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Abstract

Many neurodegenerative brain pathologies are closely tied to white
matter degeneration which develops alterations in water diffusion at
the tissue. For this reason, it becomes essential to study the neural con-
nections in order to improve diagnosis and treatment of brain diseases.
Tractography is a non-invasive technique that allows the visualiza-
tion of white matter tracts in-vivo from diffusion Magnetic Resonance
Imaging (MRI). However, there are many differences between results
due to the lack of a standardized methodology or automatic proce-
dures to follow. The aim of this project is to set a procedure with spe-
cific probabilistic methods to perform an optimal estimation of white
matter fiber orientations within each voxel, even at confusing regions
where crossing fibers are present. This procedure will be used to create
a dataset that will be used in the future to generate population atlases,
which will be not only clinically helpful to evaluate possible anatom-
ical alterations in the brain but also in refinement of tractography re-
sults. The tractography was performed using High Angular Resolu-
tion Diffusion Imaging (HARDI) of healthy subjects. The number of
tracts selected to generate the tractogram was 10 million. Geometrical
features were extracted for each voxel from three different regions of
the whole tractogram. The location of the regions was decided based
on the number of fibers present. This information was extracted from
literature. Moreover, tractograms of 500.000 and 1.000.000 tracts were
also generated. The method Spherical-Deconvolution Informed Fil-
tering of Tractograms 2 (SIFT2) was applied to the three tractograms
and its contribution was tested, but it barely changed the results. The
relevance of the number of streamlines was also explored. 1.000.000
streamlines were found to be a sufficient number. Finally, two dif-
ferent clustering methods were performed to distinguish the different
fiber bundles present in each voxel, using the previous features. One
of the clustering methods explored was the Mean Shift method which
seems to be promising. However, to refine the accuracy of the results,
distance measurement should be adapted, and a greater number of
parameters considered, such as curvature.
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Chapter 1

Introduction

Diffusion Magnetic Resonance Imaging (dMRI) is a noninvasive imag-
ing method that allows the visualization and calculation of the diffu-
sion of water molecules in biological tissues "in vivo". The water dif-
fusion in the white matter (WM) of the brain is faster parallel to the
axons than perpendicular because the molecules have to go through
fewer obstacles [1]. For this reason, dMRI can provide voxel-wise in-
formation on the orientation of groups of neuronal axons, and thus on
the structural connectivity between brain regions [2]. Moreover, by us-
ing high angular resolution diffusion imaging (HARDI), it is possible
to extract more complex fiber configurations and model fiber trajecto-
ries by employing tractography methods.

The local orientation and geometry of tractography results derived
from different subjects can be compared at corresponding anatom-
ical locations to create human brain atlases, which can be used as
a reference for different applications, such as the improvement of
tractography algorithms themselves or the identification of abnormal
pathological neuroanatomy [3][4][5][6]. Previous studies by Brusini
et al. explored a novel approach for both characterizing the geometry
of fibers at a voxel level and locally clustering them [7][8][9]. This
approach consisted in describing the fiber’s local geometries with
both their Frenet-Serret frames and their curvature. This method was
shown to achieve a good representation of well-known WM struc-
tures, to be usable for creating population atlases and to characterize
regions with high similarity across subjects. However, these stud-
ies also highlighted some limitations of the current results, which are
strongly dependent on many different parameters, such as the tractog-
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2 CHAPTER 1. INTRODUCTION

raphy methods being used, the total number of tracts being modeled,
the choice of the step-size for the tracking, as well as the preprocessing
performed on the dMRI data. For this reason, there is a need to further
investigate how the local representation of fibers changes depending
on the chosen image processing pipelines.

1.1 Purpose and objectives

This final project is a continuation of the work carried out by Irene
Brusini in 2016 for her Master’s thesis project in the Division of
Biomedical Imaging of the KTH Royal Institute of Technology (Stock-
holm, Sweden).

The main aim of this proposed thesis project is to create a procedure
to perform an optimal estimation of fiber bundles at a voxel level by
testing different dMRI image processing methods, as well as different
tractography algorithms and settings. Such dataset is then going to
be an extremely useful resource for the creation of population level
atlases that aim at representing fiber geometries at a voxel level. To
achieve that main objective, it was necessary to break it down into a
series of specific tasks:

1. Literature study on state-of-the-art dMRI image processing and
tractography methods.

2. Analysis of the tools that are implemented in the software pack-
age MRtrix (www.mrtrix.org) and choice of the most suitable
method to be tested (considering both quality in the results and
time limitations).

3. Design of a registration procedure of the subjects from the avail-
able Human Connectome Project dataset [10].

4. Understanding the SIFT2 method and test it with the subjects.

5. Determining a suitable clustering method to differentiate the
fiber bundles at each voxel.

6. Evaluating the results and critical selection of the most reliable
data.



Chapter 2

State of the art

2.1 Neuroscience

The Central Nervous System (CNS), which includes the brain and
spinal cord, is made up of many different types of cells, but the pri-
mary functional unit is a cell called neuron. Neurons are responsible
for the transmission of nerve impulses. A neuron is composed of a
cell body and two types of ramifications: dendrites and axon. The cell
body is where the nucleus and cytoplasm of the cell are, the dendrites
are short tree branches where a neuron receives input from other
cells, and the axon is a long, thin structure coated with myelin sheath
that corresponds with the transmitting part of the neuron. Myelin
is a substance with low diffusive properties which guarantees the
transmission of the nerve impulse between neurons. Myelin sheaths
are presented at regular intervals by the nodes of Ranvier, helping
to accelerate the propagation of nervous flux. The axonal termina-
tion contacts the dendrites or cell bodies of other neurons, creating a
synapse [11].

