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PREFACE

This thesis is the final written submission of the Electrical M.Sc. programme at the
Technical University of Denmark, it has however been carried out in conjunction with the
DTU Mechanical department.

The following thesis deals with the study, design and implementation of classical control
strategies in order to perform active control of vibrations in rotor-blade structures. The
control will be designed for a specific rotor-blade test-rig arrangement that was lent by the
DTU Mechanical Department. In order to build the mathematical model of the plant on
Matlab, previous information from a Ph.D thesis written by R.H Christensen [1] will be
used, he was able to obtain a theoretical and numerical description of the movement and
behaviour of a four blade rotor-blade structure.

The work here presented, is part of a bigger project carried out throughout the semester on
the test-rig. I have been working closely with two other DTU students who also had to study
and address different issues regarding the test-rig, Alvaro Brández (s171801) and Ignacio
Escudero (s171798). Throughout his thesis Alvaro had to physically update the test-rig’s
software (control interface) and hardware (sensors and actuators) to obtain the correct
functioning that allows for the possibility of actively controlling vibrations. My thesis
deals with the mathematical theoretical modelling of the test-rig plant and the design of
classical controllers to dampen vibrations. While Ignacio’s thesis deals with the numerical
identification of the test-rig plant and the design of an adaptive controller to dampen
vibrations. The whole project was therefore designed with the objective of experimentally
reducing vibrations in a four blade rotor-blade test-rig using both classical and more refined
control strategies. This whole project was carried out with the encouragement of our
supervisor Ilmar Santos.
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ABSTRACT

This paper studies the design and implementation of active control strategies to reduce
vibrations in rotor-blade systems. Rotating machinery are present in mostly every industrial
application, some examples include, compressors, turbines, pumps or motors. The fast
development of engineering applications has lead to the demand of highly efficient and fast
rotating machinery. Vibrations occur naturally in rotating components, they introduce
various issues, like working performance degradation and machinery lifetime reduction.

This project will study the application of control strategies to attenuate both hub and
blade vibrations in a four-blade rotor system. This thesis was devised as a theoretically
driven investigation of the design of classical control techniques. However, it has been
carried out with the fundamental idea of ensuring the applicability of the designed control
algorithms in a physical four-blade rotor test-rig. Previous studies carried out on the test-
rig investigated the design and application of complex time-varying control structures. The
main disadvantage of these solutions was the difficult application of the control algorithm
in the test-rig control unit, due to heavy computation. This thesis therefore studies the
design of simpler controllers with a suboptimal solution but with still good performance at
vibrations reduction.

The first part of the thesis will deal with the obtention of an accurate mathematical model
of the four-blade rotor test-rig, that is able to explain the dynamic behaviour of the system.
The second part will deal with the design of classical controllers for active vibration control
in the frozen version model, with no rotation. A simple structure of decoupled SISO
PID controllers will designed. The advantage of the PID controller is its simple design
and easy tuning. State space control structure will also be used to study the model as a
MIMO system. A full-state feedback approach will be used to design the controllers. The
controller gains are found using two methods. First one being pole placement assignment,
where the gain is chosen to obtain a desired close loop behaviour. The other method is
optimal control design with linear quadratic regulation. All of the controller designs will
be tested on the system, analyzed and compared. These controllers will be designed both
for shaft and individual blade actuation as well as for shaft based actuation control only,
the possibility of reducing blade vibrations with shaft control only will be studied.

The last part of the thesis deals with the study of the adaptation of designed static controllers
to the rotating model of the system using classical control methods. A feedforward control
will be added to the PID control structure to cancel the effect of disturbances that appear
during rotation.
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SYMBOLS

A(t) Model state space system matrix
A0 Static Model state space system matrix
B(t) Model state space input matrix
B0 Static Model state space input matrix
Bv(t) Model state space Disturbance input matrix
Bv0 Static Model state space Disturbance input matrix
Bi Auxiliary rotating frame of blade i
C Model state space output matrix
Ci Auxiliary rotating frame of tip mass i
d1,2,3,4 Blades measured displacement
Dhx Damping of hub suspension in x-direction
Dhy Damping of hub suspension in y-direction
Ebi Youngs modulus of blade i
Ekin,(h,r,b,t) Kinetic energy of hub, rotor, blade and blade tip respectively
Epot,(h,b,c) Potential energy of hub, blade and centrifugal forces respectively
fint Known disturbances due to internal forces in Newtons
fext Input actuation forces in Newtons
Fhx,y Actuation force applied in hub’s x and y direction (N)
Fi Generalized force in the i’th degree of freedom in Lagrange Equation
F0 Static Discrete Model state space system matrix
G0 Static Discrete Model state space input matrix
Gv0 Static Discrete Model state space disturbance input matrix
I Inertial frame of reference
Ibi Area moment of inertia of blade i
Jti Mass moment of inertia of tip mass i
Khx Stiffness of hub suspension in x-direction
Khy Stiffness of hub suspension in y-direction
Lbi Length of blade i
Lti Length of tip mass i
m Number of mode shapes included in the mode shape expansion
mr Mass of rotor
mhx Mass of hub in x-direction
mhy Mass of hub in y-direction
mti Mass moment of tip mass i
N Number of degrees of freedom in the mechanical part of the model
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Symbols

Na Number actuators
Ns Number sensors
Nbi(x) Normal force in blade i as a function of position x
qi,j(t) Generalized coordinate of blade i, mode j
Rr Rotor Radius
R1 LQR State weighting matrix
R2 LQR Actuation weighting matrix
rIo−h(t) Position vector of center of rotation with respect to the inertial frame
rBi
h−pi

(t, xi) Position vector of point pi on blade i with respect to the center of rotation
rCi
oiti Position of tip mass center i with respect to the frame Ci
Ta Actuators transformation matrix
Ts Sensors transformation matrix
T Sampling time
TBi Transformation matrix from Bi to I
TCi Transformation matrix from Ci to Bi
u(t) Electromagnets actuation input signal in Volts
vIo−ti(t) Absolute linear velocity of tip mass i with respect to the center of the inertial frame
vBi
h−pi

(t, xi) Absolute velocity of point pi with respect to the center of rotation
vIh−pi

(t, xi) Absolute linear velocity of point pi with respect to the center of rotation
vIo−pi

(t, xi) Absolute linear velocity of point pi with respect to the center of the inertial frame
xh Hub output displacement in x direction
x State vector
x̂ Estimated state vector
y Measured output vector
yh Hub output displacement in y direction
z(t) Generalized coordinate of mechanical model
Ω Rotor Angular velocity
Ω̇ Rotor Angular acceleration
αi Angle offset of blade i with respect to blade 1
ε Displacement of rotor centre of gravity
κ Angle of rotor unbalance with respect to blade 1
φi,j(x) Mode shape of blade i, mode j
ρbi Density of blade i
θ Angular position rotor in rad
ωIBi

Angular velocity of frame Bi with respect to the inertial frame I
ωICi

Absolute velocity of frame Ci with respect to the inertial frame I
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1 INTRODUCTION

This paper studies the design and implementation of active control strategies used to reduce
vibrations in industrial rotor-blade systems with the objective of extending their lifetime.
Rotating machinery, like compressors, turbines, pumps or motors are nowadays used in a
variety of industrial applications, these may include the power, process or oil industries.
Vibration naturally occurs in rotating machinery, however the incorrect suppression of
these vibrations can lead to serious physical problems, it accelerates the rate of wear
of mechanical components, creates uncomfortable noise, leads to the degradation of the
machine’s working conditions and performance and more importantly can cause safety
problems [2].

The fast development of engineering applications has lead to the demand of highly efficient
and fast rotating machinery. An example of this is the robotic industry which needs
lightweight, versatile, energy efficient machine components with high performance accuracy.
Light components usually come with the addition of higher vibrations that need to be
addressed. These rotating components are usually really expensive, therefore degradation
of its functionality due to excessive vibration is inadmissible.

In the past, passive vibration control has been commonly used as a method to reduce
machine vibrations. This strategy has proven to be a very effective and cheap option
when reducing vibrations in a given working range. It however comes with disadvantages
which may not be practical for the high demanding industry. Passive vibration strategies
have poor low frequency performance, they also have a very narrow effective frequency
suppression range, which makes them poorly adjustable. They are not capable of adapting
to fit different working conditions, changing disturbances or to adapt to structural changes
caused by natural wear of components.

Active vibration control strategies are being introduced as viable way to fulfill the
deficiencies of passive strategies, including the low frequency gap and the lack of flexibility
and adaptability. Moreover, they do not add excessive weight to the structure.

1.1 Active Vibration Control Background

Active vibration control strategies function by applying an artificial vibration input to a
structure in order to modify its response in a desired manner. To reduce vibrations and
dampen the response of the structure, an artificial cancelling vibration source must be
generated, this source will destructively interfere with the naturally occurring vibration
and will therefore lead to a reduction in the level of vibrations at a localized area in the
structure [4].

Every active vibration control system is composed of three main subsystems, the plant,
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1. Introduction

actuators and sensors, and the designed controller.

Figure 1.1: Active control of vibrations scheme.

The plant is a mathematical representation of the physical system to be controlled. An
approximate model of the real system has to be derived, this model must explain with
accuracy the real behaviour of the system, however most systems are complex and difficult
to model, continuous flexible structures have infinite order vibration characteristics. In
order to reduce computational complexity a model order reduction is usually performed,
this also allows for the easier design and implementation of the controller [5]. However,
model errors or poor accuracy can lead to spill-over problems. Spill-over issues appear
when unmodelled (residual) dynamics of the system become unstable when adding the
control loop. To avoid this issue, a suitable reduced model of the system has to be obtained,
this model needs to correctly explain the behaviour of the system around the desired
frequency bandwidth.

Sensors are needed to measure the system behaviour and response. Actuators provide the
input needed to modify the plant’s response in a desired manner. The location of sensors
and actuators is a very important decision, as it will affect the design and modelling of the
controller and its efficiency. The location of sensors and actuators affects the controllability
and observability of the plant, two very important aspects in classical control theory that
need to be studied before designing the controller. Controllability studies the possibility of
physically taking the system to a desired state by applying a control input in the actuators.
Observability studies whether the system states needed to describe the behaviour of the
system can be observed or known from the sensed signals.

The controller implements the feedback control algorithm needed to obtain the desired
behaviour of the real system. In classical control theory the real system paired with
the controller is known as the closed-loop system. In the closed-loop system the open-
loop system dynamics are combined with the controller dynamics, modifying its overall
behaviour. The control mechanism must be able to cope with the frequency dependent
changes on the characteristics of the system [3]. Time varying model structures are common
in flexible vibration structures, controllers must therefore be complex and robust to adapt
to these changes.
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1. Introduction

1.2 Active Vibration Control in Rotor-Blade Systems

This thesis focuses in the active control of vibrations in rotating rotor-blade systems, more
specifically in a four blade rotor-blade test-rig.

Rotor-blade systems are present in most industrial processes, they have numerous
applications, these may include, steam turbines, gas turbines, generators, motors, pumps,
compressors, aircraft engines, fans, or drive trains. Common to all rotating machinery is
blade vibration during operation, this mainly happens due to unavoidable unbalances in
the rotor, misalignment along the rotor shaft, wear throughout the years and looseness [7].
Vibrations will propagate between the rotor and blades due to the mechanical coupling
present between both parts. Vibrations are undesirable, they can damage the equipment
and reduce efficiency. Rotating machines are expensive, therefore, failure due to vibrations
is inadmissible.

In rotating rotor-blade systems, the system’s characteristics vary periodically with time
[8], complex dynamic dependent changes in the system’s characteristics like centrifugal
stiffening occur, where an increase in the blade’s natural frequencies with the rotation
speed can be seen [12]. Classical techniques for model analysis and controller design
and implementation are usually inadequate for time varying systems. Controller design
for generic time varying systems is challenging. Even though it has theoretically been
approached in various ways, experimental application is however limited due to the great
computational load these methods require. Studies assessing the performance of time
varying controlled systems acknowledge the limited experimental application of the designed
time varying controller due to tedious amounts of complex mathematical operations and
numerical computations which can be very difficult to apply in complex model structures
[9].

However, for the specific subgroup of periodic time-varying systems, many research has
already been carried out focusing on the idea of using the periodicity of the system’s
behaviour to reduce the complexity of the time-varying model and controller design.
This field of study has gained lots of attention during the past years due to its various
applications in the engineering industry, the efficient and reliable model and control of
periodic systems can be applied to flexible systems, rotating machinery or helicopter blades.
Nevertheless, the experimental application of these methods has not been fully researched
yet.

Research on the mathematical modelling of a rotating four rotor-blade system with periodic
motion has already been carried out, models have been obtained for different physical
constrains and motion assumptions. In [8] a model is obtained for a rotor-blade system
with only allowed lateral horizontal displacement in the rotor foundation, here the blades
are modelled as Euler–Bernoulli beams, by using different approaches they obtain a linear
beam model, a linear beam model with second order terms and a non-linear one. The
article concludes with the analysis of the different models, being the non-linear the most
accurate one at describing the motion of the blade. In the Ph.D thesis by R.H. Christensen
[1] a mathematical model describing the motion of a rigid rotor mounted in a hub, which
can perform planar movement in the x-y plane, with four attached flexible blades with
tip point masses is described. Throughout the thesis a modal periodic decomposition is
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1. Introduction

also performed, this method decouples the system dynamics, it allows to easily reduce the
model complexity by separating the dominant dynamics from the redundant ones. The
mathematical model derived in this thesis will be used as a basis for the mathematical
plant that will be used in this thesis, all controllers will be designed for this plant.

Active control of vibrations in flexible beams, rotating flexible beams and rotating rotor-
blade systems has been widely studied, usually with a theoretical approach. In [13] a
feedback control strategy for a flexible mechanical systems is obtained. The general equation
of motion with damping is used to describe the model. A modal feedback control is used,
the control of spillover due to the residual modes is also treated. In [14] an electromagnetic
damper control is designed for a one degree of freedom mechanical flexible structure. A
state space full-state feedback control is designed using pole placement assignment. In [6]
a reduced modal model of a beam using modal filters is obtained and a feedback control
loop is designed using optimal control strategies. Moreover, a feedforward control loop is
added to cancel unknown disturbances in the system. In [15] a rotating beam is modeled
using finite element analysis and state space representation, a state estimator and an active
optimal controller are designed. However, all of these studies deal with linear time-invariant
systems and classical methods for controller design, they neglect some of the dynamics
of the real system and simplify the model. Throughout the past decade, more and more
articles deal with the periodic or time varying active control of rotor-blade systems. In
[3] an adaptive active control system is designed to suppress vibrations in a flexible beam
using two methods recursive least squares optimization and genetic algorithm optimization.
In [16] a robust controller using gain-scheduled periodic control design is used to reduce
helicopter’s rotor vibrations. Gain-scheduled control is performed by designing a controller
whose gains are adjusted as a function of a scheduling variable that describes the current
operating point. The helicopter rotor is modeled as a time varying system affected by a
known periodic disturbance that accounts for the periodic nature of the vibrations that
appear on a rotating rotor.

Previous students from DTU Mechanical Department have aslo studied the active control
of vibrations in four blades rotor-blade systems. C.S. Jakobsen [17] studied the design of
a gain-scheduled periodic controller, the different controller gains were designed off-line
using optimal control design for different rotor angle and velocity arrangements, only shaft
base actuation was taken into account. J.B. Hansen [18] studied the design of robust
periodic control algorithms using H∞ and H2 methods which transform the controller
design into a mathematical optimization problem which assures stability while maintaining
performance, only shaft based actuation was taken into account. Both of these methods
require very advanced control algorithms, this makes them very difficult to design for a
complex mathematical model like a four blade rotor-blade system with coupled vibrations,
it is even more complex to experimentally apply in the rotor-blade test rig due to heavy
mathematical computations. In [18] Jesper concludes by stating that the proposed robust
control algorithms could not be resolved for the four blade rotor-blade model due to the
complexity of the numerical calculations required.
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1. Introduction

1.3 Project Focus
The objective of this thesis is to study the active control of vibrations in a rotor-blade
system using classic control approaches. As stated in the Preface the global aim is to
experimentally apply the designed controllers on the test-rig. As seen from the conclusions
of C.S. Jakobsen [17] and J.B. Hansen [18], previous Master Theses, advanced control
algorithms are too complex to effectively be applied on the test-rig control interface.
Therefore a classical approach will be used throughout the thesis, this will allow for
the design of simpler controllers that can be experimentally implemented obtaining a
suboptimal solution with still good performance at damping vibrations. Classical design
methods also have the advantage of being easier to understand meaning that anyone could
afterwards tune or adapt the controller for future research.

