligible and
have to be taken into account in the controlling algorithm. Further detail of the model
dynamics in [12] [1].

2.3 Initial electronics

The initial set up was designed entirely to test active control of vibrations in the rotor-blade
system. In order to perform such control several units are needed. The electrical system
has to sustain the basic feedback control. This feedback loop includes sensing, compute
and process the control signal based on this sensing and finally actuating the control signal
into the system. An example of basic control feedback diagram is explained in Figure 2.4,
this diagram is taken from the international society of automation (ISA).

Figure 2.4. Basic feedback control loop by ISA

The electronics located in the system before the start of this project had all the different
elements shown in Figure 2.4. In [3], the complete loop diagram of active control is already
defined. In Figure 2.5 it is shown the initial set up for this test-rig. The different units of
the diagram are going to be presented in this chapter. As it is seen on the diagram, the
active vibration control system is based on general purpose computer systems.

6

2. Test-Rig

Figure 2.5. Schematic of the active vibration control setup by Rene

2.3.1 Sensors

The sensing system of the active control setup is responsible to feed the controller with the
output of the system. As the setup is designed to control every movement of the rotor-blade
system (Rotor and blades), the information that the sensors send into the controller has to
be at least sufficient to calculate all these displacements (Rotor and blades).

In order to fulfill the requirements of the active control system, the sensing system is
divided into two subsystems. Firstly, the actual sensors and secondly the electrical circuit
that adapts the sensors output in order to fit into the control unit.

The sensors election is key in order to achieve a proper control. For sensing the vibrations
of the hub, a huge variety of solutions are available in the sensors market . The solution
chosen for he test-rig was to use two eddy-current sensors in each direction of the hub.
The explanation in detail of this sensors is located in Chapter 3.

However, the blades sensing is specifically problematic because the different bending modes
of the blade. Depending on which motion it is required to detect, different solutions arise.
In [3] it is already discussed how to choose the position and type for the sensor. The
approach that was implemented into the test-rig is a strain-gauge. The strain-gauges were
located at 40 mm from the start of the blade. This sensors do not measure directly the
displacement of the blade, they sense the blade deflection.

All these measured signals are of different natures and voltages. Therefore an other
subsystem is required in order to adapt these signals for the control unit. This signal
treatment stage has to be designed taking into consideration the amplitude of the sensor
signal,the capacity of the control unit acquisition system, the signal noise and the frequencies
that need to be processed.

7

2. Test-Rig

2.3.2 Actuators

The actuating system is in charge of converting the control signal into an actual input to
the system. The controllability of the rotor-bladed system depends on these actuators.
The actuators present in this test-rig are electromagnets. These are located by pairs in
each direction of the possible motions. For the hub there is 4 magnets with one pair of
magnets for each direction (vertical and horizontal). In the case of the blades, one pair of
magnets is located on the rigid disk, these magnets are able to input a force orthogonally
to the surface of the blade.

The control signal generated by the control unit is not sufficiently powerful to actuate the
electromagnets. Power electronic circuits are needed in order to feed the actuators with
the proper signal. In this specific test-rig, dc amplifiers were used.

2.3.3 Control unit

The control unit is the responsible of analyzing the signal of the sensing system and
compute a control signal that is sent to the actuating system.

As it was defined at the beginning of the description of the initial state of the electronic
system, the control unit is based on a general purpose computer. In the case of this test-rig,
a commercial digital control unit is in charge of all the computations. The computer works
in digital, and the signals from the sensors and actuators are analogical. Therefore an
interface between signals is needed. Analogical to digital converters and vice versa are
used in a huge variety of applications. There is an infinity of variations of this devices. In
this case, the digital signal processor is dSPACE. The characteristics of this device will be
detailed explained in chapter 5.

2.3.4 Initial state of the electronics

At the beginning of this project, the systems above explained, were tested. First, information
of the previous experimental results was gathered. Several previous projects [4] [14] [5]
used this set up and had several problems. Added to this, different tests were applied to
the different parts of the active control loop. In the next three chapters, different problems
and solutions will be discussed.

8

3 SENSING SYSTEM

The scope of this chapter is to explain in detail the requirements of rotor-blade systems in
general and this test-rig in particular regarding the sensing system.

The information available of any system is really diverse. It has to be defined first, what
information it is needed. In chapter 2, the mathematical model was defined. The vibrations
of the hub are defined by its two displacements (horizontal and vertical). However, as it is
explained in [3] and [12] the blade´s motion is more complex. Therefore, previous to the
definition of the information needed, a discussion among the blade´s sensing is needed.

3.1 General considerations
The blades are a continuous system with infinite degrees of freedom. In order to be capable
of explain the motion of this continuous system, the degrees of freedom will be discretized
into several mode shapes. Mode shapes are patterns of motion of a system. Figure 3.1
represents the scheme of blade´s movement.

Figure 3.1. Continuous blade scheme [3]

The blade motion can be separated into infinite number of mode shapes. Nevertheless, the
importance of each mode shape is not equal in the overall movement of the blade. It is
chosen by the designer of the model the quantity of mode shapes used to define the system.
The more mode shapes, the more accuracy of the system. However, including many mode
shapes would complicate the equations exponentially, in this trade-off, it was chosen 2
mode shapes [3].

9

3. Sensing System

This first and second mode have each one natural frequency, this has to be taken into
account when the signal is processed. However, the issue that will be discussed in this
section is how the mode shapes behave along the blade longitude, and how the sensing
system will get the maximum information about them.

Figure 3.2. First 3 mode shapes of blade 1 [5]

In both [5] and [3] the mode shapes form has been defined. In Figure 3.5, it is displayed
the form of three first mode shapes of the blade along its longitude. As the mode shapes
are superposed in the blade in every moment, only knowing the displacement of every
infinitesimal section of the blade would conclude in having the complete description of the
blade´s motion. This is no feasible in reality, for simplicity of the sensing system only one
sensor was located in each blade. From the points above and Figure 3.5 it is derived that
the location of the sensor is key in terms of which mode shapes are acknowledged.

3.2 Hub sensors

Firstly, as it explained above, the motion of the hub is defined by measuring the horizontal
and vertical movements. The sensors used in this test-rig at the beginning of this thesis
were a pair of eddy-current sensors measuring the displacements of certain little metallic
plates located for this purpose.

Figure 3.3. Hub eddy current sensors (7&8) [3]

10

3. Sensing System

Eddy-Current sensors are based on magnetic fields technology. The driver creates a current
in the sensing coil in the end of the probe. This generates a magnetic field which induces
small currents in the target material; these currents are called eddy currents.

The eddy currents create an opposing magnetic field which reacts to the field generated by
the probe. The amplitude of the generated magnetic field depends on the distance between
the probe and the target. The electronics inside the sensor produce a voltage output which
is proportional to the change in distance between the probe and target.

The model of the sensors present in the hub is Pulsotronic kj4-m12mn50-anu, this sensor
has been updated since the hub probes were installed, however, the site of the producer
assures that the main characteristics remain the same. The sensor datasheet is given in
the Appendix A . The initial location of the sensors is unknown because the pieces that
sustained them were missing and had to be built again.

The sensitivity was calculated by experimental tests because the site of company does not
specify. Both sensors had a 2.67 volts per millimeter. The sensor is completely linear, that
means that the initial distance will not affect the results of the sensing. It was decided
that the maximum displacement in the hub was 3 millimeters in total. The location of the
sensors was designed in order to make the zero of the sensor coincide with the zero distance
to the left and top magnet. In conclusion the final signal varies between approximately 0
and 8 volts.

Apart from these two sensors, an additional sensor is located in the hub to measure the
angular velocity of the shaft. A mark is found in the beginning of the shaft, an eddy-current
sensor detects the change in depth of the radial dimension of the shaft. the angular velocity
can be calculated with the time between two detections of the mark.

Figure 3.4. Hub eddy current sensor (9) [3]

11

3. Sensing System

3.3 Blade sensors

The blade measures 80 mm in length, the solution taken previous to this project was to
locate a strain gauge at 40 mm from the clamp of the blade. The objective was to be able
to acknowledge both the first and second bending mode.

The strain gauge is a common sensor used to measured deflections [15] [6]. It has been
used for more than half a century and still it is utilized in many present applications. The
strain gauge technology is based on the change of resistance of a wire (within certain limits)
when it is strained. This change of resistance can be easily measured.

Figure 3.5. Form of a resistance strain gauge [6]

In order to measure this change in the resistance, an additional electrical circuit is needed.
There are several options for measuring this, however, the most common solution, and the
one that was adopted in this test-rig, is called the Wheatstone bridge [6].

A Wheatstone bridge is an electrical circuit used to measure a very small change in
resistance [7], of the order of one per thousand compared to the original resistance of
the gauge. The Wheatstone bridge consists of four resistors arranged in a diamond
configuration Figure 3.6. A DC voltage is used to excite the circuit, this voltage difference
between the top and the bottom of the diamond generates a voltage difference in the
middle of the diamond. This output voltage results from the change in resistance from the
gauge and its proportional to the strain in the blade.

Figure 3.6. Form of a Wheatstone bridge [7]

12

3. Sensing System

In the case of the test-rig, two strain gauges were located in the blade, one in each side.
These 2 variable resistances can be placed in several configurations depending on your
sensing objectives. In [3] it is not specified which one was used, but after analyzing the
wiring of the actual circuit, the configuration was determined. The two gauges were
connected one opposite to the other, this configuration doubles the amplitude of the output
voltage, adding sensibility to the system.

The output voltage of the Wheatstone bridge is very small, therefore, an amplification of
the signal is needed. After opening the rigid disk (Figure 3.8) and look into the electronics
inside, operational amplifiers are found. This amplifiers are the basis of any amplifying
electronic circuit. The wires were damaged, therefore, the original configuration was not
possible to be determined. However, it is clear that the signal of the Wheatstone bridge
was fed to the operational amplifiers and converted into a higher amplitude.

Figure 3.7. Previous electronics inside the rigid disk [3]

Right after the operational amplifiers, an analog filter is located. This filter is based on an
resistor-capacitor (RC) circuit. This is a first order filter and can be used as a high or low
pass filter. In this case, it is documented [4] that it is used as a low pass filter, however,
its cutoff frequency it is unknown.

After the complete analysis of the sensing circuit, the final sensitivity of the system is
tried to be obtained. As the original circuit was damaged, a new Wheatstone bridge and
amplification must be created. Once the new signal is generated, the noise will be filtered
with a new circuit.

13

3. Sensing System

The first issue that appeared was the soldering of the gauges to the wires of the Wheatstone
bridge. The soldering was damaged, the vibrations of the blades led to the degradation
of the joints of the gauge with the circuit. The gauges were re-soldered, their null strain
resistance was measured, 120 ohms. The Wheatstone bridge was build and amplified with
an instrumental amplifier.

Once the circuit was implemented, it was tested. A strain was applied into the blade so
that the deflection of the blade was just the maximum permitted physically. The signal
was measured with an oscilloscope and the results were not optimal. The amplification
needed to sense a minimum voltage was adding noise to the signal to a point of making
impossible to obtain decent data from it.

In [5] the same issue is discussed, in order to obtain real information of the deflection of
the blade, the filtering would cause a delay into the information fed into the control unit.

Other solutions arouse in order to improve the sensing system. The first point is to research
sensors that suit the test-rig application, the main points being compactness, sensitivity
and noise. Various solutions are available for non-contact proximity sensors.

Figure 3.8. Table with different sensors [8]

As the distance is significantly short, the order of millimeters, only laser and eddy-currents
are suitable. As eddy-current sensors were already being used and the results were
satisfactory, it was decided to use this type of sensor also in the blades.

The location of the sensor is the most critical part because the size of the sensor is not
negligible, Figure 3.3. In the description of the sensing of the blade, the different effects of
the position of the sensor are detailed. In Figure 3.5, the magnitude of each mode shape
depending on the position is shown. Taking into consideration these two points, the chosen
point is to measure right below the mass of the tip of the blade.

14

3. Sensing System

Figure 3.9. Designed location for blade sensor [3]

In order to locate an inductive sensor in that position, a new constructive element is needed.
Taking profit of the already built structure on the rigid disk, the supporting piece will be
clamped to the same holes as the magnets seen in Figure 3.9 (position 4).

Once decided where to fix the piece, the next step is to measure the distances from the
wholes to the place where the sensor is designed to be allocated. For this purpose, 3d
designing software was used. The scheme of the piece was developed in Solidworks. The
resulting 3d model is shown in Figure 3.10.

Figure 3.10. Axonometric view of the sensor supporting structure

A prototype was 3D printed before the final piece was sent to production. The measurements
taken were not accurate and therefore, the dimensions were readjusted. The final
measurements and the complete planes can be found in Appendix B. The final mounted
piece is shown in Figure 3.11. The final sensor is located at 62.5 mm from the beginning
of the blade. This derives in obtaining a predominant signal from the first mode shape

15

3. Sensing System

Figure 3.11. Sensor mounted into the blades

With the objective of having the same sensitivity in all the sensors, the sensor chosen is
the same as in the hub. From this, the sensitivity of the blade sensors is 2.67 volts per
millimeter. The blade can vibrate in a range of 3 millimeters, therefore, the range of the
signal is 8 volts. Using the same criteria of the hub sensors, the sensor is located in a
position resulting in having 0 volts when the blade is touching the right magnet.

3.4 Amplifying electronics

The signal of the sensors is analogical and with a minimum of 0 volts and a maximum of 8,
the eddy-current sensors a completely linear within its range. The next step in the design
of the sensing system is to adequate this signal into the control unit.

The control unit is described in Chapter 5. In order of designing the amplifying electronics,
the input voltage capacity of the controller is needed. The controller has a maximum
capacity of 5 volts and can not manage negative voltages. For security reasons, the
maximum output of the circuit is designed to be less than 4.5 volts and the minimum 0.15
volts. Therefore, the designed circuit will reduce the signal by half before the control unit.

The circuit design is based on operational amplifiers. the operational amplifier is a really
common component in the electronics industry. Its simplicity and reliability are its strong
attributes. Using the operational amplifiers equations and properties [16] a non-inverting
amplifier is designed with 0.5 volt/volt gain. The circuit is shown in figure 3.12 and the
numerical values of the resistors and voltages are in Appendix A. The operational amplifier
used is LM 741 by Texas instruments (data-sheet in Appendix A).

16

3. Sensing System

Figure 3.12. Scheme of non-inverting amplifier [2]

This circuit is implemented in a printed circuit base (PCB). The design of this PCB is
done in a standard PCB design software and sent to a external company. The dimensions
of the PCB were decided with the dimensions of the microcontroller to assure that all fit
inside the rotating disk. The 4 circuits needed for the 4 blades are installed in the same
PCB. One identical extra PCB is installed in the external circuitry for the signals from
the hub.

Figure 3.13. Non-inverting amplifiers in the PCB

3.4.1 Powering of electronics

All active components described above need powering voltage. The means of the sending
this power signal to the rotating disk is explained in Chapter 6. With the purpose of
reducing the power signals, the sensor and the operational amplifier are powered with the
same 20 volts signal, the operational amplifier needs also a -20 volts signal.

17

3. Sensing System

3.5 Conclusions
As a summary of all the sections above, the new sensing system has 7 signals and all of
them come from analogical eddy-current sensors. The new system detects vibrations in
the hub and the blades as well as the angular velocity of the shaft. Regarding the blade
vibrations, the signal is focused in the first bending mode but the second and third are
still observable.

These signals are in a range between 0.15 and 4.5 volts. Regarding the sensitivity of the
measurements, the final sensitivity taking into account both sensor and amplifying circuit
is 1.33 volts per millimeter. The noise of the signal is not detectable with human sight in
the oscilloscope, however, the final noise input to the controller is described with detail
in Chapter 5. The signal is completely linear and robust to any kind of dust or other
disturbance in the system.

Here are shown the final signals from the hub sensor in the horizontal direction and the
blade sensor. The first test was implemented with a 300 rpm constant angular velocity
Figure 3.14. The second test is a zero-input response in the blade to show its natural
frequency (18 Hz) Figure 3.15

Figure 3.14. Signals from the sensors at 300 rpm

18

3. Sensing System

Figure 3.15. Signals from the blade sensor with a zero-input response

19

4 ACTUATING SYSTEM

The scope of this chapter is to explain in detail the requirements of rotor-blade systems in
general and this test-rig in particular regarding the actuating system.

Performing active control in any system is to deliberately input a external signal or force
in order to force the output of the controlled system. The actuator is the component that
converts the control output into the signal or force induced to the system.

4.1 General considerations

In the case of Rotor-blade system, two main paths appear. The first one being to actuate
in all the mechanic components with degree of freedom (rotor and blades), and the second
one being actuating only in the rotor or shaft. Choosing between one of the two not
only depends on the designer will,but in several other issues. Several papers discuss this
dichotomy [17] [13] [18].

In a parallel working thesis [1] it is demonstrated that only actuating in the shaft is
sufficient to perform active vibration control both in rotor and blades. However, it is also
stated that the performance decreases if there is not control input in the blades.

The test-rig where the active vibration control is implemented is prepared to actuate both
in shaft and blades [12] [3]. The scheme of how the actuation forces are input to the
rotor-blade system is shown in Figure 5.2

Figure 4.1. Schematic of the actuating setup [3]

20

4. Actuating system

The devices that generate the forces shown in Figure 5.2 are electromagnets. In this test-rig,
one pair of electromagnets is installed for every degree of freedom of the rotor-blade system.
There is twelve electromagnets , four in the hub and eight in the blades.

Electromagnets are common actuators in industry [9] [19]. The physics behind these
devices is the interaction between currents and ferromagnetic materials. The standard
electromagnet is formed by one core of ferromagnetic metal and a coil surrounding it
(Figure 4.2).

Figure 4.2. Schematic of the electromagnet physics [9]

The electromagnetic force created can be described with Ampere’s law. The electrical
current passing through the coil generates a magnetic flux in the core. This magnetic flux
intends to close the magnetic circuit, in this case between the electromagnet surface and
the hub.

The static force generated by the electromagnets can be stated by means of its physical
properties, the air gap between surfaces and the current passing through the coil. The force
is proportional to the number of turns of the magnet coil (nm), the magnetic permeability
of the air µa, the surface of the magnet Aa and the current passing through the coil im.
On the other hand the force of the magnet is reduce with the quadratic of the distance
between surfaces z.

Fm = nmµaAa

4

(
im

z0 + z

)2
(4.1)

4.2 Actuators

The actuators implemented to induce electromagnetic forces in the hub are RS PRO
Magnetic Lock model of 65 millimeters in diameter Figure 4.3. The devices installed in the
test-rig are an outdated model. The static forces that can provide the new models are much
higher than the experimental forces documented by [3]. Nevertheless, the magnets are to
supposed to be able to perform static forces up 100 N. The forces needed according to
several control strategies implemented by [5] and [4] are around that values. The magnets
are located in the external frame of the hub. One pair of electromagnets for each hub
displacement direction (X and Y). The air gap between the magnets and the hub is 2
millimeters in each direction.

21

4. Actuating system

Figure 4.3. Electromagnet RS PRO 65 mm

The electromagnets located in the blades are of the same nature of the hub actuators
but in 32 millimeters in diameter model. The dynamics of these, are similar to the hub
magnets but with less peak voltages due to the smaller magnetic flux generated. The static
force was also measured in [3] to be 25 N. They are located at 40 mm from the clamping of
the blades, the air gap between blade and magnet is of the order of 2 millimeters, similar
as the hub magnet gap.

Al the discussion above is only for static forces, however, active vibration control needs to
actuate in a certain frequency bandwidth. The frequencies at which the actuating system
has to have its best performance are related to the excitation frequencies of the system. In
[3] is detailed the causes of the vibrations and their frequency depending on the angular
velocity of the system. The next figure shows the range of the frequencies that appear in
the system depending on the angular velocity of the rotor Figure 4.4.

Figure 4.4. Theoretical waterfall diagram showing normalized frequency responses of the rotor
(a) and the blade movement (b) as function of the rotor angular velocity [3]

22

4. Actuating system

This analysis leads to the conclusion that the maximum frequencies that the controller
has to minimize are around 40 Hz. Moreover, this is only when the angular velocity is
around 1000 rpm, the velocity at which this test-rig rotate is usually around 600 rpm. In
conclusion, the magnets need to be able to perform at least at 30 Hz.

The electromagnets dynamics are not a simple issue. The equations behind them present a
substantial quantity of non-linear behaviours [20] [19]. From engineering perspective, the
electromagnet can be modelled as a electric circuit in order the apply simpler equations.
This component can be explained with a resistor in series with an inductance that has an
electromotive force induced into the circuit (e(t)) Figure 4.5. The equation defining this
electric model is 4.2

Figure 4.5. Electric circuit of electromagnet [1]

U(t) +RiR(t) + L
diL
dt

+ e(t) = 0 (4.2)

The electromotive force induced to the circuit is non-linear and depends on the change
in the magnetic flux, this is usually linearized in order to simplify the system [1] [21].
Despite the non-linearities being modelled for the small vibrations, this electromotive force
has to be take into account in some situations that are going to be discussed in the next
paragraphs.