The brain is part of the CNS and the most complex part of the hu-
man body. It is composed of three different tissue types: white mat-
ter (WM), grey matter (GM) and cerebrospinal fluid (CSF). WM is the
part mainly composed of myelinated fibers and responsible for inter-
connecting different regions of GM. The GM is where the neuronal
somas, dendrites, ending axons and capillaries are. It envelopes WM
and corresponds to the most complex organization of the entire ner-
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vous system. The CSF is filtered blood plasma that protects, sustains
and nourishes the whole system.

Due to the essential role that WM plays being responsible for the
interconnectivity, many studies have been developed to study the con-
nectivity pattern of the brain, following the myelin nerve fibers called
neural fiber bundles.

2.2 Introduction to magnetic resonance imag-

ing

Magnetic Resonance Imaging (MRI) is a non-invasive medical imaging
technique that offers the study of the interior of the human body, with
a high spatial resolution and excellent contrast for soft tissues. It is
based on the principle of the Nuclear Magnetic Resonance (NMR).

NMR relies on the quantum properties of atomic nuclei, evaluat-
ing the reaction of the hydrogen nuclei when an atom is subjected to a
magnetic field B0. The nuclei are constantly rotating around their axis
behaving like small magnets. Because the directions of the axis are ran-
domly distributed, there is a null magnetization of the body due to the
mutual cancellation of the magnetic fields generated by the protons.
Nuclei under B0 will have a reorientation of their axis to the direction
of the magnetic field. The frequency at which the nuclei do the preces-
sion movement around the axis of the magnetic field is known as the
Larmor frequency (equation 2.1). Such frequency depends on the gy-
romagnetic radius � of each atom and is proportional to the magnetic
field.

!0 = �B0 (2.1)

Since nuclei will be all aligned, the magnetic field they generate
will not be null anymore resulting in a global magnetization M along
the longitudinal axis, and null along the transverse. This is the mo-
ment when a radiofrequency (RF) pulse, with the same frequency as
the Larmor frequency, is sent so that nuclei come into resonance and
change their spin direction. This will start a transverse magnetization
and it is called the excitation phase. When the pulse is over, the relax-
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Figure 2.1: Study of the Relaxation following the evolution in time of
the longitudinal component Mz and of the transverse component Mx,y.
(Source: Gili [12]).

ation phase starts, and nuclei begin to "relax". There are two types of
relaxation. T1 relaxation, when nuclei at a high energy state go back
to the low energy state, recovering the magnetization in the direction
of the magnetic field. T1 corresponds to the longitudinal relaxation
and it is the time constant in milliseconds that takes for Magnetization
to recover 63% of its value. Each voxel will present a T1 depending
on the free water it contains. The lower the value of T1, the faster the
equilibrium state is reached, which means that the relaxation is faster.
Therefore, a short T1 corresponds to a rapid release of energy. T2 re-
laxation corresponds to the relaxation in the transverse axis due to the
loss of phase of the precessing nuclei, losing magnetization along this
axis. T2 is the time it takes for the transverse magnetization to lose 63%
of its value. T2 relaxation is much faster than T1 relaxation. [12][13].

2.3 Diffusion MRI

The principle of diffusion is the microscopic movement of atoms
and molecules in solution or gas. In human tissues, predominant



6 CHAPTER 2. STATE OF THE ART

molecules that flow freely around are water molecules.

Diffusion Imaging quantifies molecular diffusion restriction in the
body by the detection of the signal emitted from the hydrogen nucleus
of the water molecules after applying a rephasing pulse.

2.3.1 Diffusion of water molecules

Two different types of diffusion can be differentiated. Isotropic diffu-
sion, when molecules of hydrogen are free to move to any direction
without restriction. It is the same in all directions. In addition, there
is anisotropic diffusion when water molecules are restricted by some
obstacle resulting an asymmetric movement. It is not the same in all
directions [14].

2.3.2 Acquisition

The diffusion is measured by the attenuation of the signal when the
water molecules move in a region under a magnetic field gradient. For
that it is used the Stejskal-Tanner sequence. It is based on the conven-
tional sequence spin-echo T2w, which is a 90o RF pulse followed by
another pulse of 180o, plus a symmetric pair of gradients in opposite
polarity, before and after the 180o pulse.

After the 90o RF pulse, molecules get the same phase. The first
gradient produces a dephasing of the water molecules that the second
gradient after the 180o RF pulse will rephase only for the protons that
have the same position as before the first gradient. In this way, the
signal will be lost in the locations of all the other protons that have not
been rephased so that the others will lose signal.

2.3.3 Diffusion Tensor Imaging

The quantification of the diffusion is done by the following formula:

I = I0e
�bD (2.2)

and the signal decreases according to b:

bi = �2G2
i �

2(�� �

3
) (2.3)
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Figure 2.2: Stejskal-Tanner sequence diagram for the diffusion calcu-
lation. It depends on the duration of the gradient �, the gradient am-
plitude G and the interval between the diffusion gradients �. � and �
determine the time during which diffusion is measured tdiff . (Source:
Gili [12]).

For short periods of time the above-presented quantification is
good enough but for long ones the Apparent Diffusion Coefficient
(ADC) should be taken into account. ADC measures diffusion in one
direction and results from the combination of a weighted diffusion
image and a reference one, so that

ADC = �
ln DWI

T2

b
(2.4)

In order to evaluate diffusion in 3D images a Diffusion Tensor (DT)
of ADC is developed. At least 6 different acquisition directions will be
required resulting a 3x3 matrix:

~D =

2

64
Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

3

75

When elements outside the diagonal are zero, it means that there
is an alignment with the principal axis of the diffusion due to the ab-
sence of correlation with the displacements in the orthogonal direc-
tions. Therefore, the eigenvalues will be the principal axis and the
eigenvectors will be parallel to the direction of the brain fibers.
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Different parameters can be extracted from the DT. The principal
eigenvector will represent the direction of the water molecules’ diffu-
sion, i.e. the principal directions of the fibers in a voxel. The second
and third eigenvectors correspond to the diffusion along the trans-
verse plane to the fascicles [15].