Throughout the semester another student, Alvaro Brández (s171801), has been working on
the test-rig’s software and hardware control interface. He was able to update the actuators
so that individual blade actuation is also possible. This thesis will therefore also study the
impact of only shaft actuation or shaft and blade actuation and how it affects the control
of vibrations.

The mathematical model of the plant will be derived using R.H. Christensen’s [1] Ph.D.
Thesis as a basis. He was able to numerically obtain the equations of motion that describe
the test-rig’s behaviour. His findings will be used to model the plant needed for the
controller design. However some significant changes will be made to fit the model to the
current physical test-rig facility. The previous model assumed the controlled input to the
system was the force that the actuator magnets directly apply to the physical system’s
components. However, we cannot measure and control the force the magnets apply to the
system, but the voltage applied to the magnets. Therefore the updated model will include
this change.

The first part of the thesis will deal with the design of controllers for the frozen model
of the rotor-blade system, this means zero angular velocity or acceleration are applied to
the rotor. The final part of the thesis will study how rotor rotation affects the modeled
system, how the previously designed controllers perform on the rotating system and what
changes can be made on the controllers to adjust to rotation.

Various classical control algorithms will be designed. Starting with the most basic one, a
PID controller will be introduced, here the system will be treated as the sum of different
single input single output uncoupled systems. The advantage of the PID controller is its
simple design and easy tuning. State space control structure will also be used to study the
plant as a multiple input multiple output system. A full-state feedback approach will be
used to design the controllers. The controller gains are found using two methods. First one
being pole placement assignment, where the gain is chosen to obtain a desired close loop
behaviour, this technique is useful when the designer has an understanding of the system
dynamics and wants to obtain a specific behaviour. The other method is optimal control
design with linear quadratic regulation, this method allows you to design the controller
gains by adjusting the performance and quality of the controller, this way you can obtain
the best possible controller taking into account important factors, like input limitations.
All of the controller designs will be tested on the system, analyzed and compared.
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2 PHYSICAL SYSTEM

This chapter will focus on the description of the test-rig structure I have based my work
on. This test-rig was arranged by R.H. Christensen, however some components have been
updated throughout this semester by another DTU student, Alvaro Brández who had to
change part the test-rig’s hardware and software to allow for the possibility of performing
active control of vibrations with actuation both in the shaft and individual blades.

2.1 Mechanical Structure
The test-rig was designed to study vibrations in a rotor-blade system. Descriptive
photographs of the structure can be seen on page 10, which will be addressed in the
following explanation. The whole rotor-blade system is installed inside a static external
rigid frame structure (14). The rotating rotor-blade system main components include a
rotating shaft (16), a mounted rigid disk, and the attached blades. The shaft is supported
at both ends by two bearings, these are at the same time mounted into a flexible suspended
cage or hub (1). The shaft and hub move together. The hub has a flexible suspension made
out of thin flexible beams which are attached to the external frame. Mounted at one end
of the shaft is the rigid disk (2) which holds the blades (3) and blade components. There
are four flexible blades with identical tip masses, all blades are attached symmetrically to
the disk. The flexible hub was designed with a high stiffness suspension, therefore, it only
allows movement of the shaft and rigid disk in the planar x-y direction.

Magnetic actuators have now been updated to actuate both in the shaft and in each
individual blade. The external magnets actuate on the flexible suspended hub which
supports the shaft, both in the x (4) and y (5) direction. There are individual magnets
acting on each blade (6), these magnets are attached to the rigid disk.

Sensors have also been updated to measure displacements in the hub’s x and y direction
and displacement of each individual blade. Hub sensor’s (7) are attached to the external
stationary frame and measure x and y displacement of the flexible hub which holds the
shaft and moves with it. Individual blade sensors (8) are attached to the rigid disk.

To introduce rotation into the rotor-blade system a DC-motor (9) will be used. A timing
belt system with two gears is used to attach the motor to the shaft. The DC-motor is
controlled with a voltage power supply, different angular velocities can be obtained. An
eddy current sensor is mounted in the static structure to measure the rotor’s angular
velocity (13), this information will be used in the control interface.
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2. Physical System

Figure 2.1: Test-rig Description (I).

Figure 2.2: Test-rig Description (II).
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2. Physical System

Micro-controllers will be used for the control interface. The electronic control hardware
for the hub (11) and for the blades (12) is powered by an external voltage supply (10).
The hub’s control electronics are static, as sensors and actuators are only attached to the
external stationary structure. However, the blade’s actuators and sensors are located in the
rigid disk which rotates with the shaft. Therefore, to power the blade control electronics a
slip ring (15) is used, it is a electro-mechanical system which allows the transmission of
power and electrical signals from a stationary structure to a rotating one. The slip ring is
located in the rotor’s end opposite to the rigid disk.

Figure 2.3: Test-rig Diagram.

2.2 Sensors

In the current slip-ring arrangement eddy-current sensors are used to measure the rotor’s
x and y displacement, as well as to measure individual blade-tip displacement. The sensor
model is the Pulsotronic kj4-m12mn50-anu [19]. There are two sensors measuring hub
displacement, and one sensor per blade.

These eddy-current sensors have a linear operation range of 4 mm, this is the range we will
be working on as the blades are physically not allowed to move more than this distance
and the hub’s displacement amplitude is small due to the hub’s suspension high stiffness.
Assuming a linear measurement range will afterwards make controller design easier. Each
sensor is located at a specific distance from the blade-tip and from the hub, they have
been calibrated so that they output an analog signal of 4.07 V when they are at static
position. This voltage will vary from 0.3 V to 8.7 V as the system vibrates in the allowed
working range. This signal is afterwards conditioned and amplified to a voltage range of
0.15 V to 4.5 V and digitized with an ADC to make it suitable for the micro-processor
acquisition system. The sensibility of the measurement system is of 0.3750 mm/V in
the linear operation range, this value will be needed in the software control algorithm to
convert from input voltage to real distance.
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2. Physical System

There is an extra eddy-current sensor installed perpendicular to the shaft, at the position
where the sensor is placed the shaft has an indentation mark. This sensor is used to
measure rotor’s angular velocity, it will produce a pulse whenever it detects the mark, by
measuring the time between pulses the angular velocity can be obtained. With knowledge
about the real time data of the system one can also calculate the position of the rotor
system.

2.3 Actuators
There are six pairs of electromagnetic actuators installed in the test-rig, they will be used
to attenuate vibrations in rotor-blade system. An electromagnet can only produce an
attracting force, therefore, to produce forces in both directions, a pair of electromagnets is
installed at each point of actuation. There is a pair of magnets acting on each blade, and
two pairs acting on the hub, in x and y direction.

The blade electro-magnets are φ32 mm holding magnets, while the hub magnets are φ65
mm holding magnets, both models have a maximum voltage input of 20 V DC. Electrical
data of the magnets can be seen in the table underneath. The magnet characterization
was carried out during this semester by another student, Alvaro Brández, he determined
that after a 50 Hz sinusoidal input, their power reduces significantly.

Magnet Data
φ32 mm φ65 mm

Resistance (Ohms) 170 40
Inductance (mH) 3 1.5

Table 2.1: Electro-magnet specifications

The force produced by an electromagnet is non-linear, it varies with the control current
going through the coil of the magnet squared and with the air gap between magnet and
controlled surface squared. However in our system, due to the really the small amplitude
of vibrations the magnet actuation system can be approximated to a linear model, this
will be however explained in the chapter Mathematical Model of the System on page 14.

The current test-rig uses power drivers to actuate the electromagnets, they are able to
regulate the power supplied to each magnet. There are two micro-processors that control
these drivers, one used for blade vibrations control, the second one for hub control. They
generate the PWM ( Pulse-width Modulation) control signals that modulate the amount
of power or voltage the drivers supply to each magnet. All drivers are externally powered
with +20V, meaning they can output up to 20 V. The PWM control signal generated by
the micro-processors is really high in frequency, therefore the driver’s output voltage signal
will be seen as a time-varying DC signal actuating on each magnet. To change the effective
voltage input to a magnet, the duty cycle of the PWM signal that controls the driver of
the given magnet must be changed. The duty cycle is the fraction of one period in which
the signal is active, at 100% of duty cycle the driver will output the maximum, 20V. The
duty cycle percentage will be used in the control algorithm to change the supplied voltage
to the magnets, 1%-100% in duty cycle translates to 0V-20V.

12



2. Physical System

2.4 Control Unit
The previous test-rig used dSpace 2004 as software to implement the control algorithm and
DSPACE DS1103 PPC controller board to execute the control action. The control board
has 16 A/D converter input channels and 8 D/A converter output channels. The maximum
input and output voltage is of ±10 V. Due to the limited amount of output power (10V)
and the insufficient amount of D/A channels and slip-ring channels that are needed for a
complete control of the whole system actuators and sensors, the control interface has been
changed.

The current test-rig uses a distributed control system. There is a centralized processor, the
computer, and two autonomous micro-processors, Raspberry Pi 3B+ [20], one for the hub
vibration control, the second one for the blades vibration control . A simplified scheme of
the system can be seen on figure 2.4 underneath, the scheme only shows the interaction of
the system with one micro-processor, the other one carries out the same function. The
blades control micro-processor is installed in the rigid disk and therefore must be powered
through the slip ring.

Figure 2.4: Control Unit Scheme

In the current setup, the micro-processor is the component which physically interacts with
the physical plant, it is equipped with a DAQ interface capable of reading and sending
digital signals. Its main function is to read the digitized measurement signal coming
from the external ADC and to send the digital actuation signal, coming from the central
processor, to the drivers that power the actuators. It also contains a WIFI module which
interacts with the central processor. By using WIFI connection all of the measurement
and actuation signals needed for a full control of the system can be transmitted without
the use of the slip-ring.

The central processor carries out all of the computations, it implements the control
algorithm. Currently a computer running on Linux is installed, it uses C as programming
language. Its main function is to receive and synchronize the measurement signals coming
from the two Raspberry Pis, compute the control action and send it back. It is important
to coordinate both micro-processors so that they both work at the same sampling rate,
they need to measure and actuate in the same time sample for optimal control.
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3 MATHEMATICAL MODEL OF THE SYSTEM

As stated before, the mathematical model is derived using R.H. Christensen’s [1] Ph.D.
Thesis as a basis. The model must explain with accuracy the real behaviour of the system
to avoid spill over problems related to unmodelled dynamics, however it still needs to be
simple enough so that classical system analysis tools can be implemented.

The model needs to correctly account for the x and y planar vibrations of the rotor hub
as well as for the low order dominant vibrations that appear on the blades. It must also
explain the rotor-blade coupling dynamics as this is important when designing controllers
with rotor actuation only. The model needs to recreate the periodic behaviour of the
mechanical system dynamics once the rotor is subjected to rotation. This updated model
must also account for the physical changes that have been carried on the test-rig’s actuators
and sensors. The model will be augmented to include the actuators dynamics.

3.1 Model Assumptions
To avoid the increase of the model’s complexity some assumptions regarding the behaviour
and movement of the mechanical system where taken into account in R.H. Christensen’s
Thesis.

As seen in the Physical System chapter on page 9, the rotor system is supported by a
flexible suspended cage known as the hub, they move together. The hub’s high stiffness
allows us to assume there wont be hub foundation’s angular movement. We can therefore
make some model simplifications.

• The shaf-hub system can only perform lateral movements along the x-y plane.
• The rigid disk mounted on the shaft can also only move in the x-y plane. This

reduces disk’s gyroscopic effects, we don’t need to include them in the modelling.
• Blades are attached non-twisted to the disk. They will therefore only bend in the

planar x-y direction. This also suppresses the axial motion coupling between blades
and shaft.

• Blades are assumed to be non flexible in their longitudinal direction.
• The hub ’s suspension is assumed to be massless. Its high stiffness restricts the

hub’s movement to a very linear motion in the x and y direction. The hub behaviour
can therefore be approximated to a lumped (discrete mass) system with harmonic
oscillating motion.
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3. Mathematical Model of the System

3.2 Mathematical Description of the Test-Rig
The first step in modelling the test-rig is to identify the most important constants, variables
and features that characterize the behaviour of the real system. On figure 3.1 underneath
a simplified diagram of what the mathematical model must explain can be seen. The
numerical values of the system parameters are given on table 3.1 on page 17.

Figure 3.1: Mathematical Description of the System

To accomplish the active control of vibrations the test rig is equipped with six sensors that
measure displacement and 6 pairs of electromagnetic actuators to dampen the response of
the system. On the figure above this signals can be seen. The sensors measure the local
displacement of the four blades tips d1, d2, d3, d4 as well as the rotor/hub displacement in
x and y direction xh and yh. There is a pair of electromagnets actuating on each blade Fb1,
Fb2, Fb3, Fb4, as well as in the hub’s x and y direction, Fhx, Fhy. The blade electromagnets
actuate at a distance of 40 mm from the base of the blade. The hub electromagnets are
attached to the external static structure and actuate the hub on the x and y direction.
Every pair of electromagnets is modeled as a single magnetic force perpendicularly acting
on a singular point in the structure, this force can take positive or negative values.

The angular velocity of the rotor will be defined by Ω in rad/s, while θ defines the angular
position of the rotor in rad. As the shaft-disk subsystem is rigid, the angular position of
each blade will automatically be defined in (θ + 0), (θ + π

2 ), (θ + π), (θ + 3π
2 ).

As explained in the previous chapter, Model Assumptions, the hub suspension will be
modeled as a massless linear system with the following descriptive variables, damping
coefficient Dhx and Dhy, and stiffness constant Khx and Khy. This simplification makes
the modelling of the hub really easy as its behaviour is explained by the classical mechanics
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3. Mathematical Model of the System

one degree of freedom harmonic oscillator motion.

However the modelling of the blades is quite complex, mainly because they cannot be
considered a lumped discrete system, but a continuous system with an infinite number of
degrees of freedom. Figure 3.2 underneath shows the important variables that characterize
the blade.

Figure 3.2: Blade’s Mathematical Description from R.H. Christensen’s [1] Thesis

Lbi is the longitudinal length of the flexible blade from its base up to the start of the tip
mass. As the blade is a continuous system its parameters are distributed along its length,
some of these include, δbi, Ebi, Ibi, which name and value are given on table 3.1. The
weighted tip attached at the end of each blade is characterized by its length Lti and mass
mti and is considered to be rigid.

It is also important to define the masses of the components in the rotor-blade system. The
rotor (rotating part of the system) is composed of the shaft, rigid disk mounted on it, and
blades attached to the disk. However, as the blades have a completely different and more
complex movement than the rigid shaft-disk system, its masses and mass distribution are
defined separately. The shaft and disk are supported by the hub, due to the rigid structure
we assume they all move together, they are supported by the hub’s suspension system.
The inertial mass acting on the hub’s suspension is defined for the two allowed directions
of motion x and y, named mhx and mhy, which are different due to the asymmetrical
construction of the rotor-hub system.

