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Abstract: 

𝐶𝑢2𝐹𝑒𝑆𝑛𝑆4 (𝐶𝐹𝑇𝑆) is auspicious nontoxic and earth abundant semiconductor compound having kesterite 

symmetrical structure. It is an attractive and suitable material for the fabrication of low cost, high efficiency and 

sustainable thin film photovoltaic cell. 𝐶𝐹𝑇𝑆 based kesterite photovoltaic cell device modeling was performed in this 

work. The influence of device parameters such as the thickness, acceptor and donor carrier concentration densities of 

absorber and electron transport layer (ETL), effect of back contact metal work function and the temperature effect on 

the performance of 𝐶𝐹𝑇𝑆 based kesterite photovoltaic cell is analyzed by using one dimensional solar cell capacitance 

simulator (SCAPS) software. In this work, promising optimized results had been achieved with the conversion 

efficiency of 19.97%, fill factor (𝐹𝐹)  85.94 %, short-circuit current (𝐽𝑠𝑐) 23.37 𝑚𝐴/𝑐𝑚 2 and open circuit voltage 

(𝑉𝑜𝑐) 0.995V. The above results will give imperative baselines and feasible directions for the fabrication of higher 

efficiency 𝐶𝐹𝑇𝑆 based photovoltaic cell. 

Keywords: SCAPS, Photovoltaics, 𝐶𝑢2𝐹𝑒𝑆𝑛𝑆4,𝐶𝐹𝑇𝑆, Kesterite, Solar cell, Numerical Analysis. 

I. INTRODUCTION: 

Thin film technology is the one of the most cost effective and efficient technology for the manufacturing of 

photovoltaic cells and it is an excellent subject of intense research in photovoltaic industry. Thin films are very suitable 

for low and large scale photovoltaic cell applications. To fulfill the consumer demand and for the generation of 

electricity, the high-power conversion efficiency solar cell without degradation of materials and economical 

photovoltaic cells are fabricated [1]. Silicon based photovoltaic cells dominated the market from many years and due 

to intensification in manufacturing capabilities thin film photovoltaic cells are gaining significance [2]. For the 

manufacturing and production of silicon based thin film solar cell, different major deposition techniques like 

sputtering, thermal evaporation, molecular beam epitaxy, e-beam evaporation, close space sublimation, and metal 

organic chemical vapor deposition techniques are attempted [3]. So, cost of the material, technology and  energy 

consumption used by  these sophisticated fabrication techniques makes the solar cell panel costly[4]. 𝐶𝑑𝑇𝑒 , 𝐶𝐼𝐺𝑆 

(𝐶𝑢𝐼𝑛1−𝑥𝐺𝑎𝑥𝑆𝑒2) and related alloy based thin-film chalcopyrite photovoltaic cells materials are commercially used 

for the fabrication of thin film photovoltaic devices because of high conversion efficiency, excellent electrical as well 

as optical properties [5] and also these types of devices have high absorption coefficient[6],[7]. The toxic materials 

restrict the further development of these types of cells and the rare materials like Indium and Gallium used for the 

fabrication of cell also increase the fabrication cost [5]. So, the commercial production of 𝐶𝐼𝐺𝑆 based photovoltaic 

cell is limited.  
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Non-toxic earth abundant materials having kesterite symmetrical structure like 𝐶𝑍𝑇𝑆 (𝐶𝑢2𝑍𝑛𝑆𝑛𝑆4), 

𝐶𝑍𝑇𝑆𝑒 (𝐶𝑢2𝑍𝑛𝑆𝑛𝑆𝑒4),[8–12] 𝐶𝐹𝑇𝑆 (𝐶𝑢2𝐹𝑒𝑆𝑛𝑆4), 𝐶𝐹𝑇𝑆𝑒 (𝐶𝑢2𝐹𝑒𝑆𝑛𝑆𝑒4) and their alloys are emerging as the most 

auspicious replacement for the chalcopyrite absorbers (𝐶𝐼𝐺𝑆, 𝐶𝐼𝐺𝑆𝑒) [13–15]. The growing attention towards these 

quaternary compounds for photovoltaic cells production is due to their potential [16–19]. Among these quaternary 

compounds, 𝐶𝐹𝑇𝑆 is one of the most auspicious compound for an effective light absorber material due to its suitable 

optical band gap of 1.2 –1.5eV [20–24] and large absorption coefficient 𝛼 > 104𝑐𝑚−1[18,25–29]. Power conversion 

efficiency of about 0.29% for 𝐶𝐹𝑇𝑆 based solar cell is presented in [30]. In [26], the reported conversion efficiency is 

2.73%. 

