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Abstract: The magnitude and origin of the electro-optic measurements in strained silicon 
devices has been lately the object of a great controversy. Furthermore, recent works underline 
the importance of the masking effect of free carriers in strained waveguides and the low 
interaction between the mode and the highly strained areas. In the present work, the use of a 
p-i-n junction and an asymmetric cladding is proposed to eliminate the unwanted carrier
influence and improve the electro-optical modulation response. The proposed configuration
enhances the effective refractive index due to the strain-induced Pockels effect in more than
two orders of magnitude with respect to the usual configuration.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction

The silicon platform offers an enormous potential for integrated photonics due to the 
possibility of combining photonic and electronics on the same chip. Moreover, photonics can 
benefit from the mature fabrication processes, capabilities and know-how of the 
microelectronic industry, enabling a low cost and high-volume CMOS compatible production 
of photonic integrated circuits (PICs). However, although the variety of functionalities is 
continuously expanding, one of the main limiting factors is the material itself. The lack of 
electro-optical activity in silicon due to its crystal centrosymmetry prevents the development 
of key components in this platform. Applications such as nonlinear phenomena or high-speed 
efficient modulation are currently addressed either by integrating III-V compounds [1], 
ferroelectric materials, such as LiNbO3 [2] or BaTiO3 [3], and organic compounds [4] or by 
relying in the plasma dispersion effect for optical modulation [5]. In this context, strained 
silicon was proposed more than ten years ago as a disruptive approach to tackle this problem 
[6]. Due to the broken symmetry induced by the applied strain, the second order susceptibility 
is no longer inhibited and high speed and low power electro-optical modulation is allowed 
based on the Pockels effect [7]. Some phenomenological models have been reported [8,9] 
and, by studying stress, the lattice symmetry and waveguide geometry [10–12] electro-optical 
modulation has been shown and optimized on this technology and used to extract large 
second-order susceptibility values [12–14]. However, the origin of the measured data has 
been questioned in recent studies and the important role played by free and trapped carriers in 
masking the underlying Pockels effect has been emphasized [15–20]. It has also been 
suggested that the observed nonlinearities could arise not from the strained silicon but from 
the silicon nitride layer covering the structures [21]. Furthermore, theoretical models [22,23] 
and second-harmonic generation experiments predict much lower values for the second order 
susceptibility [24–27]. Recently, high frequency modulation has been demonstrated in a 
strained Mach-Zehnder interferometer but with an effective susceptibility value of a few 
pm/V [28]. On the other hand, almost a year ago, strong high frequency modulation was 
demonstrated via third-order susceptibility in a silicon waveguide. A p-i-n junction was used 
to extract the free carriers from the waveguide core and enhance the weak Kerr effect present 
in silicon [29]. In this letter the use of a similar p-i-n structure in a strained silicon waveguide 
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where contracted notation has been used for j (1→11, 2→22, 3→33, 4→23, 5→13, 6→12). 
The explicit expressions for the susceptibility coefficients have been omitted for clarity and 
can be found in the Appendix A along with a more exhaustive analysis of their dependency 
on φ. It is important to highlight, however, that all of them are in the same order of magnitude 
and vary between negligible values at the waveguide center up to several pm/V near the 
waveguide walls, where the strain is higher. Once we know the susceptibility tensor, the 
index ellipsoid can be calculated by using its general formula [32]: 

 ( ) 1ij ij i jx xη η+ Δ =  (3) 

being ix  = x, y or z for i = 1,2 or 3, respectively, and analogously for jx , 1
ij oη ε −= the 

impermeability tensor of unstrained silicon and ijηΔ the perturbation induced by the Pockels 

effect, which is given by 
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The applied electric field along the propagation direction Ez has been assumed to be zero and 
the Pockels coefficients rij have been obtained from the susceptibility tensor by using the 

relationship (2)
4

2
ij ij

o

r
n

χ= −  [32], with n0 = 3.454 the index of unstrained silicon. The resultant 

index ellipsoid has, in general, non-negligible values for all terms: 
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Although we cannot diagonalize the index ellipsoid without disregarding any term, it is 
possible to extract the explicit form of the refractive index matrix by knowing that [32] 

 ( ) ( ) 11 · ,ij ij n nη η ε −−+ Δ = =  (6) 

where n is the refractive index matrix in the waveguide coordinate system. Furthermore, we 
can define the index change due to Pockels effect for a given applied voltage as 

( ) ( )0 0V
ij ij ijn n V n VΔ = Δ ≠ − Δ = : 
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However, there are two main limiting factors hindering the effect of strain induced Pockels 
coefficients: the localization of strain and electric field outside the waveguide core. In this 
work, two methods are proposed to improve each of these problems. First, the use of a p-i-n 
junction with top and lateral electrodes is proposed to keep the carriers away from the 
waveguide core and enhance, at the same time, the vertical and horizontal electric fields. 
Secondly, an asymmetric cladding is used to induce strain in the waveguide core center, 
which strongly improves the overlap with the optical mode. the proposed methods offer a 
significant improvement of the effective index change by a factor of 200 with respect to the 
conventional structure considered until now. It is also important to highlight that such 
improvement is independent of the modelling parameters used to calculate the Pockels 
coefficients. The obtained results represent a significant advance in the performance of 
strained silicon devices and, in addition, it could help to unambiguously demonstrate Pockels 
effect as the cause of the measured electro-optic response. 

Appendix A: explicit form of the second order susceptibility tensor 

As explained in the main text, the second order susceptibility tensor is obtained as a function 
of the waveguide rotation angle, however, the explicit expressions have not been given there 
for clarity. These expressions have been obtained using the bond orbital model described in 
[22]. Concretely, the tensor coefficients that have been used to obtain the results presented in 
this work are the following: 
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Appendix B: contribution of the refractive index crossed terms 

Fig. 9. Effective index change for TE and TM modes for (a) the initial and (b) the optimized 
structures with an applied voltage of −15V. The depicted results are obtained either by 
considering all refractive index elements (solid lines) or only diagonal elements (dashed lines). 

Figure 9 shows the effective index change for TE and TM modes for Fig. 9(a) the initial and 
9(b) optimized structure. In addition to the total effective index change (solid lines) already 
shown in the main text, the effnΔ obtained by only considering the diagonal V

iinΔ terms has also 

been included (dashed lines). The plotted data shows the weaker contribution of the crossed 
terms played in the obtained results. 
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