Diffusion average is computed by the three different eigenvalues
and determines the average water diffusivity at a voxel level.

Dav =
�1 + �2 + �3

3
(2.5)

Fractional Anisotropy (FA) is an index that measures the degree
of direction of diffusivity within a voxel. When the value is high it
means that there is one prevalent diffusion direction, conforming an
elongation of the diffusion ellipsoid, due to the presence of a tract of
white matter.

FA =

s
(�1 � �2)2 + (�2 � �3)2 + (�3 � �1)2

2((�1)2 + (�2)2 + (�3)2
(2.6)

However, the DT model has a relevant limitation which is that it
is only capable of representing a unique orientation of the fibers in
each voxel, which is represented by the main eigenvector of the tensor
[15]. For this reason, it will not be able to properly estimate regions
where crossing fibers are present. This will lead to a poor representa-
tion of the real anatomical structure and the estimation of fiber path-
ways could become erroneous.

2.3.4 HARDI

High Angular Resolution Diffusion Imaging (HARDI) was devel-
oped to discriminate multiple fibers crossing the same voxel since DT
can only resolve one single direction. It estimates the value of ADC
according to the coded angle using the method of decomposition
for spherical harmonics to determine the complex diffusion profiles.
Many HA- RDI based methods have been developed in order to over-
come the fiber crossing limitation [16].
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The Constrained Spherical Deconvolution (CSD) algorithm esti-
mates the distribution of the fiber orientations present within each
voxel without any assumption regarding the number of fiber pop-
ulations present. The Diffusion Weighted (DW) signal attenuation
measured can be represented as the spherical convolution of the re-
sponse function of the fiber population in each voxel with the Fiber
Orientation Distribution (FOD). Therefore, the FOD can be estimated
by the inverse operation, i.e. the deconvolution from the measured
DW signal [17].

The order of water molecules displacement expected in a diffusion
weighted study is 10 µm so that it can be assumed that there will not be
any water exchange between fiber bundles. Additionally, for curved
fibers, it will be assumed that there will not be any exchange between
orientational sections of each fiber bundle. Therefore, the diffusion
weighted signal can be represented by the sum of the signals from
each orientational regions in each population.

Tournier’s method [2] relies on the assumption that the DW signal
attenuation from a single coherently oriented fiber population can be
represented by an axially symmetric response function R(✓), ✓ being
the elevation angle in spherical coordinates. Therefore, the measured
signal can be represented as the convolution over the unit sphere of
R(✓) with the FOD F (✓,�), where F (✓,�) corresponds to the fraction
of aligned fibers along the direction (✓,�) (see Figure 2.3):

S(✓,�) = F (✓,�)~R(✓) (2.7)

The spherical convolution operations can be easily obtained by
simple matrix multiplications. The nth order spherical harmonic rep-
resentation of S(✓,�) can be formulated as:

Sn = RnF n (2.8)

Rn and F n are a matrix and a vector representing the nth order
rotational and spherical harmonic decomposition of R(✓) and F (✓,�),
respectively.

One of the advantages of this method when estimating the re-
sponse function is that it does not rely on any diffusion model,
whereas the DT model does. It is estimated from the data by mea-
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Figure 2.3: Representation of the spherical deconvolution principle
when two fiber orientations are crossing. The DW signal attenuation
can be expressed as the convolution over the unit sphere of the re-
sponse function R(✓) and the FOD F (✓,�). (Source: Tournier et al. [2]
with permission from Elsevier).

suring the DW signal profile in regions that are likely to contain only
one fiber population.

The CSD method has been proved to be simple and fast. Its oper-
ations are linear so that the noise propagation can be easily inferred,
being then, a relatively robust method to noise. However, the sus-
ceptibility to noise increases when using high order harmonics. It is
model-independent and no prior knowledge on the number of fiber
orientations is needed [2].

2.4 Tractography

Several high-order methods were developed with the aim of estimat-
ing fiber bundle orientations in each voxel due to the poor representa-
tion of the white matter structure that DT offers in regions with cross-
ing fibers. Behrens et al. [18] published that around one third of White
Matter (WM) voxels have that complex structure. In contrast, Jeurissen
et al. [19] stated that it is around 90 %.

Tractography is a 3D modelling technique that uses dMRI data to
represent fiber bundles in the brain from the directions of diffusion.
There are three main categories of fiber-tracking algorithms: deter-
ministic, probabilistic and global tractography algorithms. They have
different ways to determine the streamline trajectories. Deterministic
algorithms usually follow the most likely fiber orientation per voxel
whereas probabilistic methods consider more orientations at a local
level, i.e. not only they look for the main direction but also explore
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other ones. It is true that deterministic approaches lead to a more real-
istic results, but they can also fail to reconstruct connections between
distant regions with small quantity of noise. In contrast, probabilistic
ones are better when it comes to crossing fibers, but they are slower.
Both types are local reconstruction methods analyzing voxels and their
neighbourhood. Instead, global tractography is based on the genera-
tion of a full track that best represents the measured DW data. It is less
susceptible to noise, but it does not consider anatomical priors and
therefore, it will not be as accurate as the other two [20].

2.4.1 Anatomically-Constrained Tractography

Independently of the tracking method chosen, streamlines tractogra-
phy also has some limitations that can affect the reliability of the re-
constructed fiber connections. In [21] the importance of the termina-
tion points of the streamlines is widely explained. There are different
methods to determine the end of a streamline by thresholding different
parameters, but they all result imperfect.