Numerical modeling or numerical analysis is an essential tool for the better understanding of device working 

parameters. Numerical analysis can play a significant role in manufacturing and fabrication of an efficient photovoltaic 

device. Numerical analysis of the kesterite based  𝐹𝑇𝑂/𝑇𝑖𝑂2/𝐶𝐹𝑇𝑆/𝑏𝑎𝑐𝑘 𝑐𝑜𝑛𝑡𝑎𝑐𝑡 photovoltaic cell is proposed in 

this work. In our simulations, thickness of absorber layer (𝐶𝐹𝑇𝑆) varies from 1µm to 4µm and the bandgap energy is 

1.3𝑒𝑉. The band gap of electron transport layer is larger than that of absorber layer; hence, maximum photons are 

absorbed in 𝐶𝐹𝑇𝑆, which will increase the overall conversion efficiency of photovoltaic cell.  The proposed results 

will give a valuable baseline for the design of high performance 𝐶𝐹𝑇𝑆 based kesterite solar cells. 

II. SOLAR CELL DESIGN 

 

Figure 1. Block diagram of CFTS solar cell 

Figure 1 shows our proposed photovoltaic cell structure 𝐹𝑇𝑂/𝑇𝑖𝑂2/𝐶𝐹𝑇𝑆/𝑀𝑜, which comprises back contact 

layer 𝑀𝑜, absorber layer 𝐶𝐹𝑇𝑆, electron transport layer 𝑇𝑖𝑂2 and window layer 𝐹𝑇𝑂. We have investigated the 

influence of parameters like temperature variations, absorber layer dopant concentration and thickness, electron 

transport layer dopant concentration and thickness, as well as compensation ratio and illumination power of the sun, 

on the performance of our photovoltaic cell model.  For optimum values of parameters (absorber layer thickness 4µ𝑚 

and acceptor carrier concentration 3 × 1018 𝑐𝑚−3), we found a conversion efficiency of 19.97%. 

III. NUMERICAL MODELING AND MATERIAL PARAMETERS. 

The simulation software that can be used for the numerical modeling of photovoltaic cell must be able to solve the 

semiconductor basic equations like the continuity equation for holes and electrons and the poisson’s equation relating 

the charge to the electrostatic potential. The charge carrier transport equation and the basic equations are well explained 

in simya O.K.et al [31]. We have used one dimensional Solar Cell Capacitance Simulator (SCAP-1D) software 

developed at the University of Gent, Belgium, to simulate our proposed model of photovoltaic cell. That software is 

designed for simulations and helps for analysis of J-V characteristics curve, ac characteristics (C-V and C-f), spectral 

response(QE) of a device, power conversion efficiency(PCE), fill factor (FF), short-circuit current (𝐽𝑠𝑐), open circuit 
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voltage (𝑉𝑜𝑐) used, energy bands of materials used in solar cell and concentration of different material used by solving 

the semiconductor basic equations, the hole and electron continuity equation and the Poissons equations. 

The measure of a photovoltaic cell quality is Fill Factor (𝐹𝐹), which is derived by equating the maximum power 

(𝑃𝑚𝑎𝑥) to the theoretical power (𝑃𝑡). Where power (𝑃𝑡) would be output at both the short circuit current (𝐽𝑠𝑐) and 

open circuit voltage (𝑉𝑜𝑐)  as given in equation 1.  

𝐹𝐹 =  
𝑃𝑚𝑎𝑥

𝑃𝑡
=

𝑉𝑚𝑎𝑥 𝐼𝑚𝑎𝑥

𝑉𝑂𝐶  𝐽𝑆𝐶
                                                                                       (1) 

The product of 𝑃𝑡 and 𝐹𝐹, divided by the energy input from the sun is the power conversion 

efficiency(𝑃𝐶𝐸) mathematically expressed in equation 2. 

𝑃𝐶𝐸 =  
𝑉𝑂𝐶  𝐽𝑆𝐶  𝐹𝐹

𝑃𝑖𝑛
                                                                                       (2) 

The parameters used in SCAPS software for numerical analysis are absorber layer thickness, electron-hole 

mobility, intrinsic carrier concentration, electron affinity, band gap and doping density. For buffer and window layer 

similar parameters are also required which are enlisted in table 1. Where 𝑝  is the hole concentration and 𝑛 is electron 

concentration in cm−3, 𝑊 is the thickness in µ𝑚. 𝜒 is the affinity in 𝑒𝑉, 𝐸𝑔 is the bandgap in 𝑒𝑉,  µ𝑒 is the electron 

mobility in 𝑐𝑚2/𝑉𝑠, µ𝑝 is the hole mobility in 𝑐𝑚2/𝑉𝑠, 𝑁𝑉 is the valence band effective density of state and 𝑁𝐶  is the 

conduction band effective density of states in cm−3. All the simulations are performed under AM 1.5 illumination.  