Moreover, the rotor-blade system has a mass unbalance, it was constructed with an
eccentricity that displaces the centre of gravity from O to CGr defined by the distance ε
and angle k, this eccentricity increases vibrations when rotating.
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Rotor-Hub Sub-System Parameters
Mass mhx 10.5 [kg]

mhy 8.6 [kg]
Stiffness Khx 66 · 103 [N/m]

Khy 77 · 103 [N/m]
Damping Dhx 1.2 [N · s/m]

Dhy 1.5 [N · s/m]
Eccentricity ε 1 · 10−3 [m]

k 0 [rad]
Rotating Disk Diameter r 0.04 [m]
Rotating Disk Mass mr 3.0 [kg]

Blade and Tip Parameters
Blade Length Lbi 80 · 10−3 [m]
Distributed Mass ρbi 0.195 [kg/m]
Elasticity Ebi 2 · 1011 [N/m2]
Moment of Intertia (Area) Ibi 2.08 · 10−12 [m4]
Damping Dbi 0.8 [N · s/m]
Tip Mass mti 0.109 [kg]
Tip Mass Moment of Inertia Jti 3.35 · 10−5 [kg/m2]
Tip Mass Length Lti 30 · 10−3 [m]
Blade Angular Location (i=1,2,3,4) αi (i− 1) · π2 [rad]

Table 3.1: Test Rig Mathematical Model Parameters
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3. Mathematical Model of the System

3.3 Frame of Reference

Now that we have a mathematical model description of the appearance of the test-rig,
we need to obtain the equations of motion that describe the real system’s behaviour.
However, we firstly need to define a coordinate system with reference frames where we
can uniquely specify the position of the system as it moves. On figure 3.3 underneath the
chosen reference system can be seen.

Figure 3.3: Reference frames from R.H. Christensen’s [1] Thesis

The inertial stationary reference frame is placed in the external static structure that
holds the rotor-hub system and is denoted by I. Lateral rotor-hub movements in x and
y direction are measured relatively to this reference. However the individual blades will
have local reference frames. Bi will be used as an auxiliary reference frame for the blade
movement, while Ci will be used as a reference for the blade’s tip movement. Both Bi and
Ci are rotate with the rotor. There will be a unique frame for each blade and its tip for
i = 1, 2, 3, 4. Positive angular direction is defined counter-clockwise.

Underneath, the coordinate system transformation matrices from the static to local blade
reference frames are stated.

TBi =

 cos(αi + θ) sin(αi + θ) 0
−sin(αi + θ) cos(αi + θ) 0

0 0 1

 (3.1)

TCi =


1 ∂yi(t,Lbi)

∂xi
0

−∂yi(t,Lbi)
∂xi

1 0
0 0 1

 (3.2)

In the previous chapter αi and θ were defined, the first one being the angular position of
each blade in the rigid disk and the second one the angular position of the rotor. The

18



3. Mathematical Model of the System

rotation of the tip is assumed to be very small, therefore, sin
(
∂yi(t,Lbi)

∂xi

)
≈ ∂yi(t,Lbi)

∂xi
and

cos
(
∂yi(t,Lbi)

∂xi

)
≈ 1.

To translate a vector r between both auxiliary coordinate systems and to the inertial
reference frame one must use the transformation matrices in the following way:

rBi = (TCi)T · rCi (3.3)
rI = (TBi)T · rBi (3.4)

Where ·T indicates the matrix transpose operation. The vector super-index indicates the
reference frame that is being used as coordinates reference.

3.3.1 Auxiliary Frames Angular Velocity

As stated before both auxiliary frames rotate. Bi rotates together with the rotor’s angular
rotation Ω, its rotation is defined relative to the inertial frame of reference I

ΩI
Bi

=
{

0 ; 0 ; Ω
}T

(3.5)

Ci rotation can also be defined relative to the inertial frame I:

ΩI
Ci

=
{

0 ; 0 ; Ω + ∂
∂xi

(
∂yi(t,Lbi)

∂t

)}T
(3.6)

3.3.2 Position Vectors

The coordinates that define the position of the rotor’s origin h are given relative to the
inertial frame I with origin o using the following vector:

rIo−h(t) =
{
xh(t) ; yh(t) ; 0

}T
(3.7)

The coordinates that define the position of a point pi on the i-th blade are given relative
to the auxiliary coordinate system Bi with origin h using following vector:

rBi
h−pi

(t, xi) =
{
r + xi ; yi(t, xi) ; 0

}T
(3.8)

The vector coordinate in x direction does not change with time, this is because, as
explained in chapter Model Assumptions, the blades are assumed to be non extensible in
the longitudinal direction. As the blade is a distributed system, its vertical displacement y
is both a function of x and t.

The coordinates that define the position of the i-th blade tip mass centre of gravity CGti
are given relative to the auxiliary coordinate system Ci using the following vector:

rCi
CGti

=
{

1
2Lti; 0 ; 0

}T
(3.9)

19



3. Mathematical Model of the System

3.3.3 Linear Velocities

The blades are considered a continuous system with infinite points. It is therefore important
to define the linear velocity of any point in the blades and in the blade mass tips, to later
obtain the blade’s equations of motion.

The absolute linear velocity of a point pi on the i-th blade is described relative to the
inertial frame I:

vIo−pi
(t, xi) = (TBi)T · ∂

∂t

(
rBi
h−pi

(t, xi)
)

+ΩI
Bi

·
(
(TBi)T · rBi

h−pi
(t, xi)

)
+ d

dt

(
rIo−h(t)

)
(3.10)

The first term accounts for the linear velocity of the point i relative to the auxiliary rotating
frame Bi, that is translated to the inertial frame I. The second term accounts for the linear
velocity in the position of the point i due to the angular rotation of frame Bi, translated
to the inertial frame. The last term accounts for the added linear velocity that appears on
point i due to the lateral displacement of frame Bi measured relative to inertial frame.

The absolute linear velocity of the tip mass on the i-th blade is described relative to the
inertial frame I:

vIo−CGti
(t) = vIo−pi

(t, Lbi) + ΩI
Ci

·
(
(TBi)T · (TCi)T · rCi

CGti

)
(3.11)

As the tip mass is considered to be rigid, the linear velocity at its centre of gravity CGti
is the sum of the blade’s linear velocity at its end (in xi = Lbi) plus linear velocity at
the position of the point CGti due to the angular rotation of frame Ci, translated to the
inertial frame I.

3.4 Blade Modelling
As stated before, the blade is considered a continuous system and therefore has infinite
degrees of freedom. This issue becomes a problem when trying to obtain the equation of
motion that explains its behaviour. The blade’s motion is governed by partial differential
equations, it is impossible to solve these equations by evaluating every point in the blade.
Therefore, a discretization of the blade system in finite and simpler one degree of freedom
systems must be carried out. There are different methods that can be used to discretize
the blade, two commonly used are the Assumed Modes Method and the Finite Element
Method.

The assumed modes method [21] is easy to use and produces low order models which are
easy to control. It assumes the user has previous information of the system’s fundamental
motion. With this method, the blade’s distributed transverse displacement yi(xi, t) is
discretized by a finite series of functions.

yi(xi, t) =
m∑
j=1

φi,j(x)qi,j(t) (3.12)

Where φi,j(x) are known trial mode shape functions and qi,j(t) are generalized coordinates of
the system. The trial functions are chosen with previous knowledge of the modal behaviour
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of the system, they are simpler functions the user thinks can describe the blade’s behaviour
over their entire domain. Generalized coordinates are the minimum amount of independent
coordinates that completely describe the motion of the system. The summation coefficient
m limits the number of trial mode shape functions the blade is discretized in. The next
step in this method is to obtain the discretized kinetic energy, potential energy and virtual
work equations and then introduce them in Lagrange’s equations, this will result in the
obtention of a discrete set of equations of motion. One disadvantage of this method is the
difficulty of deciding which trial functions to use for complex continuous systems.

The finite element method [22] produces high order models but can be used in systems with
complex motion without previous information. The method consists in discretizing the
blade into a finite amount of elements. For each element a very simple local function (low
order polynomial) describing its deflection is defined. The boundary coordinates between
elements are the generalized coordinates of the discretized system. All local models are
then assembled using interpolating functions and boundary conditions to form a global
motion model.

The blade modelling has already been carried out by R.H. Christensen [1] and C.S. Jakobsen
[17], therefore here I will just present a summary of the obtained result. R.H. Christensen
used a combination of both methods explained before to model the blade. Finite element
method was used to derive the trial mode shape functions that are later used in the
assumed modes method. The trial shape functions are obtained by discretizing the blade
into 20 local elements and applying finite element method and eigen-analysis to obtain the
most dominant trial mode shape functions, this functions are a very accurate estimate of
the blade real mode shapes. C.S. Jakobsen [17] obtains a diagram with the three most
dominant estimated mode shape functions.

Figure 3.4: Blade Mode Shapes from C.S. Jakobsen [17] Thesis

These estimated blade mode shapes are then used as shape functions in the assumed modes
method, with m=2 (only the first two estimated modes will be used to describe the system).
They have the following structure:

φi(xi) =
{
φi,1(xi) φi,2(xi)

}
for i = 1 , 2 , 3 , 4 (3.13)
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The numerical value of the estimated mode shape functions obtained by R.H. Christensen
can be seen on Appendix A. The assumed modes method will be then used to discretize
the partial differential equations that appear when defining Lagrange’s equations for the
whole rotor-blade system. Equation 3.12 will be used to substitute yi(xi, t) when necessary.

For Na = 6:

3.5 System’s Kinematics
Once the parameters and variables needed to characterize the system are defined, the
equations needed to describe the motion of the system have to be determined. These
equations have already been obtained in R.H. Christensen’s [1] Thesis, therefore here a
summary will be presented just to help with the understanding of the derived model.

To derive the equation of motion of the system, Lagrange’s approach will be used. This
method evaluates the energy present in the system and uses it to derive the classical
equation of motion.

Lagrange’s equation is defined as:

δ

δt

(
δEkin
δżi

)
−
(
δEkin
δzi

)
+
(
δEpot
δzi

)
= Fi (3.14)

Where Ekin is the kinetic energy of the system, Epot the potential energy. zi are the
generalized coordinates of the whole system. The rotor-hub system lateral motion in x and
y is modelled by two independent discrete lumped mass systems, therefore their coordinates
xh and yh are already generalized coordinates of the system. As stated on the previous
chapter the blades bending motion, defined by the transverse displacement yi(xi, t) will be
approximated using the assumed modes method to:

yi(xi, t) =
m∑
j=1

φi,j(xi)qi,j(t) for i=1,2,3,4 (3.15)

Where qi(t) =
{
qi,1(t), ...., qi,m(t)

}T
are the generalized coordinates of the mode shape

functions used in the discretization of each i-th blade. We are using m=2 for the
discretization, each blade will have two mode shape functions with two generalized
coordinates to describe its motion. The total number of generalized coordinates in the
whole rotor-blade system will be of N=2+4m=10, the first two ones z1 and z2 describe
the rotor-hub lateral movement, the other ones are modal coordinates of each blade, with
two per blade. Fi is the generalized forces (acting in the direction of each generalized
coordinate).

The kinetic energy of the system comes from three contributions, kinetic energy in the
rotor-hub subsystem Ehkin, kinetic energy in the blades Ebkin and kinetic energy coming from
the blade tip mass Etkin. The potential energy of the system comes from three contributions,
potential strain energy from the elastic deformation of blades Eepot, gravity potential energy
of the system Egpot and potential energy coming from longitudinal deformation due to

22



3. Mathematical Model of the System

centrifugal force, this term is added to take into account the stiffening effect of blades as
they rotate Ecpot. The generalized forces acting on the system include, external control
forces that the electromagnets apply on the structure as well as forces that internally act
on the structure, including forces that appear during rotation due to the rotor’s eccentricity
and gravity.

All of the mathematical expressions describing the above mentioned energy terms can be
seen in Appendix A. By introducing the different energy terms into Lagrange’s equation
3.14 and rearranging the equations of motion of the whole rotor-blade system can be
obtained based on the previously defined system’s generalized coordinates z.

3.6 System’s Equations of Motion

The application of Lagrange’s theory resulted in the obtention of the equations of motion
of the system. The equations are time varying, they depend on the angular position θ,
angular velocity Ω and angular acceleration Ω̇ of the rotor.

The matrix formulation of the equation is:

M(θ)z̈(t) +H(θ,Ω)ż(t) +K(θ,Ω, Ω̇)z(t) = fint(θ,Ω, Ω̇) + Tafext(t) (3.16)

Where z(t)(N x 1) =
{
xh, yh, q1, q2, q3, q4

}T
is the vector of generalized coordinates of the

whole system, the first two coordinates describe the lateral motion of the rotor, the other
ones describe the deflection of each blade, every q is a two vector coordinate. The total
order of the system is of N= 2+4m=10.

The equation of motion derived has a classical structure, M(N x N) is the mass matrix,
H(N x N) is the damping matrix and K(N x N) is the stiffness matrix. The symbolic and
numerical description of these matrices can be seen in R.H. Christensen’s [1] Thesis
Appendix A.

The generalized forces acting on the mechanical structure have been divided into two
terms, internal and external forces. Internal forces fint(θ,Ω, Ω̇)(N x 1) appear due to
gravity and rotor eccentricity, they act as disturbances on the system, their value is
however known with information about the rotor’s angular velocity, the symbolic and
numerical equation defining this forces already in generalized coordinates can be seen
in R.H. Christensen’s [1] Thesis Appendix A. The external forces are the controlled
actuation forces fext(t)(Na x 1) the electro-magnets apply on the structure (in Newtons).
The external force’s fext(t) vector dimension depends on the number of actuator pairs
used, for shaft-based actuation only fext(t) =

{
Fhx, Fhy

}T
(Na = 2), for both shaft and

blade actuation fext(t) =
{
Fhx, Fhy, Fb1, Fb2, Fb3, Fb4

}T
(Na = 6). Ta is a transformation

matrix of dimensions (N x Na) used on fext(t) to change from the actuation forces
applied on the real system to the generalized forces applied when using generalized
coordinates in the motion equation. This matrix is obtained using the mode shape function
φi(xi) =

{
φi,1(xi) φi,2(xi)

}
for each i-th blade, evaluated at xi = xact = 4cm, distance

where the actuators are placed, same for every blade.
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3. Mathematical Model of the System

For Na = 6:

Ta =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 φ1,1(xact) 0 0 0
0 0 φ1,2(xact) 0 0 0
0 0 0 φ2,1(xact) 0 0
0 0 0 φ2,2(xact) 0 0
0 0 0 0 φ3,1(xact) 0
0 0 0 0 φ3,2(xact) 0
0 0 0 0 0 φ4,1(xact)
0 0 0 0 0 φ4,2(xact)



(3.17)

For Na = 2 only the first two columns are used.

Throughout the thesis angular acceleration of the rotor Ω̇ will be considered zero. For
constant angular acceleration Ω the equation of motion 3.16 becomes periodic time varying
depending only the rotor’s angular position θ = θ0 + Ωt which only depends on the elapsed
time. Therefore:

M(t)z̈(t) +H(t)ż(t) +K(t)z(t) = fint(t) + Tafext(t) (3.18)

The system matrices have a periodicity of 2π/Ω, meaning they will repeat their values
every (t + 2π/Ω) time period.

The equation of motion can be expressed in state space representation, which is very
appropriate for controller design. The system is transformed into a set of first order
differential equations in matrix form. Because the equation of motion equations are linear,
there is no need to linearize at any point, the state space matrices can be directly obtained.

Defining the new state variable as x(t)(2N x 1) =
{
z(t) ż(t)

}T
the equation of motion can

be represented as:

ẋ(t) = A(t)x(t) +B(t)fext(t) +Bv(t)fint(t) (3.19)
y(t) = Cx(t) (3.20)

A(t) is the system matrix, B(t) the input matrix, Bv(t) the input disturbance matrix
and C(t) the output matrix. Fext(t) are the external actuation forces electromagnets
apply to the structure. Fint(t) are the disturbance internal forces that act in the system,
they appear due to internal forces of gravity and eccentricity. y(t) are the measured
signals in the system, in this case, the Ns = 6 sensor signals that measure displacement
(xh, yh, d1, d2, d3, d4). The rotation parameters of the system θ,Ω, Ω̇ are not state variables,
this is because they are external parameters that are imposed on the system, but we do
not have any control power on their value.