Anatomical-Constrained Tractography (ACT) is an additional
method to streamlines tractography that makes use of prior anatom-
ical knowledge and/or structural information to guide the tractogra-
phy process, preventing from some false positives associated to some
tractography methods. Instead of defining a binary mask to be used
for the tracking, biological properties of the different tissues of the
brain will also be considered. Segmentation and classification of the
tissues is needed and will then be represented as estimated partial
volume fraction maps so that ACT will become independent of the
chosen segmentation method [21].

Note that the direction of the tracking is not influenced since this is
provided by the diffusion model. But what is influenced is both the ter-
mination and acceptance of a streamline. Specific criteria were deter-
mined for streamline projections. For instance, most of the streamline
endpoints should be expected at the GM since this is the tissue where
the interconnection between axon bundles occurs. Therefore, a stream-
line should never end at WM tissue and never enter the CSF. Assuming
this, when a streamline reaches GM it will be an appropriate termina-
tion point and if it enters Cerebrospinal Fluid (CSF) it will be rejected.
Anatomical information was also used to determine seeding criteria
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such as WM-seeding, Grey Matter (GM)-seeding, back-tracking and
minimum length [21].

2.4.2 Spherical-deconvolution Informed Filtering of

Tractograms

ACT allows us to perform a more accurate reconstruction of the fiber
bundles, however there are still some biases that could affect the re-
liability of the method. In [22] a retrospective filtering method was
proposed in order to improve the reconstructions, called Spherical-
Deconvolution Informed Filtering of Tractograms (SIFT). Its aim is to
find a subset of streamlines that best matches the diffusion signal. It
relies on the spherical deconvolution of the signal in order to select
which streamlines should be removed. This filtering operation leads
to a decrease of the biases and an increase of plausibility.

To evaluate the accuracy of the reconstructions, the proportionality
coefficient µ is used. It compares the streamline density of each FOD
lobe by assigning a value with the integral of that lobe.

TDl =
X

s:|sl|>0

|sl| (2.9)

µ =

PL
l=1(PMl · FDl)PL
l=1(PMl · TDl)

(2.10)

For each voxel, the FDl is the FOD integral of lobe number l whereas
TDl is the track density of that lobe which depends on the length of
the streamline attributed to that lobe sl (see equation (2.9)). PMl is the
value of the processing mask in the voxel where the lobe is located.

Due to the possible presence of biases during the reconstruction, a
cost-function f was defined to quantify the accuracy of the reconstruc-
tion with the underlying diffusion data.

f =
X

V

(PMV

LX

l=1

(µTDl � FDl)
2) (2.11)
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When a streamline is removed, the model will be affected in two
different ways. Not only TDl will be reduced but also the proportion-
ality coefficient µ will be increased and, therefore, the cost function will
be influenced as well. And that is the reason why the SIFT2 method
was developed [23].

In the SIFT2 method, the proportionality coefficient µ remains the
same but the density at each lobe is computed differently, considering
variable contribution weights from individual streamlines.

TDl =
X

s:|sl|>0

|sl| · eFs (2.12)

Fs is the weighting coefficient for each streamline s and eFs is the
weighting factor.

The aim of this method is to find a vector of weighting coefficients
Fs so that the streamlines will contribute to the density calculation in
order to match the densities with the FOD lobe integrals. The new
cost-function is then,

f =
X

V

[(PMV

LX

l=1

(µTDl � FDl)
2)] + A�reg

NX

s=1

[freg(s)] (2.13)

where there is the additional regularization term freg with A as a
scaling parameter to compare different imaging and reconstruction
parameters by the user-controllable parameter �reg. In [23] two dif-
ferent regularization were tested, the conventional Tikhonov and the
advanced akin to total variation (TV).

The SIFT2 algorithm has been proved to be more beneficial than the
original one since it retains the entire tractogram for further process-
ing. It is not dependent on removing streamlines and the fact of having
a regularization parameter gives more control to the reconstruction.
The existence of the new method does not mean that the original one
is not applicable anymore and it is also believed that the combination
of the two methods could be beneficial [23].
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2.5 Clustering

Tractography data is composed by big sets of streamlines. For this rea-
son, in order to group the streamlines into fiber bundles it is necessary
to draw on automated methods [24].

Clustering is a type of data analysis that tries to find natural groups
of data, so that the data points grouped together are more similar to
each other than those of the other groups. Three main categories of
clustering methods can be found: Distance-based, density-based and
distribution-based. On one hand, distance-based clustering methods
try to find the best way to group data in order to maximize the inter-
cluster distances and minimize the intra-cluster distances. Hierarchi-
cal clustering belongs to this category and it relies on dendrograms,
tree diagrams representing relationships between similar sets of data.
On the other hand, density-based clustering methods try to find the re-
gions of higher densities, which could correspond to a cluster. For in-
stance, Mean Shift clustering is a technique that supposes that all data
points represent a part of an underlying probability density function,
and shifts the samples to the regions with higher density. Additionally,
distribution-based clustering methods aim to find the best parameters
of a statistical underlying model to best describe the data. An example
for this category is Expectation-Maximization algorithm [25].



Chapter 3

Methods

In this chapter, the methods used to analyze and generate tractogra-
phy data as well as the ones tested for the clustering of fiber geome-
tries are described. From the raw data from the 1200 Subjects HCP
Database [10], fiber directions and tractography data were estimated.
Results were filtered and geometrical features were extracted so that
fibers could be clustered at a voxel level. Figure 3.1, shows the pipeline
followed.

Figure 3.1: Pipeline followed in this project. 1. Generation of 5-tissue seg-
mentation image. 2. Estimation of FOD with CSD. 3. Tractogram generation
with ACT and filtering with SIFT2. 4. Registration to MNI. 5. Tractogram
features extraction and 6. Clustering with features and SIFT2 weights.