Table-I:  Baseline parameters for modeling CFTS based solar cells[3,32,33] 

Parameters p-CFTS n-𝐓𝐢𝐎𝟐 n-FTO 

Thickness, W (μm) 1~4 0.4 0.5 

Band gap, Eg (eV) 1.3 3.2 3.5 

Electron affinity, χ (eV) 3.3 3.86 4 

Dielectric permittivity, εr 9 9 9 

Effective Density of states, NC (cm−3) 2.2x1018 1.8x1019 1x1019 

Effective Density of states, NV (cm−3) 1.8x1019 2.4x1018 1x1018 

Electron mobility, μe(cm2/Vs) 2.198x101 100 20 

Hole mobility, μp (cm2/Vs) 2.198x101 25 10 

Electron and hole concentration, n, p (cm−3) 3x1018 1x1015 1x1018 

IV. RESULTS AND DISCUSSION 

A. Energy Band Diagram 

Energy band diagram of a proposed 𝐶𝐹𝑇𝑆/𝑇𝑖𝑂2 device is shown in figure 2 and is taken from SCAPS software. Energy 

band diagram helps in explaining the properties of solar cell. For incident light photons the band gap value that is optimal 

for most of light to be absorbed for effective power conversion efficiency is greater or equal to the maximum band gap 

value of 1.3 eV. ACCEPTED M
ANUSCRIP
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Figure 2. Energy band illustration of CFTS solar cell 

B. J-V characteristics of 𝑪𝑭𝑻𝑺/𝑻𝒊𝑶𝟐  photovoltaic cell 

The main working of a photovoltaic cell is to convert sun light energy into electricity. When there is absence of light, 

the photovoltaic cell is a large flat diode and gives the exponential curve in 𝐽 − 𝑉 measurements. The cell gives an 

extreme smallest value of current that is due to minority carriers in dark condition, as illustrated in figure 3. 

Photovoltaic cell starts working under light illumination condition. Generation of charge carriers due to absorption 

of incident photons from sun light in this state is the main reason of the flow of a the current. The J-V characteristic 

curve of 𝐶𝐹𝑇𝑆/𝑇𝑖𝑂2  photovoltaic cell is given in figure 3. 
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Figure 3: Dark Vs Light 𝑱 − 𝑽 characteristics. 

C. Effect of CFTS absorber layer thickness. 

The absorber layer (𝐶𝐹𝑇𝑆) thickness effect on photovoltaic cell performance is shown in figure 4. Effect of the 

thickness of 𝐶𝐹𝑇𝑆 absorber layer is analyzed by varying the thickness value from 1µm - 10µm, while all other material 

parameters of different layers are constant. With increasing the absorber thickness, short circuit current (𝐽𝑆𝐶) increases 

with an increase of open circuit voltage (𝑉𝑂𝐶). Fill factor (𝐹𝐹)  and power conversion efficiency (PCE) are also 

increases up to a point of optimal thickness. After reaching to the optimal absorber thickness values, Fill factor starts to 

decrease. The increase in 𝐽𝑆𝐶 with an increase of 𝑉𝑂𝐶 and 𝑃𝐶𝐸 up to optimal absorber thickness, is principally due to 
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more absorption of photons of longer wavelength and this will in turn, affect the ratio of photo-generated carriers. The 

optimal value for absorber thickness layer is 4𝜇𝑚. 
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Figure 4: Effect of the absorber layer thickness on CFTS photovoltaic cells 

D. Effect of absorber layer acceptor concentration densities 
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Figure 5: Acceptor concentration in the absorber layer. 
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Acceptor concentration densities in absorber layer is varied from 1 × 1018𝑐𝑚−3 to 1 × 1019𝑐𝑚−3 as shown in 

figure 5. The figure illustrates that 𝑉𝑜𝑐 increases with increase in the doping concentration whereas 𝐽𝑠𝑐 decreases 

with increase in the doping concentration. The main reason is that the saturation current of a device increases with 

the increase of the carrier concentration density and resultantly the 𝑉𝑜𝑐 increases with increasing doping 

concentration. However, the short-circuit current will decrease with the increasing of carrier densities. This 

decrease in 𝐽𝑠𝑐 with increasing doping concentration is due to the fact that the higher carrier densities will increase 

the recombination process and lessen the probability of the collection of the photon-generated electrons. So the 

collected conversion efficiency is more dependent on the influence of the concentration density. From figure 5, it 

is clear that power conversion effeciency and fill factor increases with increase in the carrier concentration in 

absorber layer material. The optimal value of the concentration of acceptor density of absorber layer is  3 ×

1018 𝑐𝑚−3. 