In the initial state of the test-rig, no amplifiers were found, however, in [3] it is stated that
the signal of the control unit was amplified with ±28 volts. Without adding any other
device the results of the actuating output were the following (Figure 4.6).

23

4. Actuating system

Figure 4.6. Desired voltage (–) vs output voltage(-) [3]

This peak voltages are due to the non-linear electromotive force and the inductance of the
coil. When there is a sudden change in the input voltage of the circuit and the current
tries to also change rapidly, the magnetic flux of the electromagnet counteracts with a
voltage peak. This voltage peak rises to maintain the magnetic flux constant. This voltage
peak is theoretically infinite, however, when implemented in practice the voltage rises to
the maximum is possible. In this specific case, the voltage reaches the maximum that the
amplifier can afford (28 volts).

This phenomenon is the main cause of failure when trying to use electromagnets at high
frequencies. The control signal is usually the voltage, not the current, and therefore these
effects deteriorate both actuators performance and durability. In other projects such as [5]
or [4], this made impossible to use the electromagnets as actual actuators of the control
loop in the rotor blade system.

In order to attenuate this voltage peaks a different system of power electronics will be
applied. The voltage range is between 0 and 24 volts and the electrical characteristics are
in the Appendix A.

24

4. Actuating system

4.2.1 DC motor

In order to rotate the shaft, a DC motor is added to the system. This DC motor is not
an actuator of the active vibration control. However it is important to mention that the
angular velocity is proportional to the voltage in the terminals of the DC motor. The
setup is shown in Figure 4.7

Figure 4.7. DC motor implementation

4.3 Power electronics

The power electronics of the actuating system is responsible of converting the output of the
controller in a proper actuating system. In the case of the test-rig, the power electronics
need to convert the 5 volts signal of the control unit Chapter 5 into the actuating range of
the electromagnets.

The designing of a new continuous analogical amplifying system was rejected due to several
reasons. The first one is to try to avoid the non-linearities of the amplifiers. The second
one is the price of this kind of devices, buying amplifiers for the 12 magnets would be
really expensive. The last one is the compactness of these devices, this thesis is based on
the designing of an embedded system and continuous amplifiers would consume a majority
of the volume of the whole active vibration control system.

The power electronics chosen for powering the magnets are based in a non-linear signal
generation method called pulse-width modulation (PWM). This method converts a low
voltage digital signal into a power analog signal [22].

The regulation of the amplitude of the signal is achieved by changing the duty cycle of
another, usually a square signal. The amplitude of the output PWM signal is defined
not by the amplitude of the square signal, which is constant, but with time window this
signal is activated. The classic circuit that generates this signal consists of a device that
compares two inputs and one output.

The working principle is to regulate the duty cycle with the two inputs in order to generate

25

4. Actuating system

the PWM signal as the output. In this case the two inputs will be compared by software
in the control unit and further detail about this is explained in Chapter 5. On the other
hand the power signal will be handled with a H-bridge circuit. This circuit is composed
by several switches that handle the time window when the constant power is let into the
actuator or load (L), this case the electromagnet Figure 4.8.

Figure 4.8. H-bridge schematics

There H-bridge can be halved if it is not necessary to choose the polarity of the signal. The
electromagnet output sees no difference whether the input voltage is positive or negative,
the force remains the same magnitude and direction. The magnets power consumption is in
the range of commercial H-bridges, the chosen H-bridge is the L298n from ST electronics.
The datasheet is in Appendix A, each driver can handle two magnets and the maximum
current per magnet is 0,5 Amperes.

The input to the driver is the digital signal of the controller and the output signal is
the PWM that goes into the magnet. The device is formed by several components. The
main components are the switches, in this case MOSFET transistors. The MOSFET
transistor has 3 ports, when the control port is excited the other two ports open and let
the energy flow through the circuit. In order to absorb peak voltages protection diodes are
located in every switch. This diodes prevent short circuit currents and will absorb the peak
voltages explained in Figure 4.6. Finally the are some fins to dissipate the energy driven
by the switch. The wiring of the system and the power transmissions will be discussed in
Chapter 6.

26

4. Actuating system

Figure 4.9. H-bridge driver by ST electronics

The circuitry includes 6 drivers, these components are installed both in the external frame
and inside the rotor disk. The wiring of the electronics, drivers and power signals is detailed
in Chapter 6. Figure 4.10 shows how the final circuit is mounted inside the rotor.

Figure 4.10. Power electronics inside the rigid disk

27

4. Actuating system

4.3.1 Dynamics of the power electronics

The PWM signals have several advantages respect the classic analogical amplifiers. The
power losses are mostly produced in the switches and the MOSFET transistors are really
efficient. In the case of inductive loads like the electromagnets, the dynamics of the square
signal are neglected because the inductance smooths the voltage drops.

The only parameter that can affect the dynamics of the system is frequency of the whole
duty cycle. If this and the desired output signal frequencies are too close, the dynamics
of the PWM modulation are non negligible. The objective is to maintain the current in
the most linear regime. The higher the frequency of the PWM the more linear the whole
system will be Figure 4.11. The final frequency of the PWM control signal depends on the
control unit, therefore, further details can be found in Chapter 5.

Figure 4.11. Effects of PWM frequency by [10]

4.4 Conclusions

The final output of the electromagnets should be tested to check if it is possible to actuate
in the active vibrations control loop. In order to measure the actuation signal, a force
transducer has been used. The force transducer is from DTU mechanical department and
it has a sensitivity of 0.22 Volts per Newton. This sensor uses a filter because it can only
measure dynamic forces, this made not possible to measure the final static forces of the
electromagnets.

The tests are performed with sinusoidal input signals of different frequencies and always in
a range of 0 to 20 volts. The results are shown in the next Figures. The first ones show the
force as an output of exciting the magnets with a sinusoidal of 5 Hz with the PWM signal.

28

4. Actuating system

Figure 4.12. Force of the magnet at 5 hertz

Figure 4.13. Frequency spectrum with 5 Hz sinusoidal input

29

4. Actuating system

In the first Figure 4.12 it is shown the non-linear effects of the whole actuating dynamics.
The peaks of attractive force reach 100 N which are similar to the static forces related in
[3]. On the other hand, the null peaks are wider due to the remnant magnetization. This
remnant due to the hysteresis loop delays the dynamics of the magnet.

In the second picture 4.13 it is clear that the square wave produces harmonics in the
frequencies multiple of the frequency of actuation. The circuit as a whole reduces the
frequency of the signal, in this case from 5 to 4 Hz.

This test is repeated for each frequency until the magnet force is not almost null. The
frequency analysis is captured in an experimental bode Figure 4.14.

Figure 4.14. Experimental bode of the electromagnets

The experiments derive into the conclusion that these magnets are not appropriate to
active vibration control. The inductance of both, hub and blade, electromagnets is too
high. The effects of this inductance do not allow to fulfill the requirements in the frequency
domain. Because of this, it is encourage to install different electromagnets with better
frequency response.

30

5 CONTROL UNIT

The control unit is the core of an active control system. This subsystem is in charge of
using the sensing and actuating system in order to accomplish the control objectives. A
control unit handles all processor control signals. It directs all input and output flow,
uses and analyses code and directs other units and peripherals by providing control and
timing signals. A metaphor usually used to explain the importance of this subsystem is to
compare it to the human body brain. The control unit component directs orders to just
about every aspect of the system and ensures correct instruction execution.

In the case if the rotor-blade system, it will decide which force should the electromagnets
induce to the system and analyze the sensing system signals. In the previous chapters
the measurements that the sensing system provide and the signal needed by the actuators
have been defined. However, in this point of the design of the active vibration control
system the measurements are just 7 voltages and the actuators are some electromagnets.
It is only when the control unit is implemented that the measurements are understood
as displacements or vibrations, and the electromagnets converted into real forces into the
system.

The hardware where the control unit is implemented has not a unique possible configuration.
There are several options to implement the control unit of a feedback control loop in a
physical system.In the introduction the two most common solutions were presented. The
first one is to base the controller in a commercial computer and the second one is to build
the hardware based on microcontrollers technology.

In [12] several solutions to previous active vibrations control systems are described, in all
of them the implementation of the controller is based on general purpose computer. This
is due to the fact that computers are able to perform really heavy computation tasks and
the development is more accessible to engineers that do not have profound knowledge in
electrical hardware solutions. The test-rig was indeed equipped with this kind of controlling
configuration.

5.1 Initial control system

The control unit installed at the beginning of this thesis was composed of a general purpose
computer with a Dspace interface. Dspace is a digital signal processor (DSP) in conjunction
with a software implemented in the host computer. The hardware then is divided into
three devices. The computer, the DSP and the I/O board. The board dSPACE DS1103
PPC is the responsible to transform the analog signals into digital ones. This board has
up to 16 analog input ports and 8 output ports.

31

5. Control unit

Figure 5.1. dspace DS1103 PPC

The DSP is in charge of performing the calculations of the control algorithm. The control
algorithm is programmed by the Host computer by using Matlab code. The DSP can
be configured to a sampling time and diverse control architectures. The Matlab code is
written in the graphical interface Simulink and the sent to the DSP.

The installed control unit is from 2013 and is outdated in some specifications. The sampling
is up to 1000 Hz that is sufficient for the test-rig. On the other hand, the board can not
handle really high frequency digital signals such as the PWM explained in the previous
chapter. Moreover, the interface only handles Matlab code which limits the features that
the system can have apart from the controller.

The Dspace also has presented some problems in the close-loop performance, in the model
installed in the test-rig there is no way to ensure that the input and the output of the
controller are synchronized when the computing load is high. For low frequencies this
may not come to a problem but leaves no room for improvement. The fact that it is an
all-in-one hardware makes impossible to improve an specific part of the hardware. These
reasons added to the fact that new technologies in computational hardware led this thesis
to choose to build a new control unit.

5.2 Control unit design

In the past years, the computational capacity per hardware size has improved greatly. The
Moore´s law [23] is still valid and every year with less size there is better performance.+,
this led to the use of embedded systems in every kind of automated solution. An embedded
system is a compact electric system whose core is a microcontroller unit. A microcontroller
(MCU) is a programmable logic device that combines electronics components integrated
into a single chip: CPU, memory, peripheral devices and I/O.

32

5. Control unit

Figure 5.2. Schematic of the microcontroller internal setup [11]

The description of every component of the microcontroller structure is out of the boundaries
of this thesis. For further detail in this subject, a complete explanation of every component
is available in [11]. The design of the microcontroller starts with understanding the
requirements of the system to be controlled.

The microcontroller that is intended to be designed is only going to be implemented in
one system, therefore the price is not going to be the main parameter to be taken into
account. Nevertheless, all MCU cost between 10 and 500 danish crowns, this fact is the
main reason embedded systems are being so popular. The requirements of the system will
be the main decision criteria. The test-rig system needs the control unit to have some
features that will be described in the following paragraphs.

5.2.1 Requirements

The first point to start to design your embedded system is to build a use case diagram.
The use case diagram defines the interaction of the user and the system and the inner
relationship within the subsystems. In the case of a feedback control loop is already
standardized. The user only interacts with the control with the user interface, this interface
can have several features, however due to time constraints, in this report it will only be
possible to start and stop the control loop.

The point of the use case diagram that is important for the design is the interaction of the
control unit with the rest of the system. This has been discussed through all the report,
the control unit needs to analyze the signals from the sensing system and generate control
inputs to the actuating system.

As it is stated in Chapter 3, the measurements of the the vibrations and the rotational
speed are a continuous analog signal with a range that goes from 0 to 5 volts. The seven
signals have to be analyzed by the computational core, this means it is needed to pass
them from analog to digital nature. On the other hand in the Chapter 4 is explained that,
although the actuators need analog power signals, the actuating system needs 6 digital
PWM signals of 5 volts.

33

5. Control unit

Another key point of the system is the fact that the blade actuators and sensors need to
be able to rotate with the rigid disk. The performance of the rotating subsystem can not
depend on the rotational speed of the rotor. Although all the detail about how the power
is transmitted in the system is explained in Chapter 6, it is necessary to explain that the
best solution to this problem was to install 2 microcontrollers instead of only one. This
way the signals from the blades are static in reference to one microcontroller, simplifying
the connections of both power and sensing.

5.2.2 Design criteria

The advantages of using two microcontrollers apart from the stated above is that the
performance needed for each MCU is much less and the signals that these must handled
are the half of the original system. However, this new design comes with a new issue,
communication between the microcontrollers. The solution to this problem is described
in Chapter 6, the main microcontroller will be located in the external frame and the
MCU in charge of handling the rotor subsystem will be located inside the rotor disk. This
configuration leads to decide the specifications of each microcontroller with new criteria.

After the description of the signals needed, the peripherals that the embedded system needs
can be stated. For the external frame the MCU needs to be capable of generating 4 PWM
for the 4 electromagnets and analyze 3 analog signals, two for the displacements and one for
the rotational speed. On the other hand the MCU located in the rotor must handle 8 PWM
signals for 8 electromagnets and analyze the 4 analog signals of the blade measurements.
Moreover, both MCUs need 1 peripheral in charge of the telemetry communications 5.3.

Figure 5.3. Schematic of MCU requirements

Once the needed peripherals of the microcontroller are defined, the next step is to decide
the inner architecture. The architecture of a microcontroller is the method it has to
compute orders, two options exist. RISC and CISC [24]. The main difference between
both is that CISC microcontrollers execute fewer but more complex instructions and vice
versa. The RISC architecture resulted in more energy efficient and compactness, this is

34

5. Control unit

why the vast majority of MCUs are based on this technology. Now the next step is to
choose, the instructions bit size, from 8 to 64 bit architectures. The memory of the CPU is
fixed so the more bits the instruction needs the less instruction. However, The new MCU
come with sufficient CPU memory to handle 32 bit without being overloaded [25]. After
all, the the architecture chosen is RISC 32 bit. The most common microprocessors that
works with the chosen architecture are the ARM processors. ARM is only the architecture,
the processor is built by other companies such as Texas Instruments, Microchip or ST
electronics.

The next step once is chosen the architecture and the peripherals needed is to chose either
to build a microcontroller from scratch, printing the circuit in a PCB with the custom
characteristics or to purchase an already built microcontroller board. The development
of a complete new board gives the designer more liberty in means of performance and
software and hardware solutions. However, this option requires a great amount of time
and this thesis is time constrained. Therefore, the option taken is to search for a board
compatible with the project requirements.

After researching the market, three boards were suitable for our requirements. The three
first elected MCU were Arduino MEGA 2560 Rev3, Raspberry Pi 3 Model B and the
STM32F411.

First the Arduino based board MEGA 2560 Rev3 was evaluated for this purpose, Arduino
is well known because the high quantity of home made applications that are based on
this kind of microcontrollers the two main key values that this board presents are the
overwhelming software documentation that can be found on the web and the amount of
peripherals this board an handle.

Figure 5.4. Arduino MEGA 2560 Rev3

The reasons for rejecting this board are several, first the architecture does not suit our
requirements, this board runs in 16 bit architecture. Secondly the board has not wireless
connections, it would need another module installed. This board may reach the requirements
for the software that is intended to be implemented in this thesis, but in the case of adding
features to application, the board may collapse.

35

5. Control unit

The second board is the STM32F411, this board has really powerful processor and is based
on ARM cortex-M4, this processors are used in important industries such as mobile phones
or portable video games consoles. The peripherals are covered and with high specifications.
The reliability of this board is also a really positive point.

Figure 5.5. ST electronics STM32F411RET6

This board was also rejected for the lack of wireless module in the board. The development
of this boards needs some previous knowledge because the documentation available on the
internet is not as wide as the Arduino one.

The last board and therefore the chosen one is the raspberry pi 3 model B. It is as powerful
as the STM board, able to handle the peripherals required by the system and is based on
ARM microprocessor A-53 that handles 32 bit instruction. The single based board has 4
cores that assure that will not collapse when the application grows.

Figure 5.6. Raspberry pi 3 model b+

36

5. Control unit

Despite all the explained above, the two main points that were decisive to choose raspberry
pi were the wireless included module and the possibility to run an operative system (OS)
in the board. The first one is clear, it simplifies the connections of the board and reduces
in one element the embedded system that has to fit in the test rig. On the other hand,
basing your application in a OS has diverse consequences both negative and positive. The
datasheet of the raspberry pi is located in the Appendix A.

It has to be remembered that this thesis is not isolated and is running at the same as two
other ones that depend on the development of this embedded system. Therefore time is
the main issue to take into account to select the software of the system. Even though the
application is the same, the development environment can make the difference between the
success or failure of the project. Nowadays with the growth of IT industries and embedded
applications, a whole technology is raising that focuses only on how these systems are
developed [26].

5.2.3 Development environment

The development implemented in an OS in the raspberry pi is the most common usage
of the board and therefore there is great documentation in the internet. However, before
explaining why is easier and quicker to develop in the OS environment, the drawbacks will
be detailed.

The operative system is a complete software that has all the features be managed by a
user with no software deep knowledge. This features include an scheduler that decides the
order of executions of the instructions. This scheduler can not be programmed without
corrupting the operative system software so this has to be taken into account.

The fact of having an instructions scheduler that decides when each instruction is going to
be processed eliminates the possibility of real time programming. Real time computing
describes the systems that operate in a time that can be reliable to external time events.
This means that the computational time has to be consistent, in the case of a close loop
system, it can be simplified to stating that the time consumed in each loop is constant over
time. The scheduler of the OS can not assure this feature because the criteria for processing
the instructions is submitted to other criteria rather than consistent time consumption.

This inconsistency of the closed loop latency has to be compared to the time constraints of
the dynamics of the system, if this time variance is of the order of magnitude of the final
frequency of the system, the performance would drastically decrease. In the case of this
test-rig the design assumed that the frequencies that handle the system, order of 50 Hz
are nothing compared to this time variance. This variance depends on the application, but
in the initial test, the time inconsistency was negligible compared to the physical system.

The operative system installed is Raspbian Stretch, this is the OS that is more developed
for raspberry. Raspbian is a lightweight operative system that has a simple interface with
the MCU peripherals. Inside the OS the integrated development environment (IDE) is
installed, this software is the tool for developing all the code that will be implemented in
the microcontrollers. This is the main advantage of using an OS inside the control unit.
The code can be developed in a user friendly environment, reducing the coding time in a

37

5. Control unit

great percentage.

The IDE selection depends entirely on the developer, in the case of this project, a text
editor (Sublime Text) will be the chosen IDE. The main reason to select a text editor is
because it is possible to develop in different coding languages in the same environment.
This derives into the next issue, code language for the test-rig control unit software. There
exist several coding languages in the software industry, they all have different advantages
or disadvantages respect each other.

In the case of the raspberry the most common code language to develop with is Python.
Python is an interpreted language, this means that the processor translate each line of code
individually into the machine code that the processor understands. This feature means
that the interpreted languages do not need a compiler that previously converts the python
code into machine code. The lack of compiler increases the development velocity reducing
the time needed to build the whole application. Added to all the previous advantages,
Python is a very high abstracted coding language, this derives into more user friendly
instructions, reducing even more the development time [27].

On the other hand, the main drawback of Python is code performance, because it needs to
translate every instruction individually, the code takes more time to be executed. This
fact in a closed loop feedback control could imply the failure of the application, this is
why other languages were also taken into consideration. C is the most famous compiled
language, because its simplicity and performance.

The final solution is to develop in Python taking advantage of the development velocity,
try the application to test its performance and if it is not satisfactory, translate the code
into C language.

The final application will use two MCUs, raspberry pi 3 model b, and the development
code is python with the possibility to change to C if the software is not efficient enough
for the requirements of the system.

5.3 Embedded Software

The software that defines the embedded system functionality is now described. The
application can be separated into several subsystems: Acquisition system, control signal
generation, user interface, synchronization, control algorithm and communications. However
the development of each part is not isolated from each other, the software grows as a whole.
Despite this fact, the report is organized as if the software parts were developed isolated
and in order with the purpose of simplifying the explanation.

The software was completely developed in Python, tested and then translated to C because
the performance did not match the system requirements in terms of time consumed per
loop. Therefore the code explained in the report will only be the one developed in C
language. This will be detailed in the performance section.

38

5. Control unit

5.3.1 Hardware and software configuration

Before the description of the code, the final configuration of the Micro-controllers and its
functions will be described. As it was stated before, the development is not a unidirectional
procedure and several configurations were tested during this process. The computational
time of the simplest control algorithms as PID or Full-state feedback only require arithmetic
operations and therefore the raspberry can process them without any performance drop.
However in previous works, [4] [5] more complex controls were designed. This was reinforced
by the parallel thesis [2], this project needs to implement a full real time identification of
the system, this computational load can not be taken by the implemented microcontrollers.

All things considered, the final application is a distributed control with a Linux computer
as the core of the computational operations. This configuration can be also explained as if
the raspberry pi only were the interface between the sensing and actuating system and the
controller is held by the Linux computer Figure 5.8.