15
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3.1 Dataset

In this study, data was selected from the 1200 Subjects Data Release
of the Human Connectome Project (HCP), including 1206 healthy
young adult participants collected in 2012-2015. Structural images
(T1w and T2w) and diffusion images (HARDI) were the modalities
used. HARDI data have TR = 5520 ms, TE = 89.5 ms, 270 gradient
directions with 3 shells of b = 1000, 2000, and 3000 s/mm2, 18 non-
diffusion-weighted images (b = 0) with isotropic image resolution of
1.25 mm.

The study was applied to three specific regions of the brain accord-
ing to the number of the fiber orientations present. The regions are the
corpus callosum (one orientation), the intersection of the corticospinal
tract and the pontine crossing tract (two orientations) and the intersec-
tion of the corona radiata, the superior longitudinal fasciculus and the
corpus callosum (three orientations) [8].

3.2 Tractography

Tractography data was provided by Wasserthal, Neher, and Maier-
Hein [26], who had already performed a study in which white matter
tracts were segmented in a fast and accurate way from the subjects of
the above-mentioned database.

In order to generate the whole-brain tractograms, advanced tools
for the analysis of diffusion MRI data were used from the free available
software MRtrix [27]. The following commands were used to obtain
the whole-brain tractograms:

# Generate a t i s s u e�segmented image
5 t tgen f s l T1w_acpc_dc_restore_brain . n i i . gz 5TT . mif �

premasked
# Est imate the multi�s h e l l , multi�t i s s u e response f u n c t i o n s
dwi2response msmt_5tt Di f fus ion . n i i . gz 5TT . mif RF_WM. t x t

RF_GM. t x t RF_CSF . t x t �voxels RF_voxels . mif �f s l g r a d
Di f fus ion . bvecs Di f fus ion . bvals

#Perform Multi�Shel l , Multi�Tissue CSD
dwi2fod msmt_csd Di f fus ion . n i i . gz RF_WM. t x t WM_FODs. mif RF_GM

. t x t GM. mif RF_CSF . t x t CSF . mif �mask nodif_brain_mask . n i i .
gz �f s l g r a d Di f fus ion . bvecs Di f fus ion . bvals
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# Generate the tractogram
tckgen �algorithm iFOD2 WM_FODs. mif All_10M . tck �a c t 5TT . mif

�backtrack �crop_at_gmwmi �seed_image nodif_brain_mask . n i i
. gz �maxlength 250 �minlength 40 �number 10M �c u t o f f 0 . 0 6
�maxnum 0

3.2.1 Multi-Shell Multi-Tissue (MSMT) CSD algorithm

For tractography, Multi-Shell Multi-Tissue Constrained Spherical De-
convolution (MSMT-CSD) method [28] was used to extract a multi-
tissue FOD.

To apply this algorithm, a segmentation of the different tissues is
required in order to define a whole-brain mask where to estimate the
response function of each. A maximum spherical harmonic order lmax

= 8 and a combination of 3 shells of b = 1000, 2000, and 3000 s/mm2

were used. The resulting FOD information was then used with a suit-
able fiber-tracking algorithm in order to infer the connectivity.

3.2.2 Anatomically-Constrained Tractography

Fiber directions were determined with ACT and the iFOD2 algorithm
(see section 2.4.1). The maximum length of tracks was set to 250 mm
and the minimum to 40 mm. The number of fibers generated was 10
million and seed streamlines were placed randomly within the mask
image.

This algorithm considers the biological properties of the tissue
types and fluid within the brain, as well as the nature of the axons
of the WM that we are attempting to reconstruct [21]. The direction
of tracking is not influenced. However, the mechanisms to determine
the termination and acceptance or rejection of the streamlines are in-
fluenced. Due to the presence of the axonal bundles in WM which
are responsible for the connections between GM areas, we should ex-
pect most of the endpoints when they reach GM. Backtracking allows
tracks to be truncated and re-tracked if a poor structural termination
is encountered. In this study, backtracking was performed to crop
the streamlines’ endpoints more precisely as they cross the GM-WM
interface.
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3.2.3 Filtering: SIFT2

Once the FOD and the tracking had been generated, SIFT2 (see section
2.4.2) was applied to filter the whole-brain fiber-tracking dataset such
that the streamline densities matched the FOD lobe integrals.

# F i l t e r the tractogram
t c k s i f t 2 All_10M . tck WM_FODs. mif out_weights

When using SIFT2, a text file is created instead. Each line of that
text file corresponds with the weights eFs of each streamline s and will
be used as a complement of the original tracking file for the reconstruc-
tion [23].

3.3 Registration

Since the images must belong to a common coordinate system to be
able to compare results between subjects at a local level, a normaliza-
tion to MNI space was chosen. This was done by applying transfor-
mations from specific warpings provided with the data, to both FODs
and trackings.

Note that the deformation files that HCP provides, have the x com-
ponent inverted, therefore a preliminary step to flip such axis was re-
quired to get the right results.

# I n v e r t the x coordinate of the warping f i e l d
mrconvert acpc_dc2standard . n i i . gz tmp� [ ] . n i i
mv tmp�0. n i i x . n i i
mrcalc x . n i i �neg tmp�0. n i i
#Convert displacement to deformation as required by mrtr ix
warpconvert tmp� [ ] . n i i �type displacement2deformation

warp_acpc2std . n i i . gz
#Apply the transformat ion
mrtransform WM_FODs. mif warp_acpc2std . n i i . gz WM_FODs_MNI. mif

# I n v e r t the x coordinate of the warping f i e l d
mrconvert standard2acpc_dc . n i i . gz tmp� [ ] . n i i
mv tmp�0. n i i x . n i i
mrcalc x . n i i �neg tmp�0. n i i
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#Convert displacement to deformation as required by mrtr ix
warpconvert tmp� [ ] . n i i displacement2deformation warp_std2acpc

. n i i . gz
#Apply the transformat ion
tcktransform All_10M . tck warp_std2acpc . n i i . gz All_10M_MNI . tck

After the registration of all data to the MNI space, a binary mask
was created and used to select the information belonging to the three
regions of interest and filter out the information that does not belong
to them.