Where:
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A(t)(2N x 2N) =
[

0 I

−M(t)−1K(t) −M(t)−1H(t)

]
(3.21)

B(t)(2N x Na) =
[

0
−M(t)−1Ta

]
(3.22)

Bv(t)(2N x N) =
[

0
−M(t)−1

]
(3.23)

C(Ns x 2N) =
[
Ts 0

]
(3.24)

Ts is a transformation matrix of dimensions (Ns x N) used on x(t) to change from state
variables of the system defined using generalized coordinates to the real displacement
measurements of the system. This matrix is obtained using the mode shape function
φi(xi) =

{
φi,1(xi) φi,2(xi)

}
for each i-th blade. This function has to be evaluated at

xi = xsen = 6.25cm, distance where the sensors are placed, same for every blade.

Ts =



1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 φ1,1 φ1,2 0 0 0 0 0 0
0 0 0 0 φ2,1 φ2,2 0 0 0 0
0 0 0 0 0 0 φ3,1 φ3,2 0 0
0 0 0 0 0 0 0 0 φ4,1 φ4,2


(3.25)

3.7 Electro-Mechanical Model of the Actuators

The previous state-space model assumes the input to the system is the force in Newtons
the actuators apply on the structure. However, we cannot measure or control this force.
As stated on chapter 2, the variable we can control is the effective applied voltage on
the electro-magnets. The electro-magnets are electro-mechanical systems with their own
dynamics. For a good approximation of the system’s real behavior it is important to
include the actuator system dynamics, not only to match the input of the system with the
real one, but also because they affect the real structure’s behaviour.

The force produced by an electromagnet Fm is non-linear, it varies with the control current
im going through the coil of the magnet squared and with the air gap z between magnet
and the controlled surface squared. However in our system, due to the really the small
amplitude of vibrations the magnet actuation system can be approximated to a linear model
with good accuracy. Each pair of electro-magnets acting on a surface will be modelled as a
single one capable of producing positive and negative forces.

Fm = n2
mµaAa

4

(
im

z0 + z

)2
(3.26)
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Due to the small amplitude of vibrations, the above force equation can be linearized using
two parameters Ki and Ks. Ki indicates the magnitude of the linearized force dependent on
current change when the air gap s = s0 mm (air gap between electromagnet and controlled
surface in static conditions). Ks indicates the magnitude of the linearized force dependent
on air gap change during displacement of the controlled surface when the current i = i0
mm (current going through coil in static conditions). Ki and Ks are both experimentally
obtained with the use of a force transducer.

A schematic model of the electro-magnet can be seen underneath:

Figure 3.5: Electro-magnet model

The electromagnet circuit is on the right, the controlled surface on the left. R and L are
electrical parameters of the electro-magnet, which are obtained experimentally on table
4.1. U(t) is the control voltage input to the system, e(t) is the induced electromotive force
in the magnet circuit due to the motion of the controller surface.

The linearized electromagnet force is given by:

Fm(t) = −(Kii(t) +Ksy(t)) (3.27)

Where y(t) is the measured displacement from static position of the controlled surface.

The electrical equation describing the electro-magnet’s circuit is:

u(t) + uR(t) + uL(t) + e(t) = 0 (3.28)

Substituting:

u(t) −Ri(t) − L
di

dt
+Kiẏ(t) = 0 (3.29)

The induced electromotive force is also modeled with Ki because this phenomenon induces
a current in the coil.

Rearranging the previous equation:

di

dt
= −R

L
i(t) + Ki

L
ẏ(t) + 1

L
u(t) (3.30)
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With equations 3.27 and 3.30 an actuator model can be obtained. There will be two of
these equations per pair of electromagnets acting on the system. The system is linear
therefore, all of the equations can be arranged into matrix based state space representation
easily. The input to the system is u(t)(Na x 1), the state variable is i(t)(Na x 1), the output
of the system is Fm(t)(Na x 1). y(t) is the measured displacement of the controlled surfaces,
this is the output from the rotor-blade mechanical system given in the previous chapter.
The order of the actuator state space system is of Na = 6, as there are six pairs of actuators
acting on the system.

i̇(t) = Ai(t)i(t) +B1i(t)ẏ(t) +B2i(t)u(t) (3.31)
Fm(t) = −C1ii(t) − C2iy(t) (3.32)

The symbolic and numerical description of these matrices can be seen on Appendix A

To test the actuator model a 20 V step is introduced in u1. This will generate an output
force in actuator one Fm1 which corresponds with Fxh.

Figure 3.6: Electro-magnet model

As it can be seen from the figure above, the electromagnet has the dynamics of a first
order system, with a settling time of 0,2 seconds. This dynamics are quite dominant and
therefore should be included in the model of the system as it will change its behaviour.
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3.8 Final State Space Representation of the system
By combining the mechanical model of the system derived from the equations of motion
with the actuator model, the complete model is obtained. It is a linear periodic time
varying system.

The new augmented state variables are x(t)((2N+Na) x 1) =
{
z(t) i(t) ż(t)

}T
.

The state space system has the following structure:

ẋ(t) = A(t)x(t) +B(t)u(t) +Bv(t)fint(t) (3.33)
y(t) = Cx(t) (3.34)

Where u(t) are the external voltage actuation signals applied to the electro-magnets
mounted in the system, with dimensions of (Na x 1). Fint(t) are the disturbance forces
that act on the system due to internal forces of gravity and eccentricity, their magnitude is
known, equations defining their value are stated in R.H. Christensen’s [1] Thesis Appendix
A, they depend on the value of Ω̇,Ω, θ. Y (t) =

{
xh, yh, d1, d2, d3, d4

}T
are the measured

displacement signals.

The new augmented system matrices are defined as:

A(t)((2N+Na) x (2N+Na)) =

 0 0 I

0 Ai B1iTs
−M(t)−1(TaC2iTs +K(t)) −M(t)−1TaC1i −M(t)−1H(t)


(3.35)

B((2N+Na) x Na) =

 0
B2i

0

 (3.36)

Bv(t)((2N+Na) x N) =

 0
0

−M(t)−1

 (3.37)

C(Ns x (2N+Na)) =
[
Ts 0 0

]
(3.38)
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3.9 Matlab Simulator

To analyze the model and design controllers Matlab will be used. A Simulink model of the
system has been built with the state space model matrices derived in the previous sections.

This model will be used as the open-loop simulator of the rotor-blade system.

Figure 3.7: Rotor-Blade System Open-loop Simulink Simulator

The input to the modelled system is the control voltage signal u(t) =
{
v1, v2, v3, v4, v5, v6

}T
={

Vxh, Vyh, Vd1, Vd2, Vd3, Vd4
}T

applied to each pair of electromagnets acting on the structure.
For shaft based actuation only v3 = v4 = v5 = v6 = 0. The output of the system is the
sensor measured signal y(x) =

{
xh, yh, d1, d2, d3, d4

}T
.

The angular velocity Ω and acceleration Ω̇ of the rotor can be selected in the Rotor Speed
double integrator sub-system. Ω̇ is selected by changing the input constant (in rad/s2) to
the sub-system, it will be zero for every simulation in this thesis. Ω (in rad/s) is selected
by changing the initial condition of the velocity integrator inside the sub-system.

The Actuators Model sub-system is built using actuator state space model in equation
3.31:

29



3. Mathematical Model of the System

Figure 3.8: Actuation Sub-System Simulink Simulator

The output of this sub-system fext(t) are the actuation forces in Newtons the electromagnets
apply on the mechanical rotor-blade structure. This is the input to the mechanical sub-
system.

The Mechanical Rotor-Blade Sub-system is built using the equation of motion of the
mechanical system 3.16:

Figure 3.9: Mechanical Rotor-Blade Sub-System Simulink Simulator

The disturbance internal forces fint are calculated inside F−matrix block, with information
on the rotor’s Ω̇, Ω and θ.
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3. Mathematical Model of the System

To test the accuracy of the simulator its open-loop response to a certain voltage signal is
compared to the experimental one. Underneath, a 20 V step signal in the hub x direction
pair of actuators is introduced both in the simulator and in the test-rig. The simulated
output displacement xh is obtained and compared with the test-rig experimental sensor
output. This test has been carried out in static conditions, Ω = 0.

Figure 3.10: Simulated and Experimental xh displacement with a 20 V step

As it can be seen the model is an accurate approximation. Important characteristics from
the experimental data are replicated by the modelled system, these include the vibration
frequency and settling time.
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4 SYSTEM ANALYSIS

Once an appropriate and accurate mathematical model of the system is built, it can be
analyzed to understand how it responds both in the frequency and time domain. It is
important to understand how the system behaves in open-loop to be able to later decide
on the specifications the designed controllers need to fulfill, as well as to check their
performance.

Controllers are designed to improve different open-loop behaviours, these may include,
improving stability, speed response, steady-state error or dampening of oscillations. As
stated on the previous Chapter, in equation 3.33, the state space model of the system is
linear periodic time varying, the matrices that explain the behaviour of the system change
with time. However, most analysis tools are defined for time invariant systems. Therefore,
to use classical analysis and controller design tools the system matrices will be evaluated
at the static point of operation Ω̇ = Ω = θ = 0. Chapter 7 will study how this static
controllers adapt to the rotation and what can be changed to improve their performance.

The time invariant state space model of the system in static conditions is:

ẋ(t) = A0x(t) +B0u(t) +Bv0fint(t) (4.1)
y(t) = Cx(t) (4.2)

With state variables x(t)((2N+Na) x 1) =
{
z(t) i(t) ż(t)

}T
. There are two inputs

to the system the external actuation voltage signal ut(t) and the vector of internal
force disturbances fint(t), the disturbance forces magnitude is known, their value is
constant for static conditions. The output of the system are the measured sensor signals
y(t) =

{
xh yh d1 d2 d3 d4

}T
.

We now have a linear time invariant system we can analyze using classical tools.

4.1 Stability
Stability is a very important property of dynamic systems. Stability studies how the
system evolves to a small perturbation in the system. Stability of the system is a mayor
requirement for dynamic systems, it is most of the times a necessary condition for the
practical applicability of the model.

Stability can be addressed in various ways. For linear time invariant systems one can analyze
internal and external stability. If a system is internally stable, given an equilibrium point
of the system states, every combination of state variables starting nearby the equilibrium
point will stay nearby. If a system is internally asymptotically stable, the state variables
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will always go back to the exact equilibrium point. When the system state variables are at
equilibrium, they will remain in that point in the absence of external inputs or disturbances.
If a system is externally stable given a bounded (finite) input the output will also be
bounded, this is also known as BIBO stable (bounded input, bounded output). Internal
stability is easily studied with the state space representation of the system, while external
stability is uses the input output transfer function representation.

For linear time invariant systems internal stability can be checked by analyzing the system
matrix A eigenvalues. This theorem can be found in the Linear System Control book [23].
For asymptotically internal stability: real

{
λi(A)

}
< 0. Using the Matlab command eig()

with the static system matrix A0 the eigenvalues can be obtained. They all satisfy the
theorem, the system is internally stable.

To check for external stability the state space representation of the system should be
expressed in input output transfer functions. This can be done by using the Matlab
command ss2tf() with the system matrices, as our system is a MIMO system (multiple
input - multiple output) we will have various transfer functions. For the system to be BIBO
stable [23] the poles of every transfer function must be in the left-half plane. Transfer
function poles can be checked using the pole() command. They all fulfill the requirement.
The system is externally stable.

After the analysis we can conclude the system has no stability issues that can affect the
controller design or model application.

The equilibrium point of the system can be found using the Simulink model of the plant.
The zero input response of the system with the state variables initialized to zero is
performed, the system state variables and output will evolve to its equilibrium point.
Underneath the output zero input response can be seen:

Figure 4.1: Zero input Response Output
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We can see the output displacements with only x component motion, like xh and b2, b4
(vertical blades) stay in zero, while components with motion in the y direction like yh
and b1, b3 (horizontal blades) move, this is due to the effects of gravity forces acting on
the static forces. The state variables of the system will be initialized to their equilibrium
position (static configuration), this will eliminate the effect of initial vibrations in the
model.

4.2 Controllability and Observability
Controllability and observability are two important properties of dynamic systems which
need to be studied before the controller design. They are easily studied by analyzing the
structural properties of the state space system.

Controllability studies the possibility of forcing the system to a specific point by the
application of a control input. If a given state of the system is non controllable then no
input will be able to control the state.

Observability studies whether the states can be observed from the output. If a state is non
observable we are not able to determine its behaviour and therefore its information cannot
be used by the controller to stabilize the system.

There are various theorems that study observability and controllability, here I will use the
most common ones.

From [23] a system is controllable if its controllability matrix,

Mc =
{
B AB A2B .... AN−1B

}
, (4.3)

has full rank (rank=N). Matlab command ctrbf() computes this equation for you.
Controllability has to be checked both for shaft actuation control and shaft and blade
actuation control. The B matrix changes with the different control options, for shaft based
actuation, only two columns are used instead of six. The system fulfills controllability in
both situations.

From [23] a system is observable if its observability matrix,

Mo =



C

CA

CA2

:
CAN−1


, (4.4)

has full rank (rank=N). Matlab command obsvf() computes this equation for you. With
the six sensor measurements the system is observable.

After the analysis we can conclude the system is observable and controllable and therefore
we have information of the whole system behaviour, and we have the ability of changing
this behaviour.
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4.3 Dynamic Response of the System
It is important to analyze the open-loop behaviour of the system. The system’s response
to a given input can be analyzed both in the time and frequency domain.

The time response of a linear dynamic system consists of the sum of to terms, the zero
state solution which depends on the input to the system and the zero input solution
which depends on the initial conditions. As seen on figure 4.1 the system evolves to the
resting equilibrium position, this equilibrium position is selected to initialize the states,
this removes the initial vibrations on the system.

To study the zero state solution, different inputs have been tested in the simulator. It
is important to analyze the transient response of the system as well as the steady state
response.

Figure 4.2: 20 V step in hub y direction actuators

Figure 4.3: 20 V step in blade 1 actuators
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Figure 4.2 shows a 20V step in the y direction hub pair of actuators. We can see how this
step alters the steady state value of the directly affected output yh hub displacement in
1 mm. We can see the coupling between the hub and the blades with motion in the y
direction (horizontal blades 1 and 2), both blades vibrate around their equilibrium point,
but their steady state value does not change. Both the hub and blades motion have a
settling time of 2 seconds. Figure 4.3 shows a 20V step in the blade 1 pair of actuators.
We can still see the coupling between the y direction components of motion, however, the
coupling from blades to hub is much smaller. The settling time of the transient response of
the blades displacement due to the blade actuators is smaller, of approximately 1 second.

The system’s time response to a step is very similar to that of a first order in series with
a second order under-damped system. The first order system comes from the actuator
dynamics, the second order from the mechanical vibration of the system. It is important to
study the natural frequency of vibrations and damping ratio of the system. This parameters
can be obtained for every state variable using Matlab damp() command.

Natural Frequency (Hz)
xh 12
yh 14

Blades 1rst mode Component qi,1 17
Blades 2nd mode Component qi,2 285

Table 4.1: Natural frequencies states of the system

On the table above only the states related to displacement are displayed, this is because
their respective velocity states have the same natural frequencies (only integration operation
to go from the velocity to displacement state). Intensity states nearly have no oscillation,
they are dominated by their first order behaviour. It is already obvious that the blades
second mode with natural frequency of 285 Hz is cannot be effectively controlled by our
actuation system. As stated in Chapter 2, the electromagnets used as actuators have a
limited actuation frequency of 50 Hz. It is however still important to observe those states,
to check their behaviour and avoid stability spill-over problems. The damping coefficient of
the system states is also derived, it is really small for all displacement and velocity states,
in the order of 10−2, the controller should increase the damping of these states to reduce
vibrations.

The system’s frequency response studies how the system behaves when a sinusoidal input
is introduced. It is important to study this response as once the designed controller is
introduced the control signal will have a sinusoidal behaviour. The frequency response can
be studied in the input output transfer function of the system. Underneath the bode plot
of the transfer function from hub x direction actuators and output displacement xh can be
seen.
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Figure 4.4: Transfer function of x direction actuator input to measurement output xh bode
plot

We can see the magnitude in dB is never positive, the system is therefore stable, it never
amplifies the input signal. We can see the phase starts at 180 in low frequencies, this is
due to frame of reference considerations, a positive voltage in Vxh produces a negative sign
displacement xh. We will be working at a maximum of 50 Hz as the magnets power is
extremely reduced after this. We can see that in this working frequency region the system
transfer function does not apply noticeable changes in the response magnitude or phase.