Figure 5.7. Configuration of the MCUs and the computer

From this point until the end of the chapter, the software will be divided into two programs,
the program installed in the Linux CPU and the program implemented into the Raspberry
pis. The coding problem will be solved as a server-client problem. The clients being
the MCUs submit the information to the server being the CPU. Therefore the main
program is the one installed in the computer and the secondary ones are the installed in
the microcontrollers. Moreover, the code installed in the MCUs is practically the same
but managing a different quantity of signals, in order to simplify the explanation, this
programs will be treated as a unique one.

39

5. Control unit

5.3.2 Code description

The code described in this section is already the C code, the code in Python was substituted
but the functionality remains the same. The annex collects both codes for consulting but
in this report the key points are going to be detailed with screen shots of the code. The
description starts with the main issues solved in the MCUs and ends with the features of
the program installed in the Linux CPU.

Microcontroller software

The microcontrollers have 3 main features: Acquisition, PWM signal generation and
wireless connection with the server. The wireless connection is described in Chapter 6.

The acquisition system has to convert the signal described in Chapter 3 to the digital
domain. All the computations processed in software applications are in the discrete domain.
In order to acquire the signal into the MCU, an analog to digital converter is required. This
device will be connected to the output of the sensing system and to the microcontrollers,
each MCU needs one AD converter. Raspberry has several options in the market when it
comes to AD converters. The AD converter 3 main parameters are resolution, number of
channels and acquisition rate.

The resolution is a parameter that describes the precision of each conversion. The AD
converter works by comparison between the input analog voltage and a number of voltage
levels that depend on the AD converter model. On the other hand the conversion rate is
the amount of samples that the device can perform per second.

In the market there is a trade off between resolution, conversion rate, noise and price. In
the case of the test rig only 4 channel converters where taken into account. Two models
were tested from the same company, ADS 1115 and ADS 1105 from Texas instruments.
The first converter has a 16 bit resolution and 860 maximum data rate while the second
has 12 bit resolution and 3300 maximum conversion rate. The performance of both devices
was tested and the 12 bit converter (ADS 1105) was chosen due to the faster conversions.
The datasheet is located in Appendix A.

Figure 5.8. AD converter ADS1105 by Texas Instruments

40

5. Control unit

The ADS 1115 has already libraries prepared by the company developing them. However
the usage that this application needs does not match them. The software implemented
was slow due to how the code handled the selection of the channel. In order to improve
the performance a new code was developed in the AD converter.

The AD communication with the Raspberry Pi is via I2c bus [28]. This protocol is reliable
and needs only two wires, however, it transmits the data in series making the transmission
slow. The default code was design to request a conversion, request confirmation until
confirmed and then receive the converted value. This makes that the program waits to at
least 3 I2C transmissions slowing the code. The solution implemented was to sleep the
program instead of requesting confirmation.

The sleeping time was tested with several values and was decided to have the fastest with
0 mistaken conversion out of one million times. In conclusion the code instruction is now
to request a conversion, sleep the program for a specified time and then get the converted
value.

1 wiringPiI2CWriteReg16(fd,0x01,CONFIG_V[j]);
2 nanosleep((const struct timespec[]){{0, t_delay}}, NULL);
3 data= wiringPiI2CReadReg16(fd,0x00) ;
4 data=Byte_swapper(data);
5 DATA_SEND[j]=data>>4;

The final conversion data rate chosen is 3300 values per second that is the maximum data
rate possible. The time consumed within the 4 conversions is 1.5 milliseconds, slightly
slower than the ideal 4 conversions in series. The resolution is 12 bits, that derives in a
resolution of 0.0026 millimeters per bit.

The other feature of the MCU´s software is the PWM signal generation. The PWM power
signal was detailed in Chapter 4, in this chapter the description of of how the digital
signal is generated is presented. The PWM digital signal needs to be a square signal with
the highest frequency possible. The software produces the signal with a counter and a
threshold. The counter is a real time clock that counts until a maximum value defined in
the PWM software, when this counter arrives to the threshold the PWM switches from
off to on. The parameters that define the PWM signal are the counter resolution and
maximum value and the threshold Figure 5.9.

41

5. Control unit

Figure 5.9. Software PWM generation

The raspberry Pi has only two PWM timers and 8 channels are needed in the case of the
rotor actuators. The PWM board handles the lack of hardware PWM timers with direct
access memory (DMA) peripheral[29]. This DMA feature gives all the I/O pins of the
Raspberry to work as PWM signals with less performance. The maximum frequency that
is handled by the DMA is 8000 Hz, this frequency was tested and no dynamics appeared
because of the PWM in the actuators. The high inductance of the installed electromagnets
allows to use this feature instead of hardware real time PWM signals. The counter range is
set to 2000 for the maximum 20 volts, this gives a resolution of 10 millivolts in the output
signal.

1 {
2 //////////////// SEND THE SENSOR DATA
3 send(sock , DATA_SEND , sizeof(DATA_SEND) , 0);
4 //////////////// WAIT FOR THE SERVER CONTROL SIGNAL
5 valread = read(sock , data_rec, 40);
6 ///////////// EXIT THE PROGRAM IF THE SERVER ASKS FOR IT
7 if (data_rec[0]==close_vector[0])
8 {flag=0;
9 printf ("%s\n","EXIT");

10 }
11 else{
12 //////////////////// IMPLEMENT THE CONTROL SIGNAL INTO THE PWM
13 gpioPWM(magnet1r, data_rec[0]);
14 gpioPWM(magnet1l, data_rec[1]);
15 gpioPWM(magnet2r, data_rec[2]);
16 gpioPWM(magnet2l, data_rec[3]);
17 gpioPWM(magnet3r, data_rec[4]);
18 gpioPWM(magnet3l, data_rec[5]);
19 gpioPWM(magnet4r, data_rec[6]);
20 gpioPWM(magnet4l, data_rec[7]);}
21 ///////////////////// READ THE AD CONVERTER DATA
22 for (int j = 0; j < 4; j++)
23 {
24 wiringPiI2CWriteReg16(fd,0x01,CONFIG_V[j]);
25 nanosleep((const struct timespec[]){{0, t_delay}}, NULL);
26 data= wiringPiI2CReadReg16(fd,0x00) ;
27 data=Byte_swapper(data);
28 DATA_SEND[j]=data>>4;

42

5. Control unit

The MCU software in conclusion has the following structure:

• Establish connection with the server
• Start the loop
• Read the AD converter data
• Send the data to the server
• Receive the control signal
• Implement the control signal into the PWM software
• Stop the loop

Firstly the connection with the server is established, then the control loop starts and,
finally, when the server decides, the program is ended. Inside the loop, the MCU reads the
value from the AD converter and sends it to the server, then, it receives and implements
the control signal from the server into the PWM software.

Figure 5.10. Control loop scheme in both Raspberry Pi´s

43

5. Control unit

Linux CPU software

The code implemented in Linux has to handle both data of the two raspberry pi´s
and generate a control signal that can be implemented in the PWM software. All the
arithmetical conversions of the different data types will be calculated in this processor.
Therefore the program features are the following:

• Start both MCU´s programs
• Establish connection with the microcontrollers
• Start the loop
• Receive and process the data from the raspberry pi into measurements
• Save the data in the CPU memory
• Implement the control algorithm
• Convert and send the control signal into the raspberry
• Stop the loop and process all the data

Figure 5.11. Control loop scheme in the Linux CPU

44

5. Control unit

The full code is scripted in the Appendix B, however, some key parts of the coding structure
are briefly explained in the next paragraphs. The connection with the microcontrollers
is detailed in Chapter 6. The first step once enter the feedback loop is to wait for the
microcontrollers to send the data. Once these seven 12 bit data are in the CPU, the next
step is to translate it to measurement in millimeters. After this the data is saved into
a vector in order to be used by the controller. Because C does not handle the memory
automatically, it is necessary to create a dynamic memory to save the endless feedback
loop data.

Once the data is prepared, the control algorithm starts. This algorithm is out of this
thesis, however, the code structure is prepare to handle every control algorithm. All the
previous measurements and input voltages are available for the control algorithm. The
control signal is generated and converted to a number within 0 and 2000 for the PWM
software, after this the 12 voltages are sent to the corresponding MCUs.

1 i++;
2 ////TIME APPENDING
3 gettimeofday(&t1, NULL);
4 d_array[i] = t_s;
5 /////// RECEIVING DATA FROM CLIENTS
6 valread = read(socket_s , data_rec_s, 40);
7 valread = read(socket_r , data_rec_r, 40);
8 ////////DATA APPENDING
9 for (int b = 0; b < n_data_t−1; b++)

10 {
11 i++;
12 if (b<n_data_r){d_array[i] = data_rec_r[b];}
13 if (b>=n_data_r){d_array[i]=data_rec_s[b−4];}
14 }
15 k++;
16 /////////ENLARGING THE DATA VECTOR FOR SAVING MORE DATA
17

18 if (k+1==SIZE_DATA/n_data_t){
19 j++;
20 d_array= realloc(d_array, (SIZE_DATA∗j) ∗ sizeof(double));
21 k=0;}
22

23 ///////////////// CALCULATE ACTUATION
24 ////////////////// IMPLEMENT HERE ANY CONTROL ALGORITHM
25 for (int mag = 0; mag < 8; mag++)
26 {
27

28 data_send_r[mag]=data_send_r[mag]+1;
29

30 if (data_send_r[mag]>2000)
31 {
32 data_send_r[mag]=0;
33 }}
34 for (int mag = 0; mag < 4; mag++)
35 {
36

37 data_send_s[mag]=data_send_s[mag]+1;
38

39 if (data_send_s[mag]>2000)

45

5. Control unit

40 {
41 data_send_s[mag]=0;
42 }}
43

44

45 /////////////////SENDING ACTUATION
46 send(socket_s , data_send_s , sizeof(data_send_s) , 0);
47 send(socket_r , data_send_r , sizeof(data_send_r) , 0);
48 /////////////TIME CALCULATION
49 gettimeofday(&t2, NULL);
50 t_s=(t2.tv_sec − t1.tv_sec) + (t2.tv_usec − t1.tv_usec) / 1000000.0f;
51 tnext=tnext+t_s;
52 }
53

54 //// END OF LOOP

Completely in parallel the user interface is implemented. This code section could not be
completed due to time constraints. Despite being prepared to held any added options only
the start and stop could be coded.

1 char command[1];
2 flag=1;
3 while (flag==1){
4 scanf("%s",command);
5 if (strcmp(command,"s")==0){
6 flag=0;}}
7

8 printf ("Thread interface closing everything \n");
9 return NULL;

10 }
11

12 // MAIN

Finally when the user presses the stop button the control loop stops and the collected data
is processed. A text file is generated with 7 columns, the first for the time values and the
rest for the measurements is millimeters.

1 mean_f=n_samples/cpu_time_used;
2 printf ("done in %f \n",cpu_time_used);
3 printf ("mean frequency = %f\n",mean_f);
4 printf ("mean time_step = %f\n",1/mean_f);
5

6 /////// DATA PROCESSING
7

8

9 printf ("Data cllection ended with %d samples\n",n_samples);
10 ml=0;
11 for(int m = 0; m < n_samples; m++) {
12 for (int l = 0; l < n_data_t; l++)
13 { ml++;
14 fprintf (f , "%f",d_array[ml]);
15 if (l!=n_data_t−1){fprintf(f,", ");}
16 }
17 fprintf (f , "\n");}

46

5. Control unit

18 // CLOSING EVERYTHING
19 pthread_join(thread_id, NULL);

The final program implemented has the following structure Figure 5.11. Once the complete
program is installed, the performance of the code will be tested. Firstly, assure that the
code executes the instructions as it was designed. Secondly to test the performance of
every isolated part of the code and clean any redundant instructions generated during the
development process. Finally, to test the time consumption of the whole program and
search for the bottle necks that the software has.

5.4 Software testing
As it was stated, every software has to pass some process of testing before the project is
completed. The first test is to assure the function of the program as a whole. The code
developed with this objective were several open loop codes. To input some signals into the
actuators and read the measurements. The previous control unit was used to double check
the measurements processed by the new sensing system. The first tests were successful, the
output of the system coincide in both sensing systems and matched the expected response.
The synchronization of the system is assure by the different threads into which the code is
divided. Both CPU and the microcontrollers block their code until the receiving the data
is completed.

The second part was to clean the software redundancies and rewrite each part in order to
reduce instruction and therefore computational time. This procedure was completed and
the code is clean and minimized.

Finally, the performance test were implemented in the embedded system. The objective is
to check the final feedback control loop sample time and to analyze if it is possible to be
reduced. After several isolated tests, the two main bottle necks the system has are the AD
conversion and the wireless connection.

The AD conversion main issue is the communication protocol, as it was explained in the
previous section, the connection between AD and the Raspberry pi is based on i2c. After
several improvements and building a personalized library for this device the final conversion
time is 0.375 milliseconds, this multiplied times 4 in the case of the rotating Raspberry Pi
gives a AD conversion time of 1.5 milliseconds.

The second bottle neck are the communications, the wireless connection has a computation
time that goes from 1 to 6 milliseconds. The reasons of this inconsistency as well as with
the different improvements implemented are described in Chapter 6.

5.5 Conclusions
After the implementation of the program, it can be stated that the active vibration control
loop is operative. Respect the measurements of the system, the 6 measurements are
sampled within 1.5 milliseconds, the resolution is 12 bit and the noise is of the order of 5
AD levels, that gives a signal-to-noise ratio of 410, this means that the maximum noise

47

5. Control unit

per sample is 410 times lower than the signal. The velocity of the system is known using
the seventh sensor.

Regarding the electromagnets, the PWM has a frequency high enough (8000 Hz) to
state that there is not added dynamics from the powering signal. All the 12 actuators
are operational and the bandwidth is limited only by the own electromagnet physical
characteristics (maximum 50 Hz bandwidth).

The overall sampling time of the embedded system is its weak point, the inconsistency of
the wireless connection velocity is not improvable within this code. In Chapter 6 all the
reasons are detailed. Nevertheless the test-rig is now operational and this its final working
scheme Figure 5.12.

Figure 5.12. Configuration of the final software system

48

6 SYSTEM INTERCONNECTIONS

The system description is completed within the previous chapters, all the subsystems of the
active vibrations control loop are described in the report. However, the interconnections of
this test-rig in particular played an important role both in the design and the implementation
of the feedback loop. The connections can be divided into wired and wireless connections,
in order to understand the reasons of the new design, a brief description of the previous
test-rig connections is offered.

6.1 Previous interconnection structure

As it has been described during this report, the previous control system was based in a
computer that took all the computations and sent and receive all the signals from the
test-rig system to the control unit located on the outside of the psychical frame. This
configuration needed a device that could transmit signals into the rotating frame, the 8
magnets and the 4 sensors related to the blades. The installed device is a slip-ring of 12
channels.

The slip ring is an active component whose structure permits to transmit electrical signals
from a static to a rotating frame of reference [30]. The slip ring working principle is similar
to a dc motor. Inside the slip ring, a number of brushes equal to the number of channels,
maintains a physical contact with a rotating metallic disk. This contact is in charge of
transmitting the electrical signal into the shaft Figure 6.1.

Figure 6.1. Slip-ring internal schematics

49

6. System interconnections

The slip-ring installed in this test-rig has 12 channels, this is the maximum signals including
power signals that can be transmitted to the rotating frame. In the initial electronics the
total devices in need of electrical connection with the external frame are the following:

• 4 sensor signals
• 1 power supply for the sensing electronics
• 8 analog signals to the electromagnets
• Neutral wire for sensing signals
• Neutral wire for power signals

These add up to 15 needed channels making not feasible the system, however a solution to
this issue was documented in [3]. At least 3 signals needed to be reduced, the subsystem
that could handle this cut in the number of signals was the actuating system. In Chapter 4
was introduced the solution, as each blade has a pair of electromagnets, it was decided to
only actuate one magnet simultaneously. This means that either you activate the left or
the right magnet. In order to rearrange the 2 signals into a unique one, it was decided
that negative signal would mean to actuate the left magnet and positive the right one.

This solution requires additional circuitry, the electrical circuit is not documented, however,
the working principle was described. A diode based circuit Figure 6.3 would redirect the
negative voltage into a positive value and transmit this power to the left magnet while
blocking the supply to the opposite magnet. With positive voltages the circuit blocks the
left magnet and transmits the power to right one.

Figure 6.2. Electronics that handle the actuating signals

The final solution used only 11 signals through the slip-ring, however, the main drawback
was the decrease in the quality of the actuating system increasing the non-linear behaviour
of the electromagnets. Nevertheless, at the beginning of this project only 8 wires were
operational. This added to the fact that the slip-ring brushes added noise to the sensor
signal encourage the design of a new interconnection structure.

6.2 New wiring configuration
The configuration for the new active vibration control system has change principally
because the addition of the wireless communication between the control unit CPU and

50

6. System interconnections

the two microcontrollers. This wireless connection reduces the use of slip-ring. Firstly,
the sensor information now travels as a digital signal through the this wireless channel.
Secondly the actuation signal is now generated in the drivers, not in the control unit.
The digital control signal is sent wirelessly to the microcontrollers who will send it to the
drivers. These two points reduce significantly the channels needed in the slip-ring. Only
the power wires need to be connected through this device.

• 1 power supply to the Raspberry pi

• 1 power supply for the PCB and the eddy-current sensors

• 1 power supply to the drivers

• Neutral wire for power signals

Figure 6.3. Slip-ring installed in the test-rig

These are the connections from the external frame, in the inside of the rotating disk there
are some connections worth to mention. The first one is the connections of the Analog
to digital converter (ADC). The ADC needs power supply of 5 volts, two pin connection
with the raspberry (SDA and SCL) and connection to the 4 outputs of the sensing system.
The Raspberry Pi located in the rotor has a specific pin out that is documented in the
Appendix A, the connections needed are the power supply, the connections with the ADC
and the pins that generate the PWM signal are connected to the drivers. Finally, the
drivers have as an input the power supply and the digital PWM signal. The final rotating
disk connections are shown in Figure 6.4 and Figure 6.6.

51

6. System interconnections

Figure 6.4. Connections inside the rotating disk: Power drivers

Figure 6.5. Connections inside the rotating disk: PCB, ADC and Raspberry Pi

52

6. System interconnections

6.3 Wireless connection
Wireless connection in embedded systems is a relatively new issue. The new technologies
in telecommunication industries has lead into smaller and cheaper devices that transmit
information without any wire. These new devices are now to be implemented into every
kind of embedded system, the fact that a commercial board as Raspberry Pi has this
feature incorporated reinforces this statement.

In the case of this test-rig, the microcontroller offers 2 main types of wireless connection:
Bluetooth or Wi-fi. Bluetooth [31] technology is suitable for short ranges so could be used
in the test-rig. However, the technology is not being develop in the last years in detriment
of the Wi-fi technology.

Wi-fi uses high radio-frequency in conjunction with IEEE 802.11 standards [32]. This
technology is being developed in every industry due to its high compatibility with every
kind of software and hardware. In the case of embedded systems, every company has its
own module in charge of bringing Wi-fi into the system. Also when it comes to software
development, there are significantly more tools for developing Wi-fi applications than
Bluetooth ones. Therefore, the wireless technology used in the test-rig connections is Wi-fi.

6.3.1 First implementation and results

The first action before implement the connection between the devices is to choose a
network. In the location of the test-rig several networks were available, however, due to
the congestion of these, a commercial router was used as a host. This commercial router
was not connected to any worldwide network, instead it was configured as a wireless local
area network (WLAN).

Figure 6.6. Wireless router installed: TP-Link Trådløs Gigabit Wi-Fi

The implementation of the Wi-fi technology is located in the sending and receiving sensor

53

6. System interconnections

and actuators data between the two Raspberry Pis and the Linux computer. The code
that builds this connection requires the IP address of each device and the protocol to use.

The IP adress was configured via the commercial router. Inside the wireless router an IP
was defined to each device. This IP is now static and every time the system reconnects to
this WLAN, the IP will be the same.

On the other hand the protocol to use depends on the application, two options are available
UDP and TCP-IP [33]. The protocol defines how,when and what to send inside the
information package. The information needs to be serialized into bits, ordered and sent,
the receiver, in order to differentiate the new package from others needs extra information.
This information is organized in form of a header that contains all the information before
the actual message, for example TCP header is shown in Figure 6.7.

Figure 6.7. TCP protocol header format

This header occupies 40 bytes of information slowing down the transmissions, however, this
protocol extra information assures the messages are sent to the right device and that the
message is exactly the same as it was transmitted. On the other hand, UDP protocol has
less header (8 bytes) however there is no way to assure from the emitter that the message
was received correctly.

In the case of the test-rig both protocols offer their advantages to the close loop. The first
one is more reliable but the second one is faster. Despite this trade-off there is one issue
that made the UDP impossible to implement during the tests. The UDP protocol does not
block the code when a transmission is started, this offers less waiting time but neglects
the synchronization between the devices. This is not suitable feedback loop control theory
where each data is following a continuous loop. Therefore the final election was to use
TCP protocol.