3.4 Features Extraction

Once the FODs and the trackings are registered, the method of Brusini
et al. [7] will be performed in order to extract geometrical features of
the tracts that cross the selected areas in each subject. For every point
Pi of a tract, the tangent vector T , binomial vector B and angle of cur-
vature ⇥ were extracted according to:

T =
Pi+1 � Pi�1

kPi+1 � Pi�1k
(3.1)

B =
v1 ⇥ v2

kv1 ⇥ v2k
(3.2)

⇥ = arctan(
kv1 ⇥ v2k
v1 · v2

) (3.3)

v1 and v2 are vectors corresponding to two successive track seg-
ments, delimited by the pairs Pi � 1, Pi and Pi, Pi + 1, respectively.

The mean of all the triplets (T,B,⇥) associated to the tract’s points
in each specific voxel results in the final voxel-wise characterization of
a tract.

3.5 Fiber Clustering

The voxel-wise information obtained before is now going to be used
to cluster the fibers into bundles. To reach that, in Brusini et al. [9] the



20 CHAPTER 3. METHODS

Figure 3.2: Representation of the geometrical features of one point Pi

from a reconstructed fiber tract (solid lines in red). (Courtesy of Brusini
[8]).

process was divided into two steps, one for distance measure and a
second one for bundle clustering.

For the first one, distances between tracts were computed as in
equation (3.4), F being the triplet (T,B,⇥) and N the normal vector
defined as (B ⇥ T ) of each tract. � is a parameter to control the impor-
tance of the difference in curvature in the computation of the distance.
It was set to � = 2. ⇥th is an angle threshold to distinguish between
low and high curvature cases so that when curvature of the two tracts
is too low, the tangent will be mainly determining the distance, since
B and N will be unstable. In contrast, if the tracts are bent, N will
be the parameter that will best differentiate them (see Figure 3.3). ⇥th

was set to 10o. For the second step, agglomerative hierarchical cluster-
ing was performed (see section 2.5). Data was divided into different
groups according to the distance calculated in the previous step (see
equation (3.4)). The criterion used to determine the optimal number
of clusters was based on the one from Davies and Bouldin [29], which
searches for the clustering solution with the minimum ratio of inter
and intra-cluster distances.

D(F1, F2) =

8
><

>:

2 cos�1 (|T1 · T2|) + �|⇥1 �⇥2| , if min (⇥1,⇥2)<⇥th

2 cos�1 ( (|T1·T2|+|B1·B2|+|N1·N2|)�1
2 )+

+�
��✓1 � (N1 ·N2) ·⇥2

�� , otherwise.
(3.4)
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Figure 3.3: Representation of similarity tracts depending on the dif-
ferent curvature cases. If their curvature is low and their tangents are
similar, the tracts will be considered similar even if the vectors N are
parallel or opposite. If the curvature is high and they have similar tan-
gents, only the ones with parallel vectors N will be treated as similar.
(Courtesy of Brusini [8]).

The technique explained above was computed for 300.000 tracts
per subject and resulted in promising results. However, since the
number of modelled tracts in this study is 10 million and there were
weights obtained from SIFT2 available, another clustering technique
that could take those weights into account, such as Mean Shift [30],
was also performed. It is a non-parametric density-based technique.
For this method, only the tangent and the SIFT2 weights from all the
parameters calculated were used.

The Mean Shift algorithm relies on kernel density estimation (KDE)
(see section 2.5). Having weights for every point of each streamline
a probability surface is generated. The kernel size is defined by the
bandwidth so that the larger the bandwidth is, the wider the kernel
size will be, and more points will belong to each cluster. It is an it-
erative method that is applied to every point making it climb up to
the nearest peak on the KDE surface. The last iteration will be when
the point converges. The original method uses a Gaussian kernel dis-
tribution for the distance estimation. However, in this study, the Von
Mises–Fisher distribution is used to perform the clustering on a hyper-
sphere:
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fp(x;µ,) = Cp() exp
⇣
µTx

⌘
(3.5)

where x is a d-dimensional unit vector (x 2 Rd, kxk = 1), µ is a
unit vector orienting the center of the distribution,  is a parameter to
control the concentration of the distribution to the vector µ, and C is a
normalization constant.
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Results

In the following chapter results of all the analysis decribed above are
given.

4.1 Tractograms

Tractography data obtained by Wasserthal, Neher, and Maier-Hein
[26] were explored at the three regions of interest. The tractograms
were computed for 10 million streamlines. Information of the regions
selected is given in Table 4.1. Figure 4.1 shows, for every region, the
corresponding FODs lobes and the streamlines that cross the central
voxel, proving that the tractogram follows the FODs directions.

Table 4.1: Regions of interest of the 10 million tractogram

Region N Voxels Central voxel Avg. Streamlines/
voxel

Directions

1 9 (72,96,78) 5076 1
2 9 (43,97,77) 6087 2
3 3 (96,81,77) 4428 3

To study how relevant the number of streamlines is in the whole
brain, tractograms of 500k and 1M streamlines were computed with
the commands described in section 3.2 for one same subject. Figure 4.3
shows the number of streamlines per voxel of both tractograms. Three
specific voxels were selected to study in more detail the importance

23
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Figure 4.1: Streamlines crossing the central voxel of the regions 1,2 and
3 of the 10 million tractogram.

of the number of streamlines. Once again, the regions correspond to
zones where the FOD lobes show one, two and three directions, re-
spectively. In Table 4.2, comparison of the information of three voxels
for both tractograms is presented. As expected, there are more stream-
lines in the 1M tractogram.