After the dynamic study of the system important features needed to establish the controller
design specifications have been determined, including settling time of system vibrations,
their natural frequency and damping.
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The controllers designed in this section all use feedback control as a basis for their control
algorithm. In a feedback controlled system, its output is controlled using information
of its measured value or the measured state variable as feedback. The measured signal
is compared with a reference signal to generate an error which is fed into the control
algorithm, this operation will output a control actuation signal that is applied to the
system, correcting its behaviour. The system response with the feedback controller included
is know as the close-loop response.

Figure 5.1: Simple Feedback Control Loop

Feedback control is used to ensure a certain behaviour in the system’s variables, usually
their ability to track reference changes (reference tracking), or maintaining their set-point
value even with external disturbances (regulation). We are interested in the second
application, we want to reduce vibrations of the displacement state variables around their
selected set-point.

There are many reasons why we benefit from feedback control. We can counteract
unpredictable and unmodelled disturbances, because their effects will appear in the system
output. We can also protect ourselves from model uncertainty issues which lead to
discrepancies between the model predicted output of the system to the real one.

All controllers in this section will be designed using the linearized static state space model
from the previous chapter, with matrices A0, B0 and C. All controllers will be tested on
the Simulink simulator model in static conditions, with Ω̇,Ω, θ = 0.

5.1 Operation Point
The first step when designing a controller is to decide on the state set-points we want to
be working in.

When analyzing stability of the model in chapter 4, the equilibrium point of the system
was determined. We could see how the output displacement signals with motion in y
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direction had an equilibrium point different from zero due to the effect of gravity.

The rotor-hub system is quite heavy and having to constantly beat the effects of gravity,
which are constant in the hub’s y direction will consume a great amount of power. It was
therefore decided to, correct the horizontal blades position, but leave the hub in its resting
position.

Using Matlab command trim() one can obtain the equilibrium point of a system close
to a given input, output and state position. For a measurement output of yop ={

0 −0.0013 0 0 0 0
}T

in mm, an input of uop =
{

0 0 −15.1 0 +15.1 0
}T

(V) is needed. Both uop and yop point of operation will be used as linearization point of
the static state space states used in the controller design and of the input output signals
of the system. This implies that we need to subtract the output operation point from the
output measurements coming from the simulator, this measurements will be used in the
control algorithm which will create an actuation signal, the input operation point must be
added to this computed signal before entering the simulator plant.

5.2 System Discretization

To simulate the behaviour of the real acquisition system we will transform the continuous
system matrices defined in equation 3.33 to a discrete time with the following structure:

x(k + 1) = F0x(k) +G0u(k) +Gv0fint(k) (5.1)
y(k) = Cx(k) (5.2)

The next step is to decide on the sampling rate T to use in the discretization. According to
Nyquist for a correct recreation of the system’s behaviour, T has to be at least two times
smaller than the time constant of the fastest pole in the system. However for a correct
control of the system, T should be at least 10 times smaller.

In our system the fastest poles come from the blade’s second mode shape states, which
vibrate at approximately 300 Hz, for a theoretically correct control of the system we need
a sampling frequency of 3000Hz , T = 0.0003s. However, as stated in Chapter 2, our
actuators have a limited frequency working range that only allows as to control the blade’s
first mode at 20 Hz. The control unit developed during the semester has a maximum
sampling frequency of 200 Hz. To give veracity to the designed controllers, the selected
sampling rate T = 0.005s.

We will assume we have a ZOH (zero order hold) acquisition system, all signals in the
system are constant between the sample instants, therefore they can only change value at
these sample instants.

To discretize the continuous state space system, Matlab command c2d() with ZOH will
be used. The discrete system is stable if the absolute value of the eigenvalues of F0 lie
inside the unit circle. This is true for Ts = 0.005s. Controllability and observability are
also checked for the discrete system, this is tested the same way as in continuous system,
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it is both observable and controllable with both shaft and individual blade actuation , and
only shaft base actuation.

5.3 PID Controller

PID Controller uses a very simple yet effective control algorithm, it uses a feedback
compensator structure, like the one in figure 5.1. One of the advantages of PID’s its their
simplicity, they are easy to understand and tune.

PID controllers are applied to SISO systems (single input-single output). They are applied
to the input-output transfer function of the system.

The controllers output actuation signal is computed in the time domain with the following
equation:

u(t) = Kpe(t) +Ki

∫
e(t)dt+Kd

de

dt
(5.3)

Kp=proportional gain, Ki=integral gain, Kd=derivative gain are controller parameters
that have to be tuned. The PID control algorithm calculates both the derivative and
integral of the error signal, multiplies each term by its corresponding parameter and
computes the control signal.

Increasing Kp reduces the output settling time and reduces steady state error, it however
increases output overshoot. Kp anticipates the error trajectory, increasing its value,
dampens the system reducing overshoot. Ki tends to eliminate steady state error, as it
integrates its value, it can however increase overshoot.

Taking Laplace on equation 5.3, the controller transfer function can be obtained as:

Kp + Ki

s
+Kds = Kds

2 +Kps+Ki

s
(5.4)

In Laplace domain the PID can be seen as a transfer function that multiplies the system’s
transfer function, the overall close-loop response of the system can be changed by changing
the poles and zeros of the controller transfer function. This is accomplished by changing
the controller parameters. With knowledge about the systems zero-pole location one can
change its behaviour in a desired manner adjusting the PID transfer function.

In our case we have a MIMO (multiple input-multiple output) system with coupling between
output signals. However for the PID design the system will be treated as a decoupled
system with six individual transfer functions relating each input (pair of actuators) to the
corresponding output displacement. This transfer function can be obtained using Matlab
command ss2tf() and selecting the desired input-output relations.

PID controllers will be designed with transfer functions from the continuous system, once
the parameters are obtained, the controllers will be discretized with c2d().
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5.3.1 Model Order Reduction

The obtained individual input-output transfer functions have a very high order, up to 26
poles. Analyzing the individual system’s dynamics due to its zero-pole location is quite
complex for high order models. Understanding the dynamics of these systems is important
for the PID parameter design, therefore the transfer functions order will be reduced.

To reduce the transfer function model we first need to obtain its zeros and poles, this can
be done with the Matlab command zpk(). Once we can see all poles and zeros we need to
analyzing. All poles and zeros in every transfer function are stable (lay on the LHP), we
therefore have the possibility of cancelling them without compromising stability. We will
start by cancelling those poles and zeros with same value, then those poles and zeros with
similar value, lastly we will cancel poles with very high negative value, which correspond
to very high dynamic components of the system and therefore don’t have a lot of influence
in the visible response of the system. The last step is to adjust the DC-gain (value at s=0)
of the new reduced transfer function. We have removed roots of the system and this alter
the DC-gain of the system, to correct it, we need to divide the new transfer function by
its DC-gain and multiply by the original transfer function DC-gain, this makes sure both
transfer functions have the same value at steady state.

All individual transfer functions have been reduced from a high order system to a third
order system (one real pole and a complex pair).

Underneath a comparison between the initial model and the reduced model response to an
impulse and a step can be seen for the hub’s x component direction, and for blade 2.

Figure 5.2: Impulse response hub x Figure 5.3: Step response hub x
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Figure 5.4: Impulse response blade 2 Figure 5.5: Step response blade 2

We can see how both for the hub and blades the reduced models have a nearly identical
response both for to an impulse and a step.

5.3.2 PID design with Root Locus Analysis

Once the reduced transfer functions are determined, Root Locus Analysis will be used as
a design tool for PID design. With this method controllers that satisfy specific dynamic
performances can be designed.

Root Locus is a graphical tool that allows us to analyze how the roots (poles and zeroes)
of the system change with the addition of a feedback controller. Root Locus uses the
s-domain map to plot the system’s open loop poles and transfer functions, it also plots
all of the possible trajectories of the system’s poles that appear with the addition of a
gain with feedback, by increasing this gain we move the original system poles along the
trajectory . We can add to the gain feedback controller poles and zeros, this will modify
the possible trajectory the original open loop system can follow in the close-loop case.

Root Locus Analysis can be done with the help of rltool Toolbox from Matlab. This will
be used for the PID parameter design. As an example the root locus analysis for hub x
direction motion transfer function will be explained.

Figure 5.17 shows the root locus with only a Kp gain feedback controller. The blue crosses
are the starting open loop poles, the blue circles are the open loop zeroes, the blue lines
are the possible trajectories, the pink squares are the new poles that can move along the
trajectories, when controller gain is increased. We can see there is an issue with the original
system poles that the controller needs to address, the system has two really slow and high
oscillatory complex poles (near the vertical origin line), this produces the vibrations in the
system. To reduce vibrations we need to lower the poles (less imaginary component) and
make them faster (move them to the left). We can see that with only a proportional gain
feedback controller, the pole trajectories allow as to make them faster, but not to decrease
their oscillatory value, also it requires a big increase in Kp just to move the poles a little
bit to the left, big Kp gains produce overshoots which we do not want.
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Figure 5.6: Root Locus Analysis Hub x direction motion transfer function with P.

We therefore add derivative action to the feedback controller, we add a zero in the root
locus. With a PD (Kp,Kd) we alter the possible pole trajectories of the system. By adding
a real zero in -55.57, the system’s trajectory is changed in a way where with an increase in
the gain Kp we are able to reduce oscillatory component of the poles and increase their
velocity, we dampen the response of the system, with a reasonable gain we can move the
system’s original poles from the blue crosses to the pink squares position. At this position
the poles have a damping of 0.1, much bigger than the original of one of 0.0025.

Figure 5.7: Root Locus Analysis Hub x direction motion transfer function with PD.

Adding integral Ki control in the system is not possible, the system becomes unstable. This
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is due to the mathematical modelling of the system, the addition of the actuator model,
with a pure integrator just after the input is not compatible with PID controller. This is
however not an issue as our objective is to reduce vibrations due to punctual disturbances,
we do not need to correct steady state error.

This method is followed for all 6 individual transfer functions, PD controller parameters
Kp,Kd, are defined for every single input-single output system. PD transfer functions can
be checked in Appendix B.

5.3.3 Shaft and Individual Blade Actuation Results

System’s response with PD control is now tested with shaft and individual blade actuation
control. The controller performance is tested by introducing momentary force disturbances
(impulse type) at different points in the structure. At 0.5 seconds a disturbance force is
introduced in the hub’s x direction, at 3 seconds a force disturbance is introduced in the
fourth blade. Underneath the system’s output response in open-loop and close-loop can be
seen.

Figure 5.8: System Open-loop Response to Disturbance Forces
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Figure 5.9: System Controlled Response to Disturbance Forces

First thing we notice is how blade’s 1 and 3 PD controllers by default take the blades from
their resting position to the operation point (zero displacement). The controlled system
also keeps the hub’s vertical position yh in the operating point. Underneath more detailed
figures of the directly affected output measurements, xh and d4, can be seen.

Figure 5.10: Displacement xh Response
to Disturbance Forces

Figure 5.11: Displacement b4 Response to
Disturbance Forces

We can see how the disturbance force in x has a big impact in the open-loop response of
both output displacements. A disturbance force in the individual blade 4 has however much
more impact in the open-loop response of the blade itself. The individual PD controllers are
able to reduce vibrations that appear due to direct force disturbances, as well as vibrations
due to mechanical couplings. There is a small overshoot in both signals, however after that
vibrations fade quickly. The hub vibration settling time due to a disturbance in x goes
from 2 seconds to 0.5s, the blade vibration settling time due to a direct disturbance goes
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from 1 s to 0.25s. They are successful at reducing vibrations, they reduce settling time in
a 75 %, however they produce initial overshoots in the outputs of 33% when cancelling
force disturbances.

The control action signals that were required during this test were never bigger than 15V,
this is positive, as we know the controller gain is not too big, it does not force the actuation
signals to saturation for regular disturbance forces.

Figure 5.12: Input Signal Response to Disturbance Forces

Overall the individual PD controllers have a good performance for momentary disturbances
which is our main objective. I will however recall that these PD controllers cannot keep
up with constant disturbances affecting the system, without integral action the controller
cannot correct steady state error.

5.3.4 Shaft Based Actuation Control Results

It is also of interest to study the performance of active vibration control with shaft-based
actuation control only. This is due to the fact that for many rotor-blade systems, individual
blade actuation can become very expensive.

To test performance of only shaft based actuation same simulation as before has been
carried out.
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Figure 5.13: Displacement xh Response
to Disturbance Forces

Figure 5.14: Displacement b4 Response to
Disturbance Forces

We can see performance in the output response of xh is nearly identical as before. However
the response of the blade output measurement b4 changes significantly. Although the hub
x direction PD is able to compensate blade coupled disturbances coming from the hub, it
is not able to compensate direct force disturbances applied on the blade. This is due to
the small coupling that exists from blades to hub.

5.4 Full State Feedback

In the previous section PID controllers were designed for the six individual uncoupled
SISO transfer functions. However, as seen on figure 5.14, individual controllers cannot cope
with indirect coupled vibrations. To take into account the couplings of our MIMO system,
multi-variable feedback controllers will be designed. To design these controllers the static
state space representation of the system linearized in the before mentioned operation point
will be used.

Using state space representation is particularly useful for MIMO systems with a high
degree of interaction between the system’s variables. It can be applied to complex systems
where a great amount of internal variables (states) shape the behaviour of the output.

In full-state feedback, instead of the system output, the internal states values are used
to compute the actuation signal. Using the system states gives as more information and
therefore allows as to design a better performance controller. Also, in state space the
mathematical formulation of controllers can be developed in discrete.

Starting with the discrete state space representation of the system:

x(k + 1) = F0x(k) +G0u(k) +Gv0fint(k) (5.5)
y(k) = Cx(k) (5.6)

The actuation signal is defined as:
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u(k) = −Kx(k) + r(k) (5.7)

Where K is the feedback matrix, and r(k) is the reference input vector.

The close-loop equation can be determined by inserting equation 5.7 into 5.5:

ẋ(k + 1) = (F0 −G0K)x(k) +G0r(k) +Gv0fint(k) (5.8)

The close-loop system is stable if the absolute value of the eigenvalues of the close-loop
system matrix FK = (F0 −G0K) are inside the unitary circle.

The feedback gain K can be designed with various methods, in the next section we will used
the most common ones, Robust Eigenstructure Assignment and LQR (Linear Quadratic
Regulator).

As seen in equation 5.7, to use full-state feedback we need information about every state
x(k).

5.4.1 Observer Design

Full-state feedback relies on the knowledge of the system’s state variables. However, state
variables are usually internal variables of the system that are not directly measurable
externally. Therefore these state variables need to be obtained using the known signals,
measured outputs and computed actuation signals.

If the system to be controlled is observable, then it is possible to use a modified model of
the system to estimate the states which are not measured with the input, output signal
information.

The observer can be designed as a Kalman filter [24] if the system’s signal-to-noise ratios
are not very high. However, if the signal-to-noise ratios are sufficiently high, the system can
be treated as deterministic and the estimator can be designed as a Luenberger observer,
we will use this type of observer.

The observer has the following structure [23]:
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Figure 5.15: Luenberger Discrete Observer Structure.

The observer is characterized with the obtention of gain L. The observer states x̂(k) are
the estimated states.

The estimation error ee(k) = x(k) − x̂(k) is defined as the difference between the real
states and the estimated one. The estimation error dynamics are defined by the following
equation:

ee(k + 1) = (F0 − LC)ee(k) (5.9)

L has to be therefore chosen so that the error dynamics are fast enough for the observer
states to track the original ones.

Our system is affected by internal known disturbances that change with the system’s
rotation fint. For the observer to take into account the impact of these forces as the
system rotates, they will be fed as another input to the system with their corresponding
input matrix GV 0.