1 setsockopt(server_fd, IPPROTO_TCP, TCP_NODELAY, (char ∗) &flag,sizeof(int));
2 address.sin_family = AF_INET;
3 address.sin_addr.s_addr =INADDR_ANY; //ADDRESS of the host here
4 address.sin_port = htons(PORT); // Port defined up in the beggining 8080
5

6

7

8 /// PROGRAM

54

6. System interconnections

9

10 //////////////////BIND THE SERVER
11 bind(server_fd, (struct sockaddr ∗)&address, sizeof(address)) ;
12 printf ("%s\n","binded");
13 listen (server_fd, 3);
14 //////////////// CONNECTION WITH CLIENT
15 socket_s = accept(server_fd, (struct sockaddr ∗)&address,(socklen_t∗)&addrlen);
16 socket_r = accept(server_fd, (struct sockaddr ∗)&address,(socklen_t∗)&addrlen);
17 if (socket_r>=0){printf("%s\n","connected to the stator");}
18 if (socket_s>=0){printf("%s\n","connected to the rotor");}
19

20 data_send_r[0]=0;data_send_r[1]=1000;data_send_r[2]=500;data_send_r[3]=1500;data_send_r
[4]=250;data_send_r[5]=1250;data_send_r[6]=750;data_send_r[7]=1750;

The results of the feedback loop were already explained in the previous Chapter 5. The
time consumed in a whole feedback loop from the sensor measurement till the control
action is implemented is not consistent. It can take from 2 to 7 milliseconds. The reason
was discovered to be only the wireless connection code. The waiting time in the receiver is
not constant, a further study of the reasons is needed.

6.3.2 Wi-fi protocol improvement

The time inconsistency issue was tried to improve in several ways. The first one being
reordering the code in both the server and the clients to try to minimize the waiting times.
This was effective in reducing the mean sample time but the variance on the sample time
remain the same.

The problem, therefore, the issue was not in the software structure. This led to a deeper
research in how the code decides when to send and receive the packages. The C libraries
are standardized when it comes to establish TCP server client connections. However,
the developer can establish more advanced options in order to adapt better the wireless
communications to the developed application.

Nagel´s algorithm and Delayed acknowledgment

The TCP protocol is designed to perform in world wide networks with an overwhelming
quantity of data packages being transmitted each second. The TCP protocol needs to be
able to handle this saturation of the network. In order to reduce the amount of packages
with the TCP header (a message of 1 byte occupies 41 bytes) two main algorithms were
design to reduce the congestion in the network. These are the Nagel´s algorithm and the
delayed acknowledgement.

The Nagel´s algorithm [34] decides which packages are urgent to send and which ones can
be put in queue in order to reduce the total messages transmitted through the network.
The total information transmitted remains the same but the header bytes are drastically
reduced. The delayed acknowledgment [35] works in the same direction of the Nagel´s
algorithm, they complement each other. The acknowledge time is defined as the time that
takes the receiver to state that it has received a package since the first byte is received. This

55

6. System interconnections

delay derives in the accumulation of package in the receiver, converting several different
messages into a unique one.

The implementation of these algorithms in the test-rig software has several consequences.
In real time application these algorithms make impossible to assure not only the sampling
time but also it adds the possibility that several sensing or actuating data gets accumulated
in the system before applying them. Because of this other protocols are being develop
in order to avoid these effects. The most real time protocol is TDMA. TDMA is more a
code program than a protocol, this method establishes a loop in the client until the server
acknowledges that the client has receive the information. This method synchronizes better
the loop reducing the variance of each loop time step. The drawback that neglects the
possibility to use this protocol is the total time consumed per transmitted packages. The
method of enter into a loop waiting for a response adds computation stress to the system
and gives a minimum time step of 10 milliseconds.

The last resource implemented is the deactivation of the algorithms explained in the Linux
CPU and the microcontrollers. The C libraries offer this option for the code developer.
Once this change was implemented the loop was again tested and there was no significant
improvement in the results. The reason is that even the developer disables this algorithms
in the implemented program, both server and clients run on the Linux OS. The OS has
higher priority when scheduling the transmission of packages over the network.

56

6. System interconnections

6.4 Final system configuration
The embedded system connections are now totally described. The frame actuators and
sensors are directly connected to the external power supply and electronics. The actuating
and sensing system inside the rotating disk is connected to the power electronics through
the slip-ring and to the control unit via Wi-fi with TCP protocol. The issue regarding the
sampling time of the whole loop was determined to be caused because the inner scheduler
of the Linux OS and the TCP protocol

Figure 6.8. Definite system configuration

57

7 CONCLUSION

The scope of this project was to design the hardware and software of an active vibration
control system and implemented in a real test-rig. Several problems were formulated
in each chapter with their respective solution. The project was developed with a time
constraint external to the thesis given time, two other projects were based on implementing
control strategies into this active vibration control system [1] [2]. This time constraint was
decisive in some decisions in the design of the embedded system.

The objective of this report is also to offer a design method to implement feedback loops
in real systems. The decisions and requirements are specified for each subsystem (sensors,
actuators and control unit). The development process is described and explained, not
only is important to achieve the desired characteristics in the embedded application, the
development time is also a key point to consider.

7.1 Results
The embedded system was finally implemented in the actual test-rig with the following
results. The complete feedback loop is accomplish, all the subsystems are connected to each
other with success. For every subsystem the characteristics were changed and improved.

The sensing system has now a different set of sensors with less noise and more sensitivity.
The measurements are now all processed by the same sensor model, unifying the results
among the different measurements. The electronics following the sensors adequate the
signal to a standard 5 volt range that can be acquire by the standard analog to digital
converters.

The actuating system was only change in the actuation signal generation method. The new
system prevents peaks of voltage that could damage the power supplies or electronics and
reduces the non-linearities of the electromagnets. However, the electromagnets were not
able to perform up to the rest of the system characteristics. Both hub and blade actuators
do not perform correctly when the actuating signals have higher frequencies.

The control unit is completely different now. The system is now decentralized, the
embedded system consists of a computer and two microcontrollers that connect wirelessly.
The computational unit has now the computational capacity to implement any kind of
advanced control. All the software is programmed in standard C, making the software
accessible and open source.

The final configuration is really modular, meaning that each subsystem is easy to change in
order to improve the system. The power drivers, AD converters and MCUs could change
and the system could be easily reconfigured. The final system only uses wires for powering
the devices, decreasing the rotating wires and the noise associated with the slip-ring.

58

7. Conclusion

7.1.1 Perspectives

This thesis project is only effective if other researchers can use the test-rig to implement
active vibration control into a real system. This thesis objective is to facilitate future
users the active vibration control research. Secondarily, this thesis can also be used as an
example for the developing of different embedded systems in completely different scenarios,
the methodology is general to any system. Finally the network connections permit to
research the effects of each wireless technology and configuration in a real feedback loop.

7.2 Future work
Despite all the achievements described above, the system created of this project is far
from perfect or finished. Technologies improve quicker year to year and it is assumed that
in the next years, the improvements in software and hardware make this configuration
outdated. Nevertheless there are some key points to change in order to improve the overall
characteristics of the active vibration control system.

• Change the electromagnets to other con better performance, the static forces are
correct, however, the inductance in the actuators is too high. The electromagnets are
usually designed to generate the maximum magnetic flux leading to a high inductance
in the coil . This is why designing personalized electromagnets would be a path
worth to research.

• Research other wireless protocol whose sampling time is more constant. The different
protocols tried on this thesis are the most common ones. Other protocols could be
developed in C language and installed into the software.

• Change the microcontroller to a non operative system based one in order to improve
the loop time consistency.

• Change the AD converter of 4 channels to 4 ADC of 1 channel. The addition of AD
devices would enable the acquisition in parallel, reducing by 4 the sampling time of
the sensors.

• Develop a graphical user interface. Although all the programs are coded in C
language, the Linux CPU could handle the user interaction with standard python
interfaces.

Figure 7.1. Final state of the Test-rig

59

REFERENCES

[1] Maria Beneyto Gomez-Polo. Classical control design theory applied to mitigate
rotor-blade vibrations - a numerical investigation, 2019.

[2] Ignacio Escudero Sarabia. Implementation of different types of controllers to reduce
rotor-blade vibrations – an experimental approach, 2019.

[3] René H. Christensen and Ilmar Santos. A study of active rotor-blade vibration
control using electro-magnetic actuation: Part 1 — theory. In A Study of Active
Rotor-Blade Vibration Control Using Electro-Magnetic Actuation: Part 1 — Theory,
volume 6, 01 2004. doi: 10.1115/GT2004-53509.

[4] Christian Sidelmann Jakobsen. Shaft based attenuation of coupled rotor-blade
vibrations via gain-scheduled controlled – theory, akselbaserede reduktion af koblede
rotorblad vibrationer via tids varierende regulator – teori, 2012.

[5] Jesper Berg Hansen. Theoretical and experimental control of rotor-blade systems,
teoretisk og eksperimentel regulering af rotorbladesystemer, 2013.

[6] A.F. Twizell. Resistance strain gauges. Students Quarterly Journal, 21(82):93, 1950.
ISSN 20537875, 00392871. doi: 10.1049/sqj.1950.0082.

[7] Jeong-Yeol Yoon. Wheatstone bridge. Introduction To Biosensors, pages 79–90, 2016.
doi: 10.1007/978-3-319-27413-3_5,10.1007/978-3-319-27413-3.

[8] Keyence. What are Displacement Sensors (Displacement Gauges) and Dimension
Measurement Systems? | Measurement Library | KEYENCE America, 2017. URL
https://www.keyence.com/ss/products/measure/measurement_library/basic/
products_info/.

[9] S. Fizek, M. Reisinger, S. Silbers, and W. Amrhein. An electromagnet model
comprehending eddy current and end effects. In 2015 IEEE 11th International
Conference on Power Electronics and Drive Systems, pages 668–672, June 2015. doi:
10.1109/PEDS.2015.7203454.

[10] AB-022 : PWM Frequency for Linear Motion Control - Precision Microdrives. URL
https://www.precisionmicrodrives.com/content/
ab-022-pwm-frequency-for-linear-motion-control/.

[11] Maurizio Di Paolo Emilio and Maurizio Paolo Emilio. Microcontroller design.
Embedded Systems Design for High-speed Data Acquisition and Control, pages 33–48,
2014. doi: 10.1007/978-3-319-06865-7_3,10.1007/978-3-319-06865-7.

[12] Ilmar Santos. Mechatronics applied to machine elements with focus on active control
of bearing, shaft and blade dynamics, 2010.

60

https://www.keyence.com/ss/products/measure/measurement_library/basic/products_info/
https://www.keyence.com/ss/products/measure/measurement_library/basic/products_info/
https://www.precisionmicrodrives.com/content/ab-022-pwm-frequency-for-linear-motion-control/
https://www.precisionmicrodrives.com/content/ab-022-pwm-frequency-for-linear-motion-control/

References

[13] Rene H. Christensen and Ilmar F. Santos. Active rotor-blade vibration control using
shaft-based electromagnetic actuation. Journal of Engineering for Gas Turbines and
Power-transactions of the Asme, 128(3):644–652, 2006. ISSN 15288919, 07424795.
doi: 10.1115/1.2056533.

[14] Juan Camino and Ilmar Santos. A periodic h2 state feedback controller for a
rotor-blade system. In A periodic H2 state feedback controller for a rotor-blade
system, 09 2018.

[15] E. Mirambell and E. Real. On the calculation of deflections in structural stainless
steel beams: An experimental and numerical investigation. Journal of Constructional
Steel Research, 2000. ISSN 0143974X. doi: 10.1016/S0143-974X(99)00051-6.

[16] Maurizio Di Paolo Emilio and Maurizio Paolo Emilio. Operational amplifier.
Microelectronics, pages 45–54, 2015. doi:
10.1007/978-3-319-22545-6_4,10.1007/978-3-319-22545-6.

[17] René Hardam Christensen and Ilmar Ferreira Santos. Control of rotor-blade coupled
vibrations using shaft-based actuation. Shock and Vibration, 13(4-5):255–271, 2006.
ISSN 18759203, 10709622. doi: 10.1155/2006/398658.

[18] René Hardam Christensen and Ilmar Ferreira Santos. Control of rotor-blade coupled
vibrations using shaft-based actuation. 2006.

[19] TL James. Electro magnets. Nature, 64(1650):168–170, 1901. ISSN 14764687,
00280836. doi: 10.1038/064168a0.

[20] Improvements in electro magnets. Scientific American, 54(7):102–102, 1886. ISSN
19467087, 00368733. doi: 10.1038/scientificamerican02131886-102.

[21] C Walter and John Chrassont. Linear and nonlinear state-space controllers for
magnetic levitation. Technical Report 11, 1996.

[22] D. G. Holmes and T. A. Lipo. Pulse Width Modulation for Power Converters:
Principles and Practice. IEEE, 2003. ISBN 9780470546284. doi:
10.1109/9780470546284.app1.

[23] Gordon E Moore, Carver Mead, Alan Turing, and Douglas Engelbart. Moore ’ s law.
Online, 2007.

[24] Allan G. Bromley. Hardware experiments with cisc and risc computer architectures.
Acm International Conference Proceeding Series, 129322:207–215, 1997. doi:
10.1145/299359.299389.

[25] (1) What is different between 16 bit and 32 bit microcontroller? - Quora. URL
https://www.quora.com/
What-is-different-between-16-bit-and-32-bit-microcontroller.

[26] Christof Ebert, Gorka Gallardo, Josune Hernantes, and Nicolas Serrano. Devops.
Ieee Software, 33(3):7458761, 94–100, 2016. ISSN 19374194, 07407459. doi:
10.1109/MS.2016.68.

61

https://www.quora.com/What-is-different-between-16-bit-and-32-bit-microcontroller
https://www.quora.com/What-is-different-between-16-bit-and-32-bit-microcontroller

References

[27] José Miguel, David Báez-López, and David Alfredo Báez Villegas. Object-Oriented
Programming. In MATLAB® Handbook with Applications to Mathematics, Science,
Engineering, and Finance. 2019. doi: 10.1201/9781315228457-7.

[28] Warren Gay. I2c. Beginning Stm32, pages 195–221, 2018. doi:
10.1007/978-1-4842-3624-6_11,10.1007/978-1-4842-3624-6.

[29] PWM signal generation using DMA. Technical report, 2010. URL
http://www.renesas.com.

[30] What is a slip ring?
http://www.trolexengineering.co.uk/what-is-a-slip-ring.html, 2019.
Accessed: 2019-01-01.

[31] Myra Dideles. Bluetooth. Crossroads, 9(4):11–18, 2003. ISSN 15284980, 15284972.
doi: 10.1145/904080.904083.

[32] Robin Singh. Wi-fi. Computer Bulletin (london, 1986), 45(6):28, 2003. ISSN
1464357x, 00104531. doi: 10.1093/combul/45.6.28.

[33] What is the difference between TCP and UDP? URL
https://support.holmsecurity.com/hc/en-us/articles/
212963869-What-is-the-difference-between-TCP-and-UDP-.

[34] Nagel’s Algorithm – TCP_NODELAY vs. TCP_LOW_LATENCY –
Bearded_Admin, . URL http://beardedadmin.net/?p=140.

[35] Tweaking TCP for Real-time Applications: Nagle’s Algorithm and
Delayed Acknowledgment · CodeAhoy, . URL https://codeahoy.com/2017/03/19/
tweaking-tcp-for-real-time-applications-nagle-algorithm-and-delayed-acknowledgment/.

62

http://www.renesas.com
http://www.trolexengineering.co.uk/what-is-a-slip-ring.html
https://support.holmsecurity.com/hc/en-us/articles/212963869-What-is-the-difference-between-TCP-and-UDP-
https://support.holmsecurity.com/hc/en-us/articles/212963869-What-is-the-difference-between-TCP-and-UDP-
http://beardedadmin.net/?p=140
https://codeahoy.com/2017/03/19/tweaking-tcp-for-real-time-applications-nagle-algorithm-and-delayed-acknowledgment/
https://codeahoy.com/2017/03/19/tweaking-tcp-for-real-time-applications-nagle-algorithm-and-delayed-acknowledgment/

A PLANES AND DATA SHEETS

This appendix includes the plane of the sensor support piece described in Chapter 3 as
well as all the datasheet of the different electronic components present in this project. The
components are the following.

1. Sensor supporter piece planes
2. Eddy-current sensor Pulsotronic kj4-m12mn50-anu
3. Operational amplifier LM 741
4. Electromagnets RS Pro Magnetic Lock, 1670N
5. H-bridge driver L298n
6. Microcontroller board Raspberry Pi 3 model b+
7. Analog to digital converter ADS 1105

63

A. Planes and data sheets

1 1

2 2

3 3

4 4

5 5

6 6

A
A

B
B

C
C

D
D

M
a
r
í
a

0
8
/
1
0
/
2
0
1
8

D
i
s
e
ñ
o

d
e

R
e
v
i
s
a
d
o

p
o
r

A
p
r
o
b
a
d
o

p
o
r

F
e
c
h
a

1

/

1

E
d
i
c
i
ó
n

H
o
j
a

F
e
c
h
a

5
5
,
0
0

1
2
,
0
0

1
2
,
5
0

2,50

2
,
5
0

3
0
,
0
0

20,00

4
,
0
0

4
,
0
0

1
8
,
0
0

8,00

10,00

A
l

6
0
8
2

o
r

a
n
y

o
t
h
e
r

T
o
l
e
r
a
n
c
e
s

a
r
e

I
S
O

2
7
6
8
-
1
-
m

T
e
l
f
:

5
0
3
1
1
6
1
6

64

KJ4-M12MN50-ANU
Pulsotronic GmbH & Co. KG Neue Schichtstraße 14b 09366 Niederdorf Deutschland +49 (0)37296 930-200

Article Page

Product Description inductive sensor analogue

Name KJ4-M12MN50-ANU

Order number 08317144800

Switching distance 4 mm

Mounting
 non shielded

Switch type
 analog

Signal Type Analog Voltage

Connection
 Cable

Connection diagramm

Dimension (in mm) fine-pitch thread M12 x 50

Technical Specification

Operating voltage 11 - 35 VDC

Max. ripple ≤ 10 %

No load current ≤ 5 mA

Switching frequency 400

Operating temperature -25 ° C to 70 ° C

Temperature drift +/-5 %

Repeat accuracy ≤ 1 %

Linearity ≤ 5 %

Analog output Pulso_has1

Digital output

Protection category IP67

EMC-level DIN EN 60947-5-7:2004-06

Material active face PCB

Termination 2m PCV 3x0,34mm²

Errors and omissions exceptet

Powered by TCPDF (www.tcpdf.org)

 Page 1/1 Sunday, 17 February 2019 17:20

A. Planes and data sheets

65

LM741

-

+ V-

V+

+Vsupply

R1

Vinput

Output

R2

-Vsupply

Product

Folder

Sample &
Buy

Technical

Documents

Tools &

Software

Support &
Community

LM741
SNOSC25D –MAY 1998–REVISED OCTOBER 2015

LM741 Operational Amplifier
1 Features 3 Description

The LM741 series are general-purpose operational
1• Overload Protection on the Input and Output

amplifiers which feature improved performance over• No Latch-Up When the Common-Mode Range is industry standards like the LM709. They are direct,
Exceeded plug-in replacements for the 709C, LM201, MC1439,

and 748 in most applications.
2 Applications

The amplifiers offer many features which make their
• Comparators application nearly foolproof: overload protection on

the input and output, no latch-up when the common-• Multivibrators
mode range is exceeded, as well as freedom from• DC Amplifiers
oscillations.

• Summing Amplifiers
The LM741C is identical to the LM741 and LM741A• Integrator or Differentiators
except that the LM741C has their performance

• Active Filters ensured over a 0°C to +70°C temperature range,
instead of −55°C to +125°C.

Device Information(1)

PART NUMBER PACKAGE BODY SIZE (NOM)
TO-99 (8) 9.08 mm × 9.08 mm

LM741 CDIP (8) 10.16 mm × 6.502 mm
PDIP (8) 9.81 mm × 6.35 mm

(1) For all available packages, see the orderable addendum at
the end of the data sheet.

Typical Application

1

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
intellectual property matters and other important disclaimers. PRODUCTION DATA.