Table 4.2: Comparison of three regions of interest of 500k and 1M trac-
tograms

Region Voxel Streamlines Directions expected
500k 1M

1 (71,95,77) 1056 2224 1
2 (55,111,77) 688 1576 2
3 (94,85,77) 1144 2144 3

All the streamlines crossing the selected voxels are shown in Fig-
ure 4.2. A multiple representation of the distribution of the number of
streamlines per voxel of 500k and 1M tractograms can be seen in Fig-
ure 4.3. It can be seen that the average of streamlines per voxel in the
1M tractogram is higher than in the 500k tractogram.
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(a) 500k tractogram

(b) 1M tractogram

Figure 4.2: Representation of the streamlines crossing the three se-
lected voxels corresponding to regions with 1, 2 and 3 orientations,
respectively, of the 500k (a) and 1M (b) tractograms. (Better seen in
electronic format).

Figure 4.3: Number of streamlines per voxel of 500k tractogram (or-
ange) and 1M tractogram (blue).
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4.2 SIFT2

In order to understand the SIFT2 method, it was subsequently applied
to the tractograms of both 500k and 1M streamlines computed before.
For every voxel, the mean and standard deviation of all the SIFT2 val-
ues of all the streamlines were calculated and used to compare how
those weights change with the variation of the number of streamlines.
Results are shown in Figure 4.4. The local study of some pixels to
check in detail the difference of the SIFT2 weights between the two
tractograms is shown in Figure 4.5.

(a) (b)

(c) (d)

Figure 4.4: Representation of the mean and the standard deviation of
the SIFT2 values per voxel. (a) and (b) show the mean for 500k and 1M
tractogram, respectively, and (c) and (d) the standard deviation.

A possible relation between number of streamlines and SIFT2 val-
ues per voxel was studied. Figure 4.6 shows a representation of the
number of streamlines per voxel of the 500k and 1M tractograms. No-
tice that they are not in the same scale since what it is of interest to
study is the pattern they have according to the number of streamlines.
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(a) 500k tractogram (b) 1M tractogram

Figure 4.5: Pixel values of SIFT2 of the 500k and 1M tractograms at a
concrete area of the brain.

(a) 500k tractogram (b) 1M tractogram

Figure 4.6: Representation with a colormap of the average number of
streamlines per voxel of each tractogram.
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The patterns seen in Figure 4.6 seem very similar for both trac-
tograms. In addition, these patterns seem to match with the ones in
Figure 4.4, which could mean that there is a relation between SIFT2
values and the number of streamlines. To evaluate this hypothesis,
linear regression was used. Results are presented in Figure 4.7.

(a) 500k (b) 1M

Figure 4.7: Linear regression of number of streamlines and mean of the
SIFT2 values, per voxel, of 500k and 1M tractograms.

Logistic regression was also used to carry out a comparison be-
tween the original SIFT and the SIFT2 methods, as Figure 4.8 shows.
Moreover, Figure 4.9 shows the histogram of the SIFT2 values accord-
ing to the values of SIFT.

Figure 4.8: Logistic regression of SIFT and SIFT2 values. For SIFT, 0
means the streamline is removed and 1 means the streamline remains.
The p-value shows strong significance in the relation between the two
variables.
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Figure 4.9: Representation of the distribution of SIFT2 values. In yel-
low, all the values. In blue, the SIFT2 values that correspond to the
streamlines that SIFT removes when using SIFT. In orange, the SIFT2
values that correspond to the streamlines that SIFT does not remove
when using SIFT.

4.3 Clustering

The central voxel of each region was selected to perform the two differ-
ent clustering methods explained in section 3.5. Before the clustering,
data was represented to analyze and speculate what to expect from the
clustering. This can be seen in Figure 4.10. For the Mean Shift method,
weights are required as an input, therefore, data was represented in a
sphere giving separately both SIFT2 and curvature values as weights
in order to check if they were providing some additional information.
To compare them, the values of the weights were normalized, and the
results are shown in Figure 4.11.

When performing the method of Brusini et al. [9], the streamlines
were always clustered into one cluster. Instead, with the Mean Shift
method, the number of clusters changed depending on the voxel. This
latter method was performed with SIFT2 values given as weights and
different values of  parameter of the Von Mises-Fisher kernel (see
equation 3.5) were tested. In Figure 4.12, it can be seen how the num-
ber of clusters vary with the variation of the  parameter. Results for
the Mean Shift method are presented in Figure 4.13, with  = 20.
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(a) Region 1 (b) Region 2

(c) Region 3

Figure 4.10: Representation data before clustering.

(a) SIFT2 (b) Curvature

Figure 4.11: Representation of the contribution of SIFT2 and Curvature
values as weights.



CHAPTER 4. RESULTS 31

Figure 4.12: Number of clusters according to -values using Mean
Shift method on the 10M tractogram.

(a) Region 1 (b) Region 2

(c) Region 3

Figure 4.13: Clusters per region using Mean Shift algorithm on the 10
million tractogram.
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Discussion

In the present study, specific methods were selected and used to gen-
erate tractography data from which some features were extracted on a
voxel-level to finally be able to cluster the fiber bundles of the WM.

5.1 Streamlines

Tractograms analyzed during this study had 500k, 1M and 10M
streamlines. Figures 4.1 and 4.2 show that, in all the three cases, the
tractograms correctly followed the directions represented by the FOD
lobes. The regions of interest were selected from areas where there is
evidence of the presence of crossing fibers as well as fibers following
a single direction. It is definitely clear that, with the 10 million trac-
togram, the representation will be very accurate. On the other hand,
the computational time and memory needed are extremely high. That
is the reason why tractograms with less streamlines were generated for
comparison. As it is shown in Table 4.2 and Figure 4.2, representations
of the 500k tractogram may seem to be poor at some point, such as the
region 2, whereas the ones of the 1M tractogram seem to be sufficient
to represent the fiber population existing in those voxels. Figure 4.3
shows that most of the voxels in the 500k tractogram will have around
700 streamlines in average, whereas in the 1M tractogram they will
have around 1500 tracts. If the 10 million tractogram was compared as
well, the expected average number of streamlines will be around 4500.
It was then proved that the number of streamlines to select when gen-
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erating the tractogram is a non-trivial parameter and 1 million seems
to be an appropriate number to get consistent results with reasonable
computational time and efficiency.