The equation determining the observer behaviour is:

x̂(k + 1) = F0x̂(k) +G0u(k) +Gv0fint(k) + L(y(k) − ŷ(k)) (5.10)

For MIMO systems, to obtain the value of L, eigenstructure assignment can be used. This
method computes L based on information of the desired close-loop eigenvalues for error
dynamics (F0 −LC). Matlab function place(), computes L choosing the eigenvalues close to
the desired ones, but promoting orthogonality of eigenvectors which improves robustness.

L = place(F T0 , CT , [desired λ ])T (5.11)

The desired close-loop eigenvalues are chosen to be 10 times faster than the system’s
continuous open-loop eigenvalues eig(A0) for a correct state tracking. To translate from
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the desired continuous eigenvalues to discrete specifications, the following conversion is
used:

eigdiscrete = e(eigcontTs) (5.12)

The whole estimated state vector x̂ will be used in the feedback loop.

5.4.2 Robust Eigenstructure Assignment

This method is used to compute the full-state feedback gain K. This method is commonly
used for MIMO systems. This method allows the designer to decide the specific location of
the feedback close-loop (F0 −G0K) eigenvalues. This method is therefore useful when the
designer understands the dynamics of the open loop system and knows how to change the
dynamics to obtain the desired behaviour.

The matlab function place() computes an algorithm that places the close-loop eigenvalues
close to the desired location, promoting orthogonality of the eigenvectors solution, which
increases robustness.

K = place(F0, G0, [desired λ]) (5.13)

The desired eigenvalue location will be selected using information of the system’s continuous
open-loop eigenvalues eig(A0). We want the close-loop system to be faster and to have
less oscillations, we therefore need to augment the real part of all close-loop poles and to
reduce the imaginary part of the complex poles. The desired close-loop eigenvalues are
designed with a real part 3 times faster than the open-loop eigenvalues, but with 0.75 the
complex part.

Using robust eigenstructure assigment it is very difficult to design a good performance gain
K while at the same time limiting the magnitude on actuation signal needed. With the
obtained K for common disturbances the controller at some points generates input signals
of up to 30 V. From Chapter 2 we now electromagnets can stand up to 20 V, therefore a
saturation block (±20V ) is introduced in the simulator.

Shaft and individual Blade Actuation Control Results

System’s response with Full-State Feedback designed with Robust Eigenstructure Assigment
is now tested with shaft and individual blade actuation control. The controller performance
is tested by introducing momentary force disturbances (impulse type) at different points in
the structure. At 1 seconds a disturbance force is introduced in the hub’s y direction, at 3
seconds a force disturbance is introduced in the first blade (horizontal blade). Underneath
the whole system’s output response in open-loop and close-loop can be seen. The input
operation point was added in the open-loop response to make the comparison between
both responses easier.
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Figure 5.16: Open Loop System response to disturbance forces

Figure 5.17: Close Loop System response to disturbance forces

We can see how in overall vibrations in the close-loop system are reduced, both in
magnitude of oscillations and in settling time. One disadvantage compared with individual
PD controllers from previous chapter is how this controller produces small vibrations in
those outputs that are not excited by the disturbances in open-loop (states in x direction
vibrate), however this vibration is really small. Underneath more detailed figures of the
directly affected output measurements yh and d1, can be seen.
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Figure 5.18: Displacement yh Response to
Disturbance Forces

Figure 5.19: Displacement d1 Response to
Disturbance Forces

The controller is able to reduce vibrations that appear due to direct force disturbances, as
well as vibrations due to mechanical couplings. Compared with PD’s an advantage is how
this controller does not produce overshoots, however due to the saturation, vibrations take
a little bit longer to settle. The hub vibration settling time due to a disturbance in y goes
from 2 s to 0.85 s, the blade vibration settling time due to a direct disturbance goes from
1 s to 0.4 s.

This controller cannot cope with constant disturbances, cannot accomplish zero steady
state error.

Shaft Based Actuation Control Results

We are now going to study the performance of the controller with shaft-based actuation
control only.

Figure 5.20: Displacement yh Response to
Disturbance Forces

Figure 5.21: Displacement d1 Response to
Disturbance Forces

We can see performance in the output response of yh is nearly identical as before. With
shaft based actuation only the controller is still able to compensate direct and indirect
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forces in the shaft. However the response of the blade output d4 changes. With hub base
actuation only the system reduces blade vibrations due to direct disturbances just in a
small amount.

5.4.3 Linear Quadratic Regulator

In this section optimal control will be used to compute the full-state feedback gain K.
In previous sections we used system’s dynamic performance specifications (like settling
time, overshoot, resonance damping) to design the controllers. This, sometimes leads to
impossible or conflicting actuation signals. With optimal control the controller is designed
by minimizing a performance index which takes into account limiting conditions, like
actuator input power. The best possible control signal which satisfies boundary conditions
will be generated.

The system’s quadratic performance index J to minimize [23] is defined as:

J = 1
2x

T (t1)S(t1)x(t1) + 1
2

N−1∑
k=0

[
xT (k)R1x(k) + uT (k)R2u(k)

]
Ts (5.14)

Where S,R1T and R2Ts are weighting matrices, which must be positive definite. This
matrices determine how much deviation is allowed in x(t1), x(k) and u(k) signals. A big
R1 means only a small deviation of the states from their zero positions is allowed. A big
R2 penalizes the amount of input that can be used in the control law. S penalizes state
deviations in the final state.

The feedback gain K that optimizes the performance index is found as:

K(k) =
[
R2 +GT0 P (k + 1)G0

]−1
GT0 P (k + 1)F (5.15)

Where F0 and G0 are the system’s discrete state space matrices. P is the solution to the
Riccati equation. However the solution of this equation is time varying. A suboptimal
constant gain can be obtained by using the steady state converging solution of the Riccati
equation P∞. According to the LQR regulator theorem [23] if the system to be controlled
is stabilizable, there is a constant solution to the Riccati equation. Matlab command dlqr()
calculates the suboptimal feedback constant gain K∞. The final control law is given by:

u(k) = −K∞x̂(k) (5.16)

Where x̂(k) is the observer estimated states.

The Matlab command dlqr() uses weighting matrices R1 and R2 to compute the constant
feedback gain.

The weighting matrices are tuned to obtain a good active vibration control performance
(reduce oscillation amplitude, and settling time) but keeping the control inputs under 20V
for common magnitude disturbances.
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Shaft and individual Blade Actuation Control Results

System’s response with Full-State Feedback designed with Optimal Control is now tested
with shaft and individual blade actuation control. The controller performance is tested
by introducing momentary force disturbances (impulse type) at different points in the
structure. At 1 second a disturbance force is introduced in the hub’s y direction, at 3
seconds a force disturbance is introduced in the first blade (horizontal blade). Underneath
the whole system’s output response in open-loop and close-loop can be seen. The input
operation point was added in the open-loop response to make the comparison between
both responses easier.

Figure 5.22: Open Loop System response to disturbance forces

Figure 5.23: Close Loop System response to disturbance forces

The above control action was achieved with the control signals underneath, all inside 20V.

54



5. Static Controller Design

Figure 5.24: Control signals

We can see how with limited control signals the response of the controlled system is really
quick compared with the previously designed controllers, settling time is really small. The
amplitude of oscillations is also drastically reduced.

Underneath more detailed figures of the directly affected output measurements yh and d1,
can be seen.

Figure 5.25: Displacement yh Response to
Disturbance Forces with DLQR.

Figure 5.26: Displacement d1 Response to
Disturbance Forces with DLQR.

The controller is able to reduce vibrations that appear due to direct force disturbances, as
well as vibrations due to mechanical couplings. This controller reduces settling time of
vibrations by a great amount. One issue however, is the over-shoot it creates in yh when
compensating indirect disturbances coming from mechanical coupling from blades.
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Shaft Based Actuation Control Results

We are now going to study the performance of the controller with shaft-based actuation
control only.

Figure 5.27: Displacement yh Response to
Disturbance Forces with DLQR

Figure 5.28: Displacement d1 Response to
Disturbance Forces with DLQR

We can see performance in the output response of yh is nearly identical as before. With
shaft based actuation only the controller is still able to compensate direct and indirect
forces in the shaft. However the response of the blade output d4 changes. With this
controller we are able to reduce settling time and amplitude of vibrations in blades due to
blade disturbances, however the result is not that noticeable.

The Optimal Controllers designed in this section cannot cope with constant disturbances,
they cannot accomplish zero steady state error. However with the addition of integral
action this can be achieved.

5.4.4 LQR with Integral Action

The full-state feedback controllers design in the previous sections (both with Robust
eigenvalue assignment and LQR) cannot cannot cope with constant disturbances, they
cannot accomplish zero steady state error. This however can be changed with the addition
of integral action. This change can be applied to both controllers, we will apply it however
only to the LQR controller as it already achieves a better performance.

Integral control is achieved by converting the desired signals into new integrated states. In
this case, we want to control the output signals, we are therefore going to augment the
original discrete state space system 5.5 with the new integrated states.

[
x(k + 1)
xi(k + 1)

]
=
[
F0 0
−C I

] [
x(k)
xi(k)

]
+
[
G0
0

]
u(k) +

[
0
I

]
r(k) +

[
G0v

0

]
fint(k) (5.17)

y(k) =
[
C 0

] [x(k)
xi(k)

]
(5.18)
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Figure 5.29: DLQR + Integral action Structure

Now the DLQR feedback gain Ka can be computed for the new augmented system using
Matlab ldqr() command like in the previous system.

The obtained gain Ka has to be divided in two terms, the state feedback gain K and the
integral states gain Ki:

u(k) = −Kaxa(k) = −
[
K Ki

] [x(k)
xi(k)

]
(5.19)

System’s response with the addition of integral action is now tested. The controller
performance is tested by introducing constant force disturbances (step type) at different
points in the structure. At 1 second a disturbance force is introduced in the hub’s x
direction, at 3 seconds a force disturbance is introduced in the 4th blade (vertical blade).
Underneath the comparison between the response with the system both with and without
integral control can be seen.

Figure 5.30: Systems Response to constant force disturbances with DLQR
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In the figure above we can see how DLQR controller reduces vibrations but has a big
steady state error.

Figure 5.31: Systems Response to constant force disturbances with DLQR + Integral
Action

With the addition of integral action the system’s steady state error is eliminated. This is
not however the main objective of our control goal, as we want to eliminate momentary
disturbances that appear in the rotor when rotating.
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6 ROTATING CONTROLLER DESIGN

The previous Chapter resulted in the design of four different controllers, individual PD
controllers, full state feedback with robust eigenvector assignment, full state feedback with
LQR, full state feedback with LQR + integral action. These controllers are designed for
the static model.

This section studies the adaptation of the designed controllers with a constant rotor angular
velocity Ω.

6.1 Rotating System Analysis

Firstly, the open-loop response of the system with a constant angular velocity of Ω = 300
rpm (operating point) is studied.

The figures underneath shows the effects of rotation in the measured output signals.

Figure 6.1: Hub displacement Response to Rotation
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Figure 6.2: Blade displacement Response to Rotation

The figures show that all signals rotate at a frequency of approximately 5 Hz, which
corresponds to the frequency of Ω in rpm. The hub displacement in x direction vibrates
with an amplitude of 0.050 mm, in the y direction 0.04 2mm. However blade’s amplitude
vibration is much higher, of 0.8 mm.

In Chapter 3 Mathematical Model, the periodic time varying behaviour of the rotor-blade
system described in equation 3.33 was obtained. That equation shows that the system’s
matrices change with time when there is rotation. The system is also affected by a vector of
disturbance forces fint that appear due to internal forces of the system like rotor eccentricity
and gravity. The value of these disturbances is known and changes with values of Ω and θ.

Figure underneath shows the variation in internal disturbance forces with rotation.

Figure 6.3: Internal Forces Variation with rotation
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Force variation amplitude is of 3 N in the hub y direction, and around 1 N in the blades
and hub x direction. This variations are quite big and have a big impact in the output
displacements.

6.2 Controller Adaptation Strategy
The previously designed static controllers performance was tested on the rotating plant
simulator. These tests concluded with the rejection of the full-state feedback controllers.
With rotation, states vary constantly, this resulted in very aggressive actuation signals.
Therefore, the control strategy to follow in this section will be based only on the PD
controllers.

With rotation both the system matrices and disturbance forces vary. To compensate the
changes in the system properties it would be necessary to implement complex control
structures with time varying parameters. As seen from the conclusions of C.S. Jakobsen
[17] and J.B. Hansen [18], previous Master Theses, advanced control algorithms are too
complex to effectively be applied on the test-rig control interface. Therefore, we will focus
our strategy in compensating disturbance forces. As seen on the previous section, the
variation in disturbance forces has a great impact in the system’s behaviour, making this
strategy a good option.

As the disturbance forces are known, they depend on Ω and θ, a feedforward control will
be implemented in conjunction with the PD controllers.

6.3 Feed-forward Control Design
Feed-forward control is used to compensate known disturbances. Here it will be used
in conjunction to the PD controllers, as we still need to compensate the unknown force
disturbances acting on the system. The controlled system has the following structure:

Figure 6.4: Feed-forward Structure

The known internal disturbance is a force directly applied on the mechanical structure.
Our objective is to produce an opposite force with the electromagnets that cancels the
disturbances. To produce these voltage actuation signals, the dynamics of the actuators
need to be taken into account.
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Feed-forward gains Kf are determined:

Kf = −
( 1
Gact

)
Hf (6.1)

Gact are the individual actuator transfer functions from input voltage to output force. Hf

is a filter added to the gain transfer function to assure causality, a fast pole is added to
each function.

6.4 Results

System’s response with the addition of feedforward control is tested. The controller
performance is tested in the simulator with Ω = 300 rpm. Additionally an unknown
disturbance force is added at 0.5 s in the hub’s x direction.

Figure 6.5: Hub Displacement Control with Rotation
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6. Rotating Controller Design

Figure 6.6: Blade 1 Displacement Control with Rotation

We can see the addition of feedforward control drastically reduces vibrations in the hub, it
also compensates unknown disturbances. It has less impact in the blades vibration. This is
due to the fact that the blade’s behaviour in rotation is more affected by system’s matrices
parameters change, not only by force disturbances primarily. The control signal magnitude
is under 20 V.

Figure 6.7: Actuation Signal with Rotation
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7 CONCLUSION

This thesis was devised as a theoretically driven investigation of the application of classical
control techniques to mitigate rotor blade vibrations. However, it has been carried out with
the fundamental idea of ensuring applicability of the designed control algorithms. The main
objective was to design simple controllers with suboptimal, but still good performances,
that can be physically implemented in the current test-rig control unit.

The starting point of the thesis was to update the mathematical model of the mechanical
rotor-blade system plant to take into account the actuation dynamics, which have a great
impact in the test-rig behaviour. By including these dynamics an accurate model describing
the test-rig’s behaviour was obtained.

The next step was to design simple classical control algorithms to reduce system’s
output measurements vibrations for the static plant (without rotation) with shaft and
individual blade actuation. Individual, uncoupled PD controllers were designed to mitigate
disturbances, the advantage of these controllers is their simple design which make them
easy to tune. They are successful at reducing vibrations, they reduce settling time in
a 75 %, however they produce initial overshoots in the outputs of 33% when cancelling
force disturbances. To take into account mechanical coupling between the states in the
rotor-blade systems two full-state feedback controllers were designed. The first one was
designed with Robust Eigenstructure Assigment. In this controller, the feedback gain was
difficult to tune to avoid big input signals, saturation had to be added. This controller is
able to reduce settling time in 50 %, moreover, it does not produce overshoot. The second
controller was designed with optimal control (LQR). With this control algorithm control
input magnitude was easy to tune to avoid saturation. This controller is able to reduce
settling time in 80% without creating too much overshoot.