A. Planes and data sheets

66

LM741
www.ti.com SNOSC25D –MAY 1998–REVISED OCTOBER 2015

5 Pin Configuration and Functions

LMC Package NAB Package
8-Pin TO-99 8-Pin CDIP or PDIP

Top View Top View

LM741H is available per JM38510/10101

Pin Functions
PIN

I/O DESCRIPTION
NAME NO.
INVERTING 2 I Inverting signal inputINPUT
NC 8 N/A No Connect, should be left floating
NONINVERTING 3 I Noninverting signal inputINPUT
OFFSET NULL

1, 5 I Offset null pin used to eliminate the offset voltage and balance the input voltages.
OFFSET NULL
OUTPUT 6 O Amplified signal output
V+ 7 I Positive supply voltage
V– 4 I Negative supply voltage

Copyright © 1998–2015, Texas Instruments Incorporated Submit Documentation Feedback 3

Product Folder Links: LM741

A. Planes and data sheets

67

LM741
SNOSC25D –MAY 1998–REVISED OCTOBER 2015 www.ti.com

6 Specifications

6.1 Absolute Maximum Ratings
over operating free-air temperature range (unless otherwise noted) (1) (2) (3)

MIN MAX UNIT
LM741, LM741A ±22

Supply voltage V
LM741C ±18

Power dissipation (4) 500 mW
Differential input voltage ±30 V
Input voltage (5) ±15 V
Output short circuit duration Continuous

LM741, LM741A –50 125
Operating temperature °C

LM741C 0 70
LM741, LM741A 150

Junction temperature °C
LM741C 100
PDIP package (10 seconds) 260 °C

Soldering information
CDIP or TO-99 package (10 seconds) 300 °C

Storage temperature, Tstg –65 150 °C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) For military specifications see RETS741X for LM741 and RETS741AX for LM741A.
(3) If Military/Aerospace specified devices are required, please contact the TI Sales Office/Distributors for availability and specifications.
(4) For operation at elevated temperatures, these devices must be derated based on thermal resistance, and Tj max. (listed under “Absolute

Maximum Ratings”). Tj = TA + (θjA PD).
(5) For supply voltages less than ±15 V, the absolute maximum input voltage is equal to the supply voltage.

6.2 ESD Ratings
VALUE UNIT

V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1) ±400 V

(1) Level listed above is the passing level per ANSI, ESDA, and JEDEC JS-001. JEDEC document JEP155 states that 500-V HBM allows
safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions
over operating free-air temperature range (unless otherwise noted)

MIN NOM MAX UNIT
LM741, LM741A ±10 ±15 ±22

Supply voltage (VDD-GND) V
LM741C ±10 ±15 ±18
LM741, LM741A –55 125

Temperature °C
LM741C 0 70

6.4 Thermal Information
LM741

THERMAL METRIC (1) LMC (TO-99) NAB (CDIP) P (PDIP) UNIT
8 PINS 8 PINS 8 PINS

RθJA Junction-to-ambient thermal resistance 170 100 100 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 25 — — °C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application
report, SPRA953.

4 Submit Documentation Feedback Copyright © 1998–2015, Texas Instruments Incorporated

Product Folder Links: LM741

A. Planes and data sheets

68

LM741
www.ti.com SNOSC25D –MAY 1998–REVISED OCTOBER 2015

6.5 Electrical Characteristics, LM741 (1)

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
TA = 25°C 1 5 mV

Input offset voltage RS ≤ 10 kΩ
TAMIN ≤ TA ≤ TAMAX 6 mV

Input offset voltage TA = 25°C, VS = ±20 V ±15 mVadjustment range
TA = 25°C 20 200

Input offset current nA
TAMIN ≤ TA ≤ TAMAX 85 500
TA = 25°C 80 500 nA

Input bias current
TAMIN ≤ TA ≤ TAMAX 1.5 μA

Input resistance TA = 25°C, VS = ±20 V 0.3 2 MΩ
Input voltage range TAMIN ≤ TA ≤ TAMAX ±12 ±13 V

TA = 25°C 50 200VS = ±15 V, VO = ±10 V, RL ≥ 2Large signal voltage gain V/mVkΩ TAMIN ≤ TA ≤ TAMAX 25
RL ≥ 10 kΩ ±12 ±14

Output voltage swing VS = ±15 V V
RL ≥ 2 kΩ ±10 ±13

Output short circuit current TA = 25°C 25 mA
Common-mode rejection ratio RS ≤ 10 Ω, VCM = ±12 V, TAMIN ≤ TA ≤ TAMAX 80 95 dB
Supply voltage rejection ratio VS = ±20 V to VS = ±5 V, RS ≤ 10 Ω, TAMIN ≤ TA ≤ TAMAX 86 96 dB

Rise time 0.3 μsTransient TA = 25°C, unity gainresponse Overshoot 5%
Slew rate TA = 25°C, unity gain 0.5 V/μs
Supply current TA = 25°C 1.7 2.8 mA

TA = 25°C 50 85
Power consumption VS = ±15 V TA = TAMIN 60 100 mW

TA = TAMAX 45 75

(1) Unless otherwise specified, these specifications apply for VS = ±15 V, −55°C ≤ TA ≤ +125°C (LM741/LM741A). For the
LM741C/LM741E, these specifications are limited to 0°C ≤ TA ≤ +70°C.

6.6 Electrical Characteristics, LM741A (1)

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
TA = 25°C 0.8 3 mV

Input offset voltage RS ≤ 50 Ω
TAMIN ≤ TA ≤ TAMAX 4 mV

Average input offset voltage 15 μV/°Cdrift
Input offset voltage TA = 25°C, VS = ±20 V ±10 mVadjustment range

TA = 25°C 3 30
Input offset current nA

TAMIN ≤ TA ≤ TAMAX 70
Average input offset 0.5 nA/°Ccurrent drift

TA = 25°C 30 80 nA
Input bias current

TAMIN ≤ TA ≤ TAMAX 0.21 μA
TA = 25°C, VS = ±20 V 1 6

Input resistance MΩ
TAMIN ≤ TA ≤ TAMAX, VS = ±20 V 0.5

TA = 25°C 50VS = ±20 V, VO = ±15 V, RL ≥ 2
kΩLarge signal voltage gain TAMIN ≤ TA ≤ TAMAX 32 V/mV
VS = ±5 V, VO = ±2 V, RL ≥ 2 kΩ, TAMIN ≤ TA ≤ TAMAX 10

(1) Unless otherwise specified, these specifications apply for VS = ±15 V, −55°C ≤ TA ≤ +125°C (LM741/LM741A). For the
LM741C/LM741E, these specifications are limited to 0°C ≤ TA ≤ +70°C.

Copyright © 1998–2015, Texas Instruments Incorporated Submit Documentation Feedback 5

Product Folder Links: LM741

A. Planes and data sheets

69

ENGLISH

RS, Professionally Approved Products, gives you professional quality parts across all products categories. Our range has been testified by
engineers as giving comparable quality to that of the leading brands without paying a premium price.

Datasheet

RS Pro Magnetic Lock, 1670N

RS Stock No: 739-3233

RS Pro magnetic lock provides a holding force when de-energised and release when pulsed. This electromagnetic
lock offers 1670 N dynamic holding force capacity and is suitable for typical applications such as machine
mechanisms, door/guard locking and remote hold/release requirements.

Features and Benefits
• Holding force of 1670 N
• Suitable for typical applications such as machine mechanisms, door/guard locking and remote hold/release
requirements
• Provides a holding force when de-energised and release when pulsed

Product Details

A. Planes and data sheets

70

ENGLISH

RS, Professionally Approved Products, gives you professional quality parts across all products categories. Our range has been testified by
engineers as giving comparable quality to that of the leading brands without paying a premium price.

Specifications:
AC or DC Operation DC

Diameter 65 mm

Holding Force 1670 N

Length 111 mm

Supply Voltage 24 V dc

Depth 35 mm

Application
Machine Mechanisms, Door/Guard
Locking & Remote Hold/Release
Requirements

Current Rating 340 mA

Finish
Bright Nickel Plated with Machined
Face

IP Rating IP20

Power Consumption 8.2 W

A. Planes and data sheets

71

L298

Jenuary 2000

DUAL FULL-BRIDGE DRIVER

Multiwatt15

ORDERING NUMBERS : L298N (Multiwatt Vert.)
 L298HN (Multiwatt Horiz.)

 L298P (PowerSO20)

BLOCK DIAGRAM

.OPERATING SUPPLY VOLTAGE UP TO 46 V.TOTAL DC CURRENT UP TO 4 A . LOW SATURATION VOLTAGE.OVERTEMPERATURE PROTECTION.LOGICAL "0" INPUT VOLTAGE UP TO 1.5 V
(HIGH NOISE IMMUNITY)

DESCRIPTION

The L298 is an integrated monolithic circuit in a 15-
lead Multiwatt and PowerSO20 packages. It is a
high voltage, high current dual full-bridge driver de-
signed to accept standard TTL logic levels and drive
inductive loads such as relays, solenoids, DC and
stepping motors. Two enable inputs are provided to
enable or disable the device independently of the in-
put signals. The emitters of the lower transistors of
each bridge are connected together and the corre-
sponding external terminal can be used for the con-

nection of an external sensing resistor. An additional
supply input is provided so that the logic works at a
lower voltage.

PowerSO20

®

1/13

A. Planes and data sheets

72

PIN CONNECTIONS (top view)

GND

Input 2 VSS

N.C.

Out 1

VS

Out 2

Input 1

Enable A

Sense A

GND 10

8

9

7

6

5

4

3

2

13

14

15

16

17

19

18

20

12

1

11 GND

D95IN239

Input 3

Enable B

Out 3

Input 4

Out 4

N.C.

Sense B

GND

ABSOLUTE MAXIMUM RATINGS

Symbol Parameter Value Unit

VS Power Supply 50 V

VSS Logic Supply Voltage 7 V

VI,Ven Input and Enable Voltage –0.3 to 7 V

IO Peak Output Current (each Channel)
– Non Repetitive (t = 100µs)
–Repetitive (80% on –20% off; ton = 10ms)
–DC Operation

3
2.5
2

A
A
A

Vsens Sensing Voltage –1 to 2.3 V

Ptot Total Power Dissipation (Tcase = 75°C) 25 W

Top Junction Operating Temperature –25 to 130 °C
Tstg, Tj Storage and Junction Temperature –40 to 150 °C

THERMAL DATA

Symbol Parameter PowerSO20 Multiwatt15 Unit

Rth j-case Thermal Resistance Junction-case Max. – 3 °C/W

Rth j-amb Thermal Resistance Junction-ambient Max. 13 (*) 35 °C/W

(*) Mounted on aluminum substrate

1

2

3

4

5

6

7

9

10

11

8

ENABLE B

INPUT 3

LOGIC SUPPLY VOLTAGE VSS

GND

INPUT 2

ENABLE A

INPUT 1

SUPPLY VOLTAGE VS

OUTPUT 2

OUTPUT 1

CURRENT SENSING A

TAB CONNECTED TO PIN 8

13

14

15

12

CURRENT SENSING B

OUTPUT 4

OUTPUT 3

INPUT 4

D95IN240A

Multiwatt15

PowerSO20

L298

2/13

A. Planes and data sheets

73

PIN FUNCTIONS (refer to the block diagram)

MW.15 PowerSO Name Function

1;15 2;19 Sense A; Sense B Between this pin and ground is connected the sense resistor to
control the current of the load.

2;3 4;5 Out 1; Out 2 Outputs of the Bridge A; the current that flows through the load
connected between these two pins is monitored at pin 1.

4 6 VS Supply Voltage for the Power Output Stages.
A non-inductive 100nF capacitor must be connected between this
pin and ground.

5;7 7;9 Input 1; Input 2 TTL Compatible Inputs of the Bridge A.

6;11 8;14 Enable A; Enable B TTL Compatible Enable Input: the L state disables the bridge A
(enable A) and/or the bridge B (enable B).

8 1,10,11,20 GND Ground.

9 12 VSS Supply Voltage for the Logic Blocks. A100nF capacitor must be
connected between this pin and ground.

10; 12 13;15 Input 3; Input 4 TTL Compatible Inputs of the Bridge B.

13; 14 16;17 Out 3; Out 4 Outputs of the Bridge B. The current that flows through the load
connected between these two pins is monitored at pin 15.

– 3;18 N.C. Not Connected

ELECTRICAL CHARACTERISTICS (VS = 42V; VSS = 5V, Tj = 25°C; unless otherwise specified)

Symbol Parameter Test Conditions Min. Typ. Max. Unit

VS Supply Voltage (pin 4) Operative Condition VIH +2.5 46 V

VSS Logic Supply Voltage (pin 9) 4.5 5 7 V

IS Quiescent Supply Current (pin 4) Ven = H; IL = 0 Vi = L
 Vi = H

13
50

22
70

mA
mA

Ven = L Vi = X 4 mA

ISS Quiescent Current from VSS (pin 9) Ven = H; IL = 0 Vi = L
 Vi = H

24
7

36
12

mA
mA

Ven = L Vi = X 6 mA

ViL Input Low Voltage
(pins 5, 7, 10, 12)

–0.3 1.5 V

ViH Input High Voltage
(pins 5, 7, 10, 12)

2.3 VSS V

IiL Low Voltage Input Current
(pins 5, 7, 10, 12)

Vi = L –10 µA

IiH High Voltage Input Current
(pins 5, 7, 10, 12)

Vi = H ≤ VSS –0.6V 30 100 µA

Ven = L Enable Low Voltage (pins 6, 11) –0.3 1.5 V

Ven = H Enable High Voltage (pins 6, 11) 2.3 VSS V

Ien = L Low Voltage Enable Current
(pins 6, 11)

Ven = L –10 µA

Ien = H High Voltage Enable Current
(pins 6, 11)

Ven = H ≤ VSS –0.6V 30 100 µA

VCEsat (H) Source Saturation Voltage IL = 1A
IL = 2A

0.95 1.35
2

1.7
2.7

V
V

VCEsat (L) Sink Saturation Voltage IL = 1A (5)
IL = 2A (5)

0.85 1.2
1.7

1.6
2.3

V
V

VCEsat Total Drop IL = 1A (5)
IL = 2A (5)

1.80 3.2
4.9

V
V

Vsens Sensing Voltage (pins 1, 15) –1 (1) 2 V

L298

3/13

A. Planes and data sheets

74

Figure 1 : Typical Saturation Voltage vs. Output
 Current.

Figure 2 : Switching Times Test Circuits.

Note : For INPUT Switching, set EN = H
For ENABLE Switching, set IN = H

1) 1)Sensing voltage can be –1 V for t ≤ 50 µsec; in steady state Vsens min ≥ – 0.5 V.
2) See fig. 2.
3) See fig. 4.
4) The load must be a pure resistor.

ELECTRICAL CHARACTERISTICS (continued)

Symbol Parameter Test Conditions Min. Typ. Max. Unit

T1 (Vi) Source Current Turn-off Delay 0.5 Vi to 0.9 IL (2); (4) 1.5 µs

T2 (Vi) Source Current Fall Time 0.9 IL to 0.1 IL (2); (4) 0.2 µs

T3 (Vi) Source Current Turn-on Delay 0.5 Vi to 0.1 IL (2); (4) 2 µs

T4 (Vi) Source Current Rise Time 0.1 IL to 0.9 IL (2); (4) 0.7 µs

T5 (Vi) Sink Current Turn-off Delay 0.5 Vi to 0.9 IL (3); (4) 0.7 µs

T6 (Vi) Sink Current Fall Time 0.9 IL to 0.1 IL (3); (4) 0.25 µs

T7 (Vi) Sink Current Turn-on Delay 0.5 Vi to 0.9 IL (3); (4) 1.6 µs

T8 (Vi) Sink Current Rise Time 0.1 IL to 0.9 IL (3); (4) 0.2 µs

fc (Vi) Commutation Frequency IL = 2A 25 40 KHz

T1 (Ven) Source Current Turn-off Delay 0.5 Ven to 0.9 IL (2); (4) 3 µs

T2 (Ven) Source Current Fall Time 0.9 IL to 0.1 IL (2); (4) 1 µs

T3 (Ven) Source Current Turn-on Delay 0.5 Ven to 0.1 IL (2); (4) 0.3 µs

T4 (Ven) Source Current Rise Time 0.1 IL to 0.9 IL (2); (4) 0.4 µs

T5 (Ven) Sink Current Turn-off Delay 0.5 Ven to 0.9 IL (3); (4) 2.2 µs

T6 (Ven) Sink Current Fall Time 0.9 IL to 0.1 IL (3); (4) 0.35 µs

T7 (Ven) Sink Current Turn-on Delay 0.5 Ven to 0.9 IL (3); (4) 0.25 µs

T8 (Ven) Sink Current Rise Time 0.1 IL to 0.9 IL (3); (4) 0.1 µs

L298

4/13

A. Planes and data sheets

75

Raspberry Pi 3
Model B+

A. Planes and data sheets

76

1
Raspberry Pi 3 Model B+

raspberrypi.org

Overview

The Raspberry Pi 3 Model B+ is the latest product in the Raspberry Pi 3 range,
boasting a 64-bit quad core processor running at 1.4GHz, dual-band 2.4GHz
and 5GHz wireless LAN, Bluetooth 4.2/BLE, faster Ethernet, and PoE capability
via a separate PoE HAT

The dual-band wireless LAN comes with modular compliance certification,
allowing the board to be designed into end products with significantly reduced
wireless LAN compliance testing, improving both cost and time to market.

The Raspberry Pi 3 Model B+ maintains the same mechanical footprint as both
the Raspberry Pi 2 Model B and the Raspberry Pi 3 Model B.

A. Planes and data sheets

77

2
Raspberry Pi 3 Model B+

raspberrypi.org

Broadcom BCM2837B0, Cortex-A53
64-bit SoC @ 1.4GHz

1GB LPDDR2 SDRAM

2.4GHz and 5GHz IEEE 802.11.b/g/n/ac wireless
LAN, Bluetooth 4.2, BLE
Gigabit Ethernet over USB 2.0 (maximum throughput
300Mbps)
4 × USB 2.0 ports

Extended 40-pin GPIO header

1 × full size HDMI
MIPI DSI display port
MIPI CSI camera port
4 pole stereo output and composite video port

H.264, MPEG-4 decode (1080p30); H.264 encode
(1080p30); OpenGL ES 1.1, 2.0 graphics

Micro SD format for loading operating system and
data storage

5V/2.5A DC via micro USB connector
5V DC via GPIO header
Power over Ethernet (PoE)–enabled (requires
separate PoE HAT)

Operating temperature, 0–50°C

For a full list of local and regional product approvals,
please visit www.raspberrypi.org/products/raspberry -
pi-3-model-b+

The Raspberry Pi 3 Model B+ will remain in production
until at least January 2023.

Processor:

Memory:

Connectivity:

Access:

Video & sound:

Multimedia:

SD card support:

Input power:

Environment:

Compliance:

Production lifetime:

Specifications

A. Planes and data sheets

78

3
Raspberry Pi 3 Model B+

raspberrypi.org

Warnings

Safety instructions

This product should only be connected to an external power supply rated at 5V/2.5 A DC. Any external power
supply used with the Raspberry Pi 3 Model B+ shall comply with relevant regulations and standards applicable
in the country of intended use.

This product should be operated in a well-ventilated environment and, if used inside a case, the case should
not be covered.

Whilst in use, this product should be placed on a stable, flat, non-conductive surface and should not be
contacted by conductive items.

The connection of incompatible devices to the GPIO connection may affect compliance, result in damage to
the unit, and invalidate the warranty.

All peripherals used with this product should comply with relevant standards for the country of use and be
marked accordingly to ensure that safety and performance requirements are met. These articles include but
are not limited to keyboards, monitors, and mice when used in conjunction with the Raspberry Pi.

The cables and connectors of all peripherals used with this product must have adequate insulation so that
relevant safety requirements are met.

To avoid malfunction of or damage to this product, please observe the following:

Do not expose to water or moisture, or place on a conductive surface whilst in operation.

Do not expose to heat from any source; the Raspberry Pi 3 Model B+ is designed for reliable operation at
normal ambient temperatures.

Take care whilst handling to avoid mechanical or electrical damage to the printed circuit board and connectors.

Whilst it is powered, avoid handling the printed circuit board, or only handle it by the edges to minimise the
risk of electrostatic discharge damage.

Physical specifications

A. Planes and data sheets

79

ADS1015

ADS1015

12-Bit

ADC

DS I C

Interface

2

Voltage

Reference

Oscillator

SCL

SDA

ADDR

ADS1013

AIN1

AIN0

12-Bit

ADC

DS I C

Interface

2

Voltage

Reference

Oscillator

ALERT/RDY

SCL

SDA

ADDR

PGA

ComparatorADS1015

ADS1014

MUX

AIN1

AIN2

AIN0

AIN3

ADS1015

Only

VDD

GND

VDD

GND

ADS1013
ADS1014
ADS1015

www.ti.com SBAS473C –MAY 2009–REVISED OCTOBER 2009

Ultra-Small, Low-Power, 12-Bit
Analog-to-Digital Converter with Internal Reference

Check for Samples: ADS1013 ADS1014 ADS1015

1FEATURES DESCRIPTION
23• ULTRA-SMALL QFN PACKAGE: The ADS1013, ADS1014, and ADS1015 are

2mm × 1,5mm × 0,4mm precision analog-to-digital converters (ADCs) with 12
bits of resolution offered in an ultra-small, leadless• WIDE SUPPLY RANGE: 2.0V to 5.5V
QFN-10 package or an MSOP-10 package. The• LOW CURRENT CONSUMPTION:
ADS1013/4/5 are designed with precision, power, and

Continuous Mode: Only 150μA ease of implementation in mind. The ADS1013/4/5
Single-Shot Mode: Auto Shut-Down feature an onboard reference and oscillator. Data are

• PROGRAMMABLE DATA RATE: transferred via an I2C-compatible serial interface; four
I2C slave addresses can be selected. The128SPS to 3.3kSPS
ADS1013/4/5 operate from a single power supply• INTERNAL LOW-DRIFT
ranging from 2.0V to 5.5V.VOLTAGE REFERENCE
The ADS1013/4/5 can perform conversions at rates• INTERNAL OSCILLATOR
up to 3300 samples per second (SPS). An onboard• INTERNAL PGA PGA is available on the ADS1014 and ADS1015 that

• I2C™ INTERFACE: Pin-Selectable Addresses offers input ranges from the supply to as low as
±256mV, allowing both large and small signals to be• FOUR SINGLE-ENDED OR TWO
measured with high resolution. The ADS1015 alsoDIFFERENTIAL INPUTS (ADS1015)
features an input multiplexer (MUX) that provides two

• PROGRAMMABLE COMPARATOR differential or four single-ended inputs.
(ADS1014 and ADS1015)

The ADS1013/4/5 operate either in continuous
conversion mode or a single-shot mode thatAPPLICATIONS
automatically powers down after a conversion and• PORTABLE INSTRUMENTATION greatly reduces current consumption during idle

• CONSUMER GOODS periods. The ADS1013/4/5 are specified from –40°C
• BATTERY MONITORING to +125°C.
• TEMPERATURE MEASUREMENT
• FACTORY AUTOMATION AND PROCESS

CONTROLS

1

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

2I2C is a trademark of NXP Semiconductors.
3All other trademarks are the property of their respective owners.