5.2 SIFT2

The presence of possible relations between SIFT2 weights and other
tractography parameters were investigated, in order to identify wheth-
er the method is able to add any useful information to the tractogra-
phy dataset. From Figure 4.4, the mean and standard deviation of the
SIFT2 values per voxel barely seem to differ between the different two
tractograms. This is shown with more accuracy in Figure 4.5. More-
over, from Figure 4.6, a relation between the number of streamlines
and the mean of the SIFT2 values per voxel seem to be present. The
voxels represented in Figure 4.6 seem to have more streamlines at the
regions where the mean values of the SIFT2 are lower, which was not
expected. However, the linear regression analysis showed inconsis-
tency with the prior hypothesis (R = - 0.4574 for 500k tractogram and
R = - 0.45546 for 1M tractogram). It is true that there are voxels with
low number of streamlines that have high weights and voxels with
high number of streamlines that have low weights, but this pattern is
not consistent for all voxels so it cannot be stated that there is any re-
lation between the two. Logistic regression was used to compare both
methods, which shows that they work in the same way since there
is high significance in their relation (p-values < 0.0001). Lower SIFT2
weights were expected to correspond to the streamlines to which the
original method gives a value of 0 and the opposite. Figure 4.8 cor-
roborates that statement. However, it can be seen a non reliable region
between the range of values 0.8 and 1.7. This region corresponds to
the majority of streamlines which means that one can not use SIFT2
method expecting to get the same results as when using the original
method. This can also be appreciated in Figure 4.9, where it can be
seen a wide overlap between the group of SIFT2 weights that corre-
sponds to the streamlines that SIFT removes and the group of SIFT2
weights that corresponds to the streamlines remaining using SIFT.
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5.3 Clustering

From all the features extracted in the voxel-wise characterization, a
study of the contribution of the curvature and SIFT2 values was car-
ried out. The region 2 was the one selected to perform it because of the
pattern the data follows: two cluster can be easily identified by simple
visual inspection, but there are also some additional tracts that do not
clearly belong to any of those two clusters. In Figure 4.11 it can be seen
that the SIFT2 values barely change within the plotted tracts. How-
ever, when giving curvature values as weights, the above-mentioned
points whose clusters are not evident have higher values than the rest
of the data. This means the streamlines crossing that area more curved
than the others.

When performing the method of Brusini et al. [9], the streamlines
were always grouped into one cluster, questioning its effectiveness for
this study. This can be explained due to the number of streamlines
selected to generate the tractograms. The method was designed and
worked successfully for 300k streamlines. Since this study was done
with a 10M tractogram, which is more than triple, all the streamlines
will be very close for the method and this will tend to group them all
into one cluster.

The Mean Shift method proved promising results. The number of
clusters of each region were the expected ones, but, while the patterns
in regions 1 and 3 are clearly separable, the clustering of the above-
mentioned high-curavutre data from region 2 is not as clear. Indeed,
when visualizing the tractogram overlayed with the FOD lobes in Fig-
ure 4.1 it can be seen that in region 2 there are also a few additional
tracts crossing the voxels along a different direction than the two main
ones, which could explain the patterns presented in Figure 4.11. Differ-
ent values of  were tried to see whether this could decrease the restric-
tion in the number of clusters and lead to the creation of a new cluster
corresponding to the high-curvature points. However, as shown in
Figure 4.12, the number of clusters was always equal to two for any
tested >10. This suggests that assigning a value of 10 to the  param-
eter can be a suitable choice for the presented clustering purpose.
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Conclusion

In this project, a procedure was defined to generate, characterize and
cluster fiber geometries of WM at a local level. In order to achieve
optimal results, different methods, configurations and parameters
were analyzed using tractography data from subjects from the HCP.
MSMT-CSD and probabilistic ACT were the methods selected to ex-
tract the FODs and generate the corresponding tractograms, on which
the SIFT2 method was performed next.

Tractograms of three different number of streamlines were gener-
ated: 500.000, 1 million and 10 million. The three of them showed
consistency with FOD directions but, while with 10 million the repre-
sentation is very accurate, with 500.000 it is quite poor. On the other
hand, 1 million seemed to be a sufficient number for the scope of this
project.

This SIFT2 method did not cause any alteration of the results. A
comparison between tractograms with different number of stream-
lines and SIFT2 values was carried out, but no evident differences were
identified. The relation between the number of streamlines per voxel
and SIFT2 weights was also studied. Visually, there seemed to be an
indirectly proportional relationship, but using linear regression eval-
uation, it was proved that there was not any. In addition, it was seen
that SIFT2 method works well for extreme values, which shows con-
sistency with the original method. However, in the region of interest
there is a wide overlap that does not provide enough reliability to use
the method.
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Regarding the clustering, the method used in previous studies of
Brusini [8] does not seem to work properly with the amount of stream-
lines selected for this study. Instead, it has been proved that the Mean
Shift algorithm could be used to distinguish the different bundles ex-
isting at every voxel of the investigated regions of interest. However,
it did not provide any additional information for the clustering, sug-
gesting that other parameters should be taken into account. For this
reason, a possible next step would be to adapt the distance measure-
ment function from the method of Brusini et al. [9] to the Mean Shift
one, which also depends on the curvature angle of the tracts.
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