The above designed static controllers were modified and tested with shaft based actuation
control only. All controllers were able to reduce vibrations in blades with disturbances
applied in the hub. PD controllers, due to their decoupling are not able to reduce direct
disturbances acting on blades. Full-state feedback controllers, specially LQR, are able
to reduce vibrations slightly, their effect is however limited. This is due to the fact that
mechanical couplings from blades to shaft is not very noticeable, with an incrementation in
the blade’s tip mass this effect may be increased, favouring the cancellation of blade direct
disturbances. All controllers have good performance when cancelling momentary force
disturbances, however an integral action is added to the LQR controller to compensate
constant force disturbances.

The study of the adaptation of the static designed controllers was then carried out.
Full-state feedback controllers had to be discarded as they introduced too aggressive
control signals. The simpler uncoupled PD’s produced better results at rotating vibrations
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7. Conclusion

cancellation. To adapt the controller, feedforward control of the known internal force
disturbance was added. This controller drastically reduces vibrations amplitude (in a 93%)
due to rotation and unknown disturbances in the hub, in both x and y directions. In
blades vibrations is reduced in 22%. This is a positive result as hub vibrations produce the
most mechanical damage, as it is in contact with the mechanical bearings. This solution
produces a meaningful impact, without heavy computation, it is possible to apply on the
test rig’s control unit.

The different control algorithms designed in the thesis using Matlab can be consulted in
Appendix B.

7.1 Application and Future Work
After the completion of the thesis we achieve the design of classical control algorithms that
can be experimentally applied on the test-rig. The control structures here designed need
to be transformed into C language, that can be interpreted by the test-rig’s control unit.
The experimental application of the controllers could not be implemented during this time
period due to time constrains.

During this semester another DTU student working on the test-rig Ignacio Escudero, was
able to experimentally identify process and measurement noise of the model. A possible
upgrade that could be to update the deterministic observer for a statistical one, Kalman
Filter, using this data. This observer will increase estimation accuracy.
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A MATHEMATICAL MODELLING

A.1 Blade Numerical Mode Shape Equations

1rst Mode Shape Equation

φi,1(xi) = a1xi + a2x
2
i + a3x

3
i (A.1)

Where :

a1 = 8.653867 · 10−3

a2 = 2.160229 · 102

a3 = −7.595265 · 102

2nd Mode Shape Equation

φi,2(xi) = b1xi + b2x
2
i + b3x

3
i + b4x

4
i (A.2)

Where :

b1 = 1.567485
b2 = −1.766271 · 103

b3 = 2.524826 · 104

b4 = −6.698016 · 104

A.2 Lagrange Energy Terms

Kinetic Energy

Kinetic Energy Hub:
Ekin,h(t) = 1

2mhxq̇
2
1(t) + 1

2mhy q̇
2
2(t) (A.3)

Kinetic Energy rotor:
Ekin,r(t) = 1

2Jr(w
I
B1)T · wIB1 (A.4)

Blades Kinetic Energy:

Ekin,b =
4∑
i=1

1
2ρi

∫ Lbi

0
(V I
opi

(xi, t))
T · V I

opi
(xi, t)dxi (A.5)
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A. Mathematical Modelling

Blade’s Tip Masses Kinetic Energy:

Ekin,t =
T∑
i=1

(1
2mti(V I

oti)
T · V I

oti + 1
2Jti(w

I
Ci

)T · wICi

)
(A.6)

Total kinetic energy is given by the sum of all terms.

Potential Energy

Hub potential energy:

Epot,h(t) = 1
2khxq

2
1(t) + 1

2khyq
2
2(t) (A.7)

Potential Energy in blade deformation:

Epot,b(t) =
4∑
i=1

∫ Lbi

0
EbiIbi

(
δ2yi(xi, t)

δx2
i

)2

dxi (A.8)

Potential Energy due to centrifugal effects:

Epot,c =
4∑
i=1

EbiIbi

∫ Lbi

0
Nbi(xi)

(
δyi(xi, t)
δxi

)2
dxi (A.9)

Where Nbi is the normal force acting on the blades:

Nbi(xi) =
(
mti

(
R+ Lbi + 1

2Lti
)

+ ρbi(Lbi − xi)
(
R+ 1

2(Lbi + xi)
))

Ω2 (A.10)

The total potential energy is the sum of all terms.

A.3 Mathematical Actuator Model

Ai =



−Rs/Ls 0 0 0 0 0
0 −Rs/Ls 0 0 0 0
0 0 −Rr/Lr 0 0 0
0 0 0 −Rr/Lr 0 0
0 0 0 0 −Rr/Lr 0
0 0 0 0 0 −Rr/Lr


(A.11)

B1i =



kis/Ls 0 0 0 0 0
0 kis/Ls 0 0 0 0
0 0 kir/Lr 0 0 0
0 0 0 kir/Lr 0 0
0 0 0 0 kir/Lr 0
0 0 0 0 0 kir/Lr


(A.12)
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A. Mathematical Modelling

B2i =



1/Ls 0 0 0 0 0
0 1/Ls 0 0 0 0
0 0 1/Lr 0 0 0
0 0 0 1/Lr 0 0
0 0 0 0 1/Lr 0
0 0 0 0 0 1/Lr


(A.13)

C1i =



kis 0 0 0 0 0
0 kis 0 0 0 0
0 0 kir 0 0 0
0 0 0 kir 0 0
0 0 0 0 kir 0
0 0 0 0 0 kir


(A.14)

C2i =



kss 0 0 0 0 0
0 kss 0 0 0 0
0 0 ksr 0 0 0
0 0 0 ksr 0 0
0 0 0 0 ksr 0
0 0 0 0 0 ksr


(A.15)
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B CONTROLLER DESIGN

B.1 PD transfer functions
Individual PD transfer functions in continuous time:

PD1 = 189.29(s+ 55.57) (B.1)
PD2 = 149.65(s+ 82.47) (B.2)
PD3 = 101.12(s+ 94) (B.3)
PD4 = 80(s+ 100) (B.4)
PD5 = 85.4(s+ 104.5) (B.5)
PD6 = 82.3(s+ 101) (B.6)

B.2 LQR Weighting Matrices
States weighting matrix:

R1 = (CTd Cd)3 · 104 (B.7)

Where Cd is the state space discrete output matrix.

Input weighting matrix:

R2 = diag(0.2, 0.2, 0.7, 0.7, 0.7, 0.7) · 1.2−4 (B.8)
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C MATLAB CODE

Here the Matlab code used to design the controllers can be consulted.

Plant Model:

1 %%%%%%%%%%%%%%%%%%%%%% Main file to obtain the plant %%%%%%%%%%%%%%%%%%%%%%
2 %Global variables
3 global alpha1 alpha2 alpha3 alpha4 e mr ephi Phis Phim simPlant statesCon

theta_ini
4

5 %Time step
6 Ts=0.0003; %s
7 % Ts=0.005; %s
8 %Number of states for the internal Simulink block
9 nostates = 10;

10

11 %Numerical matrices for the model
12 NumericalModelValues
13

14 %Linearized magnetic constants
15 R_r = 180; % [Ohm]
16 L_r = 4000e-3; % [H]
17 R_s = 39; % [Ohm]
18 L_s = 1500e-3; % [H]
19

20 ki_r = 50;
21 % ki_r = 10;
22 ks_r = -1e3;
23 % ks_r = -2e3;
24 % ki_s = 112;
25 ki_s =130;
26 % ks_s = -7.84e3;
27 ks_s = -6e3;
28

29 A_i=[-R_s/L_s 0 0 0 0 0; 0 -R_s/L_s 0 0 0 0; 0 0 -R_r/L_r 0 0 0; 0 0 0 -R_r/L_r
0 0; 0 0 0 0 -R_r/L_r 0;

30 0 0 0 0 0 -R_r/L_r];
31 B1_i=[ki_s/L_s 0 0 0 0 0; 0 ki_s/L_s 0 0 0 0; 0 0 ki_r/L_r 0 0 0; 0 0 0 ki_r/L_r

0 0; 0 0 0 0 ki_r/L_r 0;
32 0 0 0 0 0 ki_r/L_r];
33 B2_i=[1/L_s 0 0 0 0 0; 0 1/L_s 0 0 0 0; 0 0 1/L_r 0 0 0; 0 0 0 1/L_r 0 0; 0 0 0

0 1/L_r 0;
34 0 0 0 0 0 1/L_r];
35 C1_i=[ki_s 0 0 0 0 0; 0 ki_s 0 0 0 0; 0 0 ki_r 0 0 0; 0 0 0 ki_r 0 0; 0 0 0 0

ki_r 0;
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C. Matlab Code

36 0 0 0 0 0 ki_r];
37 C2_i=[ks_s 0 0 0 0 0; 0 ks_s 0 0 0 0; 0 0 ks_r 0 0 0; 0 0 0 ks_r 0 0; 0 0 0 0

ks_r 0;
38 0 0 0 0 0 ks_r];
39

40 %Values of the angles of every blade for the mode shape matrices
41 alpha1 = 0; %rad
42 alpha2 = pi/2; %rad
43 alpha3 = pi; %rad
44 alpha4 = 3*pi/2; %rad
45

46 %Eccentricity values for the displaced center of gravity of the rotor
47 e = 1e-03; %m
48 mr = 3; %kg
49 ephi = 0; %rad
50

51 %Mode shapes vectors to transform
52 a3=-7.595265031870808e+002;
53 a2=2.169022899342803e+002;
54 a1=8.653867145542855e-003;
55 b4=-6.698016635431316e+004;
56 b3=2.524826002857015e+004;
57 b2=-1.766271326563018e+003;
58 b1=1.567485111255101e+000;
59

60 %Mode shapes of the sensors, to convert from modal to real system
61 xs = 0.08; %Distance of the sensor to the rotor, in cm
62 phi1s = a1*xs + a2*xs^2 + a3*xs^3;
63 phi2s = b1*xs + b2*xs^2 + b3*xs^3 + b4*xs^4;
64 Phis = [phi1s phi2s];
65 Mphis=[1 0 0 0 0 0 0 0 0 0;
66 0 1 0 0 0 0 0 0 0 0;
67 0 0 Phis 0 0 0 0 0 0;
68 0 0 0 0 Phis 0 0 0 0;
69 0 0 0 0 0 0 Phis 0 0;
70 0 0 0 0 0 0 0 0 Phis];
71 %Mode shapes of the actuators, to convert from real to modal system
72 xm = 0.040; %Distance of the actuator to the rotor, in cm
73 phi1m = a1*xm + a2*xm^2 + a3*xm^3;
74 phi2m = b1*xm + b2*xm^2 + b3*xm^3 + b4*xm^4;
75 Phim = [phi1m phi2m];
76 Mphim=[1 0 0 0 0 0 0 0 0 0;
77 0 1 0 0 0 0 0 0 0 0;
78 0 0 Phim 0 0 0 0 0 0;
79 0 0 0 0 Phim 0 0 0 0;
80 0 0 0 0 0 0 Phim 0 0;
81 0 0 0 0 0 0 0 0 Phim];
82 Mphim=Mphim’;
83

84 %Modeling the linear sensor and the ADC conversion
85 K_adc = 32768/4.096; %bits/V
86 K_distance = 2/(1.5*10^-3); %V/m
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87 K_sensor = K_adc*K_distance; %bits/m
88

89 %Initial conditions for modal states
90 xxd_ini = zeros(10,1);
91 xx_ini = InitialCond(theta_ini);
92

93 %Simulating the plant in open loop for the actuator forces specified in
94 %Simulink model
95 if simPlant==1
96 sim(’PlantSim’);
97 figure
98 plot(tout,x)
99 title(’Displacement of hub in direction x’)

100 xlabel(’t(s)’)
101 ylabel(’xh(m)’)
102 figure
103 plot(tout,y)
104 title(’Displacement of hub in direction y’)
105 xlabel(’t(s)’)
106 ylabel(’yh(m)’)
107 figure
108 plot(tout,d1)
109 title(’Displacement blade 1’)
110 xlabel(’t(s)’)
111 ylabel(’d1(m)’)
112 figure
113 plot(tout,d2)
114 title(’Displacement blade 2’)
115 xlabel(’t(s)’)
116 ylabel(’d2(m)’)
117 figure
118 plot(tout,d3)
119 title(’Displacement blade 3’)
120 xlabel(’t(s)’)
121 ylabel(’d3(m)’)
122 figure
123 plot(tout,d4)
124 title(’Displacement blade 4’)
125 xlabel(’t(s)’)
126 ylabel(’d4(m)’)
127 end
128

129 %Obtaining the transfer functions of the plant and the state space model
130 if statesCon==6
131

132 %Find steady state output and state values with zero input
133 simopts = simset(’FinalStateName’,’xFinal’); % set the sim function options

to obtain the final state values as xFinal
134 [t,x,y] = sim(’SteadyState’,50,simopts); % simulate for 5000 seconds to

obtain states steady state
135 xf = xFinal;
136 xx_ini=xf(1:10)’;
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137 xxd_ini=xf(17:26)’;
138 xxi_ini=xf(11:16)’;
139 xx_ini_disp=[xx_ini(1:2);Phis*xx_ini(3:4);;Phis*xx_ini(5:6);Phis*xx_ini(7:8);Phis*xx_ini(9:10)];
140

141 %Internal forces with no rotation
142 f_ini=Fmatrix10([0 0 0]);
143

144 %Find trim point for operating point
145 y_trim = [xx_ini(1:2);zeros(4,1)]; %Desired output operating point
146 u_trim = [0,0,-15.1,0,15.1,0,f_ini]’;
147

148 [x_0,u_0,y_0,dx] = trim(’PlantCon6’,[],u_trim,y_trim,[],[],[1:1:6]);
149

150 % Linearize at operating point
151

152 sys = linmod(’PlantCon6’,x_0,u_0);
153

154 Ac = sys.a;
155 Bc = sys.b;
156 Cc = sys.c;
157 Dc = sys.d;
158 sys_ss = c2d(ss(Ac,Bc,Cc,Dc),Ts,’zoh’);
159 sys_tf= tf(sys_ss);
160

161 end
162

163 if statesCon==10
164 %Find steady state output and state values with zero input
165 simopts = simset(’FinalStateName’,’xFinal’); % set the sim function options

to obtain the final state values as xFinal
166 [t,x,y] = sim(’SteadyState’,50,simopts); % simulate for 5000 seconds to

obtain states steady state
167 xf = xFinal;
168 xx_ini=xf(1:10)’;
169 xxd_ini=xf(17:26)’;
170 xxi_ini=xf(11:16)’;
171 %xx_ini_disp=[xx_ini(1:2);Phis*xx_ini(3:4);;Phis*xx_ini(5:6);Phis*xx_ini(7:8);Phis*xx_ini(9:10)];
172

173 %Internal forces with no rotation
174 f_ini=Fmatrix10([0 0 0]);
175

176 %Find trim point for operating point
177 y_trim = [xx_ini(1:2);zeros(4,1)]; %Desired output operating point
178 u_trim = [0,0,-11.14,0,11.14,0,f_ini]’;
179

180 [x_0,u_0,y_0,dx] = trim(’PlantCon10’,[],u_trim,y_trim,[],[],[1:1:6]);
181

182 % Linearize at operating point
183

184 sys = linmod(’PlantCon10’,x_0,u_0);
185

186 Ac = sys.a;
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187 Bc = sys.b;
188 Cc = sys.c;
189 Dc = sys.d;
190 sys_ss = c2d(ss(Ac,Bc,Cc,Dc),Ts,’zoh’);
191 sys_tf= tf(sys_ss);
192 end

Input-Output Transfer Function Order Reduction:

1 %% Continuous System
2 sys_ss_c=ss(Ac,Bc,Cc,Dc);
3 sys_tf_c=tf(sys_ss_c);
4 %% Continuous transfer functions
5