PRODUCTION DATA information is current as of publication date. Copyright © 2009, Texas Instruments Incorporated
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.

A. Planes and data sheets

80

ADS1013
ADS1014
ADS1015
SBAS473C –MAY 2009–REVISED OCTOBER 2009 www.ti.com

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ORDERING INFORMATION

For the most current package and ordering information, see the Package Option Addendum at the end of this
document, or see the TI web site at www.ti.com.

ABSOLUTE MAXIMUM RATINGS (1)

ADS1013, ADS1014, ADS1015 UNIT

VDD to GND –0.3 to +5.5 V

Analog input current 100, momentary mA

Analog input current 10, continuous mA

Analog input voltage to GND –0.3 to VDD + 0.3 V

SDA, SCL, ADDR, ALERT/RDY voltage to GND –0.5 to +5.5 V

Maximum junction temperature +150 °C

Storage temperature range –60 to +150 °C

(1) Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute
maximum conditions for extended periods may affect device reliability.

PRODUCT FAMILY
PACKAGE INPUT CHANNELS

DESIGNATOR RESOLUTION MAXIMUM SAMPLE (Differential/
DEVICE MSOP/QFN (Bits) RATE (SPS) COMPARATOR PGA Single-Ended)

ADS1113 BROI/N6J 16 860 No No 1/1

ADS1114 BRNI/N5J 16 860 Yes Yes 1/1

ADS1115 BOGI/N4J 16 860 Yes Yes 2/4

ADS1013 BRMI/N9J 12 3300 No No 1/1

ADS1014 BRQI/N8J 12 3300 Yes Yes 1/1

ADS1015 BRPI/N7J 12 3300 Yes Yes 2/4

2 Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated

Product Folder Link(s): ADS1013 ADS1014 ADS1015

A. Planes and data sheets

81

ADS1013
ADS1014
ADS1015

www.ti.com SBAS473C –MAY 2009–REVISED OCTOBER 2009

ELECTRICAL CHARACTERISTICS
All specifications at –40°C to +125°C, VDD = 3.3V, and Full-Scale (FS) = ±2.048V, unless otherwise noted.
Typical values are at +25°C.

ADS1013, ADS1014, ADS1015

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

ANALOG INPUT

Full-scale input voltage (1) VIN = (AINP) – (AINN) ±4.096/PGA V

Analog input voltage AINP or AINN to GND GND VDD V

Differential input impedance See Table 2

FS = ±6.144V (1) 10 MΩ
FS = ±4.096V (1), ±2.048V 6 MΩ

Common-mode input impedance
FS = ±1.024V 3 MΩ

FS = ±0.512V, ±0.256V 100 MΩ
SYSTEM PERFORMANCE

Resolution No missing codes 12 Bits

128, 250,
490, 920,Data rate (DR) SPS1600, 2400,

3300

Data rate variation All data rates –10 10 %

Output noise See Typical Characteristics

Integral nonlinearity DR = 128SPS, FS = ±2.048V, best fit (2) 0.5 LSB

FS = ±2.048V, differential inputs 0 ±0.5 LSB
Offset error

FS = ±2.048V, single-ended inputs ±0.25 LSB

Offset drift FS = ±2.048V 0.005 LSB/°C

Gain error (3) FS = ±2.048V at 25°C 0.05 0.25 %

FS = ±0.256V 7 ppm/°C

Gain drift (3) FS = ±2.048V 5 40 ppm/°C

FS = ±6.144V (1) 5 ppm/°C

PGA gain match (3) Match between any two PGA gains 0.02 0.1 %

Gain match Match between any two inputs 0.05 0.1 %

Offset match Match between any two inputs 0.25 LSB

DIGITAL INPUT/OUTPUT

Logic level

VIH 0.7VDD 5.5 V

VIL GND – 0.5 0.3VDD V

VOL IOL = 3mA GND 0.15 0.4 V

Input leakage

IH VIH = 5.5V 10 μA

IL VIL = GND 10 μA

(1) This parameter expresses the full-scale range of the ADC scaling. In no event should more than VDD + 0.3V be applied to this device.
(2) 99% of full-scale.
(3) Includes all errors from onboard PGA and reference.

Copyright © 2009, Texas Instruments Incorporated Submit Documentation Feedback 3

Product Folder Link(s): ADS1013 ADS1014 ADS1015

A. Planes and data sheets

82

1

2

3

4

5

10

9

8

7

6

ADDR

ALERT/RDY (ADS1014/5 Only)

GND

AIN0

AIN1

SCL

SDA

VDD

AIN3 (ADS1015 Only)

AIN2 (ADS1015 Only)

ADS1013

ADS1014

ADS1015

DGS PACKAGE

MSOP-10

(TOP VIEW)

5

10

1

2

3

4

ADDR

ALERT/RDY (ADS1014/5 Only)

GND

AIN0

AIN1

SCL

9

8

7

6

SDA

VDD

AIN3 (ADS1015 Only)

AIN2 (ADS1015 Only)

ADS1013

ADS1014

ADS1015

RUG PACKAGE

QFN-10

(TOP VIEW)

ADS1013
ADS1014
ADS1015
SBAS473C –MAY 2009–REVISED OCTOBER 2009 www.ti.com

ELECTRICAL CHARACTERISTICS (continued)
All specifications at –40°C to +125°C, VDD = 3.3V, and Full-Scale (FS) = ±2.048V, unless otherwise noted.
Typical values are at +25°C.

ADS1013, ADS1014, ADS1015

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

POWER-SUPPLY REQUIREMENTS

Power-supply voltage 2 5.5 V

Power-down current at 25°C 0.5 2 μA

Power-down current up to 125°C 5 μA
Supply current

Operating current at 25°C 150 200 μA

Operating current up to 125°C 300 μA

VDD = 5.0V 0.9 mW

Power dissipation VDD = 3.3V 0.5 mW

VDD = 2.0V 0.3 mW

TEMPERATURE

Storage temperature –60 +150 °C

Specified temperature –40 +125 °C

PIN CONFIGURATIONS

PIN DESCRIPTIONS
DEVICE

PIN # ADS1013 ADS1014 ADS1015 FUNCTION DESCRIPTION

1 ADDR ADDR ADDR Digital input I2C slave address select

2 NC (1) ALERT/RDY ALERT/RDY Digital output Digital comparator output or conversion ready (NC for ADS1013)

3 GND GND GND Supply Ground

4 AIN0 AIN0 AIN0 Analog input Differential channel 1: Positive input or single-ended channel 1 input

5 AIN1 AIN1 AIN1 Analog input Differential channel 1: Negative input or single-ended channel 2 input

6 NC NC AIN2 Analog input Differential channel 2: Positive input or single-ended channel 3 input (NC for ADS1013/4)

Differential channel 2: Negative input or single-ended channel 4 input7 NC NC AIN3 Analog input (NC for ADS1013/4)

8 VDD VDD VDD Supply Power supply: 2.0V to 5.5V

9 SDA SDA SDA Digital I/O Serial data: Transmits and receives data

10 SCL SCL SCL Digital input Serial clock input: Clocks data on SDA

(1) NC pins may be left floating or tied to ground.

4 Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated

Product Folder Link(s): ADS1013 ADS1014 ADS1015

A. Planes and data sheets

83

ADS1013
ADS1014
ADS1015

www.ti.com SBAS473C –MAY 2009–REVISED OCTOBER 2009

When reading from the ADS1013/4/5, the previous POINTER REGISTER
value written to the Pointer register determines the

The four registers are accessed by writing to theregister that is read from. To change which register is
Pointer register byte; see Figure 16. Table 6 andread, a new value must be written to the Pointer
Table 7 indicate the Pointer register byte map.register. To write a new value to the Pointer register,

the master issues a slave address byte with the R/W
Table 6. Register Addressbit low, followed by the Pointer register byte. No

BIT 1 BIT 0 REGISTERadditional data need to be transmitted, and a STOP
condition can be issued by the master. The master 0 0 Conversion register
may now issue a START condition and send the 0 1 Config register
slave address byte with the R/W bit high to begin the

1 0 Lo_thresh registerread. Figure 16 details this sequence. If repeated
1 1 Hi_thresh registerreads from the same register are desired, there is no

need to continually send Pointer register bytes,
because the ADS1013/4/5 store the value of the CONVERSION REGISTER
Pointer register until it is modified by a write

The 16-bit register contains the result of the lastoperation. However, every write operation requires
conversion in binary twos complement format.the Pointer register to be written.
Following reset or power-up, the Conversion register
is cleared to '0', and remains '0' until the firstREGISTERS conversion is completed.

The ADS1013/4/5 have four registers that are The register format is shown in Table 8.accessible via the I2C port. The Conversion register
contains the result of the last conversion. The Config CONFIG REGISTERregister allows the user to change the ADS1013/4/5
operating modes and query the status of the devices. The 16-bit register can be used to control the
Two registers, Lo_thresh and Hi_thresh, set the ADS1013/4/5 operating mode, input selection, data
threshold values used for the comparator function. rate, PGA settings, and comparator modes. The

register format is shown in Table 9.

Table 7. Pointer Register Byte (Write-Only)

BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0

0 0 0 0 0 0 Register address

Table 8. Conversion Register (Read-Only)

BIT 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NAME D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0

Table 9. Config Register (Read/Write)

BIT 15 14 13 12 11 10 9 8

NAME OS MUX2 MUX1 MUX0 PGA2 PGA1 PGA0 MODE

blank

BIT 7 6 5 4 3 2 1 0

NAME DR2 DR1 DR0 COMP_MODE COMP_POL COMP_LAT COMP_QUE1 COMP_QUE0

Default = 8583h.

Bit [15] OS: Operational status/single-shot conversion start

This bit determines the operational status of the device.
This bit can only be written when in power-down mode.

For a write status:
0 : No effect
1 : Begin a single conversion (when in power-down mode)
For a read status:
0 : Device is currently performing a conversion
1 : Device is not currently performing a conversion

Copyright © 2009, Texas Instruments Incorporated Submit Documentation Feedback 15

Product Folder Link(s): ADS1013 ADS1014 ADS1015

A. Planes and data sheets

84

ADS1013
ADS1014
ADS1015
SBAS473C –MAY 2009–REVISED OCTOBER 2009 www.ti.com

Bits [14:12] MUX[2:0]: Input multiplexer configuration (ADS1015 only)

These bits configure the input multiplexer. They serve no function on the ADS1013/4.

000 : AINP = AIN0 and AINN = AIN1 (default) 100 : AINP = AIN0 and AINN = GND
001 : AINP = AIN0 and AINN = AIN3 101 : AINP = AIN1 and AINN = GND
010 : AINP = AIN1 and AINN = AIN3 110 : AINP = AIN2 and AINN = GND
011 : AINP = AIN2 and AINN = AIN3 111 : AINP = AIN3 and AINN = GND

Bits [11:9] PGA[2:0]: Programmable gain amplifier configuration (ADS1014 and ADS1015 only)

These bits configure the programmable gain amplifier. They serve no function on the ADS1013.

000 : FS = ±6.144V (1) 100 : FS = ±0.512V
001 : FS = ±4.096V (1) 101 : FS = ±0.256V
010 : FS = ±2.048V (default) 110 : FS = ±0.256V
011 : FS = ±1.024V 111 : FS = ±0.256V

Bit [8] MODE: Device operating mode

This bit controls the current operational mode of the ADS1013/4/5.
0 : Continuous conversion mode
1 : Power-down single-shot mode (default)

Bits [7:5] DR[2:0]: Data rate

These bits control the data rate setting.

000 : 128SPS 100 : 1600SPS (default)
001 : 250SPS 101 : 2400SPS
010 : 490SPS 110 : 3300SPS
011 : 920SPS 111 : 3300SPS

Bit [4] COMP_MODE: Comparator mode (ADS1014 and ADS1015 only)

This bit controls the comparator mode of operation. It changes whether the comparator is implemented as a
traditional comparator (COMP_MODE = '0') or as a window comparator (COMP_MODE = '1'). It serves no
function on the ADS1013.
0 : Traditional comparator with hysteresis (default)
1 : Window comparator

Bit [3] COMP_POL: Comparator polarity (ADS1014 and ADS1015 only)

This bit controls the polarity of the ALERT/RDY pin. When COMP_POL = '0' the comparator output is active
low. When COMP_POL='1' the ALERT/RDY pin is active high. It serves no function on the ADS1013.
0 : Active low (default)
1 : Active high

Bit [2] COMP_LAT: Latching comparator (ADS1014 and ADS1015 only)

This bit controls whether the ALERT/RDY pin latches once asserted or clears once conversions are within the
margin of the upper and lower threshold values. When COMP_LAT = '0', the ALERT/RDY pin does not latch
when asserted. When COMP_LAT = '1', the asserted ALERT/RDY pin remains latched until conversion data
are read by the master or an appropriate SMBus alert response is sent by the master, the device responds with
its address, and it is the lowest address currently asserting the ALERT/RDY bus line. This bit serves no
function on the ADS1013.
0 : Non-latching comparator (default)
1 : Latching comparator

Bits [1:0] COMP_QUE: Comparator queue and disable (ADS1014 and ADS1015 only)

These bits perform two functions. When set to '11', they disable the comparator function and put the
ALERT/RDY pin into a high state. When set to any other value, they control the number of successive
conversions exceeding the upper or lower thresholds required before asserting the ALERT/RDY pin. They
serve no function on the ADS1013.
00 : Assert after one conversion
01 : Assert after two conversions
10 : Assert after four conversions
11 : Disable comparator (default)

(1) This parameter expresses the full-scale range of the ADC scaling. In no event should more than VDD + 0.3V be applied to this device.

16 Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated

Product Folder Link(s): ADS1013 ADS1014 ADS1015

A. Planes and data sheets

85

B SOFTWARE CODE

The final code is appended in the next pages. The programs are the following.

1. Server in C
2. Client in the rotor in C
3. Client in the hub in C
4. Server in Python (not implemented)
5. Client in the rotor in Python (not implemented)
6. Client in the hub in Python (not implemented)

86

B. Software code

´

1 #include <stdio.h>
2 #include <time.h>
3 #include <stdlib.h>
4 #include <pthread.h>
5 #include <unistd.h>
6 #include <string.h>
7 #include <sys/socket.h>
8 #include <netinet/in.h>
9 #include <sys/time.h>

10 #include <arpa/inet.h>
11 #define PORT 8080
12

13 /////////////////GLOBAL VARIABLES
14 int flag=1;
15 ///////////////////////////////////////FUNCTIONS
16 void ∗UserGUI(void ∗vargp)
17 {
18 char command[1];
19 flag=1;
20 while (flag==1){
21 scanf("%s",command);
22 if (strcmp(command,"s")==0){
23 flag=0;}}
24

25 printf ("Thread interface closing everything \n");
26 return NULL;
27 }
28

29 // MAIN
30 int main() {
31

32 // VARIABLES
33 struct sockaddr_in address;
34 long long i ,t_delay=9e7;
35 int k, j ,n_samples,n_data_t,n_data_r,n_data_s,SIZE_DATA,ml,server_fd, socket_r,socket_s,

valread,opt,addrlen;
36 i=k=0; j=1;n_data_t=8;n_data_r=4;n_data_s=3; SIZE_DATA=n_data_t∗1000;opt=1;addrlen=

sizeof(address);
37 int data_rec_r[4]={0,0,0,0};int data_send_r[8]={0,0,0,0,0,0,0,0};int close_vector_r

[8]={−1,−1,−1,−1,−1,−1,−1,−1};
38 int data_rec_s[3]={0,0,0};int data_send_s[4]={0,0,0,0}; int close_vector_s[4]={−1,−1,−1,−1};
39 double mean_f,cpu_time_used,t_s,tnext,id;
40 mean_f=t_s=cpu_time_used=id=tnext=0.0;
41 unsigned long long t_s_micro=0;
42 unsigned m1r,m1l,m2r,m2l,m3r,m3l,m4r,m4l; //pwm
43 struct timeval t0,t1,t2, tf ;
44

45

46 // thread creation
47 pthread_t thread_id;
48 pthread_create(&thread_id, NULL, UserGUI, NULL);
49

50 // dynamic array creatiom
51 double∗ d_array;
52 d_array =calloc(SIZE_DATA∗j,sizeof(double));

87

B. Software code

53 if (d_array == NULL) {
54 printf ("malloc of d_array failed!\n");
55 exit (1);}
56 // data file creation
57 FILE ∗f = fopen("data.txt", "w");
58 if (f == NULL){
59 printf ("Error opening file !\n");
60 exit (1);}
61

62 //server creation
63 server_fd = socket(AF_INET, SOCK_STREAM,0);
64 setsockopt(server_fd, SOL_SOCKET, SO_REUSEADDR | SO_REUSEPORT, &opt, sizeof(opt));
65 setsockopt(server_fd, IPPROTO_TCP, TCP_NODELAY, (char ∗) &flag,sizeof(int));
66 address.sin_family = AF_INET;
67 address.sin_addr.s_addr =INADDR_ANY; //ADDRESS of the host here
68 address.sin_port = htons(PORT); // Port defined up in the beggining 8080
69

70

71

72 /// PROGRAM
73

74 //////////////////BIND THE SERVER
75 bind(server_fd, (struct sockaddr ∗)&address, sizeof(address)) ;
76 printf ("%s\n","binded");
77 listen (server_fd, 3);
78 //////////////// CONNECTION WITH CLIENT
79 socket_s = accept(server_fd, (struct sockaddr ∗)&address,(socklen_t∗)&addrlen);
80 socket_r = accept(server_fd, (struct sockaddr ∗)&address,(socklen_t∗)&addrlen);
81 if (socket_r>=0){printf("%s\n","connected to the stator");}
82 if (socket_s>=0){printf("%s\n","connected to the rotor");}
83

84 data_send_r[0]=0;data_send_r[1]=1000;data_send_r[2]=500;data_send_r[3]=1500;data_send_r
[4]=250;data_send_r[5]=1250;data_send_r[6]=750;data_send_r[7]=1750;

85 data_send_s[0]=0;data_send_s[1]=1000;data_send_s[2]=500;data_send_s[3]=1500;
86

87

88 /////////////////////////////////LOOP
89 gettimeofday(&t0, NULL);
90 while(flag==1) {
91

92 i++;
93 ////TIME APPENDING
94 gettimeofday(&t1, NULL);
95 d_array[i] = t_s;
96 /////// RECEIVING DATA FROM CLIENTS
97 valread = read(socket_s , data_rec_s, 40);
98 valread = read(socket_r , data_rec_r, 40);
99 ////////DATA APPENDING

100 for (int b = 0; b < n_data_t−1; b++)
101 {
102 i++;
103 if (b<n_data_r){d_array[i] = data_rec_r[b];}
104 if (b>=n_data_r){d_array[i]=data_rec_s[b−4];}
105 }
106 k++;
107 /////////ENLARGING THE DATA VECTOR FOR SAVING MORE DATA
108

88

B. Software code

109 if (k+1==SIZE_DATA/n_data_t){
110 j++;
111 d_array= realloc(d_array, (SIZE_DATA∗j) ∗ sizeof(double));
112 k=0;}
113

114 ///////////////// CALCULATE ACTUATION
115 ////////////////// IMPLEMENT HERE ANY CONTROL ALGORITHM
116 for (int mag = 0; mag < 8; mag++)
117 {
118

119 data_send_r[mag]=data_send_r[mag]+1;
120

121 if (data_send_r[mag]>2000)
122 {
123 data_send_r[mag]=0;
124 }}
125 for (int mag = 0; mag < 4; mag++)
126 {
127