E. Effect of electron transport layer on 𝑪𝑭𝑻𝑺/𝑻𝒊𝑶𝟐  photovoltaic cell.  

𝑇𝑖𝑂2 electron transport layer(ETL) influence on the performance of a photovoltaic cell is also explored and given 

in figure 6. The 𝐸𝑇𝐿 thickness is varied from 0.1µ𝑚 to 1µ𝑚. Simulated fallouts illustrate that with an increase in 

the 𝐸𝑇𝐿 thickness, there is no change in short-circuit current (𝐽𝑠𝑐), open circuit voltage (𝑉𝑜𝑐), power conversion 

efficiency (𝑃𝐶𝐸) and the Fill Factor (FF). So, this result is comprehended that change in thickness of 𝐸𝑇𝐿 layer 

did not affect the output of 𝐶𝐹𝑇𝑆/𝑇𝑖𝑂2 photovoltaic device. For the designing of 𝐶𝐹𝑇𝑆/𝑇𝑖𝑂2 based kesterite 

device, optimum thickness taken is 0. 4𝜇𝑚. 

The effect of 𝐸𝑇𝐿 donor concentration on the deviece performance is analysed by changing the concentration 

density value varied from 1 × 1015𝑐𝑚−3 to1 × 1017𝑐𝑚−3. With increase in doping concentration in 𝐸𝑇𝐿, there 

is no major change obtained that affects the performance of device as illustrated in figure 7. So, this result is 

comprehended that by changing the 𝐸𝑇𝐿 donor concentration, output of photovoltaic device is not affected. 
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Figure 6: Effect of the Electron Transport Layer thickness on CFTS photovoltaic cells. 
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Figure 7: Donor concentration in the Electron Transport Layer.   

F. Effect of back contact metal work function on JV characteristic curve. 

Metal work function of back contact affects the performance of solar cell. The metal work function is well illustrated 

in figure 8. With increase in the contact metal work function, open circuit voltage increases. Along with open circuit 

voltage, short circuit current also increases. This can be explained with the aid of energy band diagram shown in 

figure 9 for metal work function of 4.9 eV. From figure 8, it can be seen that there is a conduction band offset which 

stops the flow of electrons to the back contact, thus helps in improving the open circuit voltage of solar cell. 
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Figure 8: Effect of back contact metal work function on JV characteristic curve. 
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Figure 9: Energy band diagram illustration of back contact metal work function effect 

G. Effect of working temperature on photovoltaic cell performance. 

Analysis of device by means of its working temperature is explored to check the performance of 

photovoltaic cell. The photovoltaic panels are installed in the open sky. So, heating on photovoltaic cell increases 

due to the sunlight, which directly affects the performance of photovoltaic cells.  The panels are operated at 

temperatures greater than 300𝐾. The influence of the working temperature on the proposed device is also 

investigated. For inquiring the temperature effect, we take the temperature in a rage from 300𝐾 to 500𝐾. The 

simulation results are shown in figure 10.  
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Figure 10: Effect of temperature on CFTS solar cell. 
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Overall solar cell performance is affected due to increase in temperature as well understood from figure 

10. Power conversion efficiency and open circuit voltage decreases with increase in temperature. This decrease in 

conversion efficiency is due to higher temperature, because carrier concentration, band gaps, electron and hole 

mobility are directly affected by temperature [23]. Reverse saturation current 𝐽0 depends on the temperature due 

to this 𝑉𝑜𝑐 decreases with increase in temperature as given in equation. 3[34]. Electrons gain more energy from the 

increased operating temperature. These electrons are unstable due to the higher temperature and are more likely to 

recombine with the holes before reaching the depletion region. Figure 10 illustrates that conversion efficiency, 𝐹𝐹 

and 𝑉𝑜𝑐 of the device decreases; whereas  𝐽𝑠𝑐 increases with increase in temperature. 

𝐽𝑒(𝑉) =  𝐽0 [𝑒𝑥𝑝 (
𝑞𝑉𝑜𝑐

𝑘𝐵𝑇
) − 1]                                                                      (3)                                                                

V. CONCLUSION: 

The base line parameters of kesterite based  𝐹𝑇𝑂/𝑇𝑖𝑂2 / 𝐶𝐹𝑇𝑆/ 𝑀𝑜 photovoltaic device is proposed in this work. 

This will be very helpful for designers, researchers and engineers for analyzing and manufacturing of 𝐶𝐹𝑇𝑆 based 

devices. The different parameters which affects the cell performance are described. For the in depth understanding and 

getting the confidence in the modeling of a photovoltaic cell, different characteristics, as well as different possible 

conditions, are to be considered for simulation. In this work, promising optimized results have been achieved with the 

conversion efficiency of 19.97%, fill factor (𝐹𝐹)  85.94 %, short-circuit current (𝐽𝑠𝑐) 23.37 𝑚𝐴/𝑐𝑚 2 and open circuit 

voltage (𝑉𝑜𝑐) 0.995V. The results will give imperative guidance for the feasible fabrication of higher efficiency 𝐶𝐹𝑇𝑆 

based photovoltaic cells.  
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