6 P1 = sys_tf_c(1,1);
7 P2 = sys_tf_c(2,2);
8 P3 = sys_tf_c(3,3);
9 P4 = sys_tf_c(4,4);

10 P5 = sys_tf_c(5,5);
11 P6 = sys_tf_c(6,6);
12

13 %% Transfer Function 1
14 s=tf(’s’);
15 P1zpk=zpk(P1)
16 KP1=dcgain(P1)
17 %%
18 gain_1=-8.0587;
19 z1_1=(s+40.69)^4;
20 z2_1=(s+22.63);
21 z3_1=(s^2 + 4.35*s + 8377);
22 z4_1=(s^2 + 9.103*s + 1.122e04);
23 z5_1=(s^2 + 9.069*s + 1.133e04);
24 z6_1=(s^2 + 9.035*s + 1.143e04);
25 z7_1=(s^2 + 8.388*s + 1.244e04);
26 z8_1=(s^2 + 22*s + 3.24e06)^4;
27 p1_1=(s+40.69)^4 ;
28 p2_1=(s+22.63);
29 p3_1=(s+22.18);
30 p4_1=(s^2 + 4.058*s + 6238);
31 p5_1=(s^2 + 4.35*s + 8377);
32 p6_1=(s^2 + 9.079*s + 1.131e04) ;
33 p7_1=(s^2 + 9.069*s + 1.133e04) ;
34 p8_1=(s^2 + 9.04*s + 1.189e04);
35 p9_1=(s^2 + 8.388*s + 1.244e04);
36 p10_1=(s^2 + 22*s + 3.24e06)^4;
37 %%
38 P1red=((gain_1))/(p3_1*p4_1);
39 Kp1red=dcgain(P1red);
40 P1red=P1red*KP1/Kp1red; %Reduced Model
41

42 step(P1red,’r’)
43 hold on
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44 step(P1,’b’)
45 hold off
46 figure;
47 impulse(P1red,’r’)
48 hold on
49 impulse(P1,’b’)
50 hold off
51 %% Transfer Function 2
52 s=tf(’s’);
53 P2zpk=zpk(P2)
54 KP2=dcgain(P2); %DC gain
55 %%
56 gain_2=-9.7883 ;
57 z1_2=(s+40.69)^4;
58 z2_2=(s+22.18);
59 z3_2=(s^2 + 4.058*s + 6238);
60 z4_2=(s^2 + 9.072*s + 1.132e04)^3 ;
61 z5_2=(s^2 + 9.04*s + 1.189e04);
62 z6_2= (s^2 + 22*s + 3.24e06)^4;
63 p1_2=(s+40.69)^4 ;
64 p2_2=(s+22.63) ;
65 p3_2=(s+22.18);
66 p4_2=(s^2 + 4.058*s + 6238);
67 p5_2=(s^2 + 4.35*s + 8377);
68 p6_2=(s^2 + 9.079*s + 1.131e04);
69 p7_2=(s^2 + 9.069*s + 1.133e04);
70 p8_2=(s^2 + 9.04*s + 1.189e04);
71 p9_2=(s^2 + 8.388*s + 1.244e04);
72 p10_2=(s^2 + 22*s + 3.24e06)^4;
73 %%
74 P2red=((gain_2))/(p3_2*p5_2);
75 Kp2red=dcgain(P2red);
76 P2red=P2red*KP2/Kp2red; %Reduced Model
77

78 step(P2red,’r’)
79 hold on
80 step(P2,’b’)
81 hold off
82 figure;
83 impulse(P2red,’r’)
84 hold on
85 impulse(P2,’b’)
86 hold off
87 %% Transfer Function 3
88 s=tf(’s’);
89 P3zpk=zpk(P3)
90 KP3=dcgain(P3) %DC gain
91

92 opt = balredOptions(’Offset’,.001,’StateElimMethod’,’Truncate’);
93 r3sys = balred(P3,3,opt)
94 dcgain3=dcgain(r3sys)
95 r3sys=r3sys*KP3/dcgain3 %Reduced Model
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96

97 step(r3sys,’r’)
98 hold on
99 step(P3,’b’)

100 hold off
101 figure;
102 impulse(r3sys,’r’)
103 hold on
104 impulse(P3,’b’)
105 hold off
106

107

108 %% Transfer Function 4
109

110 s=tf(’s’);
111 P4zpk=zpk(P4)
112 KP4=dcgain(P4) %DC gain
113

114 opt = balredOptions(’Offset’,.001,’StateElimMethod’,’Truncate’);
115 r4sys = balred(P4,3,opt)
116 dcgain4=dcgain(r4sys)
117 r4sys=r4sys*KP4/dcgain4 %Reduced Model
118

119 step(r4sys,’r’)
120 hold on
121 step(P4,’b’)
122 hold off
123 figure;
124 impulse(r4sys,’r’)
125 hold on
126 impulse(P4,’b’)
127 hold off
128

129 %% Transfer Function 5
130 s=tf(’s’);
131 P5zpk=zpk(P5)
132 KP5=dcgain(P5)%DC gain
133

134 opt = balredOptions(’Offset’,.001,’StateElimMethod’,’Truncate’);
135 r5sys = balred(P5,3,opt)
136 dcgain5=dcgain(r5sys)
137 r5sys=r5sys*KP5/dcgain5 %Reduced Model
138

139 step(r5sys,’r’)
140 hold on
141 step(P5,’b’)
142 hold off
143 figure;
144 impulse(r5sys,’r’)
145 hold on
146 impulse(P5,’b’)
147 hold off
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148

149 %% Transfer Function 6
150 s=tf(’s’);
151 P6zpk=zpk(P6)
152 KP6=dcgain(P6) %DC gain
153

154 opt = balredOptions(’Offset’,.001,’StateElimMethod’,’Truncate’);
155 r6sys = balred(P6,3,opt)
156 dcgain6=dcgain(r6sys)
157 r6sys=r6sys*KP6/dcgain6 %Reduced Model
158

159 step(r6sys,’r’)
160 hold on
161 step(P6,’b’)
162 hold off
163 figure;
164 impulse(r6sys,’r’)
165 hold on
166 impulse(P6,’b’)
167 hold off

Full-state Feedback Robust Eigenstructure Assigment:

1 %%%%%%%%%%% Main file for the State Space Feedback controller%%%%%%%%%%%%%%
2 clear
3 clc
4

5 global simPlant statesCon theta_ini theta_d_ini
6

7 %Simulating the plant for the state space feedback controller
8 simPlant = 0;
9 simSS = 0;

10 statesCon = 6; %number of states controlled
11 theta_ini = 0; %rad
12 theta_d_ini = 0; %rad/s
13 if statesCon== 10
14 switch_no=-1;
15 else switch_no=1;
16 end
17

18 %Obtaining the plant state space description, parameters specified in Plant.m
19 Plant
20

21 Ad = sys_ss.A;
22 Bd = sys_ss.B;
23 Cd = sys_ss.C;
24 Dd = sys_ss.D;
25

26 %Check stability
27 eig_cont=eig(Ac);
28 eig_cont=[eig_cont(9);eig_cont(16);eig_cont(12);eig_cont(1);eig_cont(14);eig_cont(3);eig_cont(18);eig_cont(5);eig_cont(20);eig_cont(7);
29 eig_cont(11);eig_cont(24);eig_cont(22);eig_cont(23);eig_cont(25);eig_cont(26);
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30 eig_cont(10);eig_cont(17);eig_cont(13);eig_cont(2);eig_cont(15);eig_cont(4);eig_cont(19);eig_cont(6);eig_cont(21);eig_cont(8)];
31 eig_dis=eig(Ad);
32

33 %% OBSERVER
34 %Since we do not have the full state information, observer
35 %design is needed to estimate the speed of the modal displacements
36

37 obs_eig = 10*eig_cont;
38 obs_eig_d = exp(Ts*obs_eig);
39 L_trans = place(Ad’,Cd’,obs_eig_d);
40 L = L_trans’;
41

42 %% OBSERVER INITIAL STATE
43 % set the sim function options to obtain the final state values as xFinal
44 [to,xo,yo] = sim(’Observer_Steady’,10,simopts); % simulate for 5000 seconds to

optain steady state
45 xobs=yo(end,:)’;
46

47 %% PROPORTIONAL REGULATOR
48 %Design of the proportional regulator for the desired poles
49 %Stator and rotor control
50

51 eig_desired=[real(eig_cont)*1.5 + imag(eig_cont)*1*i]; %rot
52 poles_con_d=exp(Ts*eig_desired);
53 K_cp = place(Ad,Bd(:,1:2),poles_con_d);
54

55 K_cp=[K_cp(1:2,:);zeros(4,26)];
56 %% PROPORTIONAL REGULATOR + INTEGRAL ACTION
57 %With the whole state, the control is designed, an integral action is
58 %needed since the disturbance force (F_int, dependent of theta, theta_d and
59 %theta_dd) needs to be taken into account
60 A_int = [Ac zeros(26,6);-Cc eye(6)];
61 B_int = [Bc(:,1:6);zeros(6,6)];
62 poles_int = eig(A_int);
63 con_eig_int = [real(poles_int)*3 + imag(poles_int)/2*1i];
64 con_eig_d_int =exp(Ts*con_eig_int);
65 A_int_d = [Ad zeros(26,6);-Cd eye(6)];
66

67

68 B_int_d = [Bd(:,1:6);zeros(6,6)];
69 K_tot = place(A_int_d,B_int_d,con_eig_d_int);
70 K_ci = K_tot(:,1:26);
71 K_hi = K_tot(:,27:32);

Full-state Feedback LQR:

1 %%%%%%%%%%% Main file for the State Space Feedback controller%%%%%%%%%%%%%%
2 clear all
3 clc
4

5 global simPlant statesCon theta_ini theta_d_ini
6
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7 %Simulating the plant for the state space feedback controller
8 simPlant = 0;
9 simSS = 0;

10 statesCon = 6; %number of states controlled
11 theta_ini = 0; %rad
12 theta_d_ini = 0; %rad/s
13

14 %Obtaining the plant state space description, parameters specified in Plant.m
15 Plant
16

17 Ad = sys_ss.A;
18 Bd = sys_ss.B;
19 Cd = sys_ss.C;
20 Dd = sys_ss.D;
21

22 %Check stability
23 eig_cont=eig(Ac);
24 eig_dis=eig(Ad);
25 %% OBSERVER
26 %Since we do not have the full state information, observer
27 %design is needed to estimate the speed of the modal displacements
28

29 obs_eig = 10*eig_cont;
30 obs_eig_d = exp(Ts*obs_eig);
31 L_trans = place(Ad’,Cd’,obs_eig_d);
32 L = L_trans’;
33

34 %% OBSERVER INITIAL STATE
35 % set the sim function options to obtain the final state values as xFinal
36 [to,xo,yo] = sim(’Observer_Steady’,10,simopts); % simulate for 5000 seconds to

optain steady state
37 xobs=yo(end,:)’;
38

39 %% DLQR
40

41 %Design of the proportional regulator for the LQR formula
42 Q_con = Cd’*Cd*100000000;
43 R_con =diag([0.2 , 0.2, 0.7, 0.7, 0.7,0.7])*0.4;
44 K_cp = dlqr(Ad,Bd(:,1:6),Q_con*Ts,R_con*Ts);
45 % R_con =diag([1 , 1])*0.4;
46 % K_cp = dlqr(Ad,Bd(:,1:2),Q_con*Ts,R_con*Ts);
47

48 %% DLQR + Integral
49 %With the whole state, the control is designed, an integral action is
50 %needed since the disturbance force (F_int, dependent of theta, theta_d and
51 %theta_dd) needs to be taken into account
52 A_int_d = [Ad zeros(26,6);-Cd eye(6)];
53 B_int_d = [Bd(:,1:6);zeros(6,6)];
54

55 % Q_int = [Cd’*Cd ,zeros(26,6); zeros(6,26), eye(6)]*100;
56 Q_int = [Cd’*Cd ,zeros(26,6); zeros(6,26), eye(6,6)]*100000;
57 R_int = diag([0.5 , 0.5, 1, 1, 1,1])*2;
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58 K_tot = dlqr(A_int_d,B_int_d,Q_int*Ts,R_int*Ts);
59 K_ci = K_tot(:,1:26);
60 K_hi = -K_tot(:,27:32);
61

62 %% Shaft Actuation Only
63

64 A_int_d = [Ad zeros(26,6);-Cd eye(6)];
65 B_int_d = [Bd(:,1:2);zeros(6,2)];
66

67 % Q_int = [Cd’*Cd ,zeros(26,6); zeros(6,26), eye(6)]*100;
68 Q_int = [Cd’*Cd ,zeros(26,6); zeros(6,26), eye(6,6)]*100000;
69 R_int = diag([0.5 , 0.5])*2;
70 K_tot = dlqr(A_int_d,B_int_d,Q_int*Ts,R_int*Ts);
71 K_ci = K_tot(:,1:26);
72 K_hi = -K_tot(:,27:32);

Electro-Magnet Actuator Model Transfer Functions

1 sys_magnets = linmod(’ImanesPRUEBA’);
2 Ac_mag = sys_magnets.a;
3 Bc_mag = sys_magnets.b;
4 Cc_mag = sys_magnets.c;
5 Dc_mag = sys_magnets.d;
6 sys_ss_c_mag=ss(Ac_mag,Bc_mag,Cc_mag,Dc_mag);
7 sys_tf_c_mag=tf(sys_ss_c_mag);
8 sys_ss_mag = c2d(ss(Ac_mag,Bc_mag,Cc_mag,Dc_mag),Ts,’zoh’);
9 sys_tf_mag= tf(sys_ss_mag);

10

11 % Transfer functions
12

13 P1mag=sys_tf_c_mag(1,1);
14 P2mag=sys_tf_c_mag(2,2);
15 P31mag=sys_tf_c_mag(3,3);
16 P32mag=sys_tf_c_mag(4,3);
17 P41mag=sys_tf_c_mag(5,4);
18 P42mag=sys_tf_c_mag(6,4);
19 P51mag=sys_tf_c_mag(7,5);
20 P52mag=sys_tf_c_mag(8,5);
21 P61mag=sys_tf_c_mag(9,6);
22 P62mag=sys_tf_c_mag(10,6);

Feed-forward Control Gain Transfer Function

1 s=tf(’s’);
2

3 %Inverse Magnet Model
4 invermag1=inv(P1mag);
5 invermag2=inv(P2mag);
6 invermag31=inv(P31mag);
7 invermag32=inv(P32mag);
8 invermag41=inv(P41mag);
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9 invermag42=inv(P42mag);
10 invermag51=inv(P51mag);
11 invermag52=inv(P52mag);
12 invermag61=inv(P61mag);
13 invermag62=inv(P62mag);
14

15 %Adding Filter
16 invermag1=invermag1/(1+0.001*s);
17 invermag2=invermag2/(1+0.001*s);
18 invermag31=invermag31/(1+0.001*s);
19 invermag32=invermag32/(1+0.001*s);
20 invermag41=invermag41/(1+0.001*s);
21 invermag42=invermag42/(1+0.001*s);
22 invermag51=invermag51/(1+0.001*s);
23 invermag52=invermag52/(1+0.001*s);
24 invermag61=invermag61/(1+0.001*s);
25 invermag62=invermag62/(1+0.001*s);
26

27 %Obtaining Transfer Function Num+Den
28 [P1magnum,P1magden]=tfdata(invermag1);
29 [P2magnum,P2magden]=tfdata(invermag2);
30 [P31magnum,P31magden]=tfdata(invermag31);
31 [P32magnum,P32magden]=tfdata(invermag32);
32 [P41magnum,P41magden]=tfdata(invermag41);
33 [P42magnum,P42magden]=tfdata(invermag42);
34 [P51magnum,P51magden]=tfdata(invermag51);
35 [P52magnum,P52magden]=tfdata(invermag52);
36 [P61magnum,P61magden]=tfdata(invermag61);
37 [P62magnum,P62magden]=tfdata(invermag62);
38

39

40 %DC gain s=5
41 %
42 % K1mag=evalfr(P1mag,5);
43 % K2mag=evalfr(P2mag,5);
44 % K31mag=evalfr(P31mag,5);
45 % K32mag=evalfr(P32mag,5);
46 % K41mag=evalfr(P41mag,5);
47 % K42mag=evalfr(P42mag,5);
48 % K51mag=evalfr(P51mag,5);
49 % K52mag=evalfr(P52mag,5);
50 % K61mag=evalfr(P61mag,5);
51 % K62mag=evalfr(P62mag,5);
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