128 data_send_s[mag]=data_send_s[mag]+1;
129

130 if (data_send_s[mag]>2000)
131 {
132 data_send_s[mag]=0;
133 }}
134

135

136 /////////////////SENDING ACTUATION
137 send(socket_s , data_send_s , sizeof(data_send_s) , 0);
138 send(socket_r , data_send_r , sizeof(data_send_r) , 0);
139 /////////////TIME CALCULATION
140 gettimeofday(&t2, NULL);
141 t_s=(t2.tv_sec − t1.tv_sec) + (t2.tv_usec − t1.tv_usec) / 1000000.0f;
142 tnext=tnext+t_s;
143 }
144

145 //// END OF LOOP
146 gettimeofday(&tf, NULL);
147

148 ////////// END CLIENTS
149 valread = read(socket_s , data_rec_s, 1024);
150 valread = read(socket_r , data_rec_s, 1024);
151 send(socket_s , close_vector_s , sizeof (close_vector_s) , 0) ;
152 send(socket_r , close_vector_r , sizeof (close_vector_r) , 0) ;
153 ////// TIME CALCULATION
154 cpu_time_used = (tf.tv_sec − t0.tv_sec) + (tf.tv_usec − t0.tv_usec) / 1000000.0f;
155 n_samples=i/n_data_t;
156 mean_f=n_samples/cpu_time_used;
157 printf ("done in %f \n",cpu_time_used);
158 printf ("mean frequency = %f\n",mean_f);
159 printf ("mean time_step = %f\n",1/mean_f);
160

161 /////// DATA PROCESSING
162

163

164 printf ("Data cllection ended with %d samples\n",n_samples);
165 ml=0;

89

B. Software code

166 for(int m = 0; m < n_samples; m++) {
167 for (int l = 0; l < n_data_t; l++)
168 { ml++;
169 fprintf (f , "%f",d_array[ml]);
170 if (l!=n_data_t−1){fprintf(f,", ");}
171 }
172 fprintf (f , "\n");}
173 // CLOSING EVERYTHING
174 pthread_join(thread_id, NULL);
175 free (d_array);
176 fclose (f) ;
177 printf ("Program ended");
178 return(0) ;
179 }

1 /// THIS CODE IS IMPLEMENTED IN THE ROTOR: IT INCLUDES
2 /// SENSING THE 4 DISPLACEMENTS OF THE BLADES
3 // ACTUATING IN 8 MAGNETS OF THE BLADES
4

5 #include <stdio.h>
6 #include <time.h>
7 #include <stdlib.h>
8 #include <pthread.h>
9 #include <unistd.h>

10 #include <string.h>
11 #include <sys/socket.h>
12 #include <netinet/in.h>
13 #include <sys/time.h>
14 #include <arpa/inet.h>
15 #include <wiringPiI2C.h>
16 #include <wiringPi.h>
17 #include <pigpio.h>
18 #define PORT 8080
19 #define DevAddr 0x48
20 #define B_convert 0x8000
21 #define B_null 0x0000
22 #define Mux_com_1_0 0x0000
23 #define Mux_com_3_0 0x1000
24 #define Mux_com_3_1 0x2000
25 #define Mux_com_3_2 0x3000
26 #define Mux_com_0 0x4000
27 #define Mux_com_1 0x5000
28 #define Mux_com_2 0x6000
29 #define Mux_com_3 0x7000
30 #define Amp_3_2 0x0000
31 #define Amp_1 0x0200
32 #define Amp_1_2 0x0400
33 #define Amp_1_4 0x0600
34 #define Amp_1_8 0x0800
35 #define Amp_1_16 0x0a00
36 #define B_cont 0x0000
37 #define B_sing 0x0100
38 #define DR_128 0x0000
39 #define DR_250 0x0020
40 #define DR_490 0x0040
41 #define DR_920 0x0060

90

B. Software code

42 #define DR_1600 0x0080
43 #define DR_2400 0x00a0
44 #define DR_3300 0x00c0
45 #define COMP_MODE_T 0x0000
46 #define COMP_MODE_W 0x0001
47 #define COM_POL_L 0x0000
48 #define COM_POL_H 0x0008
49 #define COMP_LN 0x0000
50 #define COMP_LA 0x0004
51 #define COMP_QUE_1 0x0000
52 #define COMP_QUE_2 0x0001
53 #define COMP_QUE_3 0x0002
54 #define COMP_QUE_N 0x0003
55 /////////////////GLOBAL VARIABLES
56 int DATA_SEND[4]={0,0,0,0};
57 int flag=1;
58

59

60 ///////////////////////////////////////FUNCTIONS
61

62 int Byte_swapper(int data16)
63 {
64 int data,data1,data2;
65 data1=(data16<<8)&0xff00;
66 data2=data16>>8;
67 data=data1 | data2;
68 return data;
69 }
70 int Config_Channel(int Config_16num,int Channel)
71 {
72 switch(Channel)
73 {
74 case 1:
75 Config_16num=Config_16num|B_convert|Mux_com_0;
76 break;
77 case 2:
78 Config_16num=Config_16num|B_convert|Mux_com_1;
79 break;
80 case 3:
81 Config_16num=Config_16num|B_convert|Mux_com_2;
82 break;
83 case 4:
84 Config_16num=Config_16num|B_convert|Mux_com_3;
85 break;
86 default :
87 printf ("%s\n%s\n","Error: Not a valid Channel. ","Choose between channel 1 and 4");
88 }
89

90 return Config_16num;
91 }
92 int Config_DR(int Config_16num,int DR)
93 {
94 switch(DR)
95 {
96 case 128:
97 Config_16num=Config_16num|DR_128;
98 break;

91

B. Software code

99 case 250:
100 Config_16num=Config_16num|DR_250;
101 break;
102 case 490:
103 Config_16num=Config_16num|DR_490;
104 break;
105 case 920:
106 Config_16num=Config_16num|DR_920;
107 break;
108 case 1600:
109 Config_16num=Config_16num|DR_1600;
110 break;
111 case 2400:
112 Config_16num=Config_16num|DR_2400;
113 break;
114 case 3300:
115 Config_16num=Config_16num|DR_3300;
116 break;
117 default :
118 printf ("%s\n%s\n","Error: Not a valid Data Rate. ","Choose between possible Data Rates: 128,

250, 490, 920, 1600, 2400, 3300");
119 }
120 return Config_16num;
121 }
122 int Config_Gain(int Config_16num,int gain)
123 {
124 switch(gain)
125 {
126 case 1:
127 Config_16num=Config_16num|Amp_1;
128 break;
129 case 2:
130 Config_16num=Config_16num|Amp_1_2;
131 break;
132 case 4:
133 Config_16num=Config_16num|Amp_1_4;
134 break;
135 case 8:
136 Config_16num=Config_16num|Amp_1_8;
137 break;
138 case 16:
139 Config_16num=Config_16num|Amp_1_16;
140 break;
141 default :
142 printf ("%s\n%s\n","Error: Not a valid Gain. ","Choose between possible gains: 1, 2, 4, 8, 16") ;
143 }
144 return Config_16num;
145 }
146 int Config_Mode(int Config_16num, int mode)
147 {
148 switch (mode)
149 {
150 case(0) :
151 Config_16num=Config_16num|B_sing;
152 break;
153 case(1) :
154 Config_16num=Config_16num|B_cont;

92

B. Software code

155 break;
156 default :
157 printf ("%s\n%s\n","Error: Not a valid Mode. ","Choose between Continuous (1) or Single−Shot

(0)");
158 }
159 return Config_16num;
160 }
161 int Config_Default(int Config_16num)
162 {
163 Config_16num=Config_16num | COMP_MODE_T;
164 Config_16num=Config_16num | COM_POL_L;
165 Config_16num=Config_16num | COMP_LN;
166 Config_16num=Config_16num | COMP_QUE_N;
167 return Config_16num;
168 }
169 // MAIN
170 int main() {
171 int data, Init , fd,reg,Config1,Config2,Config3,Config4;int CONFIG_V[4]={0,0,0,0};
172 struct timeval t1,t2,t0, tf ;
173 unsigned magnet1r,magnet1l,magnet2r,magnet2l,magnet3r,magnet3l,magnet4r,magnet4l;
174 magnet1r=14;magnet1l=15;magnet2r=17;magnet2l=27;magnet3r=23;magnet3l=24;magnet4r=10;

magnet4l=9;
175 struct sockaddr_in address, serv_addr;
176 int i ,k, j ,n_samples,n_data,SIZE_DATA,ml,server_fd, new_socket, valread,sock,addrlen,

nano_to_micro;
177 i=k=0; j=1; SIZE_DATA=3000;n_data=3;sock=0;nano_to_micro=1e3;addrlen=sizeof(address);
178 int data_send[4]={0,0,0,0};int data_rec [8]={0,0,0,0,0,0,0,0}; int close_vector

[8]={−1,−1,−1,−1,−1,−1,−1,−1};
179 double mean_f,cpu_time_used,t_s,id;
180 mean_f=t_s=cpu_time_used=id=0.0;
181 long long t_delay=1e2∗nano_to_micro;
182 ///////////SOCKET CONFIGURATION FOR WIRELESS CONNECTION
183 /////////// CLIENT
184 sock = socket(AF_INET, SOCK_STREAM, 0);
185 memset(&serv_addr, ’0’, sizeof(serv_addr));
186 serv_addr.sin_family = AF_INET;
187 serv_addr.sin_port = htons(PORT);
188 inet_pton(AF_INET, "10.16.184.180", &serv_addr.sin_addr);
189 // PROGRAM STARTS HERE
190 ///////// TRY TO CONNECT TO THE LINUX CPU OR SERVER
191 connect(sock, (struct sockaddr ∗)&serv_addr, sizeof(serv_addr));
192

193 ////////////////////// INITIALISE THE I2C PROTOCOL LIBRARY
194 fd= wiringPiI2CSetup (DevAddr);
195 ////////////////////// INITIALISE THE PWM BY DMA SOFTWARE
196 if (gpioInitialise () < 0)
197 {
198 printf ("pigpio initialisation failed .\n");
199 }
200 //////////////// SET THE PWM PARAMETERS
201 gpioSetPWMrange(magnet1r,2000);
202 gpioSetPWMrange(magnet1l,2000);
203 gpioSetPWMrange(magnet2r,2000);
204 gpioSetPWMrange(magnet2l,2000);
205 gpioSetPWMrange(magnet3r,2000);
206 gpioSetPWMrange(magnet3l,2000);
207 gpioSetPWMrange(magnet4r,2000);

93

B. Software code

208 gpioSetPWMrange(magnet4l,2000);
209 gpioSetPWMfrequency(magnet1r,8000);
210 gpioSetPWMfrequency(magnet1l,8000);
211 gpioSetPWMfrequency(magnet2r,8000);
212 gpioSetPWMfrequency(magnet2l,8000);
213 gpioSetPWMfrequency(magnet3r,8000);
214 gpioSetPWMfrequency(magnet3l,8000);
215 gpioSetPWMfrequency(magnet4r,8000);
216 gpioSetPWMfrequency(magnet4l,8000);
217

218 gpioPWM(magnet1r, 0);
219 gpioPWM(magnet1l, 0);
220 gpioPWM(magnet2r, 0);
221 gpioPWM(magnet2l, 0);
222 gpioPWM(magnet3r, 0);
223 gpioPWM(magnet3l, 0);
224 gpioPWM(magnet4r, 0);
225 gpioPWM(magnet4l, 0);
226 //////////////////////////// PERSONALIZED CODE FOR THE AD CONVERTER
227 ///////////////////////WRITNG REGISTER CONFIGURATION
228 Config1=0;
229 Config1=Config_Default(Config1);
230 Config1=Config_Channel(Config1,1);//Channel 1
231 Config1=Config_DR(Config1,3300);
232 Config1=Config_Gain(Config1,1);
233 Config1=Config_Mode(Config1,0);
234 Config1=Byte_swapper(Config1);
235 CONFIG_V[0]=Config1;
236

237 Config2=0;
238 Config2=Config_Default(Config2);
239 Config2=Config_Channel(Config2,2);//Channel 2
240 Config2=Config_DR(Config2,3300);
241 Config2=Config_Gain(Config2,1);
242 Config2=Config_Mode(Config2,0);
243 Config2=Byte_swapper(Config2);
244 CONFIG_V[1]=Config2;
245

246 Config3=0;
247 Config3=Config_Default(Config3);
248 Config3=Config_Channel(Config3,3);//Channel 3
249 Config3=Config_DR(Config3,3300);
250 Config3=Config_Gain(Config3,1);
251 Config3=Config_Mode(Config3,0);
252 Config3=Byte_swapper(Config3);
253 CONFIG_V[2]=Config3;
254

255 Config4=0;
256 Config4=Config_Default(Config4);
257 Config4=Config_Channel(Config4,4);//Channel 4
258 Config4=Config_DR(Config4,3300);
259 Config4=Config_Gain(Config4,1);
260 Config4=Config_Mode(Config4,0);
261 Config4=Byte_swapper(Config4);
262 CONFIG_V[3]=Config4;
263

264

94

B. Software code

265

266 //////////////// START THE LOOP
267 while(flag==1)
268 {
269 //////////////// SEND THE SENSOR DATA
270 send(sock , DATA_SEND , sizeof(DATA_SEND) , 0);
271 //////////////// WAIT FOR THE SERVER CONTROL SIGNAL
272 valread = read(sock , data_rec, 40);
273 ///////////// EXIT THE PROGRAM IF THE SERVER ASKS FOR IT
274 if (data_rec[0]==close_vector[0])
275 {flag=0;
276 printf ("%s\n","EXIT");
277 }
278 else{
279 //////////////////// IMPLEMENT THE CONTROL SIGNAL INTO THE PWM
280 gpioPWM(magnet1r, data_rec[0]);
281 gpioPWM(magnet1l, data_rec[1]);
282 gpioPWM(magnet2r, data_rec[2]);
283 gpioPWM(magnet2l, data_rec[3]);
284 gpioPWM(magnet3r, data_rec[4]);
285 gpioPWM(magnet3l, data_rec[5]);
286 gpioPWM(magnet4r, data_rec[6]);
287 gpioPWM(magnet4l, data_rec[7]);}
288 ///////////////////// READ THE AD CONVERTER DATA
289 for (int j = 0; j < 4; j++)
290 {
291 wiringPiI2CWriteReg16(fd,0x01,CONFIG_V[j]);
292 nanosleep((const struct timespec[]){{0, t_delay}}, NULL);
293 data= wiringPiI2CReadReg16(fd,0x00) ;
294 data=Byte_swapper(data);
295 DATA_SEND[j]=data>>4;
296 }
297 }
298

299 //////////////// CLOSE ALL PROGRAM
300 printf ("%s\n","exit while") ;
301 gpioPWM(magnet1r, 0);
302 gpioPWM(magnet1l, 0);
303 gpioPWM(magnet2r, 0);
304 gpioPWM(magnet2l, 0);
305 gpioPWM(magnet3r, 0);
306 gpioPWM(magnet3l, 0);
307 gpioPWM(magnet4r, 0);
308 gpioPWM(magnet4l, 0);
309

310 return(0) ;
311 }

1 /// THIS CODE IS IMPLEMENTED IN THE STATOR: IT INCLUDES
2 /// SENSING THE 2 DISPLACEMENTS AND THE ROTATIONAL SPEED
3 // ACTUATING IN 4 MAGNETS OF THE HUB
4

5 #include <stdio.h>
6 #include <time.h>
7 #include <stdlib.h>
8 #include <pthread.h>

95

B. Software code

9 #include <unistd.h>
10 #include <string.h>
11 #include <sys/socket.h>
12 #include <netinet/in.h>
13 #include <sys/time.h>
14 #include <arpa/inet.h>
15 #include <wiringPiI2C.h>
16 #include <wiringPi.h>
17 #include <pigpio.h>
18 #define PORT 8080
19 #define DevAddr 0x48
20 #define B_convert 0x8000
21 #define B_null 0x0000
22 #define Mux_com_1_0 0x0000
23 #define Mux_com_3_0 0x1000
24 #define Mux_com_3_1 0x2000
25 #define Mux_com_3_2 0x3000
26 #define Mux_com_0 0x4000
27 #define Mux_com_1 0x5000
28 #define Mux_com_2 0x6000
29 #define Mux_com_3 0x7000
30 #define Amp_3_2 0x0000
31 #define Amp_1 0x0200
32 #define Amp_1_2 0x0400
33 #define Amp_1_4 0x0600
34 #define Amp_1_8 0x0800
35 #define Amp_1_16 0x0a00
36 #define B_cont 0x0000
37 #define B_sing 0x0100
38 #define DR_128 0x0000
39 #define DR_250 0x0020
40 #define DR_490 0x0040
41 #define DR_920 0x0060
42 #define DR_1600 0x0080
43 #define DR_2400 0x00a0
44 #define DR_3300 0x00c0
45 #define COMP_MODE_T 0x0000
46 #define COMP_MODE_W 0x0001
47 #define COM_POL_L 0x0000
48 #define COM_POL_H 0x0008
49 #define COMP_LN 0x0000
50 #define COMP_LA 0x0004
51 #define COMP_QUE_1 0x0000
52 #define COMP_QUE_2 0x0001
53 #define COMP_QUE_3 0x0002
54 #define COMP_QUE_N 0x0003
55 /////////////////GLOBAL VARIABLES
56 int DATA_SEND[4]={0,0,0,0};
57 int flag=1;
58

59

60

61

62

63

64 ///////////////////////////////////////FUNCTIONS
65

96

B. Software code

66 int Byte_swapper(int data16)
67 {
68 int data,data1,data2;
69 data1=(data16<<8)&0xff00;
70 data2=data16>>8;
71 data=data1 | data2;
72 return data;
73 }
74 int Config_Channel(int Config_16num,int Channel)
75 {
76 switch(Channel)
77 {
78 case 1:
79 Config_16num=Config_16num|B_convert|Mux_com_0;
80 break;
81 case 2:
82 Config_16num=Config_16num|B_convert|Mux_com_1;
83 break;
84 case 3:
85 Config_16num=Config_16num|B_convert|Mux_com_2;
86 break;
87 case 4:
88 Config_16num=Config_16num|B_convert|Mux_com_3;
89 break;
90 default :
91 printf ("%s\n%s\n","Error: Not a valid Channel. ","Choose between channel 1 and 4");
92 }
93

94 return Config_16num;
95 }
96 int Config_DR(int Config_16num,int DR)
97 {
98 switch(DR)
99 {

100 case 128:
101 Config_16num=Config_16num|DR_128;
102 break;
103 case 250:
104 Config_16num=Config_16num|DR_250;
105 break;
106 case 490:
107 Config_16num=Config_16num|DR_490;
108 break;
109 case 920:
110 Config_16num=Config_16num|DR_920;
111 break;
112 case 1600:
113 Config_16num=Config_16num|DR_1600;
114 break;
115 case 2400:
116 Config_16num=Config_16num|DR_2400;
117 break;
118 case 3300:
119 Config_16num=Config_16num|DR_3300;
120 break;
121 default :
122 printf ("%s\n%s\n","Error: Not a valid Data Rate. ","Choose between possible Data Rates: 128,

97

B. Software code

250, 490, 920, 1600, 2400, 3300");
123 }
124 return Config_16num;
125 }
126 int Config_Gain(int Config_16num,int gain)
127 {
128 switch(gain)
129 {
130 case 1:
131 Config_16num=Config_16num|Amp_1;
132 break;
133 case 2:
134 Config_16num=Config_16num|Amp_1_2;
135 break;
136 case 4:
137 Config_16num=Config_16num|Amp_1_4;
138 break;
139 case 8:
140 Config_16num=Config_16num|Amp_1_8;
141 break;
142 case 16:
143 Config_16num=Config_16num|Amp_1_16;
144 break;
145 default :
146 printf ("%s\n%s\n","Error: Not a valid Gain. ","Choose between possible gains: 1, 2, 4, 8, 16") ;
147 }
148 return Config_16num;
149 }
150 int Config_Mode(int Config_16num, int mode)
151 {
152 switch (mode)
153 {
154 case(0) :
155 Config_16num=Config_16num|B_sing;
156 break;
157 case(1) :
158 Config_16num=Config_16num|B_cont;
159 break;
160 default :
161 printf ("%s\n%s\n","Error: Not a valid Mode. ","Choose between Continuous (1) or Single−Shot

(0)");
162 }
163 return Config_16num;
164 }
165 int Config_Default(int Config_16num)
166 {
167 Config_16num=Config_16num | COMP_MODE_T;
168 Config_16num=Config_16num | COM_POL_L;
169 Config_16num=Config_16num | COMP_LN;
170 Config_16num=Config_16num | COMP_QUE_N;
171 return Config_16num;
172 }
173 // MAIN
174 int main() {
175 int data, Init , fd,reg,Config1,Config2,Config3,Config4;int CONFIG_V[4]={0,0,0,0};
176 struct timeval t1,t2,t0, tf ;
177 unsigned magnet1r,magnet1l,magnet2r,magnet2l;

98

B. Software code

178 magnet1r=14;magnet1l=15;magnet2r=17;magnet2l=27;
179 struct sockaddr_in address, serv_addr;
180 int i ,k, j ,n_samples,n_data,SIZE_DATA,ml,server_fd, new_socket, valread,sock,addrlen,

nano_to_micro;
181 i=k=0; j=1; SIZE_DATA=3000;n_data=3;sock=0;nano_to_micro=1e3;addrlen=sizeof(address);
182 int data_send[3]={0,0,0};int data_rec[4]={0,0,0,0};int close_vector[4]={−1,−1,−1,−1};
183 double mean_f,cpu_time_used,t_s,id;
184 mean_f=t_s=cpu_time_used=id=0.0;
185 long long t_delay=1e2∗nano_to_micro;
186 ///////////SOCKET CONFIGURATION FOR WIRELESS CONNECTION
187 /////////// CLIENT
188 sock = socket(AF_INET, SOCK_STREAM, 0);
189 memset(&serv_addr, ’0’, sizeof(serv_addr));
190 serv_addr.sin_family = AF_INET;
191 serv_addr.sin_port = htons(PORT);
192 inet_pton(AF_INET, "10.16.184.180", &serv_addr.sin_addr);
193 // PROGRAM STARTS HERE
194 ///////// TRY TO CONNECT TO THE LINUX CPU OR SERVER
195 connect(sock, (struct sockaddr ∗)&serv_addr, sizeof(serv_addr));
196

197 ////////////////////// INITIALISE THE I2C PROTOCOL LIBRARY
198 fd= wiringPiI2CSetup (DevAddr);
199 ////////////////////// INITIALISE THE PWM BY DMA SOFTWARE
200 if (gpioInitialise () < 0)
201 {
202 printf ("pigpio initialisation failed .\n");
203 }
204 //////////////// SET THE PWM PARAMETERS
205 gpioSetPWMrange(magnet1r,2000);
206 gpioSetPWMrange(magnet1l,2000);
207 gpioSetPWMrange(magnet2r,2000);
208 gpioSetPWMrange(magnet2l,2000);
209

210 gpioSetPWMfrequency(magnet1r,8000);
211 gpioSetPWMfrequency(magnet1l,8000);
212 gpioSetPWMfrequency(magnet2r,8000);
213 gpioSetPWMfrequency(magnet2l,8000);
214

215 /////////////////// INITIALISE THE PWM TO 0 VOLTAGE
216 gpioPWM(magnet1r, 0);
217 gpioPWM(magnet1l, 0);
218 gpioPWM(magnet2r, 0);
219 gpioPWM(magnet2l, 0);
220

221 //////////////////////////// PERSONALIZED CODE FOR THE AD CONVERTER
222 ///////////////////////WRITNG REGISTER CONFIGURATION
223 Config1=0;
224 Config1=Config_Default(Config1);
225 Config1=Config_Channel(Config1,1);//Channel 1
226 Config1=Config_DR(Config1,3300);
227 Config1=Config_Gain(Config1,1);
228 Config1=Config_Mode(Config1,0);
229 Config1=Byte_swapper(Config1);
230 CONFIG_V[0]=Config1;
231

232 Config2=0;
233 Config2=Config_Default(Config2);

99

B. Software code

234 Config2=Config_Channel(Config2,2);//Channel 2
235 Config2=Config_DR(Config2,3300);
236 Config2=Config_Gain(Config2,1);
237 Config2=Config_Mode(Config2,0);
238 Config2=Byte_swapper(Config2);
239 CONFIG_V[1]=Config2;
240

241 Config3=0;
242 Config3=Config_Default(Config3);
243 Config3=Config_Channel(Config3,3);//Channel 3
244 Config3=Config_DR(Config3,3300);
245 Config3=Config_Gain(Config3,1);
246 Config3=Config_Mode(Config3,0);
247 Config3=Byte_swapper(Config3);
248 CONFIG_V[2]=Config3;
249

250

251 //////////////// START THE LOOP
252

253 while(flag==1)
254 {
255 //////////////// SEND THE SENSOR DATA
256 send(sock , DATA_SEND , sizeof(DATA_SEND) , 0);
257 //////////////// WAIT FOR THE SERVER CONTROL SIGNAL
258 valread = read(sock , data_rec, 40);
259 ///////////// EXIT THE PROGRAM IF THE SERVER ASKS FOR IT
260 if (data_rec[0]==close_vector[0])
261 {flag=0;
262 printf ("%s\n","EXIT");
263 }
264 else{
265 //////////////////// IMPLEMENT THE CONTROL SIGNAL INTO THE PWM
266 gpioPWM(magnet1r, data_rec[0]);
267 gpioPWM(magnet1l, data_rec[1]);
268 gpioPWM(magnet2r, data_rec[2]);
269 gpioPWM(magnet2l, data_rec[3]);}
270 ///////////////////// READ THE AD CONVERTER DATA
271 for (int j = 0; j < 3; j++)
272 {
273 wiringPiI2CWriteReg16(fd,0x01,CONFIG_V[j]);
274 nanosleep((const struct timespec[]){{0, t_delay}}, NULL);
275 data= wiringPiI2CReadReg16(fd,0x00) ;
276 data=Byte_swapper(data);
277 DATA_SEND[j]=data>>4;
278 }
279 }
280 //////////////// CLOSE ALL PROGRAM
281 printf ("%s\n","exit while") ;
282 gpioPWM(magnet1r, 0);
283 gpioPWM(magnet1l, 0);
284 gpioPWM(magnet2r, 0);
285 gpioPWM(magnet2l, 0);
286

287 return(0) ;
288 }

100

B. Software code

1 import socket
2 import threading
3 import time
4 import paramiko
5 import sys
6 import json
7 global c_flag
8 import time
9 import numpy as np

10 import csv
11

12 c_flag=1
13 s_flag=1
14 cl_vector_s=[−1]∗4
15 cl_vector_r=[−1]∗8
16 #server bind socket
17 serversocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
18 serversocket .setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
19 host = socket.gethostbyname(socket.gethostname())
20 port = 9999
21 serversocket .bind((host, port))
22

23 ########### SSH pi in the rotor
24 # PARAMETERS
25 SSH_ADDRESS = "thesis"
26 SSH_USERNAME = "pi"
27 SSH_PASSWORD = "thesis"
28 SSH_COMMAND = "python ~/raspberry_rotor/rotor4.py "+socket.gethostbyname(socket.gethostname

())
29 #SSH creation
30 ssh = paramiko.SSHClient()
31 ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())
32 ssh_stdin = ssh_stdout = ssh_stderr = None
33 # Order
34 try:
35 ssh.connect(SSH_ADDRESS, username=SSH_USERNAME, password=SSH_PASSWORD)
36 ssh_stdin, ssh_stdout, ssh_stderr = ssh.exec_command(SSH_COMMAND)
37 except Exception as e:
38 sys. stderr .write("SSH connection error: {0}".format(e))
39 print(’ssh error ’)
40 ############# SSH pi in the estator
41 # PARAMETERS
42 SSH_ADDRESS2 = "thesis2"
43 SSH_USERNAME2 = "pi"
44 SSH_PASSWORD2 = "thesis2"
45 SSH_COMMAND2 = "python ~/raspberry_stator/stator4.py "+socket.gethostbyname(socket.

gethostname())
46 # SSH creation
47 ssh2 = paramiko.SSHClient()
48 ssh2.set_missing_host_key_policy(paramiko.AutoAddPolicy())
49 ssh_stdin = ssh_stdout = ssh_stderr = None
50 #Order
51 try:
52 ssh2.connect(SSH_ADDRESS2, username=SSH_USERNAME2, password=SSH_PASSWORD2)
53 ssh_stdin, ssh_stdout, ssh_stderr = ssh2.exec_command(SSH_COMMAND2)
54 except Exception as e:

101

B. Software code

55 sys. stderr .write("SSH connection error: {0}".format(e))
56 print(’ssh error ’)
57

58

59 # queue up to the 2 requests
60 serversocket . listen (2)
61

62

63

64 def threaded_server():
65 i=0
66 global data_arr
67 while c_flag:
68 data_actuation_s=[0]∗4
69 data_actuation_r=[0]∗8
70 states=[0]∗7
71 states_nc=[0]∗7
72 state_vector=[]
73 time_series=[]
74 tnext=0
75 # establish a connection
76 r_socket,addr_r = serversocket.accept()
77 print("Got a connection from %s the rotor" % str(addr_r))
78 s_socket,addr_s = serversocket.accept()
79 print("Got a connection from %s the stator" % str(addr_s))
80 # receive calibrated data
81 data_sensor_rj = r_socket.recv(4096)
82 data_sensor_sj = s_socket.recv(4096)
83 load_sensor_r = json.loads(data_sensor_rj.decode())
84 load_sensor_s = json.loads(data_sensor_sj.decode())
85 cal_r=load_sensor_r.get("adc_values_r_cal")
86 cal_s=load_sensor_s.get("adc_values_s_cal")
87 data_send_r = json.dumps({"act_values_r": data_actuation_r})
88 data_send_s = json.dumps({"act_values_s": data_actuation_s})
89 r_socket.send(data_send_r.encode())
90 s_socket.send(data_send_s.encode())
91 j=0
92 i=0
93 while c_flag:
94 i=i+1
95 t1=time.time()
96 ### SENSING
97 #tcom=time.time()
98 data_sensor_sj = s_socket.recv(1024)
99 #tcom1=time.time()−tcom

100 data_sensor_rj = r_socket.recv(1024)
101 #tcom2=time.time()−tcom1−tcom
102 load_sensor_r = json.loads(data_sensor_rj.decode())
103 load_sensor_s = json.loads(data_sensor_sj.decode())
104 data_sensor_r=load_sensor_r.get("adc_values_r")
105 data_sensor_s=load_sensor_s.get("adc_values_s")
106 for k in range(7):
107 if k <4:
108 states_nc[k]=data_sensor_r[k]
109 states [k]=states_nc[k]−cal_r[k]
110 else :
111 states_nc[k]=data_sensor_s[k−4]

102

B. Software code

112 states [k]=states_nc[k]−cal_s[k−4]
113 states [k] = states[k]∗4.096/2048
114 states [k] = states[k]∗1.5/2
115 state_vector.extend(states)
116 #print(states)
117 #### ACTUATING
118 ### Control computation
119 for p in range(4):
120 data_actuation_s[p] = 50∗float(np.random.rand(1,1,1)) #4 external magnets
121 ## |−pair 1−| |−pair 2−| |−−pair 3−|
122 for p in range(8):
123 data_actuation_r[p] = 50∗float(np.random.rand(1,1,1))
124 #### end of control computation
125 ### data send has to be a value from 0 to 100
126 data_send_r = json.dumps({"act_values_r": data_actuation_r})
127 data_send_s = json.dumps({"act_values_s": data_actuation_s})
128 r_socket.send(data_send_r.encode())
129 s_socket.send(data_send_s.encode())
130 t2=time.time()−t1
131 tnext=tnext+t2
132 time_series.append(tnext)
133

134

135 close_msg_r = json.dumps({"act_values_r": cl_vector_r})
136 r_socket.send(close_msg_r.encode())
137 close_msg_s = json.dumps({"act_values_s": cl_vector_s})
138 s_socket.send(close_msg_s.encode())
139 time.sleep (0.2)
140 print("cerrando socket")
141 r_socket.close ()
142 s_socket.close ()
143 print("socket cerrado")
144 state_data=[0]∗7
145 length=len(state_vector)
146 n_samples=int(length/7)
147 state_data= [[0 for x in range(8)] for y in range(n_samples)]
148 c=0
149 for v in range(n_samples):
150 for w in range(8):
151 if w==0:
152 state_data[v][w]=time_series[v]
153 else :
154 state_data[v][w]=state_vector[c]
155 c=c+1
156

157 with open(’data_vector.csv’, ’w’) as f :
158 writer = csv.writer(f)
159 writer .writerows(state_data)
160

161 print(state_data)
162 print(tnext/n_samples)
163 # Put the server in a thread
164 threads=[]
165 for i in range(1):
166 t = threading.Thread(name=str(i),target=threaded_server)
167 t .daemon = True
168 threads.append(t)

103

B. Software code

169 t . start ()
170 time.sleep(5)
171 while s_flag:
172 command=input("Introduce your command")
173 if command=="c":
174 c_flag=0
175 if command=="s":
176 c_flag=0
177 time.sleep(1)
178 s_flag=0
179

180

181

182

183 print(’ closing threads’)
184 for c in threads:
185 print(’ENDing threads’)
186 c. join ()
187 print(’END’)

1 import socket
2 import time
3 import sys
4 import threading
5 import json
6 import numpy as np
7 import Adafruit_ADS1x15
8 import RPi.GPIO as GPIO
9 i=0

10 global c_flag
11 c_flag=True
12 GPIO.setmode(GPIO.BCM)
13 GPIO.setwarnings(False)
14

15 #GPIO ports to control the magnets, set them as output information
16 GPIO.setup(14,GPIO.OUT)
17 GPIO.setup(15,GPIO.OUT)
18 GPIO.setup(17,GPIO.OUT)
19 GPIO.setup(27,GPIO.OUT)
20 GPIO.setup(23,GPIO.OUT)
21 GPIO.setup(24,GPIO.OUT)
22 GPIO.setup(10,GPIO.OUT)
23 GPIO.setup(9,GPIO.OUT)
24

25 #Establish the magnets right and left for both directions
26 magnet1r =GPIO.PWM(14,10000)
27 magnet1r.start(0)
28 magnet1l =GPIO.PWM(15,10000)
29 magnet1l.start(0)
30 magnet2r =GPIO.PWM(17,10000)
31 magnet2r.start(0)
32 magnet2l =GPIO.PWM(27,10000)
33 magnet2l.start(0)
34 magnet3r =GPIO.PWM(23,10000)
35 magnet3r.start(0)
36 magnet3l =GPIO.PWM(24,10000)

104

B. Software code

37 magnet3l.start(0)
38 magnet4r =GPIO.PWM(10,10000)
39 magnet4r.start(0)
40 magnet4l =GPIO.PWM(9,10000)
41 magnet4l.start(0)
42

43

44

45 # create a socket object
46 client_rotor = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
47 # create an adc object
48 adc = Adafruit_ADS1x15.ADS1015()
49 GAIN = 1
50 d_t=3300
51

52 # get local machine name
53 host = sys.argv[1]
54 port = 9999
55 time.sleep(1)
56 # connection to hostname on the port.
57 client_rotor .connect((host, port))
58

59 # Receive no more than 1024 bytes..
60

61

62 cl_vector_r=[−1]∗8
63 values = [0]∗4
64 data_actuators_r=[0]∗8
65 for i in range(4):
66 values [i] =adc.read_adc(i, gain=GAIN,data_rate=d_t)
67 data = json.dumps({"adc_values_r_cal": values})
68 client_rotor .send(data.encode())
69 data_act_r = client_rotor.recv(1024)
70 actuation_r = json.loads(data_act_r.decode())
71 data_actuators_r=actuation_r.get("act_values_r")
72

73 while c_flag:
74 ### measure and send
75 if data_actuators_r != cl_vector_r:
76 for i in range(4):
77 values [i] =adc.read_adc(i, gain=GAIN,data_rate=d_t)
78 data = json.dumps({"adc_values_r": values})
79 client_rotor .send(data.encode())
80 else :
81 c_flag=False
82 for i in range(4):
83 values [i] =adc.read_adc(i, gain=GAIN,data_rate=d_t)
84 data = json.dumps({"adc_values_r": values})
85 client_rotor .send(data.encode())
86 break
87

88 ### Receive and actuate
89 data_act_r = client_rotor.recv(1024)
90 actuation_r = json.loads(data_act_r.decode())
91 data_actuators_r=actuation_r.get("act_values_r")
92 ###### actuate
93

105

B. Software code

94 magnet1r.ChangeDutyCycle(data_actuators_r[0])
95 magnet1l.ChangeDutyCycle(data_actuators_r[1])
96 magnet2r.ChangeDutyCycle(data_actuators_r[2])
97 magnet2l.ChangeDutyCycle(data_actuators_r[3])
98 magnet3r.ChangeDutyCycle(data_actuators_r[4])
99 magnet3l.ChangeDutyCycle(data_actuators_r[5])

100 magnet4r.ChangeDutyCycle(data_actuators_r[6])
101 magnet4l.ChangeDutyCycle(data_actuators_r[7])
102

103

104 print(’ closing threads’)
105 for c in threads:
106 c. join ()

1 import socket
2 import time
3 import sys
4 import threading
5 import json
6 import numpy as np
7 import Adafruit_ADS1x15
8 import RPi.GPIO as GPIO
9 i=0

10 global c_flag
11 c_flag=True
12 GPIO.setmode(GPIO.BCM)
13 GPIO.setwarnings(False)
14

15 #GPIO ports to control the magnets, set them as output information
16 GPIO.setup(14,GPIO.OUT)
17 GPIO.setup(15,GPIO.OUT)
18 GPIO.setup(17,GPIO.OUT)
19 GPIO.setup(27,GPIO.OUT)
20

21 #Establish the magnets right and left for both directions
22 magnet1r =GPIO.PWM(14,10000)
23 magnet1r.start(0)
24 magnet1l =GPIO.PWM(15,10000)
25 magnet1l.start(0)
26 magnet2r =GPIO.PWM(17,10000)
27 magnet2r.start(0)
28 magnet2l =GPIO.PWM(27,10000)
29 magnet2l.start(0)
30

31

32 # create a socket object
33 client_stator = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
34 # create an adc object
35 adc = Adafruit_ADS1x15.ADS1015()
36 GAIN = 1
37 d_t=3300
38 # get local machine name
39 host = sys.argv[1]
40 port = 9999
41 time.sleep (1.5)
42 # connection to hostname on the port.

106

B. Software code

43 client_stator .connect((host, port))
44

45

46 cl_vector_s=[−1]∗4
47 values = [0]∗3
48 data_actuators_s=[0]∗4
49 for i in range(3):
50 values [i] =adc.read_adc(i, gain=GAIN,data_rate=d_t)
51 data = json.dumps({"adc_values_s_cal": values})
52 client_stator .send(data.encode())
53 data_act_s = client_stator.recv(1024)
54 actuation_s = json.loads(data_act_s.decode())
55 data_actuators_s=actuation_s.get("act_values_s")
56 while c_flag:
57 ### measure and send
58 if data_actuators_s != cl_vector_s:
59 for i in range(3):
60 values [i] =adc.read_adc(i, gain=GAIN,data_rate=d_t)
61 data = json.dumps({"adc_values_s": values})
62 client_stator .send(data.encode())
63 else :
64 c_flag=False
65 for i in range(3):
66 values [i] =adc.read_adc(i, gain=GAIN,data_rate=d_t)
67 data = json.dumps({"adc_values_s": values})
68 client_stator .send(data.encode())
69 break
70

71 ### Receive and actuate
72 data_act_s = client_stator.recv(1024)
73 actuation_s= json.loads(data_act_s.decode())
74 data_actuators_s=actuation_s.get("act_values_s")
75

76 magnet1r.ChangeDutyCycle(data_actuators_s[0])
77 magnet1l.ChangeDutyCycle(data_actuators_s[1])
78 magnet2r.ChangeDutyCycle(data_actuators_s[2])
79 magnet2l.ChangeDutyCycle(data_actuators_s[3])
80

81 client_stator . close ()

107

Department of Electrical Engineering
Centre for Electric Power and Energy (CEE)
Technical University of Denmark
Elektrovej, Building 325
DK-2800 Kgs. Lyngby
Denmark
www.elektro.dtu.dk/cee
Tel: (+45) 45 25 35 00
Fax: (+45) 45 88 61 11
E-mail: cee@elektro.dtu.dk

www.elektro.dtu.dk/cee
cee@elektro.dtu.dk

	Preface
	Abstract
	Table of Contents
	List of Figures
	1 Introduction
	1.1 State of the art
	1.2 Scope

	2 Test-Rig
	2.1 Physical description
	2.2 Mathematical model
	2.2.1 Model dynamics

	2.3 Initial electronics
	2.3.1 Sensors
	2.3.2 Actuators
	2.3.3 Control unit
	2.3.4 Initial state of the electronics

	3 Sensing System
	3.1 General considerations
	3.2 Hub sensors
	3.3 Blade sensors
	3.4 Amplifying electronics
	3.4.1 Powering of electronics

	3.5 Conclusions

	4 Actuating system
	4.1 General considerations
	4.2 Actuators
	4.2.1 DC motor

	4.3 Power electronics
	4.3.1 Dynamics of the power electronics

	4.4 Conclusions

	5 Control unit
	5.1 Initial control system
	5.2 Control unit design
	5.2.1 Requirements
	5.2.2 Design criteria
	5.2.3 Development environment

	5.3 Embedded Software
	5.3.1 Hardware and software configuration
	5.3.2 Code description

	5.4 Software testing
	5.5 Conclusions

	6 System interconnections
	6.1 Previous interconnection structure
	6.2 New wiring configuration
	6.3 Wireless connection
	6.3.1 First implementation and results
	6.3.2 Wi-fi protocol improvement

	6.4 Final system configuration

	7 Conclusion
	7.1 Results
	7.1.1 Perspectives

	7.2 Future work

	References
	A Planes and data sheets
	B